Content for OVP Fast Processor Model Variant: SiFive / U54MC

(more docs)


OVP Fast Processor Model is written in C.
Provides a C API for use in C based platforms.
Provides a native C++ interface for use in SystemC TLM2 platforms.

The model is written using the OVP VMI API that provides a Virtual Machine Interface that defines the behavior of the processor.
The VMI API makes a clear line between model and simulator allowing very good optimization and world class high speed performance.

The model is provided as a binary shared object and is also available as source (different models have different licensing conditions).
This allows the download and use of the model binary or the use of the source to explore and modify the model.

The model has been run through an extensive QA and regression testing process.

Parallel Simulation using Imperas QuantumLeap

Traditionally, processor models and simulators make use of one thread on the host PC.
Imperas have developed a technology, called QuantumLeap, that makes use of the many host cores found in modern PC/workstations to achieve industry leading simulation performance.
To find out about the Imperas parallel simulation lookup Imperas QuantumLeap.
There are videos of QuantumLeap on ARM here,
and MIPS here.
For press information related to QuantumLeap for ARM click here
or for MIPS click here.
Many of the OVP Fast Processor Models have been qualified to work with QuantumLeap - this is indicated for this model below.

Embedded Software Development tools

This model executes instructions of the target architecture and provides an interface for debug access.
An interface to GDB is provided and this allows the connection of many industry standard debuggers that use the GDB/RSP interface.
For more information watch the OVP video here.

The model also works with the Imperas Multicore Debugger and advanced Verification, Analysis and Profiling tools.

Instruction Set Simulator (ISS) for SiFive U54MC

An ISS is a software development tool that takes in instructions for a target processor and executes them.
The heart of an ISS is the model of the processor.
Imperas has developed a range of ISS products for use in embedded software development that utilize this fast Fast Processor Model.
The Imperas SiFive U54MC ISS runs on Windows/Linux x86 systems and takes a cross compiled elf file of your program and allows very fast execution.
The SiFive U54MC ISS also provides access to standard GDB/RSP debuggers and connects to the Eclipse IDE and
Imperas debuggers.

