
© 2022 Imperas Software Limited www.OVPworld.org Page 1 of 167

Advanced Simulation Control of Platforms and

Modules User Guide

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK

docs@imperas.com

Author: Imperas Software Limited

Version: 2.1.2

Filename: Advanced_Simulation_Control_of_Platforms_and_Modules_User_Guide.doc

Project: Advanced Simulation Control of Platforms and Modules User Guide

Last Saved: Wednesday, 27 July 2022

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 2 of 167

Copyright Notice
Copyright © 2022 Imperas Software Limited. All rights reserved. This software and

documentation contain information that is the property of Imperas Software Limited. The

software and documentation are furnished under a license agreement and may be used or

copied only in accordance with the terms of the license agreement. No part of the

software and documentation may be reproduced, transmitted, or translated, in any form or

by any means, electronic, mechanical, manual, optical, or otherwise, without prior written

permission of Imperas Software Limited, or as expressly provided by the license

agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the

documentation for its internal use only. Each copy shall include all copyrights,

trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the

United States of America. Disclosure to nationals of other countries contrary to United

States law is prohibited. It is the reader’s responsibility to determine the applicable

regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 3 of 167

Table of Contents

1 Preface .. 7

1.1 Notation ... 7

1.2 Related Documentation ... 7

1.3 Glossary / Terminology .. 8

2 Introduction .. 9

2.1 Prerequisites .. 9

2.2 Obtaining & installing the OP API ... 9

2.3 Compiling Examples described in this Document .. 9

2.4 Shared Objects and executables .. 10

2.5 Platforms, Modules and Shared Objects ... 10

3 Tracing the API calls and seeing what is happening ... 11

4 Detailed OP API Documentation ... 12

5 Structure of Harnesses/Modules & Simulation Phases .. 13

5.1 A little more complete test harness ... 13

5.1.1 Constructor - moduleConstruct ... 14

5.1.2 Command Line Parsing - cmdParser .. 14

5.1.3 Local module persistent data - optModuleObject ... 15

5.1.4 Initialization - modulePreSimulate ... 15

5.1.5 Simulation - moduleSimulate ... 15

5.1.6 Reporting - modulePostSimulate .. 15

5.1.7 Destructor - moduleDestruct ... 16

5.1.8 modelAttrs table .. 16

5.1.9 The main() program .. 16

5.1.10 Complete harness code ... 17

5.2 Order of Platform construction ... 18

6 Modules revisited (using the OP API and C) ... 20

6.1 A module in C with all user callbacks .. 20

6.2 Simple C module ... 23

7 Adding C code to a module ... 24

7.1 Monitoring nets ... 24

7.2 Listing of C code for module monitoring its nets ... 26

7.3 Monitoring Memory locations and Buses using callbacks 27

7.4 Adding behavioral C code in modules .. 29

7.4.1 A mixed TCL and C module ... 29

7.4.2 Advancing time and writing nets in a harness .. 33

7.4.3 Running the simulation ... 38

8 Using Hierarchical Connections .. 40

8.1 Bus .. 40

8.2 FIFO .. 41

8.3 Net ... 43

8.4 Packetnet ... 45

9 Introducing Basic Processor Introspection .. 49

9.1 Reading and Writing Registers ... 49

9.2 Generating Disassembly Output ... 52

9.3 Dumping Registers .. 52

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 4 of 167

9.4 Instruction Counts ... 52

9.5 Example Processor Introspection .. 52

9.6 Example Custom Processor Trace .. 53

10 Simulating a Design ... 55

10.1 Simulator Scheduler .. 55

10.1.1 The standard built in (default) simulator scheduler algorithm 55

10.1.2 Writing a custom scheduler .. 55

10.1.3 Example .. 56

10.2 Custom Simulation Tracing with Harness .. 59

10.2.1 Controlling Instructions Executed on a Processor 59

10.2.2 Generating Disassembly Information ... 60

10.2.3 Accessing Registers .. 60

10.2.4 Example .. 61

10.3 Interrupt a Running Simulation .. 63

10.3.1 Interrupt Simulation (from a Cntrl-C Handler) ... 63

10.3.2 Interrupt a Specific Processor ... 65

10.3.3 Example .. 66

10.3.4 Important Notes .. 67

10.4 Generating External Events to a Processor ... 67

10.4.1 Processor Reset ... 68

10.4.2 Processor Startup Reset ... 69

10.4.3 Processor Reset Example .. 69

10.5 Processor External Interrupt ... 74

10.5.1 Processor External Interrupt Timer Tick Example 77

10.6 Standard Multiprocessor Scheduling Algorithm .. 80

10.6.1 Changing the Time Slice Size ... 80

10.6.2 Changing Processor Nominal MIPS Rate ... 81

10.6.3 Writing Custom Scheduling Algorithms .. 81

11 Parallel Simulation: QuantumLeap™ .. 82

11.1 License and Runtime for QuantumLeap ... 82

11.2 Example .. 82

11.3 QuantumLeap Results ... 84

11.4 QuantumLeap Scheduling Algorithm ... 84

11.5 QuantumLeap Options .. 85

11.5.1 Option -parallelopt .. 85

11.5.2 Option -parallelthreads .. 86

11.5.3 Option -parallelmax .. 87

12 Memory Operations ... 88

12.1 Implicit Processor Model Memory ... 88

12.1.1 Loading object files ... 88

12.2 Loading by Directly Reading and Writing Data ... 90

12.2.1 Example Loading Program from Hex format file 90

12.2.2 Reading and writing memory without side-effects 96

12.2.3 Swapping data to host endian ... 96

12.3 Explicit Local and External Memory .. 97

12.3.1 Local Memory ... 97

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 5 of 167

12.3.2 External Memory: Mapping an address region to a callback 99

12.3.3 External Memory: Using Native Memory .. 104

12.3.4 External Memory: Combining Callbacks and Native Memory 106

12.3.5 Debugging Bus Connections ... 107

12.4 Adding Memory Access Callbacks ... 108

12.4.2 Adding a Memory Watchpoint ... 114

13 Simulation Optimization .. 115

13.1 Example .. 115

14 Enabling Peripheral Diagnostics .. 117

14.1 Model Diagnostics .. 117

14.2 Intercept Library Diagnostics ... 117

14.3 Peripheral Debug Support ... 118

14.4 Controlling peripheral model diagnostics ... 118

14.4.1 From Command Line .. 118

14.4.2 From Harness .. 119

15 Model and Intercept Object Additional Commands .. 120

16 Introspecting and Querying Platforms & Components .. 124

16.1 Platform Introspector: Examples/PlatformConstruction/walker 124

16.2 Running the platform & component introspecting harness: walker 126

16.3 Using the walkers command line .. 127

17 Save / Restore .. 130

17.1 Introduction ... 130

17.2 Checking Supported .. 130

17.3 Validating Processor Model Save and Restore ... 131

17.4 Using Save and Restore in simulation .. 133

18 Encapsulating Models for use in other Environments ... 137

18.1 SystemC .. 137

19 Integration with Client Debuggers ... 138

19.1 Memory Access .. 138

19.2 Register Query .. 138

19.3 Register Group Query ... 138

19.4 Mode State Query ... 139

19.5 Exception State Query .. 140

19.6 Processor Freezing .. 140

19.7 Address Breakpoints ... 141

19.8 Instruction Count Breakpoints .. 141

19.9 Memory, Bus and Processor Watchpoints .. 141

19.9.1 Watchpoint Creation and Deletion .. 142

19.9.2 Semantics of Physical and Virtual Watchpoints 145

19.9.3 Watchpoint Attribute Query ... 146

19.9.4 Handling Triggered Watchpoints .. 147

19.10 Handling Simultaneous Debug Events ... 147

19.11 Debugger Integration Examples ... 148

19.11.1 Multi Processor Debugger Integration Example 148

19.11.2 Mode and Exception Debugger Integration Example 159

19.12 Scheduler Notification .. 163

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 6 of 167

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 7 of 167

1 Preface
The Imperas simulators can use models described in C or C++ and the models can be

exported to be used in simulators and platforms using C, C++, SystemC or SystemC

TLM2.

