Agenda

• Introduction
• ZeBu Emulators
• Virtual Platform with Transaction-based Emulation
• Easy Transactor Integration
• ESL Partnerships
• Summary
Introduction
Typical TLM Virtual Platforms

• Transaction-Level Modeling (TLM) used for the entire System
 – OSCI SystemC-based standard
• TLM systems provide very high performance simulation
 – Great for early software development & architectural exploration
 – Various levels of timing accuracy:
 – Programmer’s View
 – Timed or UnTimed
 – But no Cycle Accurate models
Introduction
TLM Virtual Platforms with an RTL Sub-System

- Hardware Sub-System is integrated with Virtual Platform
 - Model available as RTL (SV/Verilog/VHDL)
 - Traditionally co-simulated with HDL simulation
- Register-Transfer Level (RTL) code provides Cycle/Bit accurate model
 - Requires adaption between TLM and Cycle accurate models: BFM
Introduction
Virtual Platform with an RTL Sub-System – Why?

- **Legacy RTL Sub-System: Early Architectural Exploration & SW Development**
 - Use RTL to provide accurate timing for architectural exploration and low level firmware development
 - Develop Application Software in a new VP without creating a TLM model for the Legacy RTL Sub-System

- **New RTL Sub-System: Early HW/SW Co-Verification**
 - Replace existing TLM blocks with new RTL, use the VP as the system integration platform, verifying both HW and SW
 - Using TLM as the golden reference, this provides more exhaustive testing of the RTL Sub-System
 - Turns some of the Post-Silicon debug into Pre-Silicon debug

- **Reduces overall product development time, and greatly improves pre-tapeout confidence**
RTL Sub-Systems – Traditional Integration Techniques

• RTL Sub-Systems are traditionally co-simulated with VP using an HDL Simulator (e.g. VCS, ModelSim, NC-Sim)
 – Connectivity is usually cycle based (Verilog/VHDL), but may be transaction based as well (SystemVerilog/SystemC)

• Largest drawback is performance
 – HDL Simulators run orders of magnitude slower than a Transaction-Level Virtual Platform
 • Limits integration to only very small RTL Sub-Systems
 • Not practical for SW development

• Adaptation between the Transaction-level and the Cycle/Bit-level RTL abstraction levels is manual
 – Need a Cycle Accurate Model of the Bus, written by the user in SystemC/SystemVerilog/Verilog/VHDL
EVE ZeBu Emulators
A Family of Products Ideal for ESL integration

• **RTL Emulators** execute a cycle-accurate model of the design in specialized hardware, while also providing debug capabilities similar to simulation, e.g. clock control, waveform dumping
 – EVE’s ZeBu emulators use Xilinx FPGAs and external memories to model RTL

• **FPGA-based ZeBu emulation** can run at Multi-MHz speeds, and Millions of transactions/second
 – Largest portfolio of high performance Transactors
 – Typically between 1-10% of the real SoC speed
 – Fast enough to: Boot Linux, Develop Device Drivers, Run Application Software

• **Two Product Lines:** Desktop Based for Sub-Systems, and Stand-alone for Full-Chip Designs
TLM Virtual Platforms with Transaction-based Emulation

- Principles are the same as for RTL simulation, but with the Emulator executing the Sub-System
 - Transaction to Cycle/Bit Level adapter is called a Transactor
 - All cycle/signal level conversion is performed in the Emulator BFM, preserving performance
 - Transactor API provides transaction handling methods
Virtual Platforms with Transaction-based Emulation
Anatomy of a Transactor

- Contains both a software (SystemC/C/C++ API) and synthesizable (SV/Verilog) Bus Functional Model (BFM) portion
- Communication between the two sides is implemented via EVE’s high speed proprietary messaging system
Virtual Platforms with Transaction-based Emulation Extensions – External Interfaces to RTL Sub-Systems

- Transactors can also be used to connect external interfaces to the RTL Subsystems
- High level of accuracy: Pin accurate, protocol compliant
- High performance
Virtual Platforms with Transaction-based Emulation Extensions – Non-TLM Integration

• Some Virtual Platforms and Transactors might not be TLM
 – e.g. SystemC but not TLM, or a completely Virtualized x86 machine

• ZeBu emulator/transactors can still be integrated
 – ESL environment can call transactor API functions

• No change in performance
 – All cycle-level activity still occurs inside the emulator
Virtual Platforms with Transaction-based Emulation

Advantages

• High Performance, even on large RTL blocks
 – Typically 1-10% of real SoC speed, with 100% accuracy
 – Comparable performance to traditional Virtual Platforms