Overview of SiFive U54MC Fast Processor Model

Model Variant name: U54MC
    RISC-V U54MC 64-bit processor model
    This Model is released under the Open Source Apache 2.0
    The model supports the following architectural features, defined in the misa CSR:
    extension A (atomic instructions)
    extension C (compressed instructions)
    extension D (double-precision floating point)
    extension F (single-precision floating point)
    RV32I/64I/128I base ISA
    extension M (integer multiply/divide instructions)
    extension S (Supervisor mode)
    extension U (User mode)
    64-bit XLEN
    If required, supported architectural features may be overridden using parameter "misa_Extensions". Parameter "misa_Extensions_mask" can be used to specify which features can be dynamically enabled or disabled by writes to the misa register.
    This is a multicore variant with 4 cores by default.The number of cores may be overridden with the"numHarts" parameter.
    On this variant, the Machine trap-vector base-address register (mtvec) is writable. It can instead be configured as read-only using parameter "mtvec_is_ro".
    Values written to "mtvec" are masked using the value 0x0. A different mask of writable bits may be specified using parameter "mtvec_mask" if required. In addition, when Vectored interrupt mode is enabled, parameter "tvec_align" may be used to specify additional hardware-enforced base address alignment. In this variant, "tvec_align" defaults to 64.
    The initial value of "mtvec" is 0x0. A different value may be specified using parameter "mtvec" if required.
    Values written to "stvec" are masked using the value 0x0. A different mask of writable bits may be specified using parameter "stvec_mask" if required. parameter "tvec_align" may be used to specify additional hardware-enforced base address alignment in the same manner as for the "mtvec" register, described above.
    On reset, the model will restart at address 0x0. A different reset address may be specified using parameter "reset_address" if required.
    On an NMI, the model will restart at address 0x0. A different NMI address may be specified using parameter "nmi_address" if required.
    WFI will halt the processor until an interrupt occurs. It can instead be configured as a NOP using parameter "wfi_is_nop". WFI timeout wait is implemented with a time limit of 0 (i.e. WFI causes an Illegal Instruction trap in Supervisor mode when mstatus.TW=1).
    The "cycle" CSR is implemented in this variant. Set parameter "cycle_undefined" to True to instead specify that "cycle" is unimplemented and reads of it should trap to Machine mode.
    The "time" CSR is not implemented in this variant and reads of it will require emulation in Machine mode. Set parameter "time_undefined" to False to instead specify that "time" is implemented.
    The "instret" CSR is implemented in this variant. Set parameter "instret_undefined" to True to instead specify that "instret" is unimplemented and reads of it should trap to Machine mode.
    A 0-bit ASID is implemented. Use parameter "ASID_bits" to specify a different implemented ASID size if required.
    This variant supports address translation modes 0 and 8. Use parameter "Sv_modes" to specify a bit mask of different modes if required.
    Unaligned memory accesses are not supported by this variant. Set parameter "unaligned" to "T" to enable such accesses.
    8 PMP entries are implemented by this variant. Use parameter "PMP_registers" to specify a different number of PMP entries; set the parameter to 0 to disable the PMP unit.
    LR/SC instructions are implemented with a 64-byte reservation granule. A different granule size may be specified using parameter "lr_sc_grain".
    By default, the processor starts with floating-point instructions disabled (mstatus.FS=0). Use parameter "mstatus_FS" to force mstatus.FS to a non-zero value for floating-point to be enabled from the start.
    The D extension is enabled in this variant only if the F extension is also enabled. Set parameter "d_requires_f"to "F" to allow D and F to be independently enabled.
    This variant implements a simplified floating point status view in which mstatus.FS holds values 0 (Off) and 3 (Dirty) only; any write of values 1 (Initial) or 2 (Clean) from privileged code behave as if value 3 was written. Set parameter "fs_always_dirty" to "F" to specify that mstatus.FS should instead behave according to the Privileged Architecture specification.
    The "reset" port is an active-high reset input. The processor is halted when "reset" goes high and resumes execution from the reset address specified using the "reset_address" parameter when the signal goes low. The "mcause" register is cleared to zero.
    The "nmi" port is an active-high NMI input. The processor is halted when "nmi" goes high and resumes execution from the address specified using the "nmi_address" parameter when the signal goes low. The "mcause" register is cleared to zero.
    All other interrupt ports are active high.
Debug Mask:
    It is possible to enable model debug messages in various categories. This can be done statically using the "override_debugMask" parameter, or dynamically using the "debugflags" command. Enabled messages are specified using a bitmask value, as follows:
    Value 0x002: enable debugging of PMP and virtual memory state;
    Value 0x004: enable debugging of interrupt state.
    All other bits in the debug bitmask are reserved and must not be set to non-zero values.
Integration Support:
    This model implements a number of non-architectural pseudo-registers and other features to facilitate integration.
CSR Register External Implementation:
    If parameter "enable_CSR_bus" is True, an artifact 16-bit bus "CSR" is enabled. Slave callbacks installed on this bus can be used to implement modified CSR behavior (use opBusSlaveNew or icmMapExternalMemory, depending on the client API). A CSR with index 0xABC is mapped on the bus at address 0xABC0; as a concrete example, implementing CSR "time" (number 0xC01) externally requires installation of callbacks at address 0xC010 on the CSR bus.
LR/SC Active Address:
    Artifact register "LRSCAddress" shows the active LR/SC lock address. The register holds all-ones if there is no LR/SC operation active.
    Instruction pipelines are not modeled in any way. All instructions are assumed to complete immediately. This means that instruction barrier instructions (e.g. fence.i) are treated as NOPs, with the exception of any Illegal Instruction behavior, which is modeled.
    Caches and write buffers are not modeled in any way. All loads, fetches and stores complete immediately and in order, and are fully synchronous. Data barrier instructions (e.g. fence) are treated as NOPs, with the exception of any Illegal Instruction behavior, which is modeled.
    Real-world timing effects are not modeled: all instructions are assumed to complete in a single cycle.
    The processor fully supports the architecturally-specified floating-point instructions with the exception of the round-to-nearest, ties-to-max-magnitude rounding mode (RMM) which is supported for fcvt instruction variants that convert to long, unsigned long, word, or unsigned word only. In other cases, this rounding mode is treated a round-to-nearest, ties-to-even (RNE). Use of RMM rounding mode in any situation other than rounding to an integral value is dubious because it leads to cumulative bias towards larger-magnitude values.
    Hardware Performance Monitor and Debug registers are not implemented and hardwired to zero.
    The TLB is architecturally-accurate but not device accurate. This means that all TLB maintenance and address translation operations are fully implemented but the cache is larger than in the real device.
    All instructions have been extensively tested by Imperas, using tests generated specifically for this model and also reference tests from
    The Model details are based upon the following specifications:
    ---- RISC-V Instruction Set Manual, Volume I: User-Level ISA (User Architecture Version 2.3-draft)
    ---- RISC-V Instruction Set Manual, Volume II: Privileged Architecture (Privileged Architecture Version 1.11-draft)
    ---- SiFive U54-MC Core Complex Manual v1p0