This document describes detailed information of how the simulator is controlled, how

virtual platforms are loaded and simulated, how test benches and harnesses are written.

This is an advanced user guide.

This document specifically describes how the OVP OP C API is used in C programs for

use with Imperas and OVP virtual platform simulators and tools.

1.1 Notation
Code Text representing code, a command or output.

keyword A word with special meaning.

1.2 Related Documentation

There are several documents available as PDF:

Getting Started

• Imperas Installation and Getting Started Guide

Interface, API, and iGen related

• OVP Peripheral Modeling Guide

• OVPsim Using OVP Models in SystemC TLM2.0 Platforms

• iGen Model Generator Introduction

• iGen Platform and Module Creation User Guide

• Imperas Peripheral Generator Guide (using iGen)

Usage of Modules and Peripherals created using iGen

• Simulation Control of Platforms and Modules User Guide

• Advanced Simulation Control of Platforms and Modules User Guide

Also, in your installation there is also the online OP API Function Reference

documentation. This is correct-by-construction Doxygen-like API documentation

available at:

 IMPERAS_HOME/doc/api/op/html/index.html

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 8 of 167

1.3 Glossary / Terminology

OP API - OVP Platforms API - C API used for creating and controlling virtual

platforms. OP is a 2nd generation API and replaces ICM API. iGen creates

modules/platforms in C using this API.

iGen - Imperas productivity tool that has a powerful script based function API that is

used to create C/C++/SystemC models and templates. Described in the iGen Model

Generator Introduction, and for platforms, in the iGen Platform and Module Generator

User Guide.

OVPsim - Simulator for Open Virtual Platforms that executes platforms and models

coded in the OVP APIs

CpuManager - Imperas commercial simulator

Platform / Module (used interchangeably) - a collection of components connected

together into a level of hierarchy in a system to be simulated. This is a program in C/C++

making calls into OP API and normally compiled into a shared object/dynamically linked

library and loaded by the simulator at run time.

Testbench / Harness - program in C/C++ making calls into OP API to connect and

control OVP components. Normally linked to the simulator to provide an .exe binary that

can be executed. Used to instantiate one or more platforms/modules and controls their

execution. The main difference, from a platform/module, is that a testbench or harness

includes a call to the function main(), may include a command line parser and is linked to

create an executable binary (.exe) file.

Root Module - used to describe the initial platform/module that instantiates one or more

platforms/modules and controls their execution. Used in the testbench / harness.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 9 of 167

2 Introduction
Imperas simulation technology enables very high performance simulation, debug and

analysis of platforms containing multiple processors and peripheral models. The

technology is designed to be extensible: you can create your own platforms, new models

of processors, and other platform components using interfaces and libraries supplied by

Imperas. Platform models developed using this technology can be used both with Imperas

simulation products and the freely-available OVPsim platform simulator.

Simulations are controlled by using the provided harness.exe program, or for more

sophisticated control, and bespoke harness or test bench is written in C/C++ using the

OVP OP API.

This document explains advanced usage of the OP API to write harnesses / test benches.

It explains the structure of modules and the different simulator phases, and how they are

controlled.

2.1 Prerequisites
Since harnesses and test benches for use with Imperas and OVP tools are written in C, an

important prerequisite is that you must be proficient in the C language. If you want to use

C++ then it is expected that you are proficient in the use of C++ and how it uses a C API.

This document includes usage of iGen which uses the TCL scripting language, so it is

beneficial to have some basic understanding of TCL.

This is the advanced usage guide, so please ensure you have read and worked through

Simulation Control of Platforms and Modules User Guide before reading this advanced

guide.

2.2 Obtaining & installing the OP API
The OP API is part of all Imperas / OVP installations and thus you should already have it

installed and be ready for use.

2.3 Compiling Examples described in this Document
The examples use processor and component models and toolchains, available to

download from the www.OVPworld.org website or as part of an Imperas installation.

The compilation of the examples makes use of Makefiles and GNU make. The

instructions indicate the use of the command make on Linux systems and MinGW

mingw32-make command on Windows systems.

The Makefiles referred to in this document are written for GNU make. Standard

Makefiles supplied by Imperas support compilation and linking using GNU tools on both

Windows and Linux.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 10 of 167

Example scripts will be referred to, for example, as example.sh. The shell (extension sh)

script files may be used on Linux and in Windows MSYS shells. The batch (extension

bat) files may be used in Windows explorer or in a Windows command shell.

SystemC TLM2.0 models can be used on Linux with gcc or on Windows with

MinGW/MSys (since SystemC release v2.3.0) or MSVC (Imperas/OVP has been used

with version MSVC 8.0). It is assumed that users of this environment will be familiar

with SystemC, TLM2.0 and will have obtained this software from www.systemc.org or

similar.

2.4 Shared Objects and executables
The shared objects referred to in this document are either Linux shared objects, with

suffix .so or Windows dynamic link libraries with suffix .dll.

The executables referred to in this document are either Linux or Windows programs and

both have the suffix .exe

2.5 Platforms, Modules and Shared Objects
Modules are created by writing scripts using iGen API calls and then using iGen to

generate C code that calls functions from the OP API. A Makefile is provided that will

take as input a file module.op.tcl and execute iGen and the host compiler and linker to

create the model.so/.dll shared objects.

The model.so/.dll shared object can then be loaded and simulated using the harness.exe

program (provided in the installation binary directory), or by writing a bespoke test

harness in C using the OP API.

In this document we will either use binary modules and components form the Imperas

provided library, or we will provide them as source in the example directories.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 11 of 167

3 Tracing the API calls and seeing what is happening
Sometime it is not clear what is happening and what order things are happening.

Set the environment variable IMPERAS_OP_TRACE=1 to turn on tracing of entry to and

exit from OP API functions. Output is to the standard output of the console or shell that

invokes the simulator.

In the process of converting some platforms from use of the deprecated ICM API to the

OP API we found it very useful to be able to trace the API calls used in platform/module

creation.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 12 of 167

4 Detailed OP API Documentation
For a definition of each function call, macro, and structure that make up the OP API,

please refer to the OP function definition documentation that is part of the doxygen

generated documentation located as part of an installation at:

 IMPERAS_HOME/doc/api/op/html/index.html

For example:

A good place to start is with the 'Phases and the functions that can be called from them'

link. This provides a list of the phases, with links to those API functions that can be used

in that phase:

And then clicking on the 'op.h' link shows you detailed documentation on that function:

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 13 of 167

5 Structure of Harnesses/Modules & Simulation Phases
The document Simulation_Control_of_Platforms_and_Modules_User_Guide explained a

simple test harness. It includes a main() function with several simple sections: command

line parser, module instantiation, simulation, and was bounded with a couple of session

control calls.

