tttttt

ad Timing

Brian Bailey Consult
?mall brlan i @acrh.org

[503 753 6040
Web: brianbailey.us

e Time comes from
architectural elements

e Time Is the most
complex aspect of a
simulation environment

e Time slows everything
down

e Use time wisely
— A tradeoff between performance and accuracy

— Performance enables
e Real life scenarios
e Statistical analysis

August 09 Copyright © 2009 Brian Bailey Consulting

e Virtual platforms should have been the killer
app of ESL
— But they were proprietary
— There was a lack of models
— No interoperability

e Along came SystemC and TLM 2.0
— Far from perfect
— Enough to solve interoperability
— Enough to bring about convergence
— Attempts to relieve performance bottlenecks

August 09 Copyright © 2009 Brian Bailey Consulting

Use Cases, Coding Styles and Mechanisms

Use cases
Software Software Architectural Hardware
development performance analysis verification

TLM-2 Coding styles

Loosely-timed

Approximately-timed
Blocklng DMI Quantum Sockets Generic Phases No_n-blockmg
interface payload interface

mc*

Mechanisms

TLM-2.0 Copyright © 2007-2008 by Open SystemC Initiative. All rights reserved.

Loosely-timed

Quantum Quantum Quantum Quantum

Process 1 I _ * _
Process 2 I * _ _
Process 3] _] _

Each process runs ahead up to quantum boundary
sc_time_stamp() advances in multiples of the quantum
Deterministic communication requires explicit synchronization

@- c

TLM-2.0 Copyright © 2007-2008 by Open SystemC Initiative. All rights reserved.

Approximately-timed

0 10 20 30 40 50
[] [] []
Process 1 T\ Annotated delays)_ .
\ -
Process 2 !\
Process 3 a a

Each process is synchronized with SystemC scheduler
Delays can be accurate or approximate

@- c

TLM-2.0 Copyright © 2007-2008 by Open SystemC Initiative. All rights reserved.

Interoperability Layer

1. Core interfaces
and sockets

2. Generic payload 3. Base protocol
Command BEGIN_REQ
Address
Data DN —
END_RE
Byte enables -REQ
—
Response status BEGIN RESP
END_RESP

Maximal interoperability for memory-mapped bus models

@c*

TLM-2.0 Copyright © 2007-2008 by Open SystemC Initiative. All rights reserved.

Communication

4

oy cle-
tirmed ’ """""" '@

Approximate- _.
timed AP ST

i -®
timed T 5 :
: Computation
I+ Approximate- oyl e-
tirmed tirred timed

Gajski System Modeling Graph

August 09 Copyright © 2009 Brian Bailey Consulting

TL2/PY PV target
transactor

timing

TLU/TLZ
transactor

timing
L

208

clock

August 09 Copyright © 2009 Brian Bailey Consulting

Initiator

Simulation time = 100ns

Target

August 09

Begin
b transbortit,
Reguest }- Ons)
= —»
b_transport(t, Ons) Begin
Responsd
Begin
Eequesf W&Eﬂlﬂs ﬂ'ﬂS]
>
Simulation time = 150ns
b.transpert(t, Ons) Begin
Hesponse

Copyright © 2009 Brian Bailey Consulting

wait(50ns)

August 09

Initiator

Simulation time = 100ns

Target

Begi
Rgg?est nb_transport(t, BEGIN_REQ,0ns)
b ™
retum_status =TLM _ACCEPTED
Simulation time = 110ns
End
nb_transport(t, END_REQ, Ons) popyest
. P
retum_status = TLM_ACCEPTED
Simulation time = 120ns _
Begin
nb_transportit. BEGIN. RESE, Ons) poopnionse
4 >
retum_status = TLM_ACCEPTED
Simulation time = 130ns
End nb,_transportit, END_RESP, Ons
Response — N
-+

retum,_ status = TLM_COMPLETED

Copyright © 2009 Brian Bailey Consulting

Initiator

Simulation time = 100ns

Local time offset

+5ns

+20ns

+25ns

+30ns

Simulation time = 140ns

+5ns

call b_transport(t, Ons)

b_transport(t, 5ns) Return
Call b_transport(t, 20ns)

b_transport(t, 25ns) Return
Call b_transport(t, 30ns)

I b_transport(t, 5ns) Return |

wait(40ns)

August 09

Copyright © 2009 Brian Bailey Consulting

Untimed TLM

Architectural States

Timing

)

Threads

Control Unit

~

Micro-architectural States
And Timing Constraints

Standalone Timed Model

Threads

i

Data

Port

Bus

ﬁ Ports

Initiator Port Z Target Port

Frank Ghenassia (Ed.) Transaction-Level Modeling with SystemC. Springer 2005

August 09

Copyright © 2009 Brian Bailey Consulting

PV Model
] . PVT Wrapper

v 1

—1 T Model < T
Model Model
Intuitive structure —— > PV A better structure

August 09 Copyright © 2009 Brian Bailey Consulting

e There appears to be universal agreement
that getting timing right is:
— Time consuming
— Difficult
— Non-intuitive
e Most approaches have difficulty with
— Modeling pipelining
— Quickly changing micro-architecture

August 09 Copyright © 2009 Brian Bailey Consulting

Being used by Mentor’s Vista product

data delay policy ON slave WAIT STATES 2

// The latency of read and write transactions on port slave is 2 clocks

split_policy ON master BURST SIZE bufferSize BUS ahb LATENCY 3

/] The traffic on the master bus (read and write) is done through AHB bus policy

// with maximal bursts of size bufferSize (a parameter of the model)

// and 3 clocks delay between bursts

sequential policy CAUSE slave.write EFFECT master.read DELAY 20

// The master read starts after the end of a register write in 20 clocks

sequential _policy CAUSE slave.write EFFECT end_write int.write
LATENCY O

// The end-write interrupt occurs after a register write

pipeline_policy CAUSE master.read EFFECT master.write DATA DELAY
pipelineSize LATENCY O

// The master writes are pipelined to the master reads after a pipelineSize data

/1 delay and zero clocks delay (pipelineSize is a parameter of the model)

August 09 Copyright © 2009 Brian Bailey Consulting

e Functional description takes less than a page

e Timing declared declaratively — just a few
lines

e Generated TLM 2.0 code
— 1000 lines of header

— 2500 lines of code

— Does not take into account the routines inserted
to handle bus protocols

August 09 Copyright © 2009 Brian Bailey Consulting

e TiIming Is tough
— Need accuracy

e But not with large simulation overhead
e Needs to be intuitive

— Need timing to be modeled separately
e Should not have to replicate micro-architecture
e Allow exploration
e Facilitate Re-use

e TLM 2.0 Is a “computer” language
— Not very good as a modeling language
— Need solutions layered on top of it

August 09 Copyright © 2009 Brian Bailey Consulting

	Time is an illusion
	Platform Convergence
	Use Cases, Coding Styles and Mechanisms
	Loosely-timed
	Approximately-timed
	Interoperability Layer
	Platform refinement
	OCP-IP
	Timing annotation in TLM - LT
	Timing Annotation in TLM - AT
	Timing Annotation in TLM
	Model Separation
	A different approach
	Getting it right
	Declarative Timing
	Fir Filter example
	Conclusions
	Thank You