Model downloadable (needs registration and to be logged in) in package sifive_riscv.model for Windows32 and for Linux32
OVP simulator downloadable (needs registration and to be logged in) in package OVPsim for Windows32 and for Linux32
OVP Download page here.
OVP documentation that provides overview information on processor models is available OVP_Guide_To_Using_Processor_Models.pdf.

Full model specific documentation on the variant U54MC is available OVP_Model_Specific_Information_sifive_riscv_U54MC.pdf.


Location: The Fast Processor Model source and object file is found in the installation VLNV tree:
Processor Endian-ness: This model can be set to either endian-ness (normally by a pin, or the ELF code).
Processor ELF Code: The ELF code for this model is: 0xf3
QuantumLeap Support: The processor model is qualified to run in a QuantumLeap enabled simulator.

TLM Initiator Ports (Bus Ports)

Port Type Name Width (bits) Description
master DATA 32

SystemC Signal Ports (Net Ports)

Port Type Name Description
hart0_reset input
hart0_nmi input
hart0_SSWInterrupt input
hart0_MSWInterrupt input
hart0_STimerInterrupt input
hart0_MTimerInterrupt input
hart0_SExternalInterrupt input
hart0_MExternalInterrupt input
hart0_LocalInterrupt0 input
hart0_LocalInterrupt1 input
hart0_LocalInterrupt2 input
hart0_LocalInterrupt3 input
hart0_LocalInterrupt4 input
hart0_LocalInterrupt5 input
hart0_LocalInterrupt6 input
hart0_LocalInterrupt7 input
hart0_LocalInterrupt8 input
hart0_LocalInterrupt9 input
hart0_LocalInterrupt10 input
hart0_LocalInterrupt11 input
hart0_LocalInterrupt12 input
hart0_LocalInterrupt13 input
hart0_LocalInterrupt14 input
hart0_LocalInterrupt15 input
hart0_LocalInterrupt16 input
hart0_LocalInterrupt17 input
hart0_LocalInterrupt18 input
hart0_LocalInterrupt19 input
hart0_LocalInterrupt20 input
hart0_LocalInterrupt21 input
hart0_LocalInterrupt22 input
hart0_LocalInterrupt23 input
hart0_LocalInterrupt24 input
hart0_LocalInterrupt25 input
hart0_LocalInterrupt26 input
hart0_LocalInterrupt27 input
hart0_LocalInterrupt28 input
hart0_LocalInterrupt29 input
hart0_LocalInterrupt30 input
hart0_LocalInterrupt31 input
hart0_LocalInterrupt32 input
hart0_LocalInterrupt33 input
hart0_LocalInterrupt34 input
hart0_LocalInterrupt35 input
hart0_LocalInterrupt36 input
hart0_LocalInterrupt37 input
hart0_LocalInterrupt38 input
hart0_LocalInterrupt39 input
hart0_LocalInterrupt40 input
hart0_LocalInterrupt41 input
hart0_LocalInterrupt42 input
hart0_LocalInterrupt43 input
hart0_LocalInterrupt44 input
hart0_LocalInterrupt45 input
hart0_LocalInterrupt46 input
hart0_LocalInterrupt47 input
hart1_reset input
hart1_nmi input
hart1_SSWInterrupt input
hart1_MSWInterrupt input
hart1_STimerInterrupt input
hart1_MTimerInterrupt input
hart1_SExternalInterrupt input
hart1_MExternalInterrupt input
hart1_LocalInterrupt0 input
hart1_LocalInterrupt1 input
hart1_LocalInterrupt2 input
hart1_LocalInterrupt3 input
hart1_LocalInterrupt4 input
hart1_LocalInterrupt5 input
hart1_LocalInterrupt6 input
hart1_LocalInterrupt7 input
hart1_LocalInterrupt8 input
hart1_LocalInterrupt9 input
hart1_LocalInterrupt10 input
hart1_LocalInterrupt11 input
hart1_LocalInterrupt12 input
hart1_LocalInterrupt13 input
hart1_LocalInterrupt14 input
hart1_LocalInterrupt15 input
hart1_LocalInterrupt16 input
hart1_LocalInterrupt17 input
hart1_LocalInterrupt18 input
hart1_LocalInterrupt19 input
hart1_LocalInterrupt20 input
hart1_LocalInterrupt21 input
hart1_LocalInterrupt22 input
hart1_LocalInterrupt23 input
hart1_LocalInterrupt24 input
hart1_LocalInterrupt25 input
hart1_LocalInterrupt26 input
hart1_LocalInterrupt27 input
hart1_LocalInterrupt28 input
hart1_LocalInterrupt29 input