> cat Examples/SimulationControl/minimalHarness/harness/harness.c

#include <string.h>

#include <stdlib.h>

#include "op/op.h"

int main(int argc, const char *argv[]) {

 opSessionInit(OP_VERSION);

 opCmdParseStd (argv[0], OP_AC_ALL, argc, argv);

 optModuleP mi = opRootModuleNew(0, "top", 0);

 opModuleNew(mi, "module", "u1", 0, 0);

 opRootModuleSimulate(mi);

 opSessionTerminate();

 return 0;

}

It has a main() that makes the calls to the API calls of interest. This was a very simplistic

introduction to the power and possibilities that are possible with the OP API related to

test benches and harnesses to control simulation.

5.1 A little more complete test harness
In the Example/SimulationControl/minimalHarness, we saw a really minimal harness,

now we will look at one that has placeholders for all the full capabilities that are

available. Subsequent examples will add code into these placeholders.

> cp -r $IMPERAS_HOME/Examples/SimulationControl/simpleHarness .

> cd simpleHarness

> ls

application harness module

Again we see the application and module directories. We discussed those previously.

They have not changed in this example. We will focus on the harness code.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 14 of 167

Looking at harness/harness.c we see there are several callbacks with some being empty.

Being empty at this stage they are just 'placeholders' for us to put code in later.

These callbacks are defined using macros, are also defined in the modelAttrs table, and

are called at different stages of the simulation process.

For example:

 OP_CONSTRUCT_FN(static OP_CONSTRUCT_FN(moduleConstruct) {

declares a function moduleConstruct that will be called by the simulator in the phase of

constructing all the modules.

The simulator has five main phases:

Construction

Pre Simulation

Simulation

Post Simulation

Destruction

5.1.1 Constructor - moduleConstruct

In the OP_CONSTRUCT_FN(moduleConstruct) callback function declaration we

instance the design to be simulated. In this example it is a single module instance:

static OP_CONSTRUCT_FN(moduleConstruct) {

 const char *u1_path = "module";

 opModuleNew(

 mi, // parent module

 u1_path, // modelfile

 "u1", // name

 0,

 0

);

}

The constructor call back function is the only mandatory callback function and it

constructs the structural contents of this harness including creation of component

instances, buses, nets etc. and connection to components

5.1.2 Command Line Parsing - cmdParser

There is then the declaration of a function we can edit that will process the command line

arguments. It is here will put any processing that is specific for our design / test bench.

static void cmdParser(optCmdParserP parser) {

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 15 of 167

}

The OP standard parser gives a consistent method of parsing standard data types, but also

allows the user to specify any of the rich set of options accepted by the simulator. Please

refer to the OVP Control File User Guide to see the standard options.

5.1.3 Local module persistent data - optModuleObject

Often we will need to hold local data for our testbench that can be called at different

times in the simulation. This is in the optModuleObject structure.

typedef struct optModuleObjectS {

 // insert module persistent data here

} optModuleObject;

5.1.4 Initialization - modulePreSimulate

This is followed by several more declarations of callback functions. You can put bespoke

code into these callbacks knowing that they will be called at the appropriate times or

phases of the simulation.

static OP_PRE_SIMULATE_FN(modulePreSimulate) {

// insert modulePreSimulate code here

}

The OP_PRE_SIMULATE_FN(modulePreSimulate) callback function is called when

simulation is about to begin.

5.1.5 Simulation - moduleSimulate

static OP_SIMULATE_STARTING_FN(moduleSimulate) {

// insert moduleSimulate code here

}

Gets called every time opRootModuleSimulate () is called. Called every time the

simulator starts simulating.

5.1.6 Reporting - modulePostSimulate

static OP_POST_SIMULATE_FN(modulePostSimulate) {

// insert modulePostSimulate code here

}

Called when simulation has finished, but before any destructors are called.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 16 of 167

5.1.7 Destructor - moduleDestruct

static OP_DESTRUCT_FN(moduleDestruct) {

// insert moduleDestruct code here

}

If required, code to close files, free memory etc.

5.1.8 modelAttrs table

A complete modelAttrs table is:

optModuleAttr modelAttrs = {

 .versionString = OP_VERSION,

 .type = OP_MODULE,

 .name = MODULE_NAME,

 .objectSize = sizeof(optModuleObject),

 .releaseStatus = OP_UNSET,

 .purpose = OP_PP_BAREMETAL,

 .visibility = OP_VISIBLE,

 .constructCB = moduleConstruct,

 .preSimulateCB = modulePreSimulate,

 .simulateCB = moduleSimulate,

 .postSimulateCB = modulePostSimulate,

 .destructCB = moduleDestruct,

};

It defines this module and provides the relevant data and pointers that are needed. Some

items like versionString, type, releaseStatus, purpose, visibility should be accepted and

left alone.

The others are only required if they are being used in your module. There is no

performance issue in just leaving them as above. The simulator looks up the modelAttrs

table to find which callbacks are defined and then calls them as it needs to.

5.1.9 The main() program

Lastly, by convention at the bottom of the file, the main() program entry point:

int main(int argc, const char *argv[]) {

 opSessionInit(OP_VERSION);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 17 of 167

 optCmdParserP parser = opCmdParserNew(MODULE_NAME, OP_AC_ALL);

 cmdParser(parser);

 opCmdParseArgs(parser, argc, argv);

 optModuleP mi = opRootModuleNew(&modelAttrs, MODULE_NAME, 0);

 opRootModuleSimulate(mi);

 opSessionTerminate();

 return 0;

}

5.1.10 Complete harness code

The complete harness is:

#include <string.h>

#include <stdlib.h>

#include "op/op.h"

#define MODULE_NAME "top"

struct optionsS {

} options = {

};

static OP_CONSTRUCT_FN(moduleConstruct) {

 const char *u1_path = "module";

 opModuleNew(

 mi, // parent module

 u1_path, // modelfile

 "u1", // name

 0,

 0

);

}

static void cmdParser(optCmdParserP parser) {

}

typedef struct optModuleObjectS {

 // insert module persistent data here

} optModuleObject;

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 18 of 167

static OP_PRE_SIMULATE_FN(modulePreSimulate) {

// insert modulePreSimulate code here

}

static OP_SIMULATE_STARTING_FN(moduleSimulate) {

// insert moduleSimulate code here

}

static OP_POST_SIMULATE_FN(modulePostSimulate) {

// insert modulePostSimulate code here

}

static OP_DESTRUCT_FN(moduleDestruct) {

// insert moduleDestruct code here

}

optModuleAttr modelAttrs = {

 .versionString = OP_VERSION,

 .type = OP_MODULE,

 .name = MODULE_NAME,

 .objectSize = sizeof(optModuleObject),

 .releaseStatus = OP_UNSET,

 .purpose = OP_PP_BAREMETAL,

 .visibility = OP_VISIBLE,

 .constructCB = moduleConstruct,

 .preSimulateCB = modulePreSimulate,

 .simulateCB = moduleSimulate,

 .postSimulateCB = modulePostSimulate,

 .destructCB = moduleDestruct,

};

int main(int argc, const char *argv[]) {

 opSessionInit(OP_VERSION);

 optCmdParserP parser = opCmdParserNew(MODULE_NAME, OP_AC_ALL);

 cmdParser(parser);

 opCmdParseArgs(parser, argc, argv);

 optModuleP mi = opRootModuleNew(&modelAttrs, MODULE_NAME, 0);

 opRootModuleSimulate(mi);

 opSessionTerminate();

 return 0;

}

5.2 Order of Platform construction
In the above section we saw that a harness can have several callbacks defined in the

modelAttrs table. These callbacks are called at different phases of the simulation.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 19 of 167

For a test bench this might seem like overkill to specify different phases and callbacks.

