
© 2019 Imperas Software Limited www.OVPworld.org Page 1 of 92

iGen Platform and Module Creation User Guide

This document describes the use of the
Imperas Model Generator iGen to

create a virtual platform using OVP APIs.

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 2.1
Filename: iGen_Platform_and_Module_Creation_User_Guide.doc
Last Saved: Monday, 10 December 2018
Keywords: iGen Platform and Module Creation User Guide

mailto:docs@imperas.com

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 2 of 92

Copyright Notice
Copyright © 2019 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 3 of 92

Table of Contents

1 Preface 6

1.1 Notation.. 6
1.2 Related Documentation.. 6
1.3 Glossary / Terminology ... 7

2 Introduction 9
2.1 Prerequisites ... 9
2.2 Obtaining & installing iGen... 9
2.3 Compiling Examples described in this Document... 9
2.4 Shared Objects and executables... 10
2.5 Platforms, Modules and Shared Objects.. 10
2.6 Simulating Modules using harness.exe.. 10
2.7 Writing a bespoke C test harness ... 11

3 Describing a hardware design (a virtual platform) 12
3.1 Design hierarchy .. 12

4 Creating and simulating a first virtual platform 14
4.1 A quick run through ... 14
4.2 The simple application - Hello World ... 16

4.2.1 How printf works using semihosting ... 16
4.3 Defining the platform using iGen .. 16

4.3.1 Creating a new module .. 16
4.3.2 Adding a bus .. 16
4.3.3 Adding a processor instance and connecting it up..................................... 17
4.3.4 Adding a memory and connecting it up... 17
4.3.5 Full iGen listing for simple single core module... 17
4.3.6 Getting help on iGen module creating functions 17

4.4 Running iGen ... 18
4.5 iGen generated module files .. 19
4.6 Running the simulation using harness.exe... 19

4.6.1 The simulation command line.. 20
5 Creating a module with a peripheral (a UART) 21

5.1 Module overview ... 21
5.2 Quick run through .. 22
5.3 The application - writing to the UART.. 23
5.4 Defining the platform using iGen .. 24

5.4.1 Adding nets to the module ... 24
5.4.2 Adding a peripheral instance (a UART) .. 24
5.4.3 Getting help on iGen module creating functions 25
5.4.4 Full iGen listing for simpleCpuMemoryUart module 25

5.5 Running iGen ... 26
5.6 Running the simulation using harness.exe... 26

5.6.1 The simulation command line.. 27
6 Changing the processor being used (From OR1K to ARM) 29
7 Adding Bus Bridges, Aliasing address regions 31

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 4 of 92

7.1 Static Bus bridges .. 31
7.1.1 Aliasing .. 32

7.2 Dynamic Bus Bridges .. 34
7.2.1 Introduction.. 34
7.2.2 Running the simulation .. 36

8 Byte Swapping (Endian Correction) 39
8.1 Bus Connections .. 39
8.2 Performance considerations ... 40

9 Two processors with shared memory 42
9.1 Adding Hardware Elements... 42
9.2 Making Connections .. 44
9.3 The example encrypt and decrypt applications.. 45
9.4 Running the Example... 48

10 Caches (using Memory Model Components (MMC)) 50
10.1 Transparent or Full MMC Models... 50
10.2 MMC Operation... 51

10.2.1 Transparent Model ... 51
10.2.2 Full Model.. 52

10.3 Creating and connecting an MMC... 52
10.3.1 Transparent MMC Example .. 52
10.3.2 Full MMC Example ... 54
10.3.3 Cascaded MMC Example .. 56

11 Using Module Hierarchy in Virtual Platforms 61
11.1 A two level platform: simpleHierarchy ... 61
11.2 Creating the sub module .. 62

11.2.1 Compiling the submodule .. 63
11.3 Creating the top module... 63

11.3.1 Instancing a sub module... 63
11.3.2 Compiling the topmodule .. 64

11.4 Application0 - writing to the UART.. 64
11.5 Application1 - reading from the UART... 64
11.6 Running the hierarchical platform simulation ... 65

12 Hierarchy and Connectivity in Modules 67
12.1 The top level .. 67
12.2 The processor sub system .. 69
12.3 The memory sub system .. 70
12.4 The Test Application.. 70
12.5 Building the Example .. 70
12.6 Running the simulation .. 71

13 Passing Parameters down module hierarchy 73
13.1 Creating the sub module .. 74
13.2 Creating the top module... 75
13.3 The application... 75
13.4 Running the simulation .. 76

14 Directory structure: VLNV or direct paths 78
14.1 A hierarchical design using a VLNV directory structure 78

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 5 of 92

14.2 The directory structure... 79
14.3 Changing the controlling scripts .. 79
14.4 The module instances... 80

15 Loading programs into the design 81
16 Loading symbols into the simulator 82
17 Setting Model Parameters 83
18 Advanced Information & Usage of iGen 84

18.1 Overview of detailed platform construction .. 84
18.1.1 Harnesses and Modules.. 84
18.1.2 The contents of a module... 84
18.1.3 The Contents of a Harness or Test Bench.. 85
18.1.4 Module Parameterization ... 86
18.1.5 Efficiency... 87

18.2 Order of Platform construction .. 87
18.3 Editing the C of a module .. 87
18.4 Writing out a testbench / harness ... 88

19 iGen Module related Error Messages 89
20 (Deprecated) Creating ICM platforms with iGen 90

20.1 Generated files ... 90
20.1.1 User file : platform.c .. 90
20.1.2 Constructor file: platform.constructor.igen.h... 91
20.1.3 Options file: platform.options.igen.h ... 91
20.1.4 Handles file: platform.handles.igen.h .. 91
20.1.5 Command line parser file: platform.clp.igen.h .. 91

20.2 Repeated use of iGen ... 91
20.3 Adding a copyright header... 91
20.4 Checking the Platform ... 91

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 6 of 92

1 Preface
The Imperas simulators can use models described in C or C++ and the models can be
exported to be used in simulators and platforms using C, C++, SystemC or SystemC
TLM2.

This document describes the use of the iGen Model Generator, which executes scripts
making calls to the iGen Command API. The scripts use TCL (Tool Control Language)
as input and iGen creates C templates for simulation models and plugins, and creates
interfaces for SystemC TLM2 simulation and creates virtual platforms, testbenches and
modules using the OP C API and SystemC TLM2.

This document specifically describes how iGen is used to create platforms and modules
for use with Imperas and OVP virtual platform simulators and tools.

1.1 Notation
code Text representing code, a command or output from iGen or other

program.
keyword A word with special meaning.

1.2 Related Documentation

There are several documents available as PDF:

Getting Started

• Imperas Installation and Getting Started Guide

Interface and API

• OVP Peripheral Modeling Guide
• OVPsim Using OVP Models in SystemC TLM2.0 Platforms

References to specific uses of iGen

• iGen Model Generator Introduction
• iGen Platform and Module Creation User Guide
• Imperas Peripheral Generator Guide

Usage of Modules and Peripherals created using iGen

• Simulation Control of Platforms and Modules User Guide
• Advanced Simulation Control of Platforms and Modules User Guide

Also, in your installation there is the online iGen Function API Command reference
documentation. This is Doxygen-like API documentation available at:

 IMPERAS_HOME/doc/api/igen/html/index.html

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 7 of 92

For example:

1.3 Glossary / Terminology

OP API - OVP Platforms API - C API used for creating and controlling virtual
platforms. 2nd generation API, replaces ICM API. iGen creates modules/platforms in C
using this API.

iGen - Imperas productivity tool that has a powerful script based function API that is
used to create C/C++/SystemC models and templates. Described in the iGen Model
Generator Introduction, and for platforms, in the iGen Platform and Module Generator
User Guide.

OVPsim - Simulator for Open Virtual Platforms that executes platforms and models
coded in the OVP APIs.

CpuManager - Imperas commercial simulator that executes platforms and models coded
in the OVP APIs.

Platform / Module (used interchangeably) - a collection of components connected
together into a level of hierarchy in a system to be simulated. This is a program in C/C++
making calls into OP API and normally compiled into a shared object/dynamically linked
library and loaded by the simulator at run time.

Testbench / Harness - program in C/C++ making calls into OP API to connect and
control OVP components. Normally linked to the simulator to provide an .exe binary that
can be executed. Used to instantiate one or more platforms/modules and controls their
execution. The main difference, from a platform/module, is that a testbench or harness

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 8 of 92

includes a call to the function main(), may include a command line parser and is linked to
create an executable binary (.exe) file.

Root Module - used to describe the initial platform/module that instantiates one or more
platforms/modules and controls their execution. Used in the testbench/harness.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 9 of 92

2 Introduction
Imperas simulation technology enables very high performance simulation, debug and
analysis of platforms containing multiple processors and peripheral models. The
technology is designed to be extensible: you can create your own platforms, new models
of processors, and other platform components using interfaces and libraries supplied by
Imperas. Platform models developed using this technology can be used both with Imperas
simulation products and the freely-available OVPsim platform simulator.

iGen is an Imperas productivity tool that has a powerful script based function API that is
used to create C/C++/SystemC platform models and component templates.

2.1 Prerequisites
Since models and platforms for use with Imperas and OVP tools are written in C, an
important prerequisite is that you must be proficient in the C language.

iGen uses the TCL scripting language, so it is beneficial to have some basic
understanding of TCL.

2.2 Obtaining & installing iGen
iGen is available as part of the Imperas DEV and SDK packages. So it is assumed you
have downloaded one of these from the Imperas website and have installed it on the host
machine.

2.3 Compiling Examples described in this Document
The examples use processor and component models and toolchains, available to
download from the www.OVPworld.org website or as part of an Imperas installation.

The compilation of the examples makes use of Makefiles and GNU make. The
instructions indicate the use of the command make on Linux systems and MinGW
mingw32-make command on Windows systems.

The Makefiles referred to in this document are written for GNU make. Standard
Makefiles supplied by Imperas support compilation and linking using GNU tools on both
Windows and Linux.

Example scripts will be referred to, for example, as example.sh. The shell (extension sh)
script files may be used on Linux and in Windows MSYS shells. The batch (extension
bat) files may be used in Windows Explorer or in a Windows command shell.

SystemC TLM2.0 models can be used on Linux with gcc or on Windows with
MinGW/MSys (since SystemC release v2.3.0) or MSVC (Imperas/OVP has been used
with version MSVC 8.0). It is assumed that users of this environment will be familiar
with SystemC, TLM2.0 and will have obtained this software from www.systemc.org or
similar.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 10 of 92

2.4 Shared Objects and executables
The shared objects referred to in this document are either Linux shared objects, with
suffix .so or Windows dynamic link libraries with suffix .dll.

The executables referred to in this document are either Linux or Windows programs and
both have the suffix .exe

2.5 Platforms, Modules and Shared Objects
Modules are created by writing scripts using iGen API calls and then using iGen to
generate C code that calls functions from the OP API. A Makefile is provided that will
take as input a file module.op.tcl and execute iGen and the host compiler and linker to
create the model.so/.dll shared objects.

The model.so/.dll shared object can then be loaded and simulated using the harness.exe
program (provided in the installation binary directory), or by writing a bespoke test
harness in C using the OP API.

2.6 Simulating Modules using harness.exe
For most simple iGen constructed platforms and modules the harness.exe program can
be used.

To see the commands that can be used with the program, type:

> harness.exe --help

The simplest execution is to load a module with an application loaded onto the
processor(s) in the module:

> harness.exe --modulefile module/model.so \
 --program application/application.OR1K.elf

The argument --modulefile <filename> states which shared object module1 to simulate.

The argument --program <filename> states which program binary (elf) file to load to run
on the processor(s)2 contained within the module.

Look at some of the examples in Examples/PlatformConstruction.

1 The module could also be loaded from a VLNV library using the --modulevendor, --modulelibrary, --
modulename and --moduleversion arguments in place of the --modulefile argument.

2 When no processor is specified the program elf file is loaded onto ALL the processors in the module.
To specify programs to load onto a specific processor use --program modulename/processorname=app.elf

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 11 of 92

2.7 Writing a bespoke C test harness
If you require a more complex test harness, where you wish to control the simulator (for
instance single step processor execution), or add monitors or other test related
capabilities, then please refer to the Simulation Control of Platforms and Modules User
Guide.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 12 of 92

3 Describing a hardware design (a virtual platform)
There are three phases to describing a platform:

1. Creation of the design, which involves specifying the hardware components it
contains along with the connections between those components.

2. Validation of the design, which involves ensuring that all the library elements
which have been referenced are available in the library and that the connections
are valid.

3. Use of that design with software programs designed to run on it in an appropriate
test environment which allows the verification of both hardware and associated
software. Each of these processes will be described in the sections that follow.

The first phase of the process of building a platform is to determine which hardware is to
be included. A typical platform consists of a combination of modules, processors, buses,
memory and other components.

The models for these are stored within the libraries. A library model does not need to
exist within a library to be included in a platform, so a platform developer can work in
parallel with a library model developer, however, the library elements must exist before
verification of the design can take place. The exceptions to this are basic memories
(RAM and ROM), FIFOs, packetnets, and buses for which models are provided with the
tools.

The second phase is validating that the platform elaborates and connects up correctly -
this is done simply by starting to simulate the platform but not executing instructions.
This can be done by using the harness program, harness.exe, or it can be accomplished by
using your own created harness / test bench written in C using the OP simulator control
API.

The third phase is to use a test bench / harness to simulate the platform with appropriate
application software and Operating Systems loaded.

3.1 Design hierarchy
With the use of the OP platform API, a platform can be constructed from a hierarchy of
modules. A module is separately compiled and is a collection of component instances and
connections. A module is like a sub-system. It can be used as a component in other
modules or simulated directly by a harness. Connections can be made to modules using
ports, and parameters can be passed in to configure some aspects of the module or its
contained components, busses etc.

The term module instance is used to refer to the instantiation of a module in another
module.

When connecting a bus, net, FIFO or packetnet to a module external port it is exported to
the containing module that instances it. When not connected to a module external port it
remains private within the created module.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 13 of 92

Modules can instance modules.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 14 of 92

4 Creating and simulating a first virtual platform
Let us first walk through a simple example of using iGen to create a module of a simple
CPU and memory, then use the provided harness.exe program to execute it with a cross
compiled simple application program running on the CPU.

This platform has an OR1K CPU, RAM memory, bus and no hierarchy, as shown here:

Simple CPU and MemorySimple CPU and Memory

Memory
(ram1)

OR1KOR1K

mainBus

ram1

0x00000000

0xFFFFFFFF

Platform Memory Map

.elf file

Application (hello world)
[using semihost]

It is available in the directory:

$IMPERAS_HOME/Examples/PlatformConstruction/simpleCpuMemory

Take a copy of the example directory tree:

> cp –r $IMPERAS_HOME/Examples/PlatformConstruction/simpleCpuMemory .

4.1 A quick run through
First, we need to cross compile the application. If you do not have your own cross
compiler tool chains, you can download pre-built tools for processors provided by OVP
from the OVP website or Imperas user areas. For more information read the 'Installing
Additional Tools' section of the Imperas Installation and Getting Started Guide.

Compile the application using the provided Makefile and specify the cross compile target
to use:

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 15 of 92

> cd simpleCpuMemory/application
> make CROSS=OR1K

This uses Make to cross compile and link the application:

Compiling application.c
Linking application.OR1K.elf

Then make the module:

> cd ../module
> make

This uses Make to a) run iGen to take the input TCL file and create the output .c/.h files,
and then b) host compile and link the platform.

If you do not have iGen installed, you will see the error message:

> make
iGen Create OP MODULE module
make: igen.exe: Command not found

If you get that message, you need to download and install iGen (see section 2.2 above).

If iGen is installed, then you will see:

> make
iGen Create OP MODULE module
Copying STUBS module.c.igen.stubs to module.c
Host Depending obj/Linux32/module.d
Host Compiling Module obj/Linux32/module.igen.o
Host Linking Module object model.so

Which will have created all the .c and .h files, and host compiled and linked them to
shared object: model.so/.dll.

Now execute the simulation of the module with the compiled application using the
provided harness.exe program:

> cd ..
> harness.exe --modulefile module/model.so \
 --program application/application.OR1K.elf

The simulator will run; see that the 'Hello first world' is output...

...
OVPsim started: Tue Oct 13 10:57:22 2015

Hello first world from iGen generated platform

OVPsim finished: Tue Oct 13 10:57:22 2015
...

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 16 of 92

To make things simpler, we have provided a script that performs these make and run
commands:

> ./example.sh

4.2 The simple application - Hello World
Look at the application/application.c file.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {

 printf("Hello first world from iGen generated platform\n");

 return 0;
}

4.2.1 How printf works using semihosting
For details on Imperas semihosting see the Imperas Installation and Getting Started User
Guide.

In this example semihosting is used to provide behavior for the low level functions
without having to add anything to the platform or application code. The write function
invoked by the printf function called in the application is intercepted and the functionality
provided by the simulator with, in this case, the printed characters that are written to
stdout appearing in the simulator's output.