hart1_LocalInterrupt30 input
hart1_LocalInterrupt31 input
hart1_LocalInterrupt32 input
hart1_LocalInterrupt33 input
hart1_LocalInterrupt34 input
hart1_LocalInterrupt35 input
hart1_LocalInterrupt36 input
hart1_LocalInterrupt37 input
hart1_LocalInterrupt38 input
hart1_LocalInterrupt39 input
hart1_LocalInterrupt40 input
hart1_LocalInterrupt41 input
hart1_LocalInterrupt42 input
hart1_LocalInterrupt43 input
hart1_LocalInterrupt44 input
hart1_LocalInterrupt45 input
hart1_LocalInterrupt46 input
hart1_LocalInterrupt47 input
hart2_reset input
hart2_nmi input
hart2_SSWInterrupt input
hart2_MSWInterrupt input
hart2_STimerInterrupt input
hart2_MTimerInterrupt input
hart2_SExternalInterrupt input
hart2_MExternalInterrupt input
hart2_LocalInterrupt0 input
hart2_LocalInterrupt1 input
hart2_LocalInterrupt2 input
hart2_LocalInterrupt3 input
hart2_LocalInterrupt4 input
hart2_LocalInterrupt5 input
hart2_LocalInterrupt6 input
hart2_LocalInterrupt7 input
hart2_LocalInterrupt8 input
hart2_LocalInterrupt9 input
hart2_LocalInterrupt10 input
hart2_LocalInterrupt11 input
hart2_LocalInterrupt12 input
hart2_LocalInterrupt13 input
hart2_LocalInterrupt14 input
hart2_LocalInterrupt15 input
hart2_LocalInterrupt16 input
hart2_LocalInterrupt17 input
hart2_LocalInterrupt18 input
hart2_LocalInterrupt19 input
hart2_LocalInterrupt20 input
hart2_LocalInterrupt21 input
hart2_LocalInterrupt22 input
hart2_LocalInterrupt23 input
hart2_LocalInterrupt24 input
hart2_LocalInterrupt25 input
hart2_LocalInterrupt26 input
hart2_LocalInterrupt27 input
hart2_LocalInterrupt28 input
hart2_LocalInterrupt29 input
hart2_LocalInterrupt30 input
hart2_LocalInterrupt31 input
hart2_LocalInterrupt32 input
hart2_LocalInterrupt33 input
hart2_LocalInterrupt34 input
hart2_LocalInterrupt35 input
hart2_LocalInterrupt36 input
hart2_LocalInterrupt37 input
hart2_LocalInterrupt38 input
hart2_LocalInterrupt39 input
hart2_LocalInterrupt40 input
hart2_LocalInterrupt41 input
hart2_LocalInterrupt42 input
hart2_LocalInterrupt43 input
hart2_LocalInterrupt44 input
hart2_LocalInterrupt45 input
hart2_LocalInterrupt46 input
hart2_LocalInterrupt47 input
hart3_reset input
hart3_nmi input
hart3_SSWInterrupt input
hart3_MSWInterrupt input
hart3_STimerInterrupt input
hart3_MTimerInterrupt input
hart3_SExternalInterrupt input
hart3_MExternalInterrupt input
hart3_LocalInterrupt0 input
hart3_LocalInterrupt1 input
hart3_LocalInterrupt2 input
hart3_LocalInterrupt3 input
hart3_LocalInterrupt4 input
hart3_LocalInterrupt5 input
hart3_LocalInterrupt6 input
hart3_LocalInterrupt7 input
hart3_LocalInterrupt8 input
hart3_LocalInterrupt9 input
hart3_LocalInterrupt10 input
hart3_LocalInterrupt11 input
hart3_LocalInterrupt12 input
hart3_LocalInterrupt13 input
hart3_LocalInterrupt14 input
hart3_LocalInterrupt15 input
hart3_LocalInterrupt16 input
hart3_LocalInterrupt17 input
hart3_LocalInterrupt18 input
hart3_LocalInterrupt19 input
hart3_LocalInterrupt20 input
hart3_LocalInterrupt21 input
hart3_LocalInterrupt22 input
hart3_LocalInterrupt23 input
hart3_LocalInterrupt24 input
hart3_LocalInterrupt25 input
hart3_LocalInterrupt26 input
hart3_LocalInterrupt27 input
hart3_LocalInterrupt28 input
hart3_LocalInterrupt29 input
hart3_LocalInterrupt30 input
hart3_LocalInterrupt31 input
hart3_LocalInterrupt32 input
hart3_LocalInterrupt33 input
hart3_LocalInterrupt34 input
hart3_LocalInterrupt35 input
hart3_LocalInterrupt36 input
hart3_LocalInterrupt37 input
hart3_LocalInterrupt38 input
hart3_LocalInterrupt39 input
hart3_LocalInterrupt40 input
hart3_LocalInterrupt41 input
hart3_LocalInterrupt42 input
hart3_LocalInterrupt43 input
hart3_LocalInterrupt44 input
hart3_LocalInterrupt45 input
hart3_LocalInterrupt46 input
hart3_LocalInterrupt47 input

No FIFO Ports in U54MC.


Name Code Description
InstructionAddressMisaligned 0
InstructionAccessFault 1
IllegalInstruction 2
Breakpoint 3
LoadAddressMisaligned 4
LoadAccessFault 5
StoreAMOAddressMisaligned 6
StoreAMOAccessFault 7
EnvironmentCallFromUMode 8
EnvironmentCallFromSMode 9
EnvironmentCallFromMMode 11
InstructionPageFault 12
LoadPageFault 13
StoreAMOPageFault 15
SSWInterrupt 65
MSWInterrupt 67
STimerInterrupt 69
MTimerInterrupt 71
SExternalInterrupt 73
MExternalInterrupt 75
LocalInterrupt0 80
LocalInterrupt1 81
LocalInterrupt2 82
LocalInterrupt3 83
LocalInterrupt4 84
LocalInterrupt5 85
LocalInterrupt6 86
LocalInterrupt7 87
LocalInterrupt8 88
LocalInterrupt9 89
LocalInterrupt10 90
LocalInterrupt11 91
LocalInterrupt12 92
LocalInterrupt13 93
LocalInterrupt14 94
LocalInterrupt15 95
LocalInterrupt16 96
LocalInterrupt17 97
LocalInterrupt18 98
LocalInterrupt19 99
LocalInterrupt20 100
LocalInterrupt21 101
LocalInterrupt22 102
LocalInterrupt23 103
LocalInterrupt24 104
LocalInterrupt25 105
LocalInterrupt26 106
LocalInterrupt27 107
LocalInterrupt28 108
LocalInterrupt29 109
LocalInterrupt30 110
LocalInterrupt31 111
LocalInterrupt32 112
LocalInterrupt33 113
LocalInterrupt34 114
LocalInterrupt35 115
LocalInterrupt36 116
LocalInterrupt37 117
LocalInterrupt38 118
LocalInterrupt39 119
LocalInterrupt40 120
LocalInterrupt41 121
LocalInterrupt42 122
LocalInterrupt43 123
LocalInterrupt44 124
LocalInterrupt45 125
LocalInterrupt46 126
LocalInterrupt47 127

Execution Modes

Mode Code Description
User 0
Supervisor 1
Machine 3

More Detailed Information

The U54MC OVP Fast Processor Model also has parameters, model commands, and many registers.
The model may also have hierarchy or be multicore and have other attributes and capabilities.
To see this information, please have a look at the model variant specific documents.
Click here to see the detailed document OVP_Model_Specific_Information_sifive_riscv_U54MC.pdf.

Other Sites/Pages with similar information

Information on the U54MC OVP Fast Processor Model can also be found on other web sites:: has more information on the model library.