This approach comes into its own when you realize that in fact all modules can have

callbacks and that all callbacks of one type are called in one phase. Thus all construction

callbacks from all modules are called before all pre-simulate callbacks etc. This allows

extremely sophisticated and complex platforms to be model relatively easily

This section summarizes the operation of a hierarchical platform.

➢ Host computer calls the program entry point : main

o start opSessionInit

o construct a command line parser opCmdParserNew, opCmdParserAdd (with

added arguments) or use the standard command line parser opCmdParseArgs

o create instance of root module opRootModuleNew

▪ call the constructor moduleConstruct

• create instance of the design opModuleNew

o call parameter iterator

o call interface iterators

o call module constructor moduleConstruct

▪ create model instances opProcessorNew

▪ create module instances opModuleNew

o run the simulator opRootModuleSimulate (maybe more than once)

▪ call pre-simulate functions in all modules (first time only)

▪ run the simulator

o finish opSessionTerminate

▪ call post-simulation functions for all modules

▪ call destructors

Higher-level modules are constructed before lower modules.

Leaf components (processors, memories etc) can be created at any level.

A module can instance itself (so long as there is code to prevent infinite recursion).

The simulator can determine the interface to a module without constructing it.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 20 of 167

6 Modules revisited (using the OP API and C)
In the document iGen_Platform_and_Module_Creation_User_Guide we saw the creation

of modules using iGen from a tcl script input. When iGen is run on a module.op.tcl for

the first time it creates two main files:

 module.c file - this is the code you can edit

 module.igen.h - this is code you should not edit - it is the structure of the module

 and will be generated each time from the module.op.tcl iGen run

there is also a file

 module.c.igen.stubs - this is a template of module.c - this is written each time,

 and is used for comparison purposes - you can ignore it for now

6.1 A module in C with all user callbacks
Let’s look at the process of running iGen on a module and look at the generated C:

> cd Examples/SimulationControl/simpleHarness/module

> cat module.op.tcl

ihwnew -name simpleCpuMemory

ihwaddbus -instancename mainBus -addresswidth 32

ihwaddprocessor -instancename cpu1 -vendor ovpworld.org -library processor \

 -type or1k -version 1.0 -semihostname or1kNewlib -variant generic

ihwconnect -bus mainBus -instancename cpu1 -busmasterport INSTRUCTION

ihwconnect -bus mainBus -instancename cpu1 -busmasterport DATA

ihwaddmemory -instancename ram1 -type ram

ihwconnect -bus mainBus -instancename ram1 -busslaveport sp1 \

 -loaddress 0x0 -hiaddress 0xffffffff

> make

iGen Create OP MODULE module

Host Compiling Module obj/Linux32/module.o

Host Linking Module object model.so

and let’s look at the generated C files, first the one defining the structure that we don't

edit:

> cat module.igen.h

#define MODULE_NAME "simpleCpuMemory"

static OP_CONSTRUCT_FN(moduleConstruct) {

 // Bus mainBus

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 21 of 167

 optBusP mainBus_b = opBusNew(mi, "mainBus", 32, 0, 0);

 // Processor cpu1

 const char *cpu1_path = opVLNVString(

 0, // use the default VLNV path

 "ovpworld.org",

 "processor",

 "or1k",

 "1.0",

 OP_PROCESSOR,

 1 // report errors

);

 optProcessorP cpu1_c = opProcessorNew(

 mi,

 cpu1_path,

 "cpu1",

 OP_CONNECTIONS(

 OP_BUS_CONNECTIONS(

 OP_BUS_CONNECT(mainBus_b, "INSTRUCTION"),

 OP_BUS_CONNECT(mainBus_b, "DATA")

)

),

 OP_PARAMS(

 OP_PARAM_STRING_SET("variant", "generic")

)

);

 const char *or1kNewlib_0_expath = opVLNVString(

 0, // use the default VLNV path

 0,

 0,

 "or1kNewlib",

 0,

 OP_EXTENSION,

 1 // report errors

);

 opProcessorExtensionNew(

 cpu1_c,

 or1kNewlib_0_expath,

 "or1kNewlib_0",

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 22 of 167

 0

);

 // Memory ram1

 opMemoryNew(

 mi,

 "ram1",

 OP_PRIV_RWX,

 (0xffffffff) - (0x0),

 OP_CONNECTIONS(

 OP_BUS_CONNECTIONS(

 OP_BUS_CONNECT(mainBus_b, "sp1", .slave=1,

 .addrLo=0x0, .addrHi=0xffffffff)

)

),

 0

);

}

optModuleAttr modelAttrs = {

 .versionString = OP_VERSION,

 .type = OP_MODULE,

 .name = MODULE_NAME,

 .objectSize = sizeof(optModuleObject),

 .releaseStatus = OP_UNSET,

 .purpose = OP_PP_BAREMETAL,

 .visibility = OP_VISIBLE,

 .constructCB = moduleConstruct,

 .preSimulateCB = modulePreSimulate,

 .simulateCB = moduleSimulate,

 .postSimulateCB = modulePostSimulate,

 .destructCB = moduleDestruct,

};

and then look at the module.c file we can edit:

> cat module.c

#include <string.h>

#include <stdlib.h>

#include "op/op.h"

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 23 of 167

typedef struct optModuleObjectS {

 // insert module persistent data here

} optModuleObject;

//

// U S E R F U N C T I O N S

//

static OP_PRE_SIMULATE_FN(modulePreSimulate) {

// insert modulePreSimulate code here

}

static OP_SIMULATE_STARTING_FN(moduleSimulate) {

// insert moduleSimulate code here

}

static OP_POST_SIMULATE_FN(modulePostSimulate) {

// insert modulePostSimulate code here

}

static OP_DESTRUCT_FN(moduleDestruct) {

// insert moduleDestruct code here

}

#include "module.igen.h"

We can see it is just the placeholders of the callbacks and then it includes the iGen

generated constructor code we don't edit.

6.2 Simple C module
Above we saw a module with all its callbacks, modelAttrs etc.

It is possible to write more simplistic modules with just a main(), in the same way that the

Examples/SimulationControl/minimalHarness was structured, just creating instances of

buses, memories, processors etc.

Unless there is a specific reason, our suggestion is

a) use iGen from module.op.tcl, and then

b) if you need to, edit only the generated module.c file.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 24 of 167

7 Adding C code to a module
In this chapter we will create a module using a tcl iGen script, and then edit the C to add

some specific C code to add some behaviors that are not possible to add using iGen from

tcl.

There will be examples of adding a monitor to detect changes on nets, adding

watchpoints to see memory accesses, and adding behavior using C.

7.1 Monitoring nets
Monitoring nets from C code in the modules will be shown using the following example:

 Examples\SimulationControl\monitoringNetsInModule

It is a copy of:

 PlatformConstruction/simpleCpuMemoryUart

Which creates a module using iGen from tcl, and has a simple application that writes to a

UART and logs the output to a file. It also has two nets that the UART can configure to

use. There is no need for our own C harness, so we use the provided harness.exe.

