
Brian Bailey ConsultingBrian Bailey Consulting
Email: brian_bailey@acm.org
Tel: 503 632 7448
Cell: 503 753 6040
Web: brianbailey.us

Virtual Platforms and Timing

August 09 Copyright © 2009 Brian Bailey Consulting 2

Time is an illusion
• Time comes from

architectural elements
• Time is the most

complex aspect of a
simulation environment

• Time slows everything
down

• Use time wisely
– A tradeoff between performance and accuracy
– Performance enables

• Real life scenarios
• Statistical analysis

August 09 Copyright © 2009 Brian Bailey Consulting 3

Platform Convergence
• Virtual platforms should have been the killer

app of ESL
– But they were proprietary
– There was a lack of models
– No interoperability

• Along came SystemC and TLM 2.0
– Far from perfect
– Enough to solve interoperability
– Enough to bring about convergence
– Attempts to relieve performance bottlenecks

4 TLM-2.0 Copyright © 2007-2008 by Open SystemC Initiative. All rights reserved.4

Use Cases, Coding Styles and Mechanisms

Blocking
interface

Blocking
interface

Non-blocking
interface

Non-blocking
interfaceDMIDMI SocketsSocketsQuantum Quantum Generic

payload
Generic
payload

Mechanisms

Use cases

Software
development

Software
development

Architectural
analysis

Architectural
analysis

Hardware
verification
Hardware

verification
Software

performance
Software

performance

Loosely-timedLoosely-timed

Approximately-timedApproximately-timed

TLM-2 Coding styles

PhasesPhases

5 TLM-2.0 Copyright © 2007-2008 by Open SystemC Initiative. All rights reserved.

Loosely-timed

5

Process 1

Process 2

Process 3

Quantum Quantum Quantum Quantum

sc_time_stamp() advances in multiples of the quantum
Each process runs ahead up to quantum boundary

Deterministic communication requires explicit synchronization

6 TLM-2.0 Copyright © 2007-2008 by Open SystemC Initiative. All rights reserved.

Approximately-timed

6

Process 1

Process 2

Process 3

0 10 20 30 40 50

Annotated delays

Each process is synchronized with SystemC scheduler
Delays can be accurate or approximate

7 TLM-2.0 Copyright © 2007-2008 by Open SystemC Initiative. All rights reserved.

Interoperability Layer

7

TargetTargetInitiatorInitiator

1. Core interfaces
and sockets

2. Generic payload

Command
Address

Data
Byte enables

Response status

Extensions

3. Base protocol

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

Maximal interoperability for memory-mapped bus models

August 09 Copyright © 2009 Brian Bailey Consulting 8

Platform refinement

Gajski System Modeling Graph

August 09 Copyright © 2009 Brian Bailey Consulting 9

OCP-IP

August 09 Copyright © 2009 Brian Bailey Consulting 10

Timing annotation in TLM - LT

August 09 Copyright © 2009 Brian Bailey Consulting 11

Timing Annotation in TLM - AT

August 09 Copyright © 2009 Brian Bailey Consulting 12

Timing Annotation in TLM
Initiator Target

b_transport(t, 0ns)Call

Simulation time = 100ns

Simulation time = 140ns wait(40ns)

Local time offset

Returnb_transport(t, 5ns)
+5ns

b_transport(t, 20ns)Call+20ns

Returnb_transport(t, 25ns)
+25ns

b_transport(t, 30ns)Call+30ns

Returnb_transport(t, 5ns)
+5ns

August 09 Copyright © 2009 Brian Bailey Consulting 13

Model Separation

Timing
Control Unit

Untimed TLM

Architectural States

Data

Threads

Threads Micro-architectural States
And Timing Constraints

Standalone Timed Model
Bus

Ports

Data
Port

Initiator Port Target Port

Frank Ghenassia (Ed.) Transaction-Level Modeling with SystemC. Springer 2005

August 09 Copyright © 2009 Brian Bailey Consulting 14

A different approach

PV Model

T Model PV
Model

T
Model

PV
T

Intuitive structure A better structure

PVT Wrapper

August 09 Copyright © 2009 Brian Bailey Consulting 15

Getting it right
• There appears to be universal agreement

that getting timing right is:
– Time consuming
– Difficult
– Non-intuitive

• Most approaches have difficulty with
– Modeling pipelining
– Quickly changing micro-architecture

August 09 Copyright © 2009 Brian Bailey Consulting 16

Declarative Timing
• Being used by Mentor’s Vista product

data_delay_policy ON slave WAIT STATES 2
// The latency of read and write transactions on port slave is 2 clocks

split_policy ON master BURST SIZE bufferSize BUS ahb LATENCY 3
// The traffic on the master bus (read and write) is done through AHB bus policy
// with maximal bursts of size bufferSize (a parameter of the model)
// and 3 clocks delay between bursts

sequential_policy CAUSE slave.write EFFECT master.read DELAY 20
// The master read starts after the end of a register write in 20 clocks

sequential_policy CAUSE slave.write EFFECT end_write_int.write
LATENCY 0

// The end-write interrupt occurs after a register write

pipeline_policy CAUSE master.read EFFECT master.write DATA DELAY
pipelineSize LATENCY 0

// The master writes are pipelined to the master reads after a pipelineSize data
// delay and zero clocks delay (pipelineSize is a parameter of the model)

August 09 Copyright © 2009 Brian Bailey Consulting 17

Fir Filter example
• Functional description takes less than a page
• Timing declared declaratively – just a few

lines
• Generated TLM 2.0 code

– 1000 lines of header
– 2500 lines of code
– Does not take into account the routines inserted

to handle bus protocols

August 09 Copyright © 2009 Brian Bailey Consulting 18

Conclusions
• Timing is tough

– Need accuracy
• But not with large simulation overhead
• Needs to be intuitive

– Need timing to be modeled separately
• Should not have to replicate micro-architecture
• Allow exploration
• Facilitate Re-use

• TLM 2.0 is a “computer” language
– Not very good as a modeling language
– Need solutions layered on top of it

Thank You

brian_bailey@acm.org
http://brianbailey.us

	Time is an illusion
	Platform Convergence
	Use Cases, Coding Styles and Mechanisms
	Loosely-timed
	Approximately-timed
	Interoperability Layer
	Platform refinement
	OCP-IP
	Timing annotation in TLM - LT
	Timing Annotation in TLM - AT
	Timing Annotation in TLM
	Model Separation
	A different approach
	Getting it right
	Declarative Timing
	Fir Filter example
	Conclusions
	Thank You