4.3 Defining the platform using iGen
The input to iGen is a tcl program/script that makes calls to the iGen platform/module
building functions. iGen is run in a script or makefile to write out the .c/.h files that will
be compiled to create and run the platform/module.
4.3.1 Creating a new module

Look at the module/module.op.tcl file.

ihwnew -name simpleCpuMemory

The command ihwnew starts the definition of a hardware component (module) and names
it simpleCpuMemory.

4.3.2 Adding a bus

We then add a bus with name mainBus with the width of the address being 32 bits.

ihwaddbus -instancename mainBus -addresswidth 32

Note that you do not specify the data width of the bus, only the byte addressable range

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 17 of 92

4.3.3 Adding a processor instance and connecting it up
A processor is added to the module with one function call:

ihwaddprocessor -instancename cpu1 -vendor ovpworld.org -library processor \
 -type or1k -version 1.0 -semihostname or1kNewlib \
 -variant generic

This specifies an instance of the generic variant from the VLNV library of your Imperas
installation ovpworld.org/processor/or1k/1.0 using the semihost library of or1kNewlib
and with an instance name of cpu1.

We connect it to the bus using:

ihwconnect -bus mainBus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus mainBus -instancename cpu1 -busmasterport DATA

This connects the mainBus to both master ports on the processor instance.

4.3.4 Adding a memory and connecting it up

ihwaddmemory -instancename ram1 -type ram
ihwconnect -bus mainBus -instancename ram1 -busslaveport sp1 \
 -loaddress 0x0 -hiaddress 0xffffffff

This instances a memory and connects up its port and provides the address range that it is
usable at. Size is not specified as it is defined by the hi/lo byte addresses, i.e. its valid
address range.

4.3.5 Full iGen listing for simple single core module

ihwnew -name simpleCpuMemory

ihwaddbus -instancename mainBus -addresswidth 32

ihwaddprocessor -instancename cpu1 -vendor ovpworld.org -library processor \
 -type or1k -version 1.0 -semihostname or1kNewlib \
 -variant generic
ihwconnect -bus mainBus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus mainBus -instancename cpu1 -busmasterport DATA

ihwaddmemory -instancename ram1 -type ram
ihwconnect -bus mainBus -instancename ram1 -busslaveport sp1 \
 -loaddress 0x0 -hiaddress 0xffffffff

So in 7 lines of input for iGen we have created a simple module including a processor
instance and a memory instance and connected them up.
4.3.6 Getting help on iGen module creating functions
To see a list of module building functions, visit the online documentation at:

 IMPERAS_HOME/doc/api/igen/html/index.html

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 18 of 92

Or you could use the iGen --apropos command line argument to give information on a
command:

> igen.exe --apropos ihwaddproc
 ...
NAME: ihwaddprocessor - Add to a design, an instance of a processor
 ...
ARGUMENTS:
 -instancename <string> (mandatory)
 The name for the new processor instance
 -type <string>
 The VLNV name of the processor
 -variant <string>
 The processor variant
 -vendor <string>
 The VLNV vendor name of the processor
 -library <string>
 The VLNV library name of the processor
 -version <string>
 The VLNV version number of the processor
 -semihostname <string>
 The VLNV name of a Semihost library
 ...

Note that for ihwaddprocessor there are many more arguments to set things like mips
rate, start addresses, program image to load etc.

4.4 Running iGen
igen.exe is a program in the Imperas installation in the
IMPERAS_HOME/bin/IMPERAS_ARCH directory and can be run from the command
shell as illustrated above when using it to get help etc.

You can run igen.exe with the --help option to explore its command line options, but
using igen.exe in a makefile or script for module generation is recommended and for our
examples we will use the provided Makefile system.

The simplest way to run iGen is to use the Imperas provided Makefile system. In the
examples we provide two files in the module directory, the Makefile and the
module.op.tcl source file.

> cd module
> ls
Makefile module.op.tcl

The Imperas Makefile recognizes the file module.op.tcl as a script file to input to iGen to
generate the module in C using the OP API.

> make
iGen Create OP MODULE module
Copying STUBS module.c.igen.stubs to module.c
Host Depending obj/Linux32/module.d
Host Compiling Module obj/Linux32/module.o
Host Linking Module object model.so

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 19 of 92

4.5 iGen generated module files

After iGen has been run you will find three files in the module directory; module.c,
module.c.igen.stubs and module.igen.h.

The module.c.igen.stubs file is always generated and is overwritten each time iGen is run.
The Make system will only invoke iGen if the input (module.op.tcl) file is newer than the
generated files.

If module.c does not exist the stubs file, module.c.igen.stubs, is copied to create module.c.

If you look at the module.c and the module.igen.h files, you will see the OP API calls.

The file module.c can be edited and provides some empty callbacks in which you can add
OP function calls to the module if you need to add more capability. Subsequent runs of
iGen will write out a module.c.igen.stubs file that can be used for comparison and code
merging purposes.

The module.igen.h file is always written and should not be modified by the user.

For details of the contents of the generated C files and the editing of them, see the
Simulation_Control_of_Platforms_and_Modules_User_Guide and
Advanced_Simulation_Control_of_Platforms_and_Modules_User_Guide.

4.6 Running the simulation using harness.exe
To run the simulation a harness or test bench is required. This can be written in C using
OP API calls (see the Simulation Control of Platforms and Modules User Guide) or you
can use the harness.exe program.

To use the harness.exe program to execute the simulation of the platform with the
compiled application:

> cd ..
> harness.exe --modulefile module/model.so \
 --program application/application.OR1K.elf

The simulator will run; see that the 'Hello first world' is output...

OVPsim started: Tue Oct 13 10:57:22 2015

Hello first world from iGen generated platform

OVPsim finished: Tue Oct 13 10:57:22 2015

To make things simpler, we have provided a script that performs these make and run
commands:

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 20 of 92

> cd ..
> ./example.sh

So you should be able to just edit the application/application.c and module/module.op.tcl
files and then just run ./example.sh to rebuild, recompile, and run.

4.6.1 The simulation command line
The Imperas simulators that are invoked by harness.exe and iss.exe have many common
built-in command line arguments. Examples argument are --modulefile and --program as
shown and used above, other useful arguments are --trace, --verbose as shown in the
example below:

> harness.exe --modulefile module/model.so \
 --program application/application.OR1K.elf \
 --trace --verbose

Use --help to see what each command line argument does.

Note that command line arguments like these can be added to the example.sh script
invocation and they are passed to the simulator command line:

> ./example.sh --trace --verbose
> ./example.sh --help

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 21 of 92

5 Creating a module with a peripheral (a UART)
This example introduces peripherals. It builds on the module created in the previous
example.

We expect you to look at the code in the example directory and in this text we will
discuss those parts that are different or new when compared to the previous examples in
this document.

This is an introductory example; please see later sections in this document for more
detailed examples.

5.1 Module overview
If you look at the picture below, you will see there is a CPU, two memories, and an
instance of a UART in the platform.

Simple CPU Memory UARTSimple CPU Memory UART

UART
(FreescaleKinetis)

Memory
(ram1)

OR1KOR1K Memory
(ram2)

ram2

ram1

0x00000000

0xFFFFFFFF

0x20000000

0x100003f8 UART

0x0FFFFFFF

logfile

Platform Memory Map

.elf file

Application (hello world)
[writing to UART registers]

This platform is available at

$IMPERAS_HOME/Examples/PlatformConstruction/simpleCpuMemoryUart

Take a copy of the example directory tree:

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/simpleCpuMemoryUart .

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 22 of 92

5.2 Quick run through
First we need to cross compile the application. If you do not have your own cross
compiler tool chains, you can download pre-built tools for processors provided by OVP
from the OVP website or Imperas user areas. For more information read the 'Installing
Additional Tools' section of the Imperas Installation and Getting Started Guide.

Compile the application using the provided Makefile and specify the cross compile target
to use:

> cd simpleCpuMemoryUart/application
> make CROSS=OR1K

This uses Make to cross compile and link the application:

Compiling application.c
Linking application.OR1K.elf

Then make the module:
> cd ../module
> make

This uses Make to a) run iGen to take the input tcl file and create the output .c/.h files,
and then b) host compile and link the platform.

If you do not have iGen installed, you will see the error message:
> make
iGen Create OP MODULE module
make: igen.exe: Command not found

If you get that message, you need to download and install iGen (see section 2.2).

If iGen is installed, then you will see:
> make
iGen Create OP MODULE module
Copying STUBS module.c.igen.stubs to module.c
Host Depending obj/Linux32/module.d
Host Compiling Module obj/Linux32/module.igen.o
Host Linking Module object model.so

Which will have created all the needed .c and .h files, and host compiled and linked them
to shared object model.so/.dll.

Now execute the simulation of the module with the compiled application using
harness.exe:

> cd ..
> harness.exe --modulefile module/model.so \
 --program application/application.OR1K.elf

The simulator will run; you will see the initialization of the UART and the writing to
UART messages:

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 23 of 92

OVPsim started: Mon Nov 30 16:59:41 2015

Initializing KinetisUART
Writing to uart - see log file

OVPsim finished: Mon Nov 30 16:59:41 2015

The output of the UART is in the file uartTTY0.log:

> cat uartTTY0.log
Hello UART0 world

To make things simpler, we have provided a script that performs these make and run
commands:

> ./example.sh

And don't forget you can use the verbose and other command line arguments, such as
modeldiags:

> ./example.sh --modeldiags 0x3 --verbose

5.3 The application - writing to the UART
Look at the application/application.c file.

Here is the declaration of a function to write a character to the UART:

static void writeMessFreescaleKinetisUart (unsigned char *uartBase, unsigned
const char *myString) {
 volatile unsigned char *ab_S1 = uartBase + 0x4;
 volatile unsigned char *ab_D = uartBase + 0x7;
 #define UART_S1_TDRE_MASK 0x80

 unsigned int i;
 for(i=0;i<strlen(myString);i++){
 while ((*ab_S1 & UART_S1_TDRE_MASK) == 0) {
 // Wait for TransmitRegister Empty flag
 }
 *ab_D = myString[i];
 }
}

The address of the UART is passed in as uartBase and this is used in ab_S1 and ab_D
declared as volatile unsigned char so accesses to them will not be optimized away.

And then a main to call it:

#define UART0_BASE ((unsigned char *) 0x100003f8)

int main(int argc, char **argv) {

 initFreeScaleKinetisUart(UART0_BASE);

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 24 of 92

 printf ("Writing to uart - see log file\n\n");

 writeMessFreescaleKinetisUart(UART0_BASE,
 "Hello UART0 world\n\n");

 return 0;
}

Note the declaration of UART0_BASE to define the address where the UART is located in
the platform.

Note also the call to initFreeScaleKinetisUart which is declared in application.c
which just executes the initialization that you need to perform on the UART.

The application is compiled with:

> cd application
> make
Compiling application.c
Linking application.OR1K.elf

5.4 Defining the platform using iGen
The input to iGen is a tcl program/script that makes calls to the iGen platform/module
building functions. iGen is run in a script or makefile to write out the .c/.h files that will
be compiled to create and run the platform/module.

Look at the module/module.op.tcl file. Only new iGen commands will be introduced here.
Please refer to the previous iGen example (in section 4.3.5) for description of the usage of
iGen and information on starting a new module, adding a bus, processor, memories and
connecting them up.
5.4.1 Adding nets to the module

To add nets to a module, use ihwaddnet:

ihwaddnet -instancename directWrite
ihwaddnet -instancename directRead

5.4.2 Adding a peripheral instance (a UART)

Adding a peripheral instance to a module is very similar to instancing a processor:

ihwaddperipheral -instancename periph0 \
 -vendor freescale.ovpworld.org -library peripheral -version 1.0 \
 -type KinetisUART

Note that when instancing a peripheral you must specify the vendor, library, and version.

OVP peripherals are documented on the OVP website. For this peripheral look at:
OVPworld->Library->Peripherals->FreescalePeripherals->FreescaleKinetisUART.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 25 of 92

5.4.2.1 Setting a peripheral instance's parameters
Often a component you instance will have been declared with formal parameters or
parameters that can be set when the component is instanced. (Check the documentation).

The FreescaleKinetisUART has many parameters that can be set including outfile.
Parameters on an instance are set with ihwsetparameter:

ihwsetparameter -handle periph0 -name outfile -value uartTTY0.log –type string

This names the log file.

5.4.2.2 Connecting up a peripheral instance to a bus and to nets
Check the documentation of the peripheral to see what you can connect to which ports.

The FreescaleKinetisUART has connections for a bus and nets:

ihwconnect -instancename periph0 -busslaveport bport1 -bus mainBus \
 -loaddress 0x100003f8 -hiaddress 0x100013f7
ihwconnect -instancename periph0 -netport DirectWrite -net directWrite
ihwconnect -instancename periph0 -netport DirectRead -net directRead

This connects the peripheral's slave port to the bus and connects up the two netports to
the nets.
5.4.3 Getting help on iGen module creating functions
To see a list of module building functions, visit the online documentation at:

 IMPERAS_HOME/doc/api/igen/html/index.html

Or you could use the iGen --apropos command line argument to give information on a
command:

> igen.exe --apropos iseta

5.4.4 Full iGen listing for simpleCpuMemoryUart module

ihwnew -name simpleCpuMemoryUart

ihwaddbus -instancename mainBus -addresswidth 32

ihwaddnet -instancename directWrite
ihwaddnet -instancename directRead

ihwaddprocessor -instancename cpu1 \
 -vendor ovpworld.org -library processor -type or1k -version 1.0 \
 -semihostname or1kNewlib \
 -variant generic
ihwconnect -bus mainBus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus mainBus -instancename cpu1 -busmasterport DATA

ihwaddmemory -instancename ram1 -type ram
ihwconnect -bus mainBus -instancename ram1 \
 -busslaveport sp1 -loaddress 0x0 -hiaddress 0x0fffffff

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 26 of 92

ihwaddmemory -instancename ram2 -type ram
ihwconnect -bus mainBus -instancename ram2 \
 -busslaveport sp1 -loaddress 0x20000000 -hiaddress 0xffffffff

ihwaddperipheral -instancename periph0 \
 -vendor freescale.ovpworld.org -library peripheral \
 -version 1.0 -type KinetisUART
ihwsetparameter -handle periph0 -name outfile -value uartTTY0.log –type string
ihwconnect -instancename periph0 \
 -busslaveport bport1 -bus mainBus \
 -loaddress 0x100003f8 -hiaddress 0x100013f7
ihwconnect -instancename periph0 -netport DirectWrite -net directWrite
ihwconnect -instancename periph0 -netport DirectRead -net directRead

5.5 Running iGen
igen.exe is a program in the Imperas installation in the
$IMPERAS_HOME/bin/$IMPERAS_ARCH directory and can be run from the command shell
as illustrated above when using it to get help etc.

You can run igen.exe with the --help option to explore its command line options, but
using igen.exe in a makefile or script for module generation is recommended and for our
examples we will use the provided Makefile system.

The simplest way to run iGen is to use the Imperas provided Makefile system. In the
examples we provide two files in the module directory, the Makefile and the
module.op.tcl source file.

> cd module
> ls
Makefile module.op.tcl

The Imperas make system recognizes the file module.op.tcl as a script file to input to
iGen to generate the module in C using the OP API.

> make
iGen Create OP MODULE module
Copying STUBS module.c.igen.stubs to module.c
Host Depending obj/Linux32/module.d
Host Compiling Module obj/Linux32/module.o
Host Linking Module object model.so

For additional information regarding the files generated by iGen for a module please refer
to section 4.5 ”iGen generated module files”.

5.6 Running the simulation using harness.exe
To run the simulation a harness or test bench is required. This can be written in C using
OP API calls (see the Simulation Control of Platforms and Modules User Guide), or you
can use the provided harness.exe program.

To use the provided harness.exe program to execute the simulation of the platform with
the compiled application:

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 27 of 92

> harness.exe --modulefile module/model.so \
 --program application/application.OR1K.elf

The simulator will run, producing the following output:

OVPsim started: Tue Oct 13 10:57:22 2015

Initializing KinetisUART
Writing to uart - see log file

OVPsim finished: Tue Oct 13 10:57:22 2015

To make things simpler, we have provided a script that performs these make and run
commands:

> ./example.sh

So you should be able to edit the application/application.c and module/module.op.tcl files
and then run ./example.sh to rebuild, recompile, and run.

5.6.1 The simulation command line
The Imperas simulators, harness.exe and iss.exe have many common built-in command
line arguments. Examples for harness.exe are --modulefile and --program as above, other
useful arguments are:

> harness.exe --modulefile module/model.so \
 --program application/application.OR1K.elf \
 --trace --verbose

Use --help to see what each command line argument does.

This lists many arguments (some of which will only be useful to specific simulators and
models). The arguments are loosely grouped into categories - for example: control,
debug, diagnostics, log, parameters, program and trace.

From the log group:

--verbose

which shows the simulation run statistics.

In the diagnostics group is:

--modeldiags 0x3

which shows the accesses to the peripheral models registers:

OVPsim started: Mon Nov 30 15:59:36 2015

Info (UART_UIS) top/periph0: Uart initialized in serial channel mode

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 28 of 92

Initializing KinetisUART
Info (UART_BRC) top/periph0: Baud rate changed to 19921
Info (UART_BRC) top/periph0: Baud rate changed to 19577
Info (UART_TFT) top/periph0: Transmitter fifo threshold set to 1
Info (UART_RFT) top/periph0: Receiver fifo threshold set to 1
Info (UART_UW) top/periph0: Write to Data register: data=0x0d ('')
Writing to uart - see log file

Info (UART_UW) top/periph0: Write to Data register: data=0x48 ('H')
Info (UART_UW) top/periph0: Write to Data register: data=0x65 ('e')
Info (UART_UW) top/periph0: Write to Data register: data=0x6c ('l')
Info (UART_UW) top/periph0: Write to Data register: data=0x6c ('l')
Info (UART_UW) top/periph0: Write to Data register: data=0x6f ('o')
Info (UART_UW) top/periph0: Write to Data register: data=0x20 (' ')
Info (UART_UW) top/periph0: Write to Data register: data=0x55 ('U')
Info (UART_UW) top/periph0: Write to Data register: data=0x41 ('A')
Info (UART_UW) top/periph0: Write to Data register: data=0x52 ('R')
Info (UART_UW) top/periph0: Write to Data register: data=0x54 ('T')
Info (UART_UW) top/periph0: Write to Data register: data=0x30 ('0')
Info (UART_UW) top/periph0: Write to Data register: data=0x20 (' ')
Info (UART_UW) top/periph0: Write to Data register: data=0x77 ('w')
Info (UART_UW) top/periph0: Write to Data register: data=0x6f ('o')
Info (UART_UW) top/periph0: Write to Data register: data=0x72 ('r')
Info (UART_UW) top/periph0: Write to Data register: data=0x6c ('l')
Info (UART_UW) top/periph0: Write to Data register: data=0x64 ('d')
Info (UART_UW) top/periph0: Write to Data register: data=0x0a ('')
Info (UART_UW) top/periph0: Write to Data register: data=0x0a ('')

OVPsim finished: Mon Nov 30 15:59:36 2015

Arguments:

--showbuses
--showdomains

show the connections to the buses and the memories.

From the trace group, examples are:

--trace
--trace --tracechange

These trace instructions in the processor with the option of tracing registers that have
changed.

Note that command line arguments like the above can be added to the example.sh script
invocation and they are passed to the simulator command line:

> ./example.sh --showbuses --showdomains
> ./example.sh --trace --tracechange
> ./example.sh --help

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 29 of 92

6 Changing the processor being used (From OR1K to
ARM)

The example above as provided uses the OpenCores OR1K processor. It is easy to change
this example to use another processor.

First check that the example runs unmodified.
> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/simpleCpuMemoryUart .
> cd simpleCpuMemoryUart
> ./example.sh
> cd ..

Then copy the directories, and as we will be using an ARM processor name it
accordingly:

> cp -r simpleCpuMemoryUart simpleCpuMemoryUart_ARM
> cd simpleCpuMemoryUart_ARM

In fact it takes 2 edits:

example.sh change the cross compilation target from:
CROSS=OR1K

to:
CROSS=ARM_CORTEX_A

module/module.op.tcl has changes to the selection of the processor model from:

ihwaddprocessor -instancename cpu1 \
 -vendor ovpworld.org -library processor -type or1k -version 1.0 \
 -semihostname or1kNewlib \
 -variant generic

to:

ihwaddprocessor -instancename cpu1 \
 -vendor arm.ovpworld.org -library processor -type arm -version 1.0 \
 -semihostname armNewlib -semihostvendor arm.ovpworld.org \
 -variant Cortex-A9UP

So thus we have changed the platform to use the arm model from arm.ovpworld.org as
the variant Cortex-A9UP using semihost library armNewlib from vendor
arm.ovpworld.org and changed the cross compiler make system to select the
ARM_CORTEX_A tool chain.

Also note you will need to install the ARM toolchain
(armv7.toolchain.<version>.<arch>.exe) (see installing tools chains above).

So running ./example.sh with our edits, will compile everything and run and we will see
the UART log displayed at the end:

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 30 of 92

./example.sh --verbose
Compiling application.c
Linking application.ARM_CORTEX_A.elf
Host Compiling Platform obj/Linux32/platform.o
Host Linking Platform platform.Linux32.exe
Host Linking Platform object model.so

OVPsim started: Mon Nov 30 16:11:47 2015

Info (OP_AL) Found attribute symbol 'modelAttrs' in file
 ImperasLib/arm.ovpworld.org/processor/arm/1.0/model.dll'
Info (OP_AL) Found attribute symbol 'modelAttrs' in file
 ImperasLib/arm.ovpworld.org/semihosting/armNewlib/1.0/model.dll'
Info (OR_OF) Target 'simpleCpuMemoryUart/cpu1' has object file read from
 'application/application.ARM_CORTEX_A.elf'
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align
Info (OR_PD) PROC 0x0000a34c 0x0000a34c 0x0000a34c 0x00000008 0x00000008 R-- 4
Info (OR_PD) LOAD 0x00008000 0x00008000 0x00008000 0x00002358 0x00002358 R-E 8000
Info (OR_PD) LOAD 0x0000a358 0x00012358 0x00012358 0x00000854 0x00100ca8 RW- 8000

Initializing KinetisUART
Writing to uart - see log file

Info
Info ---
Info PSE SIMULATION TIME STATISTICS
Info 0.00 seconds: PSE THREAD 'simpleCpuMemoryUart/periph0'
Info 0.01 seconds: PSE 'simpleCpuMemoryUart/periph0' (and 90 terminated
callbacks)
Info ---
Info
Info ---
Info CPU 'simpleCpuMemoryUart/cpu1' STATISTICS
Info Type : arm (Cortex-A9UP)
Info Nominal MIPS : 100
Info Final program counter : 0x8030
Info Simulated instructions: 2,492
Info Simulated MIPS : run too short for meaningful result
Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 0.00 seconds
Info User time : 0.04 seconds
Info System time : 0.00 seconds
Info Elapsed time : 0.04 seconds
Info ---

OVPsim finished: Mon Nov 30 16:11:47 2015

Hello UART0 world

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 31 of 92

7 Adding Bus Bridges, Aliasing address regions

A bus bridge is a generic component (it does not exist in a library) which maps part or all
of the address space of one bus to the address space of another.

7.1 Static Bus bridges

Construction of the processor, memory and peripheral components has already been
covered.

A static bridge may be used to map sections of one address space to another. It is also
used to create aliases of memory.

uut
module

harness

0x10000000
0x10001FFF

Bridge
br1

processor bus
read/write

read/write
memory callbacks

bu
sM

bu
sS

topBusM topBusS

0x00001000
0x00002FFF

In this example a processor read/write in the address range 0x00001000 to 0x00002fff
will be mapped to a memory access in the range 0x10000000 to 0x10001fff.

This example is available at

$IMPERAS_HOME/Examples/PlatformConstruction/busHierarchy

Take a copy of the example directory tree:

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/busHierarchy .
> cd busHierarchy

There are three parts to a bridge.

The instance definition:

ihwaddbridge -instancename br1

The slave port connection onto the bus containing the bus master:

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 32 of 92

ihwconnect -bus busM -busslaveport ps -instancename br1 \
 -loaddress 0x1000 -hiaddress 0x00002fff

The master port connection onto the bus containing the bus slaves:

ihwconnect -bus busS -busmasterport pm -instancename br1 \
 -loaddress 0x10000000 -hiaddress 0x10001fff

Note that in this example busM refers to the bus on which the bus master accesses are
carried out and onto which the bridge slave port is connected and busS is the bus which is
connected to the slaves and onto which the bridge master port is connected. The port
names are for documentation only but should be unique on their respective busses.

The definition above is executed by iGen to generate a C definition in which the function
opBridgeNew creates the bus bridge:

opBridgeNew(
 mi, // module
 “bridge1”, // name of this bridge
 OP_CONNECTIONS(
 OP_BUS_CONNECTIONS(
 OP_BUS_CONNECT(busM, ”ps", .addrlo=0x1000, .addrHi=0x2fff, .slave=1),
 OP_BUS_CONNECT(busS, ”pm", .addrlo=0x10000000, .addrHi=0x10001fff)
)
)
)

Note that the port is identified as a slave port by the setting of slave=1.

7.1.1 Aliasing
A bus bridge can be used to alias a region of an address space to another region on the
same bus. There are two ways this could be achieved:

7.1.1.1 Using a single bus bridge to map a region back onto the same bus

ihwaddbridge -instancename br1
ihwconnect -bus busM -busslaveport ps -instancename br1 \

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 33 of 92

 -loaddress 0x10000000 -hiaddress 0x10002fff
ihwconnect -bus busM -busmasterport pm -instancename br1 \
 -loaddress 0x00000000 -hiaddress 0x00001fff

This is valid in OVP but if trying to generate a SystemC TLM platform it is not possible
to map regions back onto the same bus.

7.1.1.2 Using a separate bus and two bridges to map a region

An alternate method, and recommended as this overcomes a failure in SystemC, is to
create a second bus on which the components and memory are located separately to the
bus masters which see the aliased memory. This requires the use of two bus bridges, one
to make the original mapping and the second to make the aliased mapping.

ihwaddbridge -instancename br1
ihwconnect -bus busM -busslaveport ps -instancename br1 \
 -loaddress 0x00000000 -hiaddress 0x00001fff
ihwconnect -bus busS -busmasterport pm -instancename br1 \
 -loaddress 0x00000000 -hiaddress 0x00001fff
ihwaddbridge -instancename br2
ihwconnect -bus busM -busslaveport ps -instancename br2 \
 -loaddress 0x10000000 -hiaddress 0x10001fff
ihwconnect -bus busS -busmasterport pm -instancename br2 \
 -loaddress 0x00000000 -hiaddress 0x00001fff

7.1.1.3 Using bridges to model unconnected top address bit
This example models the effect of not connecting the most significant address bit of a 32-
bit bus: addresses in the top half of the address space are mapped to the bottom half.

ihwaddbridge -instancename br1
ihwconnect -bus busM -busslaveport ps -instancename br1 \
 -loaddress 0x80000000 -hiaddress 0xffffffff
ihwconnect -bus busS -busmasterport pm -instancename br1 \
 -loaddress 0x00000000 -hiaddress 0x7fffffff

From which iGen generates the following C function usage

opBridgeNew(
 mi, // module

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 34 of 92

 “br1”, // name of this bridge
 OP_CONNECTIONS(
 OP_BUS_CONNECTIONS(
 OP_BUS_CONNECT(busM, ”ps",
 .addrlo=0x80000000, .addrHi=0xffffffff, .slave=1),
 OP_BUS_CONNECT(busM, ”pm",
 .addrlo=0x00000000, .addrHi=0x7fffffff),
)
)

7.2 Dynamic Bus Bridges
7.2.1 Introduction
A dynamic bus bridge allows a testbench or module to make dynamic changes to the
address space visible on a bus. It can map part or all of the address space of one bus to the
address space of another.

A dynamic bus bridge creates a mapping between two busses that, essentially, makes the
region on the slave bus appear directly connected onto the master bus at the address range
specified.

Any previously bridged addresses within a new mapped region are removed. However,
the underlying memory of a mapping is not affected so that a subsequent mapping back
onto an address region will make the same memory visible once again.

Processor

BMP

BSP

MemoryMemory Callback

Bus
Local

BSP

Memory

Dynamic Mappings
Bus
MappedBus

External

This diagram illustrates the example in

$IMPERAS_HOME/Examples/SimulationControl/dynamicBridge

The bridge, as part of the module definition, is initially used to map the full extent of the
processor address map of the ‘local’ bus to the ‘mapped’ bus. As the program executes

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 35 of 92

the testbench dynamically re-maps the busses so that an address region accessed by the
program is

1. mapped from the ‘mapped’ bus to the ‘external’ bus
2. mapped back from the ‘external’ bus to the ‘mapped’ bus, allowing previous

values to be accessed.
3. unmapped, so that an access to the region will create a memory fault.

The module contains a single processor and memory and is defined in

$IMPERAS_HOME/Examples/SimulationControl/dynamicBridge/platform/cpuSystem/module
.op.tcl

The processor and the memory are connected onto separate busses with an initial bus
bridge mapping the full address extent from the local processor connected bus to the bus
on which the memory is connected. This is created as part of the module using:

ihwaddbridge -instancename br1
ihwconnect -bus busLocal -busslaveport ps -instancename br1 \
 -loaddress 0x00000000 -hiaddress 0xffffffff
ihwconnect -bus busMapped -busmasterport pm -instancename br1 \
 -loaddress 0x00000000 -hiaddress 0xffffffff

The testbench is used to instantiate the module and then perform the re-mapping of the
connections between the local and mapped busses as the application program is executed
on the processor.

The ‘subSystem’ module is instantiated as ‘u1’.

 const char *u1_path = "platform/cpuSystem";
 optModuleP module = opModuleNew(
 mi, // parent module
 u1_path, // modelfile
 "u1", // name
 0,
 0
);

In order to modify the mappings from the testbench the objects must be discovered from
the module.

 busLocal = opObjectByName(mi, "u1/busLocal", OP_BUS_EN).Bus;
 busMapped = opObjectByName(mi, "u1/busMapped", OP_BUS_EN).Bus;

These objects may then be used to dynamically change the mappings between the busses.

Mappings may be made to connect the local bus to an alternate external test bus

 opDynamicBridge(object->busLocal,object->busExternal,
 0x00400000, 0x004000ff,0x00400000);

or to map back to the original bus

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 36 of 92

 opDynamicBridge(object->busLocal,object->busMapped,
 0x00400000, 0x0040000f,0x00400000);

and if required a mapping can be deleted, leaving a ‘hole’ in the memory address.

 opDynamicUnbridge(object->busLocal,
 0x00400000, 0x004000ff);

7.2.2 Running the simulation
The testbench harness is compiled to an executable for simulation execution. The
standard command line parser is included to allow ease of use.

To build the testbench, modules and a simple test application Makefiles are used.

For compilation of the application take a copy and build it:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/dynamicBridge .
> cd dynamicBridge
> make -C application

And to use iGen to generate the platform and then to build

> make -C module
> make -C harness

The execution of the testbench is performed with the call to the compiled executable:

> harness/harness.${IMPERAS_ARCH}.exe \
 --program application/asmtest.${CROSS}.elf \
 --trace --tracechange

So that we can see what is happening in this testbench execution optional arguments are
added to the command line to turn on tracing of instruction execution --trace and also
register change --tracechange.

When the example script is executed the following should be observed:

The building of the testbench and module components :

make: Entering directory 'application'
Compiling Application asmtest.OR1K.o
Linking Application asmtest.OR1K.elf
make: Leaving directory 'application'
make: Entering directory 'module'
iGen Create OP MODULE module
Copying STUBS module.c.igen.stubs to module.c
Host Depending obj/Linux32/module.d
make: Leaving directory 'module'
make: Entering directory 'module'
Host Compiling Module obj/Linux32/module.o
Host Linking Module object model.so
make: Leaving directory 'module'

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 37 of 92

make: Entering directory 'harness'
Host Depending obj/Linux32/harness.d
make: Leaving directory 'harness'
make: Entering directory 'harness'
Host Compiling Platform obj/Linux32/harness.o
Host Linking Platform harness.Linux32.exe
Host Linking Platform object model.so
make: Leaving directory 'harness'

The execution of the testbench with application on the processor.

Testbench initialization and setup:

Info (harness) Setting up bus regions as callbacks on test bus (busExternal)
Info (harness) Root Module Simulate Phase
Info (harness) Find processor 'u1/cpu1'
Info (harness) Processor 'u1/cpu1': Run for 10 instructions

The execution of a fixed number of instructions of the test application on the processor,
instruction and register change tracing. This shows the write of 0x1234 to address
0x00400000 and the subsequent read back of the same value from that address with the
default mapping in place:

Info 'u1/cpu1', 0x0000000001000074(_start): l.addi r1,r0,0x0
Info 'u1/cpu1', 0x0000000001000078(_start+4): l.addi r2,r0,0x1
Info R2 deadbeef -> 00000001
Info 'u1/cpu1', 0x000000000100007c(_start+8): l.addi r3,r0,0x1234
Info R3 deadbeef -> 00001234
Info 'u1/cpu1', 0x0000000001000080(_start+c): l.addi r4,r0,0x800
Info R4 deadbeef -> 00000800
Info 'u1/cpu1', 0x0000000001000084(_start+10): l.muli r4,r4,0x800
Info R4 00000800 -> 00400000
Info 'u1/cpu1', 0x0000000001000088(_start+14): l.sw 0x0(r4),r3
Info 'u1/cpu1', 0x000000000100008c(_start+18): l.nop 0x0
Info 'u1/cpu1', 0x0000000001000090(_start+1c): l.lwz r5,0x0(r4)
Info R5 deadbeef -> 00001234
Info 'u1/cpu1', 0x0000000001000094(_start+20): l.nop 0x0
Info 'u1/cpu1', 0x0000000001000098(_start+24): l.nop 0x0
Info (harness) Processor 'u1/cpu1' stopped for reason 'Scheduler has expired'

The previous instructions were completed and the testbench modifies the mapping of a
region from 0x00400000 to 0x004000ff so that it now maps to a bus created in the
testbench and that includes callbacks to monitor any access.

The execution of the next fixed number of instructions of the test application on the
processor shows the read from address 0x00400000 trigger the testbench read callback
which returns the value 0x00000000.

Info (harness) Processor 'u1/cpu1' stopped for reason 'Scheduler has expired'
Info (harness) Bridge region of 'busLocal' to 'busExternal'
Info (harness) Processor 'u1/cpu1': Run for 4 instructions
Info 'u1/cpu1', 0x000000000100009c(_start+28): l.nop 0x0
Info 'u1/cpu1', 0x00000000010000a0(_start+2c): l.lwz r5,0x0(r4)
Info (harness_RCB) readCallback: busExternal, 0x400000
Info R5 00001234 -> 00000000
Info 'u1/cpu1', 0x00000000010000a4(_start+30): l.nop 0x0

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 38 of 92

Info 'u1/cpu1', 0x00000000010000a8(_start+34): l.nop 0x0
Info (harness) Processor 'u1/cpu1' stopped for reason 'Scheduler has expired'

The previous instructions were completed and the testbench modifies the mapping of a
region from 0x00400000 to 0x0040000f so that it now maps back to the original bus and
hence the original memory content.

The execution of the next fixed number of instructions of the test application on the
processor shows the read from address 0x00400000 returns the value 0x00001234.

Info (harness) Bridge partial region of 'busLocal' back to 'busLocal'
Info (harness) Processor 'u1/cpu1': Run for 4 instructions
Info 'u1/cpu1', 0x00000000010000ac(_start+38): l.nop 0x0
Info 'u1/cpu1', 0x00000000010000b0(_start+3c): l.lwz r5,0x0(r4)
Info R5 00000000 -> 00001234
Info 'u1/cpu1', 0x00000000010000b4(_start+40): l.nop 0x0
Info 'u1/cpu1', 0x00000000010000b8(_start+44): l.nop 0x0
Info (harness) Processor 'u1/cpu1' stopped for reason 'Scheduler has expired'

The previous instructions were completed and the testbench modifies the mapping of a
region from 0x00400000 to 0x004000ff to remove all mappings.

The execution of the next fixed number of instructions of the test application on the
processor shows the read from address 0x00400000 causes a read exception i.e. the
memory access fails.

Info (harness) UnBridge region of 'busLocal'
Info (harness) Processor 'u1/cpu1': Run for 4 instructions
Info 'u1/cpu1', 0x00000000010000bc(_start+48): l.nop 0x0
Info 'u1/cpu1', 0x00000000010000c0(_start+4c): l.lwz r5,0x0(r4)
Info (harness) Processor 'u1/cpu1' stopped for reason 'Read privilege exception'
Processor Exception (PC_PRX) Processor 'u1/cpu1' 0x10000c0: l.lwz r5,0x0(r4)
Processor Exception (PC_RPX) No read access at 0x400000

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 39 of 92

8 Byte Swapping (Endian Correction)
A bus controller in a real platform might have the ability to perform byte-swapping on
each bus cycle. This allows, for example, a big-endian processor to communicate with a
little-endian peripheral component. CpuManager supports byte swapping through the use
of an MMC. The bus is broken into two and an MMC inserted between the two parts.

8.1 Bus Connections
An MMC creates a one-way connection between two busses, accepting bus cycles from
one bus and passing them to another. An MMC cannot perform address decoding so is
activated by accesses to all addresses. If the swapping function is required for a limited
address range, a bus bridge is used to decode the required range, and its output passed to
the MMC.

Processor

BMP

BSP

Memory

BSP
Bridge
BMP

BSP
MMC Endian

BMP

Peripheral Bus

Main Bus

Bridge

MMC Endian

This example is listed in:

$IMPERAS_HOME/Examples/PlatformConstruction/byteSwapperMMC

The OR1K processor uses two RAMs (one shown) for program and stack. The bridge
maps a limited address range from the main bus onto an intermediate bus which is
connected to the MMC model endianSwap which can be found in the ovpworld.org mmc
library. A simple peripheral model (not shown) is connected to the peripheral bus.

Thus, the processor has direct access to its memory without byte-swapping, but a 32-bit
access (read or write) to the peripheral will have its bytes reversed.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 40 of 92

Note that in this design, a bus master on the peripheral bus will be unable to access the
processor memory.

Look at the module definition in the example in:

$IMPERAS_HOME/Examples/PlatformConstruction/byteSwapperMMC/module/module.op.tcl

This shows the instantiation of the components as shown in the above diagram. This
includes the instantiation of the byteSwap MMC model from the VLNV library.

ihwaddmmc -instancename swap \
 -vendor "ovpworld.org" -library "mmc" -type "endianSwap" -version "1.0"

Which is connected between the two busses, busInter (which maps to a small address
space in the processor memory space) and busPeripheral (which includes the peripheral).

ihwconnect -bus busInter -instancename swap -busslaveport sp1
ihwconnect -bus busPeripheral -instancename swap -busmasterport mp1

The module is executed using the Imperas harness by passing the module shared object
(dynamic link library) and the program to be loaded (note: run example.sh to compile the
application and module first):

harness.exe --modulefile module/model.so \
 --program application/application.OR1K.elf

The peripheral model is a simple programmer’s interface model. This provides registers
that can be accessed, in this case all are read only, which are initialized at reset to known
values.

When executed the following should be observed

./example.sh
Starting
R0 = 0x01020304
R1 = 0x11121314
R2 = 0x21222324
R3 = 0x31323334
Done
Info (endianSwap) TOTAL SWAPPED BYTES: 16

The four registers of the peripheral have been accessed and a byte swapped version of the
data displayed.

8.2 Performance considerations
In the simulator, the byte swapping MMC converts a memory access to a function call,
hence a byte-swapper model should be used with care; a byte-swapper placed between a
processor and its main memory (program or data) will severely restrict its performance.
However, putting a byte-swapper between a processor and a peripheral model will cause

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 41 of 92

minimal effect because the peripheral behavior is itself modeled by function calls and
there will be comparatively few accesses to the peripheral device.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 42 of 92

9 Two processors with shared memory

The following diagram shows the example hardware design to be built. It is a two-
processor design with both local and shared memory.

This example is documented in:

$IMPERAS_HOME/Examples/PlatformConstruction/twoProcessorSharedMemory

9.1 Adding Hardware Elements

The first step is to add the hardware elements.

Each element is added in turn. This design contains 2 processors, 5 ram elements, 2
bridge elements and the associated interconnect. These elements are in the standard
library; however, no checking takes place at this stage to ensure that the library models
exist. This means that it is possible to create the hardware design before the models are
completed.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 43 of 92

Components can be added in any order, though this design starts with the processors.
This requires a choice of processor type – in this case an or1k – and a unique instance
name by which it can be identified. The command used is ihwaddprocessor

This command has other options not listed here. You can use the command:

> igen.exe --apropos addprocessor

for more information. The meanings of simulation options are documented in the
simulator manual. Example:

add the processors
ihwaddprocessor -type or1k -instancename P0 -semihostname or1kNewlib -variant
generic
ihwaddprocessor -type or1k -instancename P1 -semihostname or1kNewlib -variant
generic

This adds two OR1K processors to the design with unique instance names P0 & P1. In
this case the name of a semi-host library has been specified but this is optional.

RAM is added using the ihwaddmemory command as follows. This refers to the simple
built-in model. There are two kinds of memory that can be added in this way; ram which
can be read or written and rom which can be loaded from an imagefile, but not written by
other hardware. The ram and rom components are generic so can be connected with any
address range - their size adjusts accordingly and is specified by the ihwconnect
command. Specifically, sized memories can be added to your library if it is required to
restrict the design to use 'real' components.

add memories (local and shared)
ihwaddmemory -type ram -instancename localLow0
ihwaddmemory -type ram -instancename localHigh0
ihwaddmemory -type ram -instancename localLow1
ihwaddmemory -type ram -instancename localHigh1
ihwaddmemory -type ram -instancename ramShared

Buses and Bridges are added using the ihwaddbus and ihwaddbridge commands as
follows

add the buses
ihwaddbus -instancename bus1 -addresswidth "32"
ihwaddbus -instancename bus0 -addresswidth "32"
ihwaddbus -instancename busShare -addresswidth "32"

add the bus bridges
ihwaddbridge -instancename bridge0
ihwaddbridge -instancename bridge1

This adds three buses and two bridge elements. Again, all have unique names and, in the
case of the buses, the address width has been specified.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 44 of 92

9.2 Making Connections
Component instances need to be connected using the ihwconnect command. This allows
the user to specify the precise details of how the elements are connected together. There
are a number of different kinds of connection; some are a simple connection of one
element to another, others are more complex and require the specification of address
ranges.

ihwconnect is used to make all connections. In the design example shown above, the
connections need to be made between each processor and its associated bus, between
each bus and the memory elements and between the bus and the bridge elements.

Connections are made by reference to either the unique instance names which were
specified in the ihwadd* commands, and the name of the port being connected, or to an
external port on this design.

bus0 and bus1 have connections to:

• Master port connection to the DATA and INSTRUCTION ports of the processor
• Slave port connections to the low and high local memories
• A slave port connection to a bridge to the shared memory

busShare has connections to:

• Master port connections to each of the bus bridges
• A slave port connection to the shared memory

These connections are added as shown here:

add the processor connections
ihwconnect -bus bus0 -instancename P0 -busmasterport "INSTRUCTION"
ihwconnect -bus bus0 -instancename P0 -busmasterport "DATA"
ihwconnect -bus bus0 -instancename localLow0 -busslaveport "sp0" \
 -loaddress "0x00000000" -hiaddress "0x10ffffff"
ihwconnect -bus bus0 -instancename bridge0 -busslaveport "sp0" \
 -loaddress "0x11000000" -hiaddress "0x11ffffff"
ihwconnect -bus bus0 -instancename localHigh0 -busslaveport "sp0" \
 -loaddress "0x12000000" -hiaddress "0xffffffff"

add connections to bus1
ihwconnect -bus bus1 -instancename P1 -busmasterport "INSTRUCTION"
ihwconnect -bus bus1 -instancename P1 -busmasterport "DATA"
ihwconnect -bus bus1 -instancename localLow1 -busslaveport "sp1" \
 -loaddress "0x00000000" -hiaddress "0x10ffffff"
ihwconnect -bus bus1 -instancename bridge1 -busslaveport "sp1" \
 -loaddress "0x11000000" -hiaddress "0x11ffffff"
ihwconnect -bus bus1 -instancename localHigh1 -busslaveport "sp1"
 -loaddress "0x12000000" -hiaddress "0xffffffff"

add connections to busShare
ihwconnect -bus busShare -instancename bridge0 -busmasterport "mp0" \
 -loaddress "0x00000000" -hiaddress "0x00ffffff"
ihwconnect -bus busShare -instancename bridge1 -busmasterport "mp1"" \
 -loaddress "0x00000000" -hiaddress "0x00ffffff"
ihwconnect -bus busShare -instancename ramShared -busslaveport "sp0"" \
 -loaddress "0x00000000" -hiaddress "0x00ffffff"

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 45 of 92

Slave port connections must always have an address range specifying the input addresses
that will map to that port.

A bridge supports uni-directional transfers from the slave port to the master port i.e. a
master on one bus accesses the slave port and this is translated to an access from the
master port onto a second bus. This requires the specification of address ranges using the
–loaddress and –hiaddress options for both the master and slave ports.

9.3 The example encrypt and decrypt applications
An example application is provided in the applications directories, one for each
processor. The applications illustrate that accesses are being performed in the shared
memory region. Each processor has its own private memory to hold the program and the
stack and data sections.

The first application, encrypt, reads input from a text file, does a trivial byte by byte
encryption by xor'ing each byte read with the next value returned by rand(), and places
each encrypted byte into a frame buffer. When the frame buffer is full (or the end of the
file is reached) the value of ENCRYPT_INDEX, which is in shared memory, is
incremented.

The source of the encrypt application is:

#include <stdio.h>
#include <stdlib.h>

#include "sharedData.h"

//
// Main routine
//
int main(int argc, char **argv) {

 bufferP buffer = SHARED_BLOCK;
 const char *fileName = argc < 2 ? "constitution.txt" : argv[1];
 FILE *file = fopen(fileName, "r");
 int findex = 0;
 int done = 0;
 size_t num;

 // seed random number generator
 srand(RAND_SEED);

 // check file can be opened
 if(!file) {
 printf("Unable to open file %s for read\n", fileName);
 return -1;
 }

 // handle each frame of data
 while(!done && (findex<NUM_FRAMES)) {

 int i;

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 46 of 92

 // read next frame of data from input file
 num = fread(&buffer->frame[findex], 1, FRAME_SIZE, file);

 // identify the last frame being sent
 // note: this assumes input data does not include a 0 (e.g. text file)
 if(num!=FRAME_SIZE) {
 buffer->frame[findex][num] = 0;
 done = 1;
 }

 // encrypt each character in the frame
 for(i=0; i<FRAME_SIZE; i++) {
 buffer->frame[findex][i] ^= rand();
 }

 // step to the next frame
 *ENCRYPT_INDEX = ++findex;
 }

 return 0;
}

The decrypt application watches for the ENCRYPT_INDEX value in shared memory to
be incremented by the encrypt application. When it has been incremented it decrypts each
byte in the next frame into a local buffer and then writes the buffer to stdout (which is
semihosted to the simulator console).

The source of the decrypt application is:

#include <stdio.h>
#include <stdlib.h>

#include "sharedData.h"

#define TIMEOUT 100000

//
// Wait until the next frame is ready
//
void waitForFrame(int findex) {

 int idleCount = 0;

 while(findex == *ENCRYPT_INDEX) {
 if (idleCount++ >= TIMEOUT) {
 printf ("Timeout waiting for frame %d\n", findex);
 exit(-1);
 }
 }
}

//
// Main routine
//
int main(int argc, char **argv) {

 bufferP buffer = SHARED_BLOCK;
 int findex = 0;
 int ch = -1;

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 47 of 92

 char writeBuf[FRAME_SIZE+1];

 // seed random number generator
 srand(RAND_SEED);

 // write each decrypted frame as it is ready until entire message is sent
 while(ch && (findex<NUM_FRAMES)) {

 int i;

 // spin until encrypted frame is prepared
 waitForFrame(findex);

 // decrypt each character in the frame
 for(i=0; (i<FRAME_SIZE) && ch; i++) {
 ch = writeBuf[i] = (buffer->frame[findex][i] ^ rand());
 }

 // terminate the string to write
 writeBuf[i] = 0;

 // write output
 printf("\n**** FRAME %i ****\n\n", findex);
 puts(writeBuf);
 fflush(0);

 // step to next frame
 findex++;
 }

 return 0;
}

The files shared.h and sharedData.h define values that are used in both the encrypt and
decrypt applications:

shared.h defines the location of the shared memory:

// these define the shared memory range
#define SHARED_LOW 0x11000000
#define SHARED_HIGH 0x11ffffff

While sharedData.h defines the structure and the locations of shared data passed
between the programs:

#include "shared.h"

// define 32 frames of 1024 characters each
#define NUM_FRAMES 32
#define FRAME_SIZE 1024

typedef struct bufferS {
 char frame[NUM_FRAMES][FRAME_SIZE];
} buffer, *bufferP;

// index numbers of frame being encrypted
#define ENCRYPT_INDEX ((volatile int *)(SHARED_LOW+0))

// address of data block
#define SHARED_BLOCK ((bufferP)(SHARED_LOW+0x1000))

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 48 of 92

// seed used for random number generation
#define RAND_SEED 0x12345678

Note that since only the encrypt application writes to the shared memory no semaphore is
used to lock the memory, as would be used in a more complex shared memory
application.

9.4 Running the Example
Take a copy of the example directory tree:

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/twoProcessorSharedMemory .

and build and run it using the provided script:

> cd twoProcessorSharedMemory
> ./example.sh

After building the applications and module the simulation may be run manually using the
harness.exe program to execute the module. The applications and the command line
arguments passed to the applications are specified on the harness.exe command line as
follows:

> harness.exe --modulefile module/model.so \
 --program twoProcessorShared/P0=application/encrypt.OR1K.elf \
 --program twoProcessorShared/P1=application/decrypt.OR1K.elf \
 --argv application/constitution.txt

The output of the simulation (trimmed for brevity) is as follows:

OVPsim (32-Bit) v99999999 Open Virtual Platform simulator from www.OVPworld.org.
Copyright (c) 2005-2016 Imperas Software Ltd.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

OVPsim started: Fri Feb 12 20:07:32 2016

**** FRAME 0 ****

THE CONSTITUTION OF THE UNITED STATES OF AMERICA

Preamble
...
 United States, and who shall not, when elected, be an inh

**** FRAME 1 ****

abitant of that state in which he shall be chosen.
...

**** FRAME 26 ****

South Carolina: J. Rutledge, Charles Cotesworth Pinckney, Charles Pinckney,
Pierce Butler

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 49 of 92

Georgia: William Few, Abr Baldwin

OVPsim finished: Fri Feb 12 20:09:44 2016

OVPsim (32-Bit) v99999999 Open Virtual Platform simulator from www.OVPworld.org.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

Thus showing the data has been passed through the shared memory from the encrypting
processor to the decrypting processor.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 50 of 92

10 Caches (using Memory Model Components (MMC))
A cache, active memory device or external memory management unit can be modeled
using a Memory Model Component (MMC). An MMC fits between a bus master such as
a processor or a peripheral (that is a bus master), and a bus slave such as a RAM, ROM or
peripheral with a bus slave port. MMCs can also be cascaded to model, for example,
multi-level caches.

MMC L1A MMC L1B

Processor A

BMP

BSP

BMP

BSP

RAM A

BSP

BMP

BSP1

MMC L2

BMP

BSP2

Please refer to the OVP VMI Memory Model Component Function Reference for details
of writing an MMC.

Note that since every bus access through an MMC causes at least one function to be
called, use of an MMC will impact simulation performance.

10.1 Transparent or Full MMC Models
An MMC operates in one of two possible modes, transparent or full. An MMC can be
written to support one or either mode. Full models implement storage and so can be used
to accurately model components such as caches that are incoherent with main memory.
Transparent models do not implement storage (so cannot be incoherent) but can be used
to create very fast performance monitors. As an example, a transparent cache model
would model only the cache tags and use this information to count hits and misses.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 51 of 92

10.2 MMC Operation
A full MMC model has one or more master ports and one or more slave ports. A
transparent MMC model must have exactly one master port and one or more slave ports.
Transparent MMCs have only one master port because during construction busses
connected to the MMC slave ports are connected straight through to the master port.

In operation, a bus cycle instigated by another bus master in the system activates the
MMC via one of its slave ports. This causes an activation function to be called in the
MMC model. In a transparent MMC the activation function will perform some
calculation and then return, allowing the simulator to propagate the effect of the bus cycle
to the next component. In a full MMC the activation function might also instigate a bus
cycle on a bus connected to one of its master ports.

10.2.1 Transparent Model

Bus Master

Read Cycle

MMC

readN() {
 reads++;
}

Fetch data

RAM

call

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 52 of 92

10.2.2 Full Model

10.3 Creating and connecting an MMC

10.3.1 Transparent MMC Example

An example of a transparent MMC is available at:

$IMPERAS_HOME/Examples/PlatformContruction/transparentMMC

This has an iGen module definition file containing:

ihwnew -name transparentMMC

ihwaddbus -instancename ibus -addresswidth 32
ihwaddbus -instancename dbus -addresswidth 32
ihwaddbus -instancename mbus -addresswidth 32

Add a processor to do some reading and writing

ihwaddprocessor -instancename cpu1 \
 -vendor ovpworld.org -library processor -type or1k -version 1.0 \
 -semihostname or1kNewlib -variant generic
ihwconnect -bus ibus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus dbus -instancename cpu1 -busmasterport DATA

Add MMC Instruction Cache

ihwaddmmc -instancename mmci \
 -vendor "ovpworld.org" -library "mmc" -type "wb_1way_32byteline_2048tags" \
 -transparent
ihwconnect -bus ibus -instancename mmci -busslaveport sp1
ihwconnect -bus mbus -instancename mmci -busmasterport mp1

Add MMC Data Cache

ihwaddmmc -instancename mmcd \

Bus Master

Read Cycle

MMC

readNFull() {
 if(cached)
 getLocalData()
 else
 vmirtReadNByteDomain(...)
}

Fetch data

RAM
call

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 53 of 92

 -vendor "ovpworld.org" -library "mmc" -type "wb_1way_32byteline_2048tags" \
 -transparent
ihwconnect -bus dbus -instancename mmcd -busslaveport sp1
ihwconnect -bus mbus -instancename mmcd -busmasterport mp1

Memory on the main bus

ihwaddmemory -instancename ramM -type ram
ihwconnect -bus mbus -instancename ramM \
 -busslaveport sp1 -loaddress 0x00000000 -hiaddress 0x003fffff
ihwaddmemory -instancename ramMStack -type ram
ihwconnect -bus mbus -instancename ramMStack \
 -busslaveport sp1 -loaddress 0x00401000 -hiaddress 0xffffffff

The usage of the argument -transparent used when instancing an MMC specifies whether
the MMC is transparent or full respectively. A transparent MMC does not make any
changes to the accesses being performed by a master on the connected bus. A full MMC
can modify accesses and provides additional behavior to the execution.

This example instantiates a generic cache model from the ovpworld.org library. This
cache model is available as source, so it can be used as-is or modified if required. In
transparent mode, the cache model counts the number of accesses to hypothetical cache
lines, given a particular cache configuration in terms of number of ways, line size and
cache size.

Take a copy of the example directory tree:

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/transparentMMC .

and build and run it using the provided script:

> cd transparentMMC
> ./example.sh

Example output is as follows:

cacheConstructor called for transparentMMC/mmci
 --
 Ways : 1
 Line bits : 5
 Tag bits : 11
 --
 Tags : 2,048
 Line bytes: 32
 Size : 65,536
 Tag mask :11111111111.....
 Key mask : 111111111111111111111111111.....
 --

cacheConstructor called for transparentMMC/mmcd
 --
 Ways : 1
 Line bits : 5
 Tag bits : 11

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 54 of 92

 --
 Tags : 2,048
 Line bytes: 32
 Size : 65,536
 Tag mask :11111111111.....
 Key mask : 111111111111111111111111111.....
 --

cacheLink called for transparentMMC/mmci

cacheLink called for transparentMMC/mmcd
Hello world

cacheDestructor called for transparentMMC/mmci

READ ACCESSES:
 HITS : 1,996
 MISSES : 230
 1-byte : 0
 2-byte : 0
 4-byte : 2,226
 8-byte : 0
 N-byte : 0 (0 bytes, average size=0.0 bytes)
 TOTAL READ : 2,226
 TOTAL BYTES: 8,904

cacheDestructor called for transparentMMC/mmcd

READ ACCESSES:
 HITS : 341
 MISSES : 15
 1-byte : 30
 2-byte : 30
 4-byte : 296
 8-byte : 0
 N-byte : 0 (0 bytes, average size=0.0 bytes)
 TOTAL READ : 356
 TOTAL BYTES: 1,274

WRITE ACCESSES:
 HITS : 282
 MISSES : 23
 1-byte : 12
 2-byte : 12
 4-byte : 281
 8-byte : 0
 N-byte : 0 (0 bytes, average size=0.0 bytes)
 TOTAL WRITE: 305
 TOTAL BYTES: 1,160
 --

10.3.2 Full MMC Example

An example of a full MMC is available at:

$IMPERAS_HOME/Examples/PlatformConstruction/fullMMC

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 55 of 92

The platform file is almost identical to that shown previously for transparent MMCs. The
only difference is in the MMC instantiation lines:

ihwaddmmc -instancename mmci \
 -vendor "ovpworld.org" -library "mmc" -type "wb_1way_32byteline_2048tags"
ihwconnect -bus ibus -instancename mmci -busslaveport sp1
ihwconnect -bus mbus -instancename mmci -busmasterport mp1

Add MMC Data Cache

ihwaddmmc -instancename mmcd \
 -vendor "ovpworld.org" -library "mmc" -type "wb_1way_32byteline_2048tags"
ihwconnect -bus ibus -instancename mmcd -busslaveport sp1
ihwconnect -bus mbus -instancename mmcd -busmasterport mp1

When the -transparent argument is not used on the mmc instance it will operate in the
default full mode. In full mode, content as well as tags are modeled, so it is possible for
the system to demonstrate incoherency effects.

This example instantiates a generic cache model from the ovpworld.org library. This
cache model is available as source, so it can be used as-is or modified if required. In full
mode, the cache model has behavior to act as a basic cache with a particular cache
configuration in terms of number of ways, line size and cache size.

Take a copy of the example directory tree:

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/fullMMC .

and build and run it using the provided script:

> cd fullMMC
> ./example.sh

Example output is as follows:

cacheConstructor called for fullMMC/mmci
 --
 Ways : 1
 Line bits : 5
 Tag bits : 11
 --
 Tags : 2,048
 Line bytes: 32
 Size : 65,536
 Tag mask :11111111111.....
 Key mask : 111111111111111111111111111.....
 --

cacheConstructor called for fullMMC/mmcd
 --
 Ways : 1
 Line bits : 5
 Tag bits : 11
 --

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 56 of 92

 Tags : 2,048
 Line bytes: 32
 Size : 65,536
 Tag mask :11111111111.....
 Key mask : 111111111111111111111111111.....
 --

cacheLink called for fullMMC/mmci

cacheLink called for fullMMC/mmcd
Hello world

cacheDestructor called for fullMMC/mmci

READ ACCESSES:
 HITS : 1,996
 MISSES : 230
 1-byte : 0
 2-byte : 0
 4-byte : 2,226
 8-byte : 0
 N-byte : 0 (0 bytes, average size=0.0 bytes)
 TOTAL READ : 2,226
 TOTAL BYTES: 8,904

cacheDestructor called for fullMMC/mmcd

READ ACCESSES:
 HITS : 341
 MISSES : 15
 1-byte : 30
 2-byte : 30
 4-byte : 296
 8-byte : 0
 N-byte : 0 (0 bytes, average size=0.0 bytes)
 TOTAL READ : 356
 TOTAL BYTES: 1,274

WRITE ACCESSES:
 HITS : 282
 MISSES : 23
 1-byte : 12
 2-byte : 12
 4-byte : 281
 8-byte : 0
 N-byte : 0 (0 bytes, average size=0.0 bytes)
 TOTAL WRITE: 305
 TOTAL BYTES: 1,160

10.3.3 Cascaded MMC Example
Both transparent and full MMC models can be instantiated in a cascaded fashion, where
master ports of MMCs nearer the processor are connected to slave ports of MMCs nearer
the memory subsystem. This allows structures such as cache hierarchies to be easily
modeled.

An example of a platform with cascaded MMCs is available at:

$IMPERAS_HOME/Examples/PlatformConstruction/cascadedTransparentMMC

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 57 of 92

This has a module file containing:

ihwnew -name cascadedTransparentMMC

ihwaddbus -instancename PIbus -addresswidth 32
ihwaddbus -instancename PDbus -addresswidth 32
ihwaddbus -instancename L1Ibus -addresswidth 32
ihwaddbus -instancename L1Dbus -addresswidth 32
ihwaddbus -instancename mbus -addresswidth 32

Add a processor to do some reading and writing

ihwaddprocessor -instancename cpu1 -vendor ovpworld.org -library processor -type
or1k -version 1.0 -semihostname or1kNewlib -variant generic
ihwconnect -bus PIbus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus PDbus -instancename cpu1 -busmasterport DATA

Add MMC L1 Instruction Cache

ihwaddmmc -instancename mmcl1i \
 -vendor "ovpworld.org" -library "mmcL1I" -type "wb_1way_32byteline_2048tags"
-version "1.0"
ihwconnect -bus PIbus -instancename mmcl1i -busslaveport sp1
ihwconnect -bus L1Ibus -instancename mmcl1i -busmasterport mp1

Add MMC L1 Data Cache

ihwaddmmc -instancename mmcl1d \
 -vendor "ovpworld.org" -library "mmcL1D" -type "wb_1way_32byteline_2048tags"
-version "1.0"
ihwconnect -bus PDbus -instancename mmcl1d -busslaveport sp1
ihwconnect -bus L1Dbus -instancename mmcl1d -busmasterport mp1

Add MMC L2 Cache

ihwaddmmc -instancename mmcl2 \
 -vendor "ovpworld.org" -library "mmcL2" -type "wb_1way_32byteline_2048tags"
-version "1.0"
ihwconnect -bus L1Ibus -instancename mmcl2 -busslaveport sp1
ihwconnect -bus L1Dbus -instancename mmcl2 -busslaveport sp2
ihwconnect -bus mbus -instancename mmcl2 -busmasterport mp1
ihwsetparameter -handle mmcl2 -name numSlavePorts -value 2 -type Uns32

Memory on the main bus

ihwaddmemory -instancename ramM -type ram
ihwconnect -bus mbus -instancename ramM -busslaveport sp1 -loaddress 0x00000000
-hiaddress 0x003fffff
ihwaddmemory -instancename ramMStack -type ram
ihwconnect -bus mbus -instancename ramMStack -busslaveport sp1 -loaddress
0x00401000 -hiaddress 0xffffffff

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 58 of 92

This example defines three MMC objects representing L1 instruction cache, L1 data
cache and L2 shared cache. In the example as written, all three caches are modeled as
transparent, but it is possible to have combinations of transparent and full models in the
same simulation, with the restriction that transparent models must be closer to the
processor than full models. For example, all of these are legal combinations:

1. L1 instruction, L1 data and L2 all transparent;
2. L1 instruction, L1 data and L2 all full;
3. L1 instruction and L1 data transparent; L2 full.

It is however not legal to try and model either L1 cache as a full model when the L2
cache is transparent.

Take a copy of the example directory tree:

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/cascadedTransparentMMC .

and build and run it using the provided script:

> cd fullMMC
> ./example.sh

Example output is as follows:

cacheConstructor called for cascadedTransparentMMC/mmcl1i
 --
 Ways : 1
 Line bits : 5
 Tag bits : 11
 --
 Tags : 2,048
 Line bytes: 32
 Size : 65,536
 Tag mask :11111111111.....
 Key mask : 111111111111111111111111111.....
 --

cacheConstructor called for cascadedTransparentMMC/mmcl1d
 --
 Ways : 1
 Line bits : 5
 Tag bits : 11
 --
 Tags : 2,048
 Line bytes: 32
 Size : 65,536
 Tag mask :11111111111.....
 Key mask : 111111111111111111111111111.....
 --

cacheConstructor called for cascadedTransparentMMC/mmcl2
 --
 Ways : 1
 Line bits : 5
 Tag bits : 11

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 59 of 92

 --
 Tags : 2,048
 Line bytes: 32
 Size : 65,536
 Tag mask :11111111111.....
 Key mask : 111111111111111111111111111.....
 --

cacheLink called for cascadedTransparentMMC/mmcl1i

cacheLink called for cascadedTransparentMMC/mmcl1d

cacheLink called for cascadedTransparentMMC/mmcl2
Hello world

CpuManagerMulti finished: Fri Jan 15 14:37:48 2016

CpuManagerMulti (32-Bit) v99999999 Open Virtual Platform simulator from
www.IMPERAS.com.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

cacheDestructor called for cascadedTransparentMMC/mmcl1i

READ ACCESSES:
 HITS : 2,003
 MISSES : 230
 1-byte : 0
 2-byte : 0
 4-byte : 2,233
 8-byte : 0
 N-byte : 0 (0 bytes, average size=0.0 bytes)
 TOTAL READ : 2,233
 TOTAL BYTES: 8,932

cacheDestructor called for cascadedTransparentMMC/mmcl1d

READ ACCESSES:
 HITS : 343
 MISSES : 14
 1-byte : 30
 2-byte : 30
 4-byte : 297
 8-byte : 0
 N-byte : 0 (0 bytes, average size=0.0 bytes)
 TOTAL READ : 357
 TOTAL BYTES: 1,278

WRITE ACCESSES:
 HITS : 282
 MISSES : 24
 1-byte : 12
 2-byte : 12
 4-byte : 282
 8-byte : 0
 N-byte : 0 (0 bytes, average size=0.0 bytes)
 TOTAL WRITE: 306
 TOTAL BYTES: 1,164

cacheDestructor called for cascadedTransparentMMC/mmcl2

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 60 of 92

READ ACCESSES:
 HITS : 0
 MISSES : 268
 1-byte : 0
 2-byte : 0
 4-byte : 0
 8-byte : 0
 N-byte : 268 (8,576 bytes, average size=32.0 bytes)
 TOTAL READ : 268
 TOTAL BYTES: 8,576

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 61 of 92

11 Using Module Hierarchy in Virtual Platforms
In previous examples we saw that the platforms/modules created with the ihwnew
command instanced buses, processors, memories, peripherals, etc. These platforms can be
thought of as modules and can be used as sub-modules in other platforms or modules.

Hierarchy is created by instancing one module in another.

We therefore create each level of the hierarchy as a separate module in a separate
directory tree, and compile it separately into a shared object - just like we did for the
platforms in the previous examples.

Some modules in the hierarchy could be just instancing previously compiled module
shared objects, and leave the instancing of other components such as processors,
peripherals, memories etc. to lower level, and leaf modules.

When we create a hierarchy of levels we need to pass connections between levels, such as
buses, and also we need to pass parameters, such as addresses.

11.1 A two level platform: simpleHierarchy
If you look at the picture below, you will see a topmodule that contains two instances of
submodule, with each submodule containing a processor, memories, bus, and UART.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 62 of 92

Note the nets (directRead, directWrite) and the netports (directWritePort,
directReadPort) in the submodules. It is the modules' ports that allow connection (in this
case of nets) between levels of hierarchy. Note also the nets (write0to1, write1to0) in the
topmodule.

This platform is available at

$IMPERAS_HOME/Examples/PlatformConstruction/simpleHierarchy

Take a copy of the example directory tree:

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/simpleHierarchy .
> cd simpleHierarchy
> ls
application0 application1 example.sh submodule topmodule

As we are going to have two different, separately compiled modules, we will now have
two module directories, and also there are two application directories.

11.2 Creating the sub module
The submodule/module.op.tcl script looks like:

ihwnew -name sub
iadddocumentation -name Description \
 -text "This a sub module that includes CPU Memory and UART"

ihwaddbus -instancename mainBus -addresswidth 32
ihwaddnet -instancename directWrite
ihwaddnet -instancename directRead

ihwaddprocessor -instancename cpu1 -vendor ovpworld.org \
 -library processor -type or1k -version 1.0 \
 -semihostname or1kNewlib -variant generic

ihwconnect -bus mainBus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus mainBus -instancename cpu1 -busmasterport DATA

ihwaddmemory -instancename ram1 -type ram
ihwconnect -bus mainBus -instancename ram1 \
 -busslaveport sp1 -loaddress 0x0 -hiaddress 0x0fffffff

ihwaddmemory -instancename ram2 -type ram
ihwconnect -bus mainBus -instancename ram2 \
 -busslaveport sp1 -loaddress 0x20000000 -hiaddress 0xffffffff

ihwaddperipheral -instancename uart0 -vendor freescale.ovpworld.org \
 -library peripheral -type KinetisUART -version 1.0
ihwconnect -bus mainBus -instancename uart0 \
 -busslaveport bport1 -loaddress 0x100003f8 -hiaddress 0x100013f7
ihwconnect -net directWrite -instancename uart0 -netport DirectWrite
ihwconnect -net directRead -instancename uart0 -netport DirectRead
ihwsetparameter -handle uart0 -name directReadWrite -value 1 -type bool

ihwaddnetport -instancename directWritePort
ihwaddnetport -instancename directReadPort

ihwconnect -netport directWritePort -net directWrite

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 63 of 92

ihwconnect -netport directReadPort -net directRead

New functions used here are:

iadddocumentation -name Description \
 -text "This a sub module that includes CPU Memory and UART"

which adds a documentation field to the declaration of this module. (iadddocumentation
adds to the previously declared/instanced item).

and:

ihwaddnetport -instancename directWritePort
ihwaddnetport -instancename directReadPort

ihwconnect -netport directWritePort -net directWrite
ihwconnect -netport directReadPort -net directRead

which declares the two netports and connects up the nets to them.

11.2.1 Compiling the submodule
To generate and compile the submodule:

> make -C submodule
iGen Create OP MODULE module
Host Compiling Module obj/Linux32/module.igen.o
Host Linking Module object model.so

11.3 Creating the top module
The topmodule/module.op.tcl script looks like:

ihwnew -name simpleHierarchy

nets will be how sub modules communicate
ihwaddnet -instancename write0to1
ihwaddnet -instancename write1to0

Create an instance 0 of the submodule
ihwaddmodule -instancename sub0 -modelfile submodule/model
ihwconnect -net write0to1 -instancename sub0 -netport directWritePort
ihwconnect -net write1to0 -instancename sub0 -netport directReadPort

Create an instance 1 of the submodule
ihwaddmodule -instancename sub1 -modelfile submodule/model
ihwconnect -net write0to1 -instancename sub1 -netport directReadPort
ihwconnect -net write1to0 -instancename sub1 -netport directWritePort

11.3.1 Instancing a sub module
The new function used here is ihwaddmodule:

ihwaddmodule -instancename sub0 -modelfile submodule/model
ihwconnect -net write0to1 -instancename sub0 -netport directWritePort
ihwconnect -net write1to0 -instancename sub0 -netport directReadPort

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 64 of 92

which adds a module instance and connects up the module's netports.

Note that the definition of the sub module being instanced is being located/referenced
using a direct local path specification using the -modelfile argument.

Alternatively the sub module could have been located by the specification of a VLNV
directory structure location (see example later below).

11.3.2 Compiling the topmodule
To generate and compile the topmodule:

> make -C topmodule
iGen Create OP MODULE module
Host Compiling Module obj/Linux32/module.igen.o
Host Linking Module object model.so

11.4 Application0 - writing to the UART
Look at the application0/application0.c file. It is similar to the previous application that
wrote to the UART.

In the main() is:

 printf ("[application0] Writing to uart\n\n");

 writeMessFreescaleKinetisUart(UART0_BASE, "Hello UART world\n\n");
 writeMessFreescaleKinetisUart(UART0_BASE, "x\n"); // for exit

This will use the semihosting of printf to write to the simulator console the 'writing'
message.

Then there are calls to writeMessFreescaleKinetisUart to send messages to the UART. It
sends a 'hello' message and then sends 'x' which in our example is used as a message to
indicate termination.

The application is compiled with:

> make -C application0
Compiling application0.c
Linking application0.OR1K.elf

11.5 Application1 - reading from the UART
Look at the application1/application1.c file. It is similar to the previous application that
wrote to the UART.

After UART initialization, it sits in a loop getting characters. When it gets a character it
prints it to the simulator console with the semihosted printf. If it gets an 'x' it terminates
the application (and thus the simulation).

char uart_getchar () {

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 65 of 92

 volatile unsigned char *ab_S1 = UART0_BASE + 0x4;
 volatile unsigned char *ab_D = UART0_BASE + 0x7;
 #define UART_S1_RDRF_MASK 0x20

 while (!(*ab_S1 & UART_S1_RDRF_MASK)) {
 }
 /* Return the 8-bit data from the receiver */
 return *ab_D;
}

int main(int argc, char **argv) {
 initFreeScaleKinetisUart(UART0_BASE);
 printf ("[application1] Reading from uart\n\n");
 char c;
 while (c = uart_getchar ()) {
 if (c == 'x') {
 printf ("[application1] Read termination char(x) from uart\n\n");
 break;
 }
 printf ("%c", c);
 }
 return 0;
}

The application is compiled with:

> make -C application1
Compiling application1.c
Linking application1.OR1K.elf

11.6 Running the hierarchical platform simulation

Assuming the applications and modules have all been compiled the simulation can be run
using the harness.exe program:

> pwd
simpleHierarchy

> harness.exe \
 --modulefile topmodule/model.so \
 --program simpleHierarchy/sub0/cpu1=application0/application0.OR1K.elf \
 --program simpleHierarchy/sub1/cpu1=application1/application1.OR1K.elf

OVPsim started: Tue Oct 17 11:21:11 2015

[application1] Initializing KinetisUART
[application1] Reading from uart

[application0] Initializing KinetisUART
[application0] Writing to uart

Hello UART world

[application1] Read termination char(x) from uart

OVPsim finished: Tue Oct 17 11:21:11 2015

During the simulation we can see that application1 initializes the UART in its sub
module, and then waits for input from the UART. Then application0 initializes its UART
and then writes to the UART. We then get the message sent character by character and

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 66 of 92

written to the simulator console as the 'Hello UART world". When application1 reads the
termination character the simulation finishes.

Note that we have created the script example.sh for your convenience.

If we use the --verbose argument we see that the two processors have executed a similar
number of instructions:

./example.sh --verbose
...
[application1] Initializing KinetisUART
[application1] Reading from uart

[application0] Initializing KinetisUART
[application0] Writing to uart

Hello UART world

[application1] Read termination char(x) from uart
...
Info CPU 'simpleHierarchy/sub1/cpu1' STATISTICS
Info Type : or1k (generic)
Info Nominal MIPS : 100
Info Final program counter : 0x19d8
Info Simulated instructions: 716,027
...
Info CPU 'simpleHierarchy/sub0/cpu1' STATISTICS
Info Type : or1k (generic)
Info Nominal MIPS : 100
Info Final program counter : 0x199c
Info Simulated instructions: 714,388
...
Info TOTAL
Info Simulated instructions: 1,430,415
...

Don't forget you can use other commands, for example:

--showbuses
--showdomains

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 67 of 92

12 Hierarchy and Connectivity in Modules

When modules are instanced they may need to communicate by writing to shared
resources, for example memory, within other modules. This is achieved by connecting the
busses through ports on modules. This example uses three modules connected by busses
to allow access to a shared memory and also to a ‘mailbox’ memory within the processor
sub-system. The diagram below shows the system connectivity.

This example can be found at:

IMPERAS_HOME/Examples/PlatformConstruction/moduleHeirarchyAndConnectivity

Take a copy:

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/moduleHeirarchyAndConnectivity .
> cd moduleHeirarchyAndConnectivity

12.1 The top level

The top level instances the other modules of the design and creates the interconnecting
bus. This is defined in topLevel/module.op.tcl:

Create the design and instance the sub-modules

ihwnew -name topLevel

instance sub-modules

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 68 of 92

ihwaddmodule -instancename sys0 -modelfile processorSubSystem

ihwaddmodule -instancename sys1 -modelfile processorSubSystem

ihwaddmodule -instancename shmem -modelfile sharedMemorySubSystem

Connect the sub-system ports to local bus connections

connections
Sys0
ihwaddbus -instancename busSys0In -addresswidth 32
ihwconnect -instancename sys0 -busport busPortIn -bus busSys0In

ihwaddbus -instancename busSys0Out -addresswidth 32
ihwconnect -instancename sys0 -busport busPortOut -bus busSys0Out

#Sys1
ihwaddbus -instancename busSys1In -addresswidth 32
ihwconnect -instancename sys1 -busport busPortIn -bus busSys1In

ihwaddbus -instancename busSys1Out -addresswidth 32
ihwconnect -instancename sys1 -busport busPortOut -bus busSys1Out

Shared Memory
ihwaddbus -instancename busSM -addresswidth 32
ihwconnect -instancename shmem -busport busPort -bus busSM

Make the mapped connections between the sub-systems; connect a sub-system bus out
address range to the mailbox address range of bus in of the other sub-system. Connect the
sub-system bus out address range to the shared memory bus.

connect out port from Sys1 to Sys0 in port for Mailbox
ihwaddbridge -instancename bridgeSys0MB
ihwconnect -instancename bridgeSys0MB -busslaveport "sp" -bus busSys1Out
 -loaddress "0x20000000" -hiaddress "0x20000fff"
ihwconnect -instancename bridgeSys0MB -busmasterport "mp" -bus busSys0In
 -loaddress "0x10000000" -hiaddress "0x10000fff"
connect out port from Sys1 to Shared Memory
ihwaddbridge -instancename bridgeSys0SM
ihwconnect -instancename bridgeSys0SM -busslaveport "sp" -bus busSys1Out
 -loaddress "0xe0000000" -hiaddress "0xe0000fff"
ihwconnect -instancename bridgeSys0SM -busmasterport "mp" -bus busSM
 -loaddress "0x00000000" -hiaddress "0x00000fff"

 # connect out port from Sys0 to Sys1 in port for Mailbox
ihwaddbridge -instancename bridgeSys1MB
ihwconnect -instancename bridgeSys1MB -busslaveport "sp" -bus busSys0Out
 -loaddress "0x20000000" -hiaddress "0x20000fff"
ihwconnect -instancename bridgeSys1MB -busmasterport "mp" -bus busSys1In
 -loaddress "0x10000000" -hiaddress "0x10000fff"
connect out port from Sys0 to Shared Memory
ihwaddbridge -instancename bridgeSys1SM
ihwconnect -instancename bridgeSys1SM -busslaveport "sp" -bus busSys0Out
 -loaddress "0xe0000000" -hiaddress "0xe0000fff"

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 69 of 92

ihwconnect -instancename bridgeSys1SM -busmasterport "mp" -bus busSM
 -loaddress "0x00000000" -hiaddress "0x00000fff"

The top level brings together two processor sub-systems and a shared memory sub-
system

12.2 The processor sub system

This is defined by processorSubSystem/module.op.tcl as we have seen in previous
examples. Shown below are the bus port connections for the module and connecting these
to an intermediate bus.

create and name the module's external bus ports
ihwaddbusport -instancename busPortIn
ihwaddbusport -instancename busPortOut

busses connecting ports
ihwaddbus -instancename busPIn -addresswidth "32"
ihwaddbus -instancename busPOut -addresswidth "32"

connect the external mailbox bus ports to the bus
ihwconnect -busport busPortIn -bus busPIn
ihwconnect -busport busPortOut -bus busPOut

The bus ports are connected using bridges to set the address ranges mapped out of the
module

outgoing bridge
ihwaddbridge -instancename bridgeOutMB
ihwconnect -instancename bridgeOutMB -bus bus \
 -busslaveport "sp" -loaddress "0x20000000" -hiaddress "0xefffffff"
ihwconnect -instancename bridgeOutMB -bus busPOut \
 -busmasterport "mp" -loaddress "0x20000000" -hiaddress "0xefffffff"

and also to allow access to only the portions of the module required, here the ‘mailbox’
memory is accessed from the port via a bridge

incoming connection
ihwaddbridge -instancename bridgeIn
ihwconnect -instancename bridgeIn -bus busPIn \
 -busslaveport "sp" -loaddress "0x10000000" -hiaddress "0x10000fff"
ihwconnect -instancename bridgeIn -bus busMB \
 -busmasterport "mp" -loaddress "0x00000000" -hiaddress "0x00000fff"

internal connection
ihwaddbridge -instancename bridgeLocal
ihwconnect -instancename bridgeLocal -bus bus \
 -busslaveport "sp" -loaddress "0x10000000" -hiaddress "0x10000fff"
ihwconnect -instancename bridgeLocal -bus busMB \
 -busmasterport "mp" -loaddress "0x00000000" -hiaddress "0x00000fff"

This creates a processor system with local memory, memory accessible from an external
master and a port to access external memory regions.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 70 of 92

12.3 The memory sub system

The memory sub-system simply comprises a memory instance connected to the lower
address space. This is defined in sharedMemorySubSystem/module.op.tcl:

ihwnew -name sharedMemorySubSystem

add memory
ihwaddmemory -instancename ram -type ram

add bus
ihwaddbus -instancename bus -addresswidth "32"

add connections to bus
ihwconnect -instancename ram -bus bus \
 -busslaveport "sp" -loaddress "0x00000000" -hiaddress "0x00000fff"

create and name the module's external bus port
ihwaddbusport -instancename busPort

connect the external bus ports to the bus
ihwconnect -busport busPort -bus bus

12.4 The Test Application
The same test application runs on both of the processors in the design but modified to
indicate, in the top byte, which sub-system generated the last write. The application reads
from the local ‘mailbox’ memory, the ‘mailbox’ memory in the other processor sub-
system and also from the shared memory region. The value read from each memory
location is incremented and written back (including the top byte set to the sub-system
number plus 1, for example sub-system 0 write 1 in the top byte).
This is a trivial example showing the accesses are available to each memory, it is not
intended to show a real situation.

12.5 Building the Example
The application is compiled using the following command:

make -C application CROSS=${CROSS}

The three parts that make up the virtual platform design are compiled using the following
commands:

generate and compile the iGen created module
make -C processorSubSystem
make -C sharedMemorySubSystem
make -C topLevel

NOTE: The example shows modules in discrete directories, when systems get more
complex it is recommended to use a VLNV library. This allows all components to be
compiled using a provided library build system.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 71 of 92

12.6 Running the simulation
To run the simulation, we use the standard harness.exe program:

> # run the module using the harness
harness.exe --modulefile topLevel/model.${IMPERAS_SHRSUF} \
 --program topLevel/sys0/cpu=application/appSys0.${CROSS}.elf \
 --program topLevel/sys1/cpu=application/appSys1.${CROSS}.elf \
 $*

Note

1) the harness loads the top level module shared object
2) the application program is specified for each processor

When executed you should see the following:

Sys1: Application Started
Sys0: Application Started
Sys1: Current Values local MB 0 (write Id 0), external MB 0 (write Id 0),
Shared Memory 0 (write Id 0). Increment all.
Sys0: Current Values local MB 1 (write Id 2), external MB 1 (write Id 2),
Shared Memory 1 (write Id 2). Increment all.
Sys1: Current Values local MB 2 (write Id 1), external MB 2 (write Id 1),
Shared Memory 2 (write Id 1). Increment all.
Sys0: Current Values local MB 3 (write Id 2), external MB 3 (write Id 2),
Shared Memory 3 (write Id 2). Increment all.
Sys1: Current Values local MB 4 (write Id 1), external MB 4 (write Id 1),
Shared Memory 4 (write Id 1). Increment all.
Sys0: Current Values local MB 5 (write Id 2), external MB 5 (write Id 2),
Shared Memory 5 (write Id 2). Increment all.
Sys1: Current Values local MB 6 (write Id 1), external MB 6 (write Id 1),
Shared Memory 6 (write Id 1). Increment all.
Sys0: Current Values local MB 7 (write Id 2), external MB 7 (write Id 2),
Shared Memory 7 (write Id 2). Increment all.
Sys1: Current Values local MB 8 (write Id 1), external MB 8 (write Id 1),
Shared Memory 8 (write Id 1). Increment all.
Sys0: Current Values local MB 9 (write Id 2), external MB 9 (write Id 2),
Shared Memory 9 (write Id 2). Increment all.
Sys1: Current Values local MB 10 (write Id 1), external MB 10 (write Id 1),
Shared Memory 10 (write Id 1). Increment all.
Sys0: Current Values local MB 11 (write Id 2), external MB 11 (write Id 2),
Shared Memory 11 (write Id 2). Increment all.
Sys1: Current Values local MB 12 (write Id 1), external MB 12 (write Id 1),
Shared Memory 12 (write Id 1). Increment all.
Sys0: Current Values local MB 12 (write Id 1), external MB 12 (write Id 1),
Shared Memory 12 (write Id 1). Increment all.
Sys1: Current Values local MB 13 (write Id 1), external MB 13 (write Id 1),
Shared Memory 13 (write Id 1). Increment all.
Sys0: Current Values local MB 14 (write Id 2), external MB 14 (write Id 2),
Shared Memory 14 (write Id 2). Increment all.
Sys1: Current Values local MB 15 (write Id 1), external MB 15 (write Id 1),
Shared Memory 15 (write Id 1). Increment all.
Sys0: Current Values local MB 16 (write Id 2), external MB 16 (write Id 2),
Shared Memory 16 (write Id 2). Increment all.
Sys1: Current Values local MB 17 (write Id 1), external MB 17 (write Id 1),
Shared Memory 17 (write Id 1). Increment all.
Sys1: Application Finished
Sys0: Current Values local MB 18 (write Id 2), external MB 18 (write Id 2),
Shared Memory 18 (write Id 2). Increment all.
Sys0: Application Finished

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 72 of 92

Provided is the example script to create, compile and run this example.

The information for the design can be obtained by using the --showoverrides command,
which provides all of the overrides that can be applied to the components in the design
and also the simulator, but also provides the components hierarchical names.

> example.sh --showoverrides

A large amount of output will be generated containing lines similar to the following,
which include the cpu hierarchical name:

...
--override topLevel/sys0/cpu/defaultsemihost=F (Boolean) (default=F) This
processor will load its default semihost library, specified in the processor
model.
--override topLevel/sys0/cpu/enabletools=F (Boolean) (default=F) Load VAP tools
...
--override topLevel/sys1/cpu/defaultsemihost=F (Boolean) (default=F) This
processor will load its default semihost library, specified in the processor
model.
--override topLevel/sys1/cpu/enabletools=F (Boolean) (default=F) Load VAP tools
for this processor
...

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 73 of 92

13 Passing Parameters down module hierarchy
We have seen in the example above how module ports can be created at a module
boundary and how these can be connected to in the level above. These are modeling the
structural connection between the levels. Often it is necessary to pass data down from one
level to another, for example to pass an address down or a file name.

This example creates a submodule that contains a UART and then instances two copies of
it - and using arguments passes down the address that the UART should be located in the
memory map, and also the name of the file that the UART should create to log its output.

This example can be found at:

IMPERAS_HOME/Examples/PlatformConstruction/moduleParameters

So take a copy:

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/moduleParameters .
> cd moduleParameters

and you will see the following directories: application, topmodule, submodule and the
usual example script to compile and run the example.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 74 of 92

13.1 Creating the sub module

Having a look at the submodule/module.op.tcl:

ihwnew -name subUart

ihwaddformal -name baseAddress -type address
ihwaddformal -name logFileName -type string

ihwaddbus -instancename mainBus -addresswidth 32

ihwaddperipheral -instancename uart0 -vendor national.ovpworld.org \
 -library peripheral -type 16550 -version 1.0

ihwconnect -bus mainBus -instancename uart0 \
 -busslaveport bport1 -loaddress baseAddress -hiaddress {baseAddress+7}
ihwsetparameter -handle uart0 -name outfile -expression logFileName –type string

ihwaddbusport -instancename mainBusPort
ihwconnect -busport mainBusPort -bus mainBus

We create a module called subUart that has two formal arguments:

ihwaddformal -name baseAddress -type address
ihwaddformal -name logFileName -type string

with their types being specified.

When we connect the bus to the UART instance we provide an expression for the
hiaddress:

ihwconnect -bus mainBus -instancename uart0 \
 -busslaveport bport1 -loaddress baseAddress -hiaddress {baseAddress+7}

That uses baseAddress, one of the two formal arguments.

We also set the parameter outfile for the UART instance and the value of it is not defined
at this declaration time, but will be defined before simulation starts by being passed down
from above through this module's formal argument logFileName by being set by the level
above that instances this module:

ihwsetparameter -handle uart0 -name outfile -expression logFileName –type string

Thus parameters for a module can be defined that are passed down from above and they
can be used in this level as part of expressions.

Also note, the UART is a different one than the previous examples, this one being a
national.ovpworld.org 16550.

We then compile the module with make as normal:

> make -C submodule

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 75 of 92

13.2 Creating the top module

Having a look at the topmodule/module.op.tcl:

ihwnew -name topmodule

ihwaddbus -instancename mainBus -addresswidth 32

ihwaddprocessor -instancename cpu1 -vendor ovpworld.org \
 -library processor -type or1k -version 1.0 \
 -semihostname or1kNewlib -variant generic

ihwconnect -bus mainBus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus mainBus -instancename cpu1 -busmasterport DATA

ihwaddmemory -instancename ram1 -type ram
ihwconnect -bus mainBus -instancename ram1 \
 -busslaveport sp1 -loaddress 0x0 -hiaddress 0x0fffffff

ihwaddmemory -instancename ram2 -type ram
ihwconnect -bus mainBus -instancename ram2 \
 -busslaveport sp1 -loaddress 0x20000000 -hiaddress 0xffffffff

Create instance 0 of the submodule
ihwaddmodule -instancename subUart0 -modelfile submodule/model
ihwconnect -instancename subUart0 -busport mainBusPort -bus mainBus
ihwsetparameter -handle subUart0 -name baseAddress -value 0x100003e8 –type uns32
ihwsetparameter -handle subUart0 -name logFileName -value uartTTY0.log –type string

Create instance 1 of the submodule
ihwaddmodule -instancename subUart1 -modelfile submodule/model
ihwconnect -instancename subUart1 -busport mainBusPort -bus mainBus
ihwsetparameter -handle subUart1 -name baseAddress -value 0x100003f8 –type uns32
ihwsetparameter -handle subUart1 -name logFileName -value uartTTY1.log –type string

We see this is similar to previous examples, though this time in the module instances we
set the parameters to pass down specific values for the sub module parameters.

ihwsetparameter -handle subUart0 -name baseAddress -value 0x100003e8 –type uns32
ihwsetparameter -handle subUart0 -name logFileName -value uartTTY0.log –type string

And we set different addresses and different names for each of the two sub module
instances.

We create and compile the model with:

> make -C topmodule

13.3 The application
The application is simpler than the previous UART examples as it uses a UART that has
simpler initialization.

If we look at application/application.c

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 76 of 92

#include <stdio.h>
#include <stdlib.h>

static void writeMess (unsigned char *uartBase, unsigned const char *myString)
{
 volatile unsigned char *uartTX = uartBase + 0;
 volatile unsigned char *uartLSR = uartBase + 5;
 unsigned int i;

 for(i=0;i<strlen(myString);i++){
 while ((*uartLSR & 0x20) == 0) {
 // Wait for Tx Holding Register Empty flag
 }
 *uartTX = myString[i];
 }
}

#define UART0_BASE ((unsigned char *) 0x100003e8)
#define UART1_BASE ((unsigned char *) 0x100003f8)

int main(int argc, char **argv) {

 printf ("Writing to UARTs - see log files\n\n");

 writeMess(UART0_BASE, "Hello UART0 world\n\n");
 writeMess(UART1_BASE, "Hello UART1 world\n\n");

 return 0;
}

We see that we write two messages - one to each of the UART base addresses.

Again it is compiled as before:

> make -C application

13.4 Running the simulation
To run the simulation, we again use the provided harness.exe program:

> harness.exe \
 --modulefile topmodule/model.so \
 --program application/application.OR1K.elf

and get the following:

OVPsim started: Thu Nov 26 14:15:11 2015
Writing to UARTs - see log files
OVPsim finished: Thu Nov 26 14:15:11 2015

And if we look at the two log files written by the two UARTS, we get:

> cat uartTTY0.log

Hello UART0 world

> cat uartTTY1.log

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 77 of 92

Hello UART1 world

We have also provided the example script to create, compile and run this example.

Also don't forget that you can add commands to get more information from the simulator,
for example:

> ./example.sh --modeldiags 0x3
...
Info (16550_BRS) harness/topmodule/subUart0/uart0: baud rate=1152000 parity=N data
bits=5 total bits=7 character delay=6usec
Info (16550_BRS) harness/topmodule/subUart1/uart0: baud rate=1152000 parity=N data
bits=5 total bits=7 character delay=6usec

Writing to UARTs - see log files

Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x48 ('H')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x65 ('e')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x6c ('l')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x6c ('l')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x6f ('o')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x20 (' ')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x55 ('U')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x41 ('A')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x52 ('R')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x54 ('T')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x30 ('0')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x20 (' ')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x77 ('w')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x6f ('o')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x72 ('r')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x6c ('l')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x64 ('d')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x0a (' ')
Info (16550_UWR) topmodule/subUart0/uart0: Write to Data register: data=0x0a (' ')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x48 ('H')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x65 ('e')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x6c ('l')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x6c ('l')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x6f ('o')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x20 (' ')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x55 ('U')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x41 ('A')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x52 ('R')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x54 ('T')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x31 ('1')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x20 (' ')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x77 ('w')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x6f ('o')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x72 ('r')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x6c ('l')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x64 ('d')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x0a (' ')
Info (16550_UWR) topmodule/subUart1/uart0: Write to Data register: data=0x0a (' ')
...

We can see the initialization state of the UART (written out due to the UART checking
the value of the modeldiags flag), and then the writes to the peripheral registers.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 78 of 92

14 Directory structure: VLNV or direct paths
In all the examples above we have used a very simple directory structure where the
modules and application file all live in close proximity and the scripts and module
instances just use path names. This is a direct path approach. This is good for quick and
simple examples, but becomes hard work for large multi-user shared projects.

There is a different way.

Imperas has adopted the VLNV (Vendor Library Name Version) style of library structure
as developed by the Spirit Consortium (now part of Accellera) and used with its
IP-XACT XML libraries.

Imperas provides all its processor, peripheral, modules, platforms, and intercept libraries
in a VLNV library structure. It also provides a complete suite of Makefiles that make use
of this VLNV structure and can build the complete library automatically.

If you do not use a VLNV directory structure, then you will need to manage and maintain
the building of your components, designs etc yourself.

If you use a VLNV library structure then you can make use of all the automation that we
provide to manage your library.

One of the main differences when using an Imperas VLNV approach is that the VLNV
structure uses two parallel directory trees - one for source, and one for the derived/created
binary files.

For details of the Imperas / OVP VLNV library structure and its management, please see
Imperas Installation and Getting Started document, Appendix G.

14.1 A hierarchical design using a VLNV directory structure
For this example we have taken the previous simpleHierarchy (which has two sub
modules, each with a processor, and two applications) and moved locations around to
make use of a VLNV structure.

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/simpleHierarchyVLNV .
> cd simpleHierarchyVLNV
> ls
application0 application1 source

Previously, we had the modules at this level. Now, we have moved the design down into
a VLNV structure. Typically it is the design modules and components that go into the
VLNV. Normally the applications and run scripts are kept outside but make use of VLNV
based components.

We keep the source in a directory - we have called this './source'.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 79 of 92

The application directories are as before.

14.2 The directory structure
The modules are now below the source directory in the 'vendor' directory ovpworld.org:

source/ovpworld.org/module/simpleHierarchy_top/1.0/module/Makefile
source/ovpworld.org/module/simpleHierarchy_top/1.0/module/module.op.tcl
source/ovpworld.org/module/simpleHierarchy_sub/1.0/module/Makefile
source/ovpworld.org/module/simpleHierarchy_sub/1.0/module/module.op.tcl

Where we have the path made up to reflect the VLNV:
 vendor ovpworld.org
 library module
 name simpleHierarchy_*
 version 1.0

You can work locally with this structure, and then when ready, you can copy it into a
central library structure for your project. We work locally and then copy it into the
$IMPERAS_HOME/ImperasLib/source VLNV library.

Note we have given the 'name' as top and sub, but also included the name of the
project/design too - as many different projects/designs might be modules under this
vendor. An alternative would be to have a different vendor for each project, e.g.:
 source/simpleHierarchy.ovpworld.org/module/top/1.0
 source/simpleHierarchy.ovpworld.org/module/sub/1.0
etc.

We have to make a few changes to switch from the previous use of direct path locations
to using the VLNV.

14.3 Changing the controlling scripts

The example.sh has to change to compile the modules in the new location:

...
VLNVROOT=$(pwd)/vlnvroot
VLNVSRC=$(pwd)/source
mkdir -p ${VLNVROOT}
make -C ${VLNVSRC} VLNVSRC=${VLNVSRC} VLNVROOT=${VLNVROOT} \
 -f ${IMPERAS_HOME}/ImperasLib/buildutils/Makefile.library VERBOSE=0
...

We define two shell variables to be the source (VLNVSRC) and binary (VLNVROOT) trees, and
create the binary directory (VLNVROOT) if it does not exist (mkdir -p ${VLNVROOT}).

With the variables set, we can then just call compile our library by using provided make
system. Use VERBOSE=1 to see the details of what is taking place.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 80 of 92

We then use the harness.exe and it needs to use the --modulevendor, --modulelibrary etc.
commands (as opposed to locating the model.so file directly with --modulefile:

harness.exe \
 --vlnvroot ${VLNVROOT} \
 --modulevendor ovpworld.org --modulelibrary module \
 --modulename simpleHierarchy_top --moduleversion 1.0 \
 --program simpleHierarchy_top/sub0/cpu1=application0/application0.OR1K.elf \
 --program simpleHierarchy_top/sub1/cpu1=application1/application1.OR1K.elf \

Note the use of the --vlnvroot ${VLNVROOT} command to add this location/name to the list
of VLNV paths to look in to find the binary components.

14.4 The module instances
The top module also needs to be edited to make use of the VLNV structure.
Previously, in module.op.tcl, the sub module was instanced with the iGen command:

ihwaddmodule -instancename sub0 -modelfile submodule/model

Now, using VLNV it is instanced with:

ihwaddmodule -instancename sub0 \
 -vendor ovpworld.org -library module \
 -version 1.0 -type simpleHierarchy_sub

telling the simulator where to look for the module.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 81 of 92

15 Loading programs into the design
To simulate application software, it must be loaded into platform. Instructions for loading
the software can be given to the Imperas Simulator at run-time (recommended) using the
command line argument --program or can be embedded in the platform. If the loading
instructions are to be embedded in the platform, it may be loaded as part of the processor
instantiation by adding --imagefile argument to ihwaddprocessor or separately using the
ihwaddimagefile command.

By defining the program load as part of the platform definition, the program is always
loaded. For example, this could be a boot loader that is used to initialize the system and
then a further program is loaded to be executed.

The following shows the program application.OR1K.elf being loaded onto the processor.

The first two examples show the loading of a fixed executable defined in the module
instantiation and so always part of the hardware definition.

This may be done on two ways, as part of the processor instantiation:

ihwaddprocessor –instancename cpu1 –imagefile application/application.OR1K.elf

or as a separate command adding the executable to the created processor instance handle,
cpu1:

ihwaddimagefile –handle cpu1 –filename application/application.OR1K.elf

This final example show the program loaded using the command line. This keeps the
hardware definition and program load separate

harness.exe \
 --modulefile topmodule/model.so \
 --program application/application.OR1K.elf

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 82 of 92

16 Loading symbols into the simulator
Imperas simulators require symbolic information for application programs to enable
debug, context-sensitive trace and some forms of semihosting.

Normally, symbols can be read directly from program files as they are loaded. However,
sometimes it is necessary to load a program's symbols separately from the program itself.
This may be the case when the program has either been loaded from an elf file without
symbolic information or in a form that does not contain symbolic information, or by some
other means unknown to the simulator, for example using a peripheral to initialize
memory.

Use ihwaddsymbolfile to do this (see the Imperas Simulation Guide for details) as part of
the hardware creation or on the command line use –symbolfile <elf file name>.

The first example shows the loading of an elf file containing symbolic information onto a
processor instance in the module definition, so it is always part of the hardware
definition, whatever the program that is being executed. If addresses in the symbolfile do
not match those in the program, then simulator features such as semihosting and symbolic
disassembly will not work.

ihwaddsymbolfile –handle cpu1 –filename application/application.OR1K.elf

The following example shows the symbol file loaded using the command line. This keeps
the hardware definition and symbolfile loading separate.

harness.exe \
 --modulefile topmodule/model.so \
 --symbolfile application/application.OR1K.elf

The above assumes that the program is loaded separately i.e. it must be present in the
hardware to be executed. Using --program to load an elf file will also automatically load
the symbols from the elf file, if present.

In the example above the symbolfile will be associated with all the processors in the
hardware definition. To target the symbolfile at one particular processor use

 --symbolfile simpleHierarchy_top/sub0/cpu1=application/application.OR1K.elf

The full hierarchical pathname of the processor should be specified. The --showoverrides
option can be useful to determine the exact hierarchical names of all the components in a
design.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 83 of 92

17 Setting Model Parameters
The user-defined parameter mechanism allows the platform to configure the
functionality of a model. A named parameter applied to a module or model instance can
be read by the model to change its behavior.

To set a parameter, iGen requires a handle which is a valid the instance name, a name
which must correspond to a formal parameter on the model, a type which must match the
type on the model and a value which must be consistent with the type. Refer to the
model's documentation to find the parameters accepted by the model and use
ihwsetparameter to set the value of a parameter on an instance.

Examples might be:

#an integer parameter
ihwsetparameter -handle cpu1 -name hiddenTLBentries -value 1 –type Uns32

#a string parameter
ihwsetparameter -handle cpu1 -name title -value 6800 –type string

This can also be performed on the command line using overrides, for example

harness.exe \
 --modulefile topmodule/model.so \
 --override myDesign/cpu1/title=6800

The simulator argument --showoverrides can be used to show what parameters can be
modified.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 84 of 92

18 Advanced Information & Usage of iGen
iGen takes a script making calls to the tcl iGen API and creates C files that make calls to
the OP API.

The OP API is one of the public Open Virtual Platforms (OVP) APIs and is implemented
in the Imperas / OVP simulators. The OP API has functions for creating the structure of
test benches, platforms, modules and components - and it also has a very rich API for
controlling the simulations.

This chapter provides an introduction to the C used to create modules and how the
simulators use the different parts of modules. It describes the C output created by iGen.

18.1 Overview of detailed platform construction
18.1.1 Harnesses and Modules
A module is a model that creates and connects instances of processors, peripherals,
RAMs, ROMs, caches (implemented using an MMC component), and other modules. It
is linked with the libRuntimeLoader library to produce a shared object.

The entry point to a module is the symbol modelAttrs which refers to a predefined table
of functions and constants in the shared object.

A harness / test bench is a special type of module that creates the top level of the system.
It is linked with the libRuntimeLoader library to produce an executable.

The entry point to an executable top level module is the function main.

A module template produced by iGen only has the modelAttrs.

A harness / test bench can have both entry points; main and modelAttrs, and this too can
be generated by iGen but this is a special case.

The standard Makefiles supplied by Imperas for module creation produce a shared object.

If you are creating a harness / test bench you will need to create an executable.

18.1.2 The contents of a module
A module is going to be used as a level of hierarchy or as a leaf at the bottom of the
hierarchy, and it must contain the modelAttrs table which has

• a code to identify the shared object as a module (and not a processor, for instance)
• the version of the API
• a default name of the module
• pointers to functions in the module
• classification and status of the module to be interrogated by other tools.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 85 of 92

The modelAttrs table is an instance of the optModuleAttr type defined in
ImpPublic/include/host/op/op.h

A module defines some or all of the following functions:

18.1.2.1 Interface Iterators
Functions to return in sequence each interface object(bus, net, packetnet, FIFO).

18.1.2.2 Parameter Iterator
A function to return in sequence each parameter accepted by the module.

18.1.2.3 Constructor
(This function must be provided) A function to construct the contents of the module
including creation of component instances, buses, nets etc. and connection to
components.

18.1.2.4 Initialization (pre-simulation)
Called after all constructors in the design have been called and before simulation begins
for the first time.

18.1.2.5 Simulation
Called each time simulation starts or restarts.

18.1.2.6 Reporting (post-simulation)
Called when simulation has finished, but before any destructors are called.

18.1.2.7 Destructor
Called when the simulation terminates to allow models to close files, free memory etc.

18.1.3 The Contents of a Harness or Test Bench
The entry point of the top level is (like any C program) is a function called main.

18.1.3.1 Command Line parser
The main function will usually include a command line parser to read the user’s options
for this simulation. The OP standard command line parser gives a consistent method of
parsing standard data types, while also allowing the user to specify any of the rich set of
standard options accepted by the simulator. Please refer to the OVP Control File User
Guide.

18.1.3.2 The root Module
The main function must create a root module (using opRootModuleNew). This root
module could then either:

• contain all the components in the system (this is how a legacy ICM platform is
constructed as it has no hierarchy).

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 86 of 92

• create an instance of the top level of the design and supply any test–bench
functionality required to run the design. In fact it could create instances of several
designs and run then independently to perform step and compare testing.

• Reference the modelAttrs of this module to make this the top level of the design.
Thus, if the compiled executable is used, main is called and this becomes the top
level, or if the shared object is loaded, this becomes part of a larger system
simulation.

18.1.4 Module Parameterization
To increase the flexibility and reusability of a module, it can accept parameters which
may be set by the module that creates the instance of this module (its parent) and whose
values can be obtained by code in the module, to influence its behavior. Parameter values
can be passed to its components (including sub-modules) or can influence the execution
of its code. Parameter types include Boolean, Integer, Floating point and String.

18.1.4.1 The module interface
A module connects to its model instances using the following interface abstractions.
Interface objects can be connected to components within the module or, via module ports,
to model instances in other modules.

18.1.4.2 Bus
A bus is a high level model of a microprocessor bus system. It represents a distinct
physical address space. It allows bus masters such as processors or DMA engines to read
or write to bus slaves such are memories or memory-mapped registers. A bus cannot
model contention, has no facility to model the time taken for each access, and
consequently has no means to model burst modes, bus locking or priority schemes.

18.1.4.3 Net
A net is used to model a wire carrying a digital value, usually zero or one. In fact a net
carries a 32-bit value so can carry more information but is usually used to model resets,
interrupts, and mode controls. A net can have multiple drivers and receivers but does not
model contention – the current value is that set by the most recent driver. All receivers
are notified of a new value by a callback function in the model.

18.1.4.4 Packetnet
A packetnet is used to model packet-based protocols such as RS232, USB, Ethernet or
GSM. A packetnet can have multiple drivers and receivers but does not model contention.
A packet sent by a model is received instantaneously (time does not advance during its
propagation) by all connected models in the order they were connected. Receiving
models can modify the packet which can be examined by the sending model at the end of
the transaction.

18.1.4.5 FIFO
A FIFO is a unidirectional point to point connection between two processor models.
Words of a specified width (in bits) are pushed into one end of a FIFO and popped out of

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 87 of 92

the other. A FIFO has a specified depth which cannot be exceeded. Primitives allow
blocking or non-blocking push and pop operations.

18.1.5 Efficiency
Modules can be assembled with arbitrary depth of hierarchy, allowing the simulation of
complex systems. However, the depth of hierarchy has no effect on simulation efficiency;
module ports are removed before simulation.

18.2 Order of Platform construction
This section summarizes the operation of a hierarchical platform.

 Host computer calls the program entry point : main
o start opSessionInit
o construct the command line parser opCmdParserNew, opCmdParserAdd
o parse the command line opCmdParseArgs
o create instance of root module opRootModuleNew

 call the constructor moduleConstruct
• create instance of the design opModuleNew

o call parameter iterator
o call interface iterators
o call module constructor moduleConstruct

 create model instances opProcessorNew
 create module instances opModuleNew

o run the simulator – call opRootModuleSimulate (maybe more than once)
 call pre-simulate functions in all modules (first time only)
 call simulate functions in all modules (every time

opRootModuleSimulate is called)
 run the simulator

o finish – call opSessionTerminate
 call post-simulation functions for all modules
 call destructors

Higher-level modules are constructed before lower modules.

Leaf components (processors, memories etc) can be created at any level.

A module can instance itself (so long as there is code in the constructor to prevent infinite
recursion).

The simulator can determine the interface to a module without constructing it.

18.3 Editing the C of a module
The topic of editing the C of a module is covered fully in the Advanced Simulation
Control of Platforms and Modules User Guide.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 88 of 92

18.4 Writing out a testbench / harness
The main difference between a harness / testbench and a normal module is that the
harness / testbench has the inclusion of a main function and often a command line parser
and it is compiled and linked and used as an executable.

iGen can be used to create this harness / test bench with the main function contained
within it. To do this, add ihwaddclp to the iGen script.

There is the restriction that if you are adding the ihwaddclp to your script, then you can
not instance anything but modules in that harness / test bench.

If you require a more complex test harness, where you need to have more than just
module instances in it, or where you need to control the simulator, and maybe single step
it, or add monitors or other test related capabilities, then it will need to be written in C
using the OP API so please refer to the Simulation Control of Platforms and Modules
User Guide.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 89 of 92

19 iGen Module related Error Messages
During usage of iGen when creating modules, you might get some of the following error
message and the creation of the model will fail.

Error (CN_TLM) Module with command line parser should only instance modules
You have an iGen script that is creating a module that is instancing components other
than modules and it include a call to add a Command Line Parser with ihwaddclp. Only
the highest level of a platform can include the CLP and it must only instance modules.
The solution is to add a higher top level module and only instance that in your
testbench/harness that has the CLP. See the advanced section of this manual for more
information.

Error (MDL_IFNF) Image file 'platform/sub/model' not found
When trying to load the models, the simulator has not managed to find the model.so/.dll
model object specified. It is normally because you have specified it wrong in the
--modulefile argument to harness.exe or in the ihwaddmodule in an iGen module creating
script. (Note if the model name in the error message has a .so or .dll on the end then it is
probably from your harness.exe call!)

Warning (CM_MF) flag 'modulefile' specified more than once (last value accepted).
Normally from the call to harness.exe where you are telling it to load a module, but you
have specified more than one - currently the harness.exe program can only take one
modulefile as an argument - normally you only have one (your top module), and you do
not need to specify the sub modules, as the top module should be instancing them. If you
do need to have two top modules, then either create another level of hierarchy, or write
your own C test harness.

Error (OP_PNF) Parameter 'top/sub/logFileName' has no formal parameter defined
in the model.
You have instanced a module and are trying to pass in a formal parameter using
-ihwsetparameter, but the sub module has no been defined as requiring an argument -
check the spelling.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 90 of 92

20 (Deprecated) Creating ICM platforms with iGen
The iGen command line argument --writec causes iGen to write a C program. The
program can be modified by hand if required, compiled with the host's C compiler, linked
with the simulator run-time library and run as a stand-alone program.

shell> igen.exe \
 --batch platform.tcl \ # the tcl input file
 --writec platform.c

iGen will produce several output files with names taken from the argument to --writec.

Note that use of the ICM API has been deprecated in favor of the OP API.

The iGen flag –op makes iGen create a platform using the OP API instead of ICM.

The iGen flag -icm make iGen create a platform using the ICM API.

The default currently for iGen is to assume an -icm flag being set.

The rest of this chapter describes the use of iGen when a C platform using ICM is
being created. The output files written when writing OP platforms/modules are
different.

20.1 Generated files
If –writec platform.c is specified, the following files are generated:

File Contains User Edited?
platform.c Function stubs y
platform.constructor.igen.h Platform construction n
platform.options.igen.h Variables set by CLP if requested n
platform.handles.igen.h Handles to platform objects n
platform.clp.igen.h Construction of the CLP if requested n

20.1.1 User file : platform.c
The user file contains:

• main()
• user functions to be filled in if required.
• #include of the other files

Note that since it is expected that this file will be edited, igen will not overwrite this file
if it exists. Use the –overwrite command line option to force overwriting.

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 91 of 92

20.1.2 Constructor file: platform.constructor.igen.h

The constructor file will generally not require modification. It includes the following
features derived from the TCL script:

• Initialization
• Platform name
• Common simulation attributes

• Component instances
• Interconnect

• Loading of extension libraries
• Loading of application code

20.1.3 Options file: platform.options.igen.h

The options file defines variables which will be set by the command line parser (if
requested).

20.1.4 Handles file: platform.handles.igen.h

The handles file defines handles for instances of processors, peripherals, nets, buses etc.
Access to handles is required by test-harness code which could be written in the user file.

20.1.5 Command line parser file: platform.clp.igen.h

The CLP file constructs the command line parser (if requested) and configures it by
adding command line parser arguments (CLPAs).

20.2 Repeated use of iGen
The user file will not be overwritten if it already exists, unless –overwrite is specified on
the iGen command line. The other files will be overwritten without warning.

20.3 Adding a copyright header
To add your own copyright header to each C file, use either the igen command line option
-userheader <path to your copyright text> or add the flag –userheader <path to your
copyright text> to the ihwnew iGen command.

20.4 Checking the Platform
A C platform can be created without referring to the models that is uses, but if the models
are available, igen can load the models and check them against the platform during
creation. Use –checkmodels to do this.

shell> igen.exe \

iGen Platform and Module Creation User Guide

© 2019 Imperas Software Limited. www.OVPworld.org Page 92 of 92

 --batch platform.tcl \
 --writec platform.c \
 --checkmodels

	1 Preface
	1.1 Notation
	1.2 Related Documentation
	1.3 Glossary / Terminology

	2 Introduction
	2.1 Prerequisites
	2.2 Obtaining & installing iGen
	2.3 Compiling Examples described in this Document
	2.4 Shared Objects and executables
	2.5 Platforms, Modules and Shared Objects
	2.6 Simulating Modules using harness.exe
	2.7 Writing a bespoke C test harness

	3 Describing a hardware design (a virtual platform)
	3.1 Design hierarchy

	4 Creating and simulating a first virtual platform
	4.1 A quick run through
	4.2 The simple application - Hello World
	4.2.1 How printf works using semihosting

	4.3 Defining the platform using iGen
	4.3.1 Creating a new module
	4.3.2 Adding a bus
	4.3.3 Adding a processor instance and connecting it up
	4.3.4 Adding a memory and connecting it up
	4.3.5 Full iGen listing for simple single core module
	4.3.6 Getting help on iGen module creating functions

	4.4 Running iGen
	4.5 iGen generated module files
	4.6 Running the simulation using harness.exe
	4.6.1 The simulation command line

	5 Creating a module with a peripheral (a UART)
	5.1 Module overview
	5.2 Quick run through
	5.3 The application - writing to the UART
	5.4 Defining the platform using iGen
	5.4.1 Adding nets to the module
	5.4.2 Adding a peripheral instance (a UART)
	5.4.2.1 Setting a peripheral instance's parameters
	5.4.2.2 Connecting up a peripheral instance to a bus and to nets

	5.4.3 Getting help on iGen module creating functions
	5.4.4 Full iGen listing for simpleCpuMemoryUart module

	5.5 Running iGen
	5.6 Running the simulation using harness.exe
	5.6.1 The simulation command line

	6 Changing the processor being used (From OR1K to ARM)
	7 Adding Bus Bridges, Aliasing address regions
	7.1 Static Bus bridges
	7.1.1 Aliasing
	7.1.1.1 Using a single bus bridge to map a region back onto the same bus
	7.1.1.2 Using a separate bus and two bridges to map a region
	7.1.1.3 Using bridges to model unconnected top address bit

	7.2 Dynamic Bus Bridges
	7.2.1 Introduction
	7.2.2 Running the simulation

	8 Byte Swapping (Endian Correction)
	8.1 Bus Connections
	8.2 Performance considerations

	9 Two processors with shared memory
	9.1 Adding Hardware Elements
	9.2 Making Connections
	9.3 The example encrypt and decrypt applications
	9.4 Running the Example

	10 Caches (using Memory Model Components (MMC))
	10.1 Transparent or Full MMC Models
	10.2 MMC Operation
	10.2.1 Transparent Model
	10.2.2 Full Model

	10.3 Creating and connecting an MMC
	10.3.1 Transparent MMC Example
	10.3.2 Full MMC Example
	10.3.3 Cascaded MMC Example

	11 Using Module Hierarchy in Virtual Platforms
	11.1 A two level platform: simpleHierarchy
	11.2 Creating the sub module
	11.2.1 Compiling the submodule

	11.3 Creating the top module
	11.3.1 Instancing a sub module
	11.3.2 Compiling the topmodule

	11.4 Application0 - writing to the UART
	11.5 Application1 - reading from the UART
	11.6 Running the hierarchical platform simulation

	12 Hierarchy and Connectivity in Modules
	12.1 The top level
	12.2 The processor sub system
	12.3 The memory sub system
	12.4 The Test Application
	12.5 Building the Example
	12.6 Running the simulation

	13 Passing Parameters down module hierarchy
	13.1 Creating the sub module
	13.2 Creating the top module
	13.3 The application
	13.4 Running the simulation

	14 Directory structure: VLNV or direct paths
	14.1 A hierarchical design using a VLNV directory structure
	14.2 The directory structure
	14.3 Changing the controlling scripts
	14.4 The module instances

	15 Loading programs into the design
	16 Loading symbols into the simulator
	17 Setting Model Parameters
	18 Advanced Information & Usage of iGen
	18.1 Overview of detailed platform construction
	18.1.1 Harnesses and Modules
	18.1.2 The contents of a module
	18.1.2.1 Interface Iterators

	18.1.3 The Contents of a Harness or Test Bench
	18.1.4 Module Parameterization
	18.1.5 Efficiency

	18.2 Order of Platform construction
	18.3 Editing the C of a module
	18.4 Writing out a testbench / harness

	19 iGen Module related Error Messages
	20 (Deprecated) Creating ICM platforms with iGen
	20.1 Generated files
	20.1.1 User file : platform.c
	20.1.2 Constructor file: platform.constructor.igen.h
	20.1.3 Options file: platform.options.igen.h
	20.1.4 Handles file: platform.handles.igen.h
	20.1.5 Command line parser file: platform.clp.igen.h

	20.2 Repeated use of iGen
	20.3 Adding a copyright header
	20.4 Checking the Platform