So let’s follow the process we used:

> cp Examples\ PlatformConstruction/simpleCpuMemoryUart .

and run:

./example.sh

OVPsim started: Wed Jan 13 15:29:54 2016

Initializing KinetisUART

Writing to uart.

OVPsim finished: Wed Jan 13 15:29:54 2016

and then see the output:

> cat uartTTY0.log

Hello UART0 world

So now let’s make some very simple changes in module.c. First add the call back

declaration:

static OP_NET_WRITE_FN(netCallback) {

 optNetP net = userData;

 opPrintf("netCallback(%s) = %c\n", opObjectName(net), value);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 25 of 167

}

and in the pre-simulate callback add our callback on all nets in the module:

static OP_PRE_SIMULATE_FN(modulePreSimulate) {

 // set up net monitoring

 optNetP net = 0;

 while ((net = opNetNext(mi, net))) {

 opPrintf ("monitorNets(%s)\n", opObjectHierName(net));

 opNetWriteMonitorAdd(net, netCallback, net);

 }

 // and put UART into 'using nets' mode, using local hierarchical path

 opParamBoolOverride(mi, "periph0/directReadWrite", 1);

}

NOTE that we have to set the periph0/directReadWrite parameter of the UART, or we get

the callbacks registered, but it just writes to the logfile and not the nets.

and then we get:

./example.sh

OVPsim started: Wed Jan 13 15:35:10 2016

monitorNets(harness/simpleCpuMemoryUart/directWrite)

monitorNets(harness/simpleCpuMemoryUart/directRead)

Initializing KinetisUART

Writing to uart.

netCallback(directWrite) =

netCallback(directWrite) = H

netCallback(directWrite) = e

netCallback(directWrite) = l

netCallback(directWrite) = l

netCallback(directWrite) = o

netCallback(directWrite) =

netCallback(directWrite) = U

netCallback(directWrite) = A

netCallback(directWrite) = R

netCallback(directWrite) = T

netCallback(directWrite) = 0

netCallback(directWrite) =

netCallback(directWrite) = w

netCallback(directWrite) = o

netCallback(directWrite) = r

netCallback(directWrite) = l

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 26 of 167

netCallback(directWrite) = d

netCallback(directWrite) =

OVPsim finished: Wed Jan 13 15:35:10 2016

7.2 Listing of C code for module monitoring its nets
> cat Examples/SimulationControl/monitoringNetsInModule/module/module.c

#include <string.h>

#include <stdlib.h>

#include "op/op.h"

typedef struct optModuleObjectS {

 // insert module persistent data here

} optModuleObject;

static OP_NET_WRITE_FN(netCallback) {

 optNetP net = userData;

 opPrintf("netCallback(%s) = %c\n", opObjectName(net), value);

}

// U S E R F U N C T I O N S

static OP_PRE_SIMULATE_FN(modulePreSimulate) {

 // set up net monitoring

 optNetP net = 0;

 while ((net = opNetNext(mi, net))) {

 opPrintf ("monitorNets(%s)\n", opObjectHierName(net));

 opNetWriteMonitorAdd(net, netCallback, net);

 }

 // and put UART into 'using nets' mode, using local hierarchical path

 opParamBoolOverride(mi, "periph0/directReadWrite", 1);

}

static OP_SIMULATE_STARTING_FN(moduleSimulate) {

// insert moduleSimulate code here

}

static OP_POST_SIMULATE_FN(modulePostSimulate) {

// insert modulePostSimulate code here

}

static OP_DESTRUCT_FN(moduleDestruct) {

// insert moduleDestruct code here

}

#include "module.igen.h"

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 27 of 167

7.3 Monitoring Memory locations and Buses using
callbacks

A previous example Examples/SimulationControl/monitoringMemory/harness added

monitoring for memory and buses into the harness.

To add this code to a module is very simple. We have created an example in

Examples/SimulationControl/monitoringMemoryInModule and then copied in the

relevant code from monitoringMemory/harness/harness.c into module/module.c with very

few changes.

The code in SimulationControl/monitoringMemoryInModule/module/module.c now

looks like:

> cat SimulationControl/monitoringMemoryInModule/module/module.c

#include <string.h>

#include <stdlib.h>

#include "op/op.h"

typedef struct optModuleObjectS {

 // insert module persistent data here

 Uns32 count;

} optModuleObject;

#define PREFIX "BUS_MON"

#define MIN_ADDRESS 0x0

#define MAX_ADDRESS 0xffffffff

//

// triggered when registered access happens and prints information of access

//

static OP_MONITOR_FN(monitorCallback) {

 opMessage ("I", PREFIX "_MT", "Monitor triggered: "

 "callback '%s': processor '%s' : "

 "type '%s' : bytes %u : "

 "address Physical 0x" FMT_A0Nx" Virtual 0x" FMT_A0Nx,

 FUNCTION__,

 processor ? opObjectName(processor) : "artifact", // if no processor this is an artifact access

 (const char*)userData,

 bytes,

 addr,

 VA);

}

//

// iterate across the buses found in the module and register callbacks

// for read, write and fetch

//

static void monitorBus(optModuleP mi) {

 // iterate across all busses found in module

 optBusP bus = 0;

 while ((bus = opBusNext(mi, bus))) {

 Addr max = MAX_ADDRESS; // TODO: should be call to opBusMaxAddress(bus);

 opMessage("I", PREFIX "_BM", "Add monitor for '%s' (0x" FMT_A0Nx " to 0x" FMT_A0Nx ")\n",

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 28 of 167

 opObjectHierName(bus), (Addr)0, max);

 opBusFetchMonitorAdd(bus, 0, MIN_ADDRESS, max, monitorCallback, "bus-fetch");

 opBusReadMonitorAdd (bus, 0, MIN_ADDRESS, max, monitorCallback, "bus-read");

 opBusWriteMonitorAdd(bus, 0, MIN_ADDRESS, max, monitorCallback, "bus-write");

 }

}

//

// iterate across the memories found in the module and register callbacks for read, write and fetch

//

static void monitorMemory(optModuleP mi) {

 // iterate across all memories found in module

 optMemoryP memory = 0;

 while ((memory = opMemoryNext(mi, memory))) {

 Addr max = opMemoryMaxAddress(memory);

 opMessage("I", PREFIX "_BM", "Add monitor for '%s' (0x" FMT_A0Nx " to 0x" FMT_A0Nx ")\n",

 opObjectHierName(memory), (Addr)0, max);

 opMemoryFetchMonitorAdd(memory, 0, MIN_ADDRESS, max, monitorCallback, "memory-fetch");

 opMemoryReadMonitorAdd (memory, 0, MIN_ADDRESS, max, monitorCallback, "memory-read");

 opMemoryWriteMonitorAdd(memory, 0, MIN_ADDRESS, max, monitorCallback, "memory-write");

 }

}

static OP_PRE_SIMULATE_FN(modulePreSimulate) {

// insert modulePreSimulate code here

 // Setup bus monitors

 monitorBus(mi);

 // Setup memory monitors

 monitorMemory(mi);

}

static OP_SIMULATE_STARTING_FN(moduleSimulateStart) {

// insert moduleSimulate code here

}

static OP_POST_SIMULATE_FN(modulePostSimulate) {

// insert modulePostSimulate code here

}

static OP_DESTRUCT_FN(moduleDestruct) {

// insert moduleDestruct code here

}

#include "module.igen.h"

Note the use of the module instance 'mi' in the two iterators:

 while ((bus = opBusNext(mi, bus))) {

 while ((memory = opMemoryNext(mi, memory))) {

And when it is run we get:

> ./example.sh

OVPsim started: Wed Jan 13 16:26:23 2016

Info (BUS_MON_BM) Add monitor for 'harness/simpleCpuMemory/mainBus' (0x0000000000000000

 to 0x00000000ffffffff)

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 29 of 167

Info (BUS_MON_BM) Add monitor for 'harness/simpleCpuMemory/ram1' (0x0000000000000000

 to 0x00000000ffffffff)

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x0000000000000100 Virtual 0x0000000000000100

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x0000000000000104 Virtual 0x0000000000000104

...

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x0000000000000f38 Virtual 0x0000000000000f38

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-write' : bytes 4 :

 address Physical 0x00000000ffffffe4 Virtual 0x00000000ffffffe4

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x0000000000000f3c Virtual 0x0000000000000f3c

...

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x000000000000171c Virtual 0x000000000000171c

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-read' : bytes 4 :

 address Physical 0x0000000000004d8c Virtual 0x0000000000004d8c

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x000000000000166c Virtual 0x000000000000166c

...

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x0000000000001780 Virtual 0x0000000000001780

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x000000000000176c Virtual 0x000000000000176c

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x0000000000001770 Virtual 0x0000000000001770

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type 'bus-fetch' : bytes 4 :

 address Physical 0x0000000000004674 Virtual 0x0000000000004674

OVPsim finished: Wed Jan 13 16:26:23 2016

7.4 Adding behavioral C code in modules
The examples above showed the use of C code to monitor objects in a module.

In this very small example there is a small amount of behavioral C code in the middle of

the module. It reads a net value and writes it to another net inverted. Yes a behavioral not

gate...

> cp -r Examples/SimulationControl/behavioralCcodeInModule .

There is no harness for this example, we will use the provided harness.exe.

7.4.1 A mixed TCL and C module

There is a simple module with net in, net out and some C code, and harness that

instantiates it.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 30 of 167

The module is created from two files:

 module/module.op.tcl the structural definition of the module

 module/module.c the C code that is called by the structural code

The iGen tcl input script should need no discussion:

> cat module/module.op.tcl

ihwnew -name module

ihwaddnet -instancename netIn

ihwaddnet -instancename netOut

ihwaddnetport -instancename slavePort

ihwaddnetport -instancename masterPort

ihwconnect -netport slavePort -net netIn

ihwconnect -netport masterPort -net netOut

We initially wrote the module.op.tcl, and then ran make -C module and this generated the

initial copy of module.c, which now it exists, the make system will not overwrite so it is

safe for us to edit and change.

The C code we write in module/module.c needs a little explanation. Let’s first look at it

in its entirety, and then explain each section:

> cat module/module.c

#include <assert.h>

#include <string.h>

#include <stdlib.h>

#include "op/op.h"

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 31 of 167

typedef struct optModuleObjectS {

 // insert module persistent data here

 optNetP netIn;

 optNetP netOut;

} optModuleObject;

//

// This function is called when the input net is written

// It writes the same value to the output net

//

static OP_NET_WRITE_FN(netCallback) {

 optModuleObjectP object = userData;

 Uns32 newValue = (value) ? 0 : 1;

 opPrintf(FMT_TIME ": sub_netCallback: %s = %u\n",

 opModuleCurrentTime(opObjectRootModule(object->netOut)),

 opObjectHierName(object->netOut), newValue);

 opNetWrite(object->netOut, newValue);

}

static OP_PRE_SIMULATE_FN(modulePreSimulate) {

//

// Get handles to the two nets

//

 opPrintf("modulePreSimulate: %s setting up callback on netIn\n",

 opObjectHierName(mi));

 object->netIn = opObjectByName(mi, "netIn", OP_NET_EN).Net;

 object->netOut = opObjectByName(mi, "netOut").Net;

 assert(object->netIn != NULL && object->netOut != NULL);

 opNetWriteMonitorAdd(object->netIn, netCallback, object);

 opPrintf("modulePreSimulate: %s done\n", opObjectHierName(mi));

}

static OP_SIMULATE_STARTING_FN(moduleSimulate) {

// insert moduleSimulate code here

}

static OP_POST_SIMULATE_FN(modulePostSimulate) {

// insert modulePostSimulate code here

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 32 of 167

}

static OP_DESTRUCT_FN(moduleDestruct) {

// insert moduleDestruct code here

}

#include "module.igen.h"

The declaration of:

typedef struct optModuleObjectS {

 optNetP netIn;

 optNetP netOut;

} optModuleObject;

is declaring module persistent variables to hold references to the nets in the harness.

The declaration of the pre-simulate callback:

static OP_PRE_SIMULATE_FN(modulePreSimulate) {

obtains handles to the nets and saves them in the module persistent data

 object->netIn = opObjectByName(mi, "netIn", OP_NET_EN).Net;

 object->netOut = opObjectByName(mi, "netOut", OP_NET_EN).Net;

 assert(object->netIn != NULL && object->netOut != NULL);

Note the use of assert. This is to check that we have got the correct names of our nets.

We don't want to change them in the module.op.tcl and forget to update the C. The good

thing about assert is it tells us file and line numbers so it is easy to see what has gone

wrong;

And then we need to register the netCallback function to be called back when the object-

>netIn is written to. This is a net callback and will be triggered when the net is written to:

 opNetWriteMonitorAdd(object->netIn, netCallback, object);

The 3rd argument is passing the object in so that when the callback is called it has access

to the module persistent data, in this case the handles to the nets.

The definition of the netCallback is where we write some behavior:

static OP_NET_WRITE_FN(netCallback) {

 optModuleObjectP object = userData;

 Uns32 newValue = (value) ? 0 : 1;

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 33 of 167

 opPrintf(FMT_TIME ": sub_netCallback: %s = %u\n",

 opModuleCurrentTime(opObjectRootModule(object->netOut)),

 opObjectHierName(object->netOut), newValue);

 opNetWrite(object->netOut, newValue);

}

The callback is defined using a macro that provides several variables for our use.

 userData is the 3rd argument of the call that registers the callback

 value is the value being written to the net

With:

 Uns32 newValue = (value) ? 0 : 1;

we are creating a simple inverter or not gate function.

And:

 opNetWrite(object->netOut, newValue);

writes the new value to the output net.

Note that the call back was registered on the input net.

 opNetWriteMonitorAdd(object->netIn, netCallback, object);

Then there are the declarations of the other user callback functions - and these are left as

doing nothing.

This is compiled with the normal make command:

> make -C module

Igen Create OP MODULE module

Host Depending obj/Linux32/module.d

Host Compiling Module obj/Linux32/module.o

Host Linking Module object model.so

7.4.2 Advancing time and writing nets in a harness

The harness has in it a main() which creates the top module and an instance of our

submodule. It then calls a function we have written to monitor the nets, and a function to

control the simulation:

int main(int argc, const char *argv[]) {

...

 optModuleP mi = opRootModuleNew(0, "top", 0);

 constructModule(mi);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 34 of 167

 monitorNets(mi);

 opRootModulePreSimulate(mi);

 simulate(mi);

...

}

The constructModule creates the sub module instance:

optNetP topNetDrive;

optNetP topNetRecv;

...

static void constructModule(optModuleP mi) {

 topNetDrive = opNetNew(mi, "topNetDrive", 0, 0);

 topNetRecv = opNetNew(mi, "topNetRecv", 0, 0);

 opModuleNew(

 mi, // parent module

 "module/model", // modelfile

 "u1", // name

 OP_CONNECTIONS(

 OP_NET_CONNECTIONS(

 OP_NET_CONNECT(topNetDrive, "slavePort"),

 OP_NET_CONNECT(topNetRecv, "masterPort")

)

),

 0

);

}

Noting that it creates two global nets (topNetDrive, topNetRecv) , and then connects

them up to the slave and master ports of the module. The sub module file will be located

at: module/model.

As in other examples, in this harness we are going to register a callback on the output net

to see any writes to it:

static void monitorNets(optModuleP mi) {

 opPrintf("monitorNets: %s setting up callback on nets\n", opObjectHierName(mi));

 assert(topNetDrive != NULL && topNetRecv != NULL);

 opNetWriteMonitorAdd(topNetRecv, netCallback, topNetRecv);

 opPrintf("monitorNets: %s : done\n", opObjectHierName(mi));

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 35 of 167

}

Note the use of assert:

 assert(topNetDrive != NULL && topNetRecv != NULL);

This is to check that we have in fact located the nets in our global persistent data.

We are registering a call back on the net topNetRecv being written to and when it is, we

want our function, netCallback to be called. We will pass in the handle of the net that has

changed (topNetRecv).

And when the net is written to, our function:

static OP_NET_WRITE_FN(netCallback) {

 optNetP net = userData;

 opPrintf(FMT_TIME ": top_netCallback: %s = %d\n",

 opModuleCurrentTime(opObjectRootModule(net)),

 opObjectHierName(net), value);

}

will be called. It just writes out that the net was written to, and its new value, and the time

of the write.

All that remains is to have some stimulus in our harness. This is in our simulate function:

static void simulate(optModuleP mi) {

 opPrintf("\n");

 opPrintf(FMT_TIME ": simulate: %s starting\n",

 opModuleCurrentTime(mi), opObjectHierName(mi));

 opRootModuleSetSimulationStopTime(mi, 0.001) ;

 opRootModuleSimulate(mi);

 opPrintf("\n");

 opPrintf(FMT_TIME ": simulate: %s writing 0\n",

 opModuleCurrentTime(mi), opObjectHierName(topNetDrive));

 opNetWrite(topNetDrive, 0);

 opRootModuleSetSimulationStopTime(mi, 0.002);

 opRootModuleSimulate(mi);

 opPrintf("\n");

 opPrintf(FMT_TIME ": simulate: %s writing 1\n",

 opModuleCurrentTime(mi), opObjectHierName(topNetDrive));

 opNetWrite(topNetDrive, 1);

 opRootModuleSetSimulationStopTime(mi, 0.003);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 36 of 167

 opRootModuleSimulate(mi);

 opPrintf("\n");

 opPrintf(FMT_TIME ": simulate: %s done\n\n",

 opModuleCurrentTime(mi), opObjectHierName(mi));

}

the key bit is:

 opRootModuleSetSimulationStopTime(mi, 0.001) ;

 opRootModuleSimulate(mi);

...

 opNetWrite(topNetDrive, 0);

which sets a time in the future at which the simulator should stop and then, when stopped

(return from opRootModuleSimulate), write to the net.

In other words:

 run

 set value

 run

 set value

 ...

i.e. very simple stimulus.

7.4.2.1 The full harness listing

> cat harness/harness.c

#include <assert.h>

#include <string.h>

#include <stdlib.h>

#include "op/op.h"

optNetP topNetDrive;

optNetP topNetRecv;

static OP_NET_WRITE_FN(netCallback) {

 optNetP net = userData;

 opPrintf(FMT_TIME ": top_netCallback: %s = %d\n",

 opModuleCurrentTime(opObjectRootModule(net)),

 opObjectHierName(net), value);

}

static void monitorNets(optModuleP mi) {

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 37 of 167

 opPrintf("monitorNets: %s setting up callback on nets\n",

 opObjectHierName(mi));

 assert(topNetDrive != NULL && topNetRecv != NULL);

 opNetWriteMonitorAdd(topNetRecv, netCallback, topNetRecv);

 opPrintf("monitorNets: %s : done\n", opObjectHierName(mi));

}

static void constructModule(optModuleP mi) {

 topNetDrive = opNetNew(mi, "topNetDrive", 0, 0);

 topNetRecv = opNetNew(mi, "topNetRecv", 0, 0);

 opModuleNew(

 mi, // parent module

 "module/model", // modelfile

 "u1", // name

 OP_CONNECTIONS(

 OP_NET_CONNECTIONS(

 OP_NET_CONNECT(topNetDrive, "slavePort"),

 OP_NET_CONNECT(topNetRecv, "masterPort")

)

),

 0

);

}

static void simulate(optModuleP mi) {

 opPrintf("\n");

 opPrintf(FMT_TIME ": simulate: %s starting\n",

 opModuleCurrentTime(mi), opObjectHierName(mi));

 opRootModuleSetSimulationStopTime(mi, 0.001) ;

 opRootModuleSimulate(mi);

 opPrintf("\n");

 opPrintf(FMT_TIME ": simulate: %s writing 0\n",

 opModuleCurrentTime(mi), opObjectHierName(topNetDrive));

 opNetWrite(topNetDrive, 0);

 opRootModuleSetSimulationStopTime(mi, 0.002);

 opRootModuleSimulate(mi);

 opPrintf("\n");

 opPrintf(FMT_TIME ": simulate: %s writing 1\n",

 opModuleCurrentTime(mi), opObjectHierName(topNetDrive));

 opNetWrite(topNetDrive, 1);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 38 of 167

 opRootModuleSetSimulationStopTime(mi, 0.003);

 opRootModuleSimulate(mi);

 opPrintf("\n");

 opPrintf(FMT_TIME ": simulate: %s done\n\n",

 opModuleCurrentTime(mi), opObjectHierName(mi));

}

int main(int argc, const char *argv[]) {

 opSessionInit(OP_VERSION);

 opCmdParseStd (argv[0], OP_AC_ALL, argc, argv);

 optModuleP mi = opRootModuleNew(0, "top", 0);

 constructModule(mi);

 monitorNets(mi);

 opRootModulePreSimulate(mi);

 simulate(mi);

 opSessionTerminate();

 return 0;

}

7.4.3 Running the simulation

> ./example.sh

...

OVPsim started: Thu Jan 14 15:01:23 2016

monitorNets: top setting up callback on nets

monitorNets: top : done

modulePreSimulate: top/u1 setting up callback on netIn

modulePreSimulate: top/u1 done

0: simulate: top starting

0.001: simulate: top/topNetDrive writing 0

0.001: sub_netCallback: top/u1/netOut = 1

0.001: top_netCallback: top/topNetRecv = 1

0.002: simulate: top/topNetDrive writing 1

0.002: sub_netCallback: top/u1/netOut = 0

0.002: top_netCallback: top/topNetRecv = 0

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 39 of 167

0.003: simulate: top done

OVPsim finished: Thu Jan 14 15:01:23 2016

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 40 of 167

8 Using Hierarchical Connections
When hierarchy is used there are specific connection types that can be made between the

different levels. These can be a bus, a FIFO, a net or a packetnet. The following examples

show the use of each.