• Easy Bring-Up
 – Emulators feature “push-button” compilation, and do not require advanced synthesis or hardware experience
 – ZeBu supports communication at the transaction-level, which matches the level of abstraction used in the Virtual Platform
 • Integration can be TLM or non-TLM based
 – Test environment is easily scalable, including multiple peripherals implemented as RTL

• Debug
 – Emulators provide similar debug features to HDL simulation, e.g. waveform dumping, clock control
 – Emulators provide similar debug access as for the VP: Memory load/dump, Register read/write
• EVE’s Vertical Solutions provides an extensive library of off-the-shelf transactors, modeling some of the most common standards
 – PCI-Express, AXI, AHB/APB, USB, Ethernet, UART, JTAG, Digital Video, HDMI, MMC, etc…
 – Transactors available as Master/Slave, Host/Device, Endpoint/Root Complex

• EVE Transactors are packaged with both the Synthesizable portion, as well as the API
 – API functions are at the transaction level, maintaining high performance
 – Transactor API functions are directly callable from ESL environments
 • Supports both UnTimed and Timed execution
Easy Transactor Integration
Custom Transactors with ZEMI-3

• For proprietary internal bus modeling or checkers, custom transactors may be required

• ZEMI-3 is a transactor compiler that:
 – Generates RTL BFM from simple behavioral code
 • Behavioral SystemVerilog code requires no HW or synthesis expertise
 • Easy to validate transactors using a SystemVerilog simulator
 – Automatically handles the low-level communication layer between HW (SystemVerilog) and SW (C/C++)
 • ZEMI-3 transactor functions are easily integrated into ESL SystemC environments
 – Automatically detects streaming applications that can be optimized for performance
To further ease the integration of Transaction-Based Emulation and Virtual Platforms, EVE has collaborated with a number of ESL providers, including:

- CoWare
- ARM
- Synopsys
- Virtutech
- Imperas (OVP)

With the flexible TLM and API based interfaces, integration with OpenSource ESL environment (e.g. OSCI, QEMU) are easy to implement as well.
ESL Partnerships
CoWare and EVE

From CoWare:
• New Zebu-PV initiator and target adapters
• Platform Architect and Virtual Platform environment

From EVE:
• New AXI master and slave synthesizable transactors
• ZeBu emulation environment

Benchmark results for a Digital Still Camera Design with Emulated DSP Sub-system
• 3X faster than SystemC CA model; 300X faster than Co-simulation
• 1 picture per second
ESL Partnerships
ARM and EVE

From ARM:
- Use PV modeling in the Virtual Platform
- FastModels and RealView environment

From EVE:
- New AXI master and slave synthesizable transactors
- ZeBu emulation environment

Run ARM SystemGenerator reference platforms with ZeBu emulated design:
- Based on the same PV.Adapter EVE technology using TLM 2.0
- Dhrystone and DMA examples
- Large set of ARM FastModels IPs for new CPUs
• Synopsys’ Innovator provides an integrated SystemC development environment for assembling Virtual Platforms

• SystemC Platform can call EVE transactor API functions
 - External interface can be modeled with Innovator (e.g. xterm interface), connected to an EVE UART transactor
 - UART transactor transmits/receives characters to/from the emulated design
EVE Partnerships
Virtutech and EVE

• **Virtutech® Simics®** provides a virtual version of target hardware
 - Includes x86 processors and peripherals
 - Virtual Platform behaves exactly the same as the physical target hardware, and runs the exact same binaries

• Simics’ Plug-in API can be used to call EVE transactor functions
 - e.g. Simics can boot Windows XP, connect and enumerate an emulated PCI-Express device through EVE’s PCI-Express transactor
Summary

• RTL Sub-Systems can be integrated into a Virtual Platform to reduce the overall product cycle
 – Enables Early Architectural Exploration, SW Validation, HW/SW Co-verification with accurate timing

• HDL Simulation is the traditional integration method, but is limited
 – Huge performance degradation, manual creation of adapters

• Transaction-based emulation with ZeBu provides cycle-accuracy, while executing fast enough for software development
 – Multi-MHz performance on RTL, 1M+ transactions per second

• EVE’s Transactor IP and ZEMI-3Transactor compiler make it easy to plug-and-play or create adapters
 – Keeps cycle-level activity in the emulator for performance
 – Supports TLM and API based integration

• Collaboration with ESL tool providers ensures easy bring-up of the integrated environment
More Information

- Visit our DAC booth: #908
- Web: http://www.eve-team.com
- E-mail: ronchoi@eve-team.com