

Using OVP Models in SystemC TLM2.0 Platforms

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 2.0.0
Filename: OVPsim_Using_OVP_Models_in_SystemC_TLM2.0_Platforms.doc
Project: Using OVP Models in SystemC TLM2.0 Platforms
Last Saved: Tuesday, 16 May 2017
Keywords:

© 2017 Imperas Software Limited www.OVPworld.org Page 1 of 24

Using OVP Models in SystemC TLM2.0 Platforms

Copyright Notice
Copyright © 2017 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

© 2017 Imperas Software Limited www.OVPworld.org Page 2 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

Table of Contents

1 Introduction... 5
1.1 Why use CpuManager or OVPsim?.. 5
1.2 Restrictions ... 5
1.3 Compiling Examples Described in this Document ... 5

2 How CpuManager works with SystemC TLM2.0 .. 7
2.1 Platform construction.. 7

2.1.1 Naming.. 7
2.2 Processor models .. 7

2.2.1 Instructions/Sec and Quantum size... 7
2.2.2 Guidelines for setting quantum and MIPS.. 8

2.2.2.1 Factors demanding a smaller quantum ... 8
2.2.2.2 Factors demanding a larger quantum.. 8

2.2.3 SystemC Stack Size .. 8
2.2.4 Direct Memory Interface Memory Access ... 8
2.2.5 Simulation artifacts ... 9
2.2.6 Delays in bus transactions... 9

2.3 Peripheral models.. 9
2.3.1 Delays in bus transactions... 10

2.4 Automatic generation of the TLM interface. .. 10
3 OVP OP header and source files... 11
4 Example Platform ... 13

4.1 Compilation... 15
4.2 Building an application ... 16
4.3 Running a platform ... 16
4.4 Platform Construction Options ... 17

4.4.1 Processor Options ... 17
4.4.1.1 Setting a variant .. 17
4.4.1.2 Instruction Tracing.. 17
4.4.1.3 Application debug... 18
4.4.1.4 Setting the simulation time slice (quantum) ... 18
4.4.1.5 Simulated Exceptions.. 18
4.4.1.6 Loading intercept libraries .. 19

4.4.2 Peripheral Options .. 19
4.4.2.1 Peripheral diagnostics. .. 19

4.4.3 DMI... 19
5 Deviations from TLM2.0 LRM .. 21

5.1 Data Endian in TLM transactions ... 21
5.2 Modeling of Interrupts .. 21

6 Tracing TLM activity.. 22
7 What can go wrong ... 23

7.1 Spaces in filenames... 23
7.2 OVPsim version incompatibilities .. 23
7.3 Environment problems.. 23
7.4 Compiling OSCI SystemC 2.2.0 with later versions of gcc 23

© 2017 Imperas Software Limited www.OVPworld.org Page 3 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

© 2017 Imperas Software Limited www.OVPworld.org Page 4 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

1 Introduction
This document describes the use of OVP models in systemC TLM2.0 simulation
platforms using the OP C++ API. Earlier releases of the Imperas simulator used the
deprecated (still supported) ICM C++ API.

CpuManager and OVPsim are dynamic linked libraries (.so suffix on Linux, .dll suffix
on Windows) implementing Imperas simulation technology. The shared objects contain
implementations of the OP interface functions described in "OVPsim and CpuManager
User Guide". The OP functions enable instantiation, interconnection and simulation of
complex multiprocessor platforms containing arbitrary shared memory topologies and
peripheral devices.

CpuManager is one of the commercial products available from Imperas. OVPsim
available from www.ovpworld.org

It is assumed that you are familiar with C++, SystemC and TLM2.0 technology.

Please refer to the "OVPsim and CpuManager User Guide" for more details of OVPsim
and CpuManager products.

1.1 Why use CpuManager or OVPsim?
OVPsim and CpuManager (hereafter referred to as just CpuManager) have access to a
rich source of fast, qualified processor models and to a constantly growing list of
peripheral models. Using CpuManager in your SystemC TLM2.0 simulation gives access
to these high performance models, and to associated software development tools with
very little extra effort.

1.2 Restrictions
CpuManager is a very high speed instruction-accurate processor and platform simulator.
It is not intended for cycle-accurate or pin-level simulation. For this reason the TLM2.0
interface uses the TLM2.0 "loosely timed" (LT) model. Attempting to use other models
will give incorrect results.

CpuManager allows the free-running of each processor for a large number of instructions
rather than advancing all processors in lock-step. If your simulation uses TLM2.0 models
which rely on lock-step operation you will need to reduce to one the number of
instructions which are run in each step.

1.3 Compiling Examples Described in this Document
This documentation is supported by C++ code samples in an Examples directory,
available as part of an OVPsim installation, by download from the www.ovpworld.org
website or as part of an Imperas installation.

The example uses the OR1K processor model and tool chain. The model

© 2017 Imperas Software Limited www.OVPworld.org Page 5 of 24
.

http://www.ovpworld.org/
http://www.ovpworld.org/

Using OVP Models in SystemC TLM2.0 Platforms

 is included as part of the OVPsim or Imperas installation. The toolchain is available by
free download from the www.ovpworld.org website.

GCC Compiler Versions
Linux32 4.5.2 i686-nptl-linux-gnu (Crosstool-ng)
Linux64 4.4.3 x86_64-unknown-linux-gnu (Crosstool-ng)
Windows32 4.4.7 mingw-w32-bin_i686-mingw
Windows64 4.4.7 mingw-w64-bin_i686-mingw

For Windows environments, Imperas recommends using MinGW (www.mingw.org) and
MSYS.

SystemC TLM2.0 models can be used on Windows with MSVC 8.0 and MinGW/MSys
(since SystemC release v2.3.0). It is assumed that users of this environment with be
familiar with C++, SystemC, TLM2.0 and will have obtained this software from
http://accellera.org/downloads/standards/systemc or similar.

© 2017 Imperas Software Limited www.OVPworld.org Page 6 of 24
.

http://www.ovpworld.org/
http://www.mingw.org/

Using OVP Models in SystemC TLM2.0 Platforms

2 How CpuManager works with SystemC TLM2.0

2.1 Platform construction
An OVP model is provided with a TLM2.0 interface in the form of a C++ header file.
This should be included in the TLM2.0 platform source. It defines a SystemC module
class specific to the processor type which can be instantiated in your platform. This class
is derived from a generic interface, tlmProcessor (itself derived from sc_module and the OP
C++ class processor). OVP peripherals are instantiated in the same way.

If you wish to set global simulator attributes, the tlmModule object should be instantiated
before any processor or peripheral models.

Before simulation starts, SystemC causes CpuManager to initialize all processor and
peripheral models.

2.1.1 Naming
The TLM2.0 interface uses the SystemC method sc_object::name() to create a dot-
separated hierarchical name, guaranteed to be unique, for the CpuManager instance.

2.2 Processor models
Each processor model is run in a SystemC thread. The thread executes a calculated
number of instructions on the processor without advancing SystemC time. Each
instruction may or may not cause TLM2.0 transactions to be propagated to other
components in the platform. When the allotted instructions have completed, the thread
calls SystemC wait() to advance time. The processor threads are executed in the order
determined by the SystemC scheduler.

2.2.1 Instructions/Sec and Quantum size
To use OVP models, SystemC must instantiate one tlmModule object. This object keeps
the quantum period which sets how long each processor model instance waits before
running again.

Each processor model instance keeps a figure which controls the effective number of
instructions per second (IPS) executed by the model. It uses this and the quantum period
to decide how many instructions to run in each quantum.

The default quantum period is 1mS. The default IPS is 100,000,000. Thus, by default, a
processor runs 100,000 instructions per quantum (this matches OVPsim’s internal
scheduler used in a non-SystemC environment).

To change the quantum period use the tlmModule.quantum() method in your platform
constructor. The effective frequency of a processor instance is set by the mips parameter
which is passed to the constructor of the tlmProcessor class.

© 2017 Imperas Software Limited www.OVPworld.org Page 7 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

2.2.2 Guidelines for setting quantum and MIPS
A processor’s MIPS should be set to give the correct clock frequency with respect to
other models in the simulation. Note that if no other models accurately represent time,
then setting the IPS will not affect the behavior of the simulation, merely the reported
statistics.

Setting the quantum period is a compromise; a smaller quantum yields a more accurate
representation of reality, a larger quantum achieves higher simulation speed.

2.2.2.1 Factors demanding a smaller quantum
To avoid gross functional errors, the quantum period for a processor must be shorter than
the shortest time delay modeled in any peripheral device with which the processor
interacts.
Similarly if two processors are communicating using shared memory, the number of
instructions per quantum should be less than the number of instructions taken to make
each communication.

2.2.2.2 Factors demanding a larger quantum
A short quantum results in poor simulation performance. However this is only of concern
if you intend to simulate many instructions. As a guideline, the SystemC scheduler takes
at best a few hundred instructions to start a processor’s quantum, so as the instructions
per quantum is reduced to this number, the performance will be dominated by the
scheduler and not the model.

Scenario Dominating factor Quantum
Booting Linux. Functional (not cycle
accurate) peripheral models.

Simulation speed of processor
model

>= 1mS

Programming a graphics controller.
Cycle-accurate GPU.

Simulation speed of GPU <1uS

Developing a UART driver. Uart has
1mS character rate.

Accuracy of interaction < 1mS

2.2.3 SystemC Stack Size
The tlmProcessor model requires an increased thread stack depth. The function
set_stack_size() is used to override the default SystemC thread stack size.

2.2.4 Direct Memory Interface Memory Access
TLM2.0 allows comprehensive modeling of bus transactions, but each transaction takes
significant simulation time. Direct Memory Interface (DMI) allows negotiation between
two TLM2.0 models so that an initiator can directly access target memory, bypassing the
TLM2.0 mechanism.

The TLM2.0 OVP interface uses DMI negotiation by default. In practice, a processor
with a fixed program memory will execute one code-fetch via TLM2.0. The DMI hint in

© 2017 Imperas Software Limited www.OVPworld.org Page 8 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

that transaction will allow CpuManager to map the program memory into the processor’s
address space so that subsequent code-fetches do not use TLM2.0 transactions. DMI can
be enabled or disabled by calling the dmi() method on a processor or memory instance.
See section 4.4.3.

Note that a simulator that uses code translation must necessarily cache translated code in
the simulator. If the original code memory is subsequently modified by a mechanism
outside the simulator, the simulator must be notified so that the code can be re-translated.
CpuManager supports the standard DMI invalidation mechanism.

When DMI is turned off on a processor, cached DMI regions are removed for its entire
code and data address spaces

When DMI is turned off on a memory, the cached DMI region is removed from
connected processors for the region that addresses the memory.

When DMI is turned on again, the models will re-negotiate DMI opportunity.

2.2.5 Simulation artifacts
CpuManager performs dynamic code translation for simulation efficiency. A processor
will therefore pre-fetch each code location (up to the next jump or branch) once before it
begins executing code. The pre-fetches use the TLM transport_dbg() method rather than
the regular transport() method, to distinguish artifact accesses from the real accesses.

For this reason, bus and memory models must support the transport_gdb() method.
The simplest way to do this is to give the transport() and transport_gdb() methods the
same behavior. However if a model counts or otherwise reports bus traffic, it should not
do so in the transport_dbg() method.

2.2.6 Delays in bus transactions
The LT (loosely timed) TLM model allows bus transactions to take time. It is legal for a
CpuManager processor model to be stalled by a bus transaction that takes time – some
part of a bus target calls SystemC wait, which stops the processor model in its bus access.
Other scheduled tasks, including other processor models can run while this is happening.
If a processor model is used in this way, it is not appropriate to use the supplied TLM
processor wrappers – the user will need to write a wrapper that schedules the processor
one instruction at a time.

2.3 Peripheral models
During simulation, peripheral models can be activated in three ways:

• TLM2.0 transaction. A TLM2.0 transaction by another model is propagated to
this model which results in a bus read or write.

• Elapsed time. Each time SystemC advances time, it notifies CpuManager, which
will activate any peripheral waiting for that time to occur.

• Net propagation. A write to a net (implemented using the SystemC analysis port)
will be propagated by SystemC to any peripheral models connected.

© 2017 Imperas Software Limited www.OVPworld.org Page 9 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

CpuManager also requests notification at the beginning and end of simulation to trigger
OVP peripheral model BHM simulation-start and simulation-end special events.

2.3.1 Delays in bus transactions
The LT (loosely timed) TLM model allows bus transactions to take time. It is NOT legal
for a CpuManager peripheral model to be stalled by a bus transaction that takes time –
CpuManager expects peripheral model code to run in “zero time” – scheduling another
model while a peripheral model is stalled will lead to unpredictable behaviour and
memory corruption.

2.4 Automatic generation of the TLM interface.
The Imperas Model Generator (igen) can be used to generate TLM interfaces for
platforms, processors, MMCs and most peripherals. Please refer to
Imperas_Model_Generator_Guide.doc.

© 2017 Imperas Software Limited www.OVPworld.org Page 10 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

3 OVP OP header and source files
The OP API, used by both CpuManager and OVPsim, is defined by several header files
within the Imperas tool release tree or download from www.ovpworld.org :

Common Definitions
Standard types ImpPublic/include/host/impTypes.h

OP API Definitions
C API functions ImpPublic/include/host/op/op.h
C++ API functions ImpPublic/include/host/op/op.hpp
 ImpPublic/source/host/op/op.cpp

OP API Link library

C API functions bin/<host architecture>/libRuntimeLoader.so
 bin/<host architecture>/libRuntimeLoader.dll

C++ API functions bin/<host architecture>/libRuntimeLoader++.so
 bin/<host architecture>/libRuntimeLoader++.dll

OP TLM Headers
Each model in the published component library is provided with a TLM interface.

The model interface class
 ImperasLib/source/<vendor>/<lib>/<name>/<vsn>/tlm/<modeltype>.igen.hpp

Required by a module: tlmModule class

ImperasLib/source/ovpworld.org/modelSupport/tlmModule/1.0/tlm/tlmModule.cpp
ImperasLib/source/ovpworld.org/modelSupport/tlmModule/1.0/tlm/tlmModule.hpp

Required by a processor interface: tlmProcessor class

ImperasLib/source/ovpworld.org/modelSupport/tlmProcessor/1.0/tlm/tlmProcessor.hpp

Required by a peripheral interface: tlmPeripheral class

ImperasLib/source/ovpworld.org/modelSupport/tlmPeripheral/1.0/tlm/tlmPeripheral.hpp

Required by TLM platforms written by igen:

Generic Memory Model

ImperasLib/source/ovpworld.org/memory/ram/1.0/tlm/tlmDenseMemory.cpp (dense)
ImperasLib/source/ovpworld.org/memory/ram/1.0/tlm/tlmMemory.hpp (sparse)

Generic Bus Decoder

ImperasLib/source/ovpworld.org/modelSupport/tlmDecoder/1.0/tlm/tlmDecoder.hpp

© 2017 Imperas Software Limited www.OVPworld.org Page 11 of 24
.

http://www.ovpworld.org/

Using OVP Models in SystemC TLM2.0 Platforms

Example processor
ImperasLib/source/ovpworld.org/processor/or1k/1.0/tlm/processor.igen.hpp

Example peripheral
ImperasLib/source/national.ovpworld.org/peripheral/16550/1.0/tlm/pse.igen.hpp

© 2017 Imperas Software Limited www.OVPworld.org Page 12 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

4 Example Platform
An example TLM2.0 platform is provided in
Examples/PlatformConstruction/SystemC_TLM

Figure 1: Example TLM2.0 Platform Block Diagram

The source files for this example are in
Examples/PlatformConstruction/SystemC_TLM/platform_cpp

The complete example platform has all memory mapped to TLM memory. At runtime
this will be accessed using DMI, if possible.

The platform-specific code is in the included file platform.sc_constructor.cpp:

The model header files are included in the platform header:

#include "ovpworld.org/modelSupport/tlmDecoder/1.0/tlm/tlmDecoder.hpp"
#include "ovpworld.org/memory/ram/1.0/tlm/tlmMemory.hpp"
#include "ovpworld.org/processor/or1k/1.0/tlm/processor.igen.hpp"
#include "national.ovpworld.org/peripheral/16550/1.0/tlm/pse.igen.hpp"

In the platform class, platform components are instantiated (template parameters are
supplied to template components).

class simple : public sc_core::sc_module {

 public:
 simple (sc_core::sc_module_name name);

 tlmModule Platform;
 tlmDecoder bus1;
 tlmRam ram1;
 tlmRam ram2;
 or1k cpu1;
 _16550 uart1;

© 2017 Imperas Software Limited www.OVPworld.org Page 13 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

 params paramsForuart1() {
 params p;
 p.set("outfile", "uart1.log");
 return p;
 }

 params paramsForcpu1() {
 params p;
 p.set("defaultsemihost", true);
 return p;
 }
}; /* simple */

The paramsForuart1() function specifies configuration parameters for the uart model, in
this case defining a file in which the uart’s output is to be written.

The paramsForcpu1() function specifies configuration parameters for the processor model,
in this case turning on the default semihost library to intercept system calls, sending text
output to the simulator’s output stream.

Calls to the sub-constructors are put before the body of the constructor.

simple::simple (sc_core::sc_module_name name)
 : sc_module (name, paramsForRoot())
 , Platform ("")
 , bus1(Platform, "bus1", 2, 3)
 , ram1 (Platform, "ram1", 0xfffff)
 , ram2 (Platform, "ram2", 0xffff)
 , cpu1 (Platform, "cpu1", paramsForcpu1())
 , uart1 (Platform, "uart1", paramsForuart1())
{

Connections (binding) between components occur in the body of the constructor.

 // bus1 masters
 bus1.connect(cpu1.INSTRUCTION);
 bus1.connect(cpu1.DATA);

 // bus1 slaves
 bus1.connect(uart1.bport1, 0x90000000, 0x90000007); // Peripheral (0)

 bus1.connect(ram1.sp1,0x0, 0xfffff); // Memory (1)

 bus1.connect(ram2.sp1,0xffff0000, 0xffffffff); // Memory (2)

 // Net connections
 uart1.intOut(cpu1.intr0);

The file platform.cpp defines sc_main which instances the simulator session, the standard
command line parser and the platform class simple:

...
int sc_main (int argc, char *argv[]) {
 session s;
 parser p(argc, (const char**) argv);

 simple simple("simple");

 sc_start();
 return 0;

© 2017 Imperas Software Limited www.OVPworld.org Page 14 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

}

The TLM interface tlmProcessor is derived from the OP C++ processor class so that all
methods of this class can be applied to the TLM processor instantiation. The
tlmPeripheral is derived from OP C++ peripheral so you can similarly use its methods.

The SystemC library provides main() that calls sc_main() after the constructors and starts
the SystemC scheduler.

4.1 Compilation
The above example was compiled under Windows using MinGW/MSys1 and on Linux
using GCC. It also includes information on building with MSVC2.

To build the example, follow these steps:

On Windows

• Obtain and install MinGW/MSys
On Windows and Linux

• Obtain and install SystemC v2.3 source or above that support MinGW build
• Obtain and install the OR1K tool-chain (this example uses an or1k processor

model)
• Obtain and install OVPsim or the Imperas professional tools and configure the

Imperas environment as described in the Installation guide

All compilation is performed in the Linux or MinGW/MSys command shell

> cd <temp directory>
> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/SystemC_TLM .
> cd SystemC_TLM/platform_cpp

Specify the locations of your SystemC and TLM2.0 releases. For Example

> export SYSTEMC_HOME=C:/SystemC/systemc-2.3.0

Compile the example platform and interfaces:

On Windows:
> mingw32-make -f $IMPERAS_HOME/ImperasLib/buildutils/Makefile.TLM.platform \
 OPTLM=1 \
 PLATFORM=platform

On Linux:
> make -f $IMPERAS_HOME/ImperasLib/buildutils/Makefile.TLM.platform \
 OPTLM=1 \

1 Since SystemC release v2.3.0 support to build with MinGW on Windows has been included. At this time
OVP moved all SystemC TLM2 examples and demos from building with MSVC to building with MinGW.
2 The example mentioned includes the batch file platform_cpp/compile.msvc.bat that uses nmake in an
MSVC command prompt to build the platform.

© 2017 Imperas Software Limited www.OVPworld.org Page 15 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

 PLATFORM=platform

4.2 Building an application
A toolchain to allow an application to be cross compiled for the OR1K processor can be
obtained from www.ovpworld.org.

The application code cross compilation is supported for a MINGW shell on Windows.
Refer to the document “OVPsim_Installation_and_Getting_Started” for installation and
use information.

To build the application in a Linux or MINGW shell, follow these steps:

• Go to a copy of the application directory in the example
• Execute the provided Makefile

On Windows:
> cd ../application
> mingw32-make

On Linux:
> cd ../application
> make
> cd ..

This will build the executable int.OR1K.elf

4.3 Running a platform

Run the platform, passing the application program:

platform_cpp/platform.$IMPERAS_ARCH.exe –program application/int.elf

The output from the run should be:

 SystemC 2.3.0-ASI --- Aug 1 2012 13:30:30
 Copyright (c) 1996-2012 by all Contributors,
 ALL RIGHTS RESERVED

TEST: main starts
TEST: Initialize:
TEST: Enable UART:
Interrupt Handler 0x02 (1)
Character sent
TEST: main send string
TEST: Send String: Hello World

Send char H (0x48)
Interrupt Handler 0x02 (2)
Character sent
Send char e (0x65)
Interrupt Handler 0x02 (3)
... etc ...
Character sent
Send char l (0x6c)
Interrupt Handler 0x02 (11)

© 2017 Imperas Software Limited www.OVPworld.org Page 16 of 24
.

http://www.ovpworld.org/

Using OVP Models in SystemC TLM2.0 Platforms

Character sent
Send char d (0x64)
Interrupt Handler 0x02 (12)
Character sent
Send char
 (0x0a)
Interrupt Handler 0x02 (13)
Character sent
TEST: main done

4.4 Platform Construction Options
OVP models can be instantiated in a TLM2.0 platform exactly like other models.
However, there are many features in CpuManager which are available through the
TLM2.0 interface. Some commonly used features are listed here. For details, refer to
OVPsim_and_CpuManager_User_Guide.doc. The code examples are given in the context
of the worked example platform.

4.4.1 Processor Options
4.4.1.1 Setting a variant
By default a processor model will execute as an Instruction Set Architecture (ISA) model
which represents the instructions but not necessarily the configuration of the processor.
The variant parameter is used to select a different configuration; refer to the processor
model specific documentation for the list of supported variants.

In the example, parameters can be set in the function paramsForcpu1 (note that the or1k
processor model does not have any variants):

 params paramsForcpu1() {
 params p;
 p.set("defaultsemihost", true);
 p.set("variant", “variant1”);
 return p;
 }

4.4.1.2 Instruction Tracing.
Instruction tracing can be enabled from the simulator command line:

> platform_cpp/platform.$IMPERAS_ARCH.exe \
 –program application/int.elf
 -trace

Tracing can also be enabled by setting a parameter on the model:

 params paramsForcpu1() {
 params p;
 p.set("defaultsemihost", true);
 p.set("trace", true);
 return p;
 }

© 2017 Imperas Software Limited www.OVPworld.org Page 17 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

4.4.1.3 Application debug

The or1k processor shipped with this OVPsim release is provided with a (rather old)
GNU gdb debugger. This can be started and connected to the or1k processor model from
the simulator command line:

> platform_cpp/platform.$IMPERAS_ARCH.exe \
 –program application/int.elf \
 -gdbconsole

This will pop up a console containing a gdb already connected to the simulator.

Like all command line flags, the same effect can be achieved by setting a parameter, this
time on the root module:

 params paramsForRoot() {
 params p;
 p.set("gdbconsole", true);
 return p;
 }

simple::simple (sc_core::sc_module_name name)
 : sc_module (name, paramsForRoot())
 , Platform ("")
 , bus1(Platform, "bus1", 2, 3)
 , ram1 (Platform, "ram1", 0xfffff)
 , ram2 (Platform, "ram2", 0xffff)
 , cpu1 (Platform, "cpu1", paramsForcpu1())
 , uart1 (Platform, "uart1", paramsForuart1())
{
 ...
}

4.4.1.4 Setting the simulation time slice (quantum)
The quantum is set for the whole platform. All processor models use this value. See
ImperasLib/source/ovpworld.org/modelSupport/tlmPlatform/1.0/tlm/tlmPlatform.hpp.

simple:: simple (sc_module_name name)
 : Platform(“simple”, …..)
{
 Platform.setSimulationTimeSlice(0.0001);
}

4.4.1.5 Simulated Exceptions
By default an OVP processor model will notify the simulator if an exception (e.g. divide
by zero or access alignment error) occurs. Set the simulateexceptions parameter to
make the processor jump to its exception vector instead. This option is typically used
when simulating an operating system. It is not used in a "bare metal" platform which has
no code to handle the exception. See op.h and search for OP_FP_.

 params paramsForcpu1() {
 params p;
 p.set("simulateexceptions", true);
 return p;
 }

© 2017 Imperas Software Limited www.OVPworld.org Page 18 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

simple::simple (sc_core::sc_module_name name)
 : sc_module (name, paramsForRoot())
 , Platform ("")
 , bus1(Platform, "bus1", 2, 3)
 , ram1 (Platform, "ram1", 0xfffff)
 , ram2 (Platform, "ram2", 0xffff)
 , cpu1 (Platform, "cpu1", paramsForcpu1())
 , uart1 (Platform, "uart1", paramsForuart1())
{
 ...
}

4.4.1.6 Loading intercept libraries
We have already seen that this example uses the default intercept library for the or1k
processor. Commented-out code can be included to load a library.

 (in the class definition)
 // extension ext1;

 (a private function in the platform class)
 const char *getExt1Path(void) {
 return opVLNVString(
 0,
 "ovpworld.org",
 "semihosting",
 "or1kNewlib",
 "1.0",
 OP_EXTENSION,
 true
);
 }

 (in the platform constructor)
 ,ext1 (cpu1, getExt1Path(), "ext1")

4.4.2 Peripheral Options

4.4.2.1 Peripheral diagnostics.
Most peripherals are capable of producing diagnostic output with different levels of
detail. Call the PSE method diagnosticLevelSet (). See bhm.h : bhmSetDiagnosticLevel().

 uart1. diagnosticLevelSet (3);

4.4.3 DMI
As mentioned previously, OVP processor and memory models have DMI enabled by
default. To turn DMI on or off use the dmi method on the memory or processor models,
as illustrated in commented code in the platform constructor:

simple::simple (sc_module_name name)
 : sc_module (name)
 , Platform ("", paramsForRoot())
 , bus1(Platform, "bus1", 2, 3)
 , ram1 (Platform, "ram1", 0xfffff)
 , ram2 (Platform, "ram2", 0xffff)
 , cpu1 (Platform, "cpu1", paramsForcpu1())

© 2017 Imperas Software Limited www.OVPworld.org Page 19 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

 , uart1 (Platform, "uart1", paramsForuart1())
{
 bus1.connect(cpu1.INSTRUCTION);
 bus1.connect(cpu1.DATA);
 bus1.connect(uart1.bport1, 0x90000000, 0x90000007); // Peripheral (0)
 bus1.connect(ram1.sp1,0x0, 0xfffff); // Memory (1)
 bus1.connect(ram2.sp1,0xffff0000, 0xffffffff); // Memory (2)
 uart1.intOut(cpu1.intr0);

 // By default DMI is turned on. Use these to turn it off
 //ram1.dmi(0);
 //ram2.dmi(0);
 //cpu1.dmi(0);
}

© 2017 Imperas Software Limited www.OVPworld.org Page 20 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

5 Deviations from TLM2.0 LRM

5.1 Data Endian in TLM transactions
The contents of the data field in a TLM transaction is target endian rather than host
endian as specified. This is due to an inconsistency in the TLM standard which makes
efficient DMI otherwise hard to achieve.

5.2 Modeling of Interrupts
To model interrupt signals, the OVP interface to TLM2.0 uses the TLM analysis port
rather than the SystemC net. The analysis port immediately propagates new values by
function call, whereas the SystemC net requires the SystemC scheduler to cause
propagation. As explained elsewhere in this document, for efficiency, the OVP processor
model typically simulates thousands of instructions in one ‘quantum’ without the
intervention of the SystemC scheduler. If these instructions change the value of an
interrupt net, the effect of the change (on an interrupt controller for example) will not be
seen until the end of the quantum when the SystemC scheduler is allowed to run. The
delayed change will be unrealistic. TLM analysis port dos not suffer this delay so is often
used for this reason.

© 2017 Imperas Software Limited www.OVPworld.org Page 21 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

6 Tracing TLM activity
The OVPsim TLM2.0 interface can generate messages, controlled globally by setting
environment variables, or locally by calling methods on the models. Set the environment
variables to a non-null value or refer to the model header files (described in this
document) for the method prototypes.

Model Environment variable Method Trace

traceQuanta start of each time slice
traceBuses each bus transaction
traceBusErrors each incomplete bus transaction

Processor IMPERAS_TLM_CPU_TRACE

traceSignals signal value changes
traceBuses each bus transaction
traceBusErrors each incomplete bus transaction

Peripheral IMPERAS_TLM_PSE_TRACE

traceSignals signal value changes
traceMasters each bus master transaction MMC IMPERAS_TLM_MMC_TRACE

 traceSlaves each bus slave transaction

Note that when DMI (Direct Memory Interface) is enabled (which is by default on all
OVP processors), there are no transactions to be traced.

Tracing of bus transactions is verbose and will reduce simulation performance.

© 2017 Imperas Software Limited www.OVPworld.org Page 22 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

7 What can go wrong
The following are a list of problems that can be encountered while building or running a
TLM platform:

7.1 Spaces in filenames
nmake and other MSVC tools will not accept spaces in file-names.
Either install OVPsim, SystemC and TLM in a path without spaces (ie not "Program
Files") or ensure that all paths are enclosed in double-quotes.

7.2 OVPsim version incompatibilities
Ensure that library, models and TLM2.0 interfaces are from the same version of OVPsim.

7.3 Environment problems
Check the values of environment variables:

o SYSTEMC
o TLM_HOME
o IMPERAS_VLNV,
o IMPERAS_HOME
o PATH

7.4 Compiling OSCI SystemC 2.2.0 with later versions
of gcc

The OSCI SystemC simulator is available as source from
http://accellera.org/downloads/standards/systemc and may be used with OVPsim, but
when compiling the version 2.2.0 source with the latest version of GCC the following
errors may be encountered:

../../../../src/sysc/utils/sc_utils_ids.cpp: In function \u2018int
sc_core::initialize()\u2019:
../../../../src/sysc/utils/sc_utils_ids.cpp:110: error:
\u2018getenv\u2019 is not a member of \u2018std\u2019
../../../../src/sysc/utils/sc_utils_ids.cpp:111: error:
\u2018strcmp\u2019 was not declared in this scope
../../../../src/sysc/utils/sc_utils_ids.cpp: At global scope:
../../../../src/sysc/utils/sc_utils_ids.cpp:119: warning:
\u2018sc_core::forty_two\u2019 defined but not used

The solution is to add the following includes to the file
systemc-2.2.0/src/sysc/utils/sc_utils_ids.cpp:

#include "string.h"
#include "cstdlib"

Additionally, when compiling the OVP tlm modules you may see the following errors:

© 2017 Imperas Software Limited www.OVPworld.org Page 23 of 24
.

Using OVP Models in SystemC TLM2.0 Platforms

In file included from
/systemc-2.2.0/include/sysc/datatypes/bit/sc_lv.h:49,
from /systemc-2.2.0/include/sysc/communication/sc_signal_rv.h:61,
from /systemc-2.2.0/include/systemc:74,
from /TLM-2008-06-09/include/tlm/tlm.h:21,
from
/Imperas/ImperasLib/source/ovpworld.org/modelSupport/tlmMMC/1.0/tlm2.0/t
lmMmc.hpp:25,
from
/Imperas/ImperasLib/source/ovpworld.org/modelSupport/tlmMMC/1.0/tlm2.0/t
lmMmc.cpp:21:
/systemc-2.2.0/include/sysc/datatypes/bit/sc_lv_base.h: In member
function \u2018sc_dt::sc_logic_value_t sc_dt::sc_lv_base::get_bit(int)
const\u2019:
/systemc-2.2.0/include/sysc/datatypes/bit/sc_lv_base.h:310: error:
suggest parentheses around arithmetic in operand of \u2018|\u2019
/systemc-2.2.0/include/sysc/packages/boost/bind/placeholders.hpp: At
global scope:
/systemc-2.2.0/include/sysc/packages/boost/bind/placeholders.hpp:54:
error: \u2018<unnamed>::_1\u2019 defined but not used
/systemc-2.2.0/include/sysc/packages/boost/bind/placeholders.hpp:55:
error: \u2018<unnamed>::_2\u2019 defined but not used
...

The 'defined but not used' errors are due to an old version of Boost used in the SystemC
source. To correct that problem the file
systemc-2.2.0/src/sysc/packages/boost/bind/placeholders.hpp may be edited
and line 28 changed from:

#if defined(__BORLANDC__)

to:

#if defined(__BORLANDC__) || defined(__GNUC__)

The warnings about parenthesis can be fixed by editing the make file to remove -Werror
so that the warnings do not stop the compilation or by editing the indicated file and
adding parenthesis where indicated.

© 2017 Imperas Software Limited www.OVPworld.org Page 24 of 24
.

	1 Introduction
	1.1 Why use CpuManager or OVPsim?
	1.2 Restrictions
	1.3 Compiling Examples Described in this Document

	2 How CpuManager works with SystemC TLM2.0
	2.1 Platform construction
	2.1.1 Naming

	2.2 Processor models
	2.2.1 Instructions/Sec and Quantum size
	2.2.2 Guidelines for setting quantum and MIPS
	2.2.2.1 Factors demanding a smaller quantum
	2.2.2.2 Factors demanding a larger quantum

	2.2.3 SystemC Stack Size
	2.2.4 Direct Memory Interface Memory Access
	2.2.5 Simulation artifacts
	2.2.6 Delays in bus transactions

	2.3 Peripheral models
	2.3.1 Delays in bus transactions

	2.4 Automatic generation of the TLM interface.

	3 OVP OP header and source files
	4 Example Platform
	4.1 Compilation
	4.2 Building an application
	4.3 Running a platform
	4.4 Platform Construction Options
	4.4.1 Processor Options
	4.4.1.1 Setting a variant
	4.4.1.2 Instruction Tracing.
	4.4.1.3 Application debug
	4.4.1.4 Setting the simulation time slice (quantum)
	4.4.1.5 Simulated Exceptions
	4.4.1.6 Loading intercept libraries

	4.4.2 Peripheral Options
	4.4.2.1 Peripheral diagnostics.

	5 Deviations from TLM2.0 LRM
	5.1 Data Endian in TLM transactions
	5.2 Modeling of Interrupts

	6 Tracing TLM activity
	7 What can go wrong
	7.1 Spaces in filenames
	7.2 OVPsim version incompatibilities
	7.3 Environment problems
	7.4 Compiling OSCI SystemC 2.2.0 with later versions of gcc