8.1 Bus
There is an example provided as Examples/PlatformConstruction/busHierarchy that

shows the connection of busses between levels of hierarchy.

This example contains a simple module that has a two bus ports connected by a bridge.

The bridge maps an address range on the input (slave) port from 0x10000000 to

0x10001fff to an address range on the output (master) port from 0x00000000 to

0x00001fff. So, for example, an access at 0x10000004 will be translated to an access at

0x00000004.

uut

module

harness

0x10000000

0x10001FFF

Bridge

br1

processor bus

read/write

read/write

memory callbacks

b
u

s
M

b
u

s
S

topBusM topBusS

0x00001000

0x00002FFF

The module is instanced in a test harness and the bus connections from the module are

connected to buses instanced in the harness. Monitors are added to the bus to detect read

or write accesses on the buses.

static OP_BUS_SLAVE_READ_FN(readCallback) {

 const char *bus = userData;

 opPrintf("readCallback: %s, " FMT_Ax "\n", bus, addr);

}

static OP_BUS_SLAVE_WRITE_FN(writeCallback) {

 const char *bus = userData;

 opPrintf("writeCallback: %s, " FMT_Ax "\n", bus, addr);

}

Using

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 41 of 167

 char *busName = "topBusS";

 optBusP bus = opObjectByName(mi, busName, OP_BUS_EN).Bus;

 opBusSlaveNew(bus, "all", 0, OP_PRIV_RWX, 0, 0xffffffff,

 readCallback, writeCallback, 0, busName);

The harness performs bus read/writes accesses on the bus to test the connections. These

will be debug artifact accesses, as there is no processor specified in the read/write calls.

[Note that the last argument to the calls is the debugAccess bit, and when set to 1 means

that the read/write should not perturb the platform state - and in this case as there is no

processor that is the case anyway.]

 Bool okRead = opBusRead (bus, 0, base, &b, sizeof(b), 1);

 Bool okWrite = opBusWrite (bus, 0, base, &b, sizeof(b), 1);

When the example script is executed the example is built and then executed. The

following shows the expected output:

...

modulePreSimulate: top setting up callbacks on slave bus

modulePreSimulate: top done

moduleSimulate: top starting

moduleSimulate: top reading and writing to 0

moduleSimulate: top read: 0, write: 0

moduleSimulate: top reading and writing to 1000

readCallback: topBusS, 10000000

writeCallback: topBusS, 10000000

moduleSimulate: top read: 1, write: 1

moduleSimulate: top reading and writing to 2000

readCallback: topBusS, 10001000

writeCallback: topBusS, 10001000

moduleSimulate: top read: 1, write: 1

moduleSimulate: top reading and writing to 3000

moduleSimulate: top read: 0, write: 0

moduleSimulate: top done

...

8.2 FIFO
There is an example provided as Examples/PlatformConstruction/FIFOHierarchy that

shows the connection of buses between levels of hierarchy.

This example contains two modules.

The first module ‘submodule’ instances an OR1K processor and two FIFOs instances

connected between the OR1K processor FIFO ports and ports on the module.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 42 of 167

The second module ‘topmodule’ is used to instance ‘submodule’ twice and to connect the

two modules FIFO out ports to the other modules FIFO in ports, as shown in the diagram

mod 0

submodule

topmodule

memOR1K

mod 1

submodule

memOR1K

fifo0

fifo1

in in outout

And as shown in the following extract from topmodule/module.op.tcl

Create two modules that will communicate via the FIFO

ihwaddmodule -instancename mod0 -modelfile submodule/model

ihwaddmodule -instancename mod1 -modelfile submodule/model

ihwaddfifo -instancename fifo0 -width 32

ihwaddfifo -instancename fifo1 -width 32

When the example is run the processors within each ‘submodule’, that is ‘mod0’ and

‘mod1’, execute the application messageIn and a messageOut respectively to transfer a

message using the FIFO connections between them.

The application makes use of inline assembler in order to generate the correct

instruction/operation. There is a special purpose register added to the OR1K processor

that allows access to the read and write FIFOs.

Message out application messageout.c

#include <stdio.h>

const char *message = "This is the Imperas simulator communicating with FIFOs\n";

static void writeToFifo(unsigned int value) {

 asm volatile("l.mtspr r0,%0,0x123" :: "r"(value));

}

int main() {

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 43 of 167

 unsigned int i = 0;

 unsigned int c;

 while((c=message[i++])) {

 writeToFifo(c);

 }

 writeToFifo(0);

 return 0;

}

Message in application messagein.c

#include <stdio.h>

static unsigned int readFromFifo(void) {

 unsigned int result;

 asm volatile("l.mfspr %0,r0,0x123" : "=r"(result));

 return result;

}

int main() {

 unsigned int c;

 while((c=readFromFifo())) {

 printf("%c", c);

 }

 return 0;

}

When the applications are executed in the virtual platform the output message is

displayed when reception is complete as shown.

This is the Imperas simulator communicating with FIFOs

8.3 Net
There is an example provided as Examples/PlatformConstruction/netHierarchy that

shows the connection of buses between levels of hierarchy.

This example contains a module and a test harness.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 44 of 167

The module has hardware generated that contains two net ports and connected nets,

‘netIn’ and ‘netOut’.

uut

module

harness

net write net callbacks

N
e
tI

n

N
e
tO

u
t

topNetDrive topNetRecv

net callback

cb

The module C file installs a net callback function on the input net to transfer the value to

the output net

Net callback function, writes value from netIn onto netOut

static OP_NET_WRITE_FN(netCallback) {

 optModuleObjectP object = userData;

 opPrintf("netRepeater: netCallback: set '%s' to %u\n",

 opObjectName(object->netOut),

 value);

 opNetWrite(object->netOut, value);

}

Install callback onto the net netIn

 opNetWriteMonitorAdd(object->netIn, netCallback, object);

the harness instantiates the module and adds a callback onto netOut to monitor any

changes to its value.

Defining callback

static OP_NET_WRITE_FN(netCallback) {

 opPrintf("uut: netCallback: topNetRecv = %u\n", value);

}

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 45 of 167

Adding callback

 opNetWriteMonitorAdd(topNetRecv, netCallback, 0);

running the example script builds and then executes the simulation which should provide

the following output

uut: setting up callback on net 'topNetRecv'

netRepeater: setting up net repeater 'uut/netIn' to 'uut/netOut'

uut: simulate: writing net 'topNetRecv' to 0

netRepeater: netCallback: set 'netOut' to 0

uut: netCallback: topNetRecv = 0

uut: simulate: writing net 'topNetRecv' to 1

netRepeater: netCallback: set 'netOut' to 1

uut: netCallback: topNetRecv = 1

uut: simulate: done

8.4 Packetnet
There is an example provided as Examples/PlatformConstruction/packetnetHierarchy that

shows the connection of buses between levels of hierarchy.

This example contains a module, a test harness and a peripheral using a packetnet.

The module instances an OR1K processor and two packetnet peripherals whose registers

are based at locations 0x80000000 and 0x80000010 in the processor memory space.

uut

module

harness

packetnet write packetnet callbacks

p
k
tn

e
t

pktModel2pktModel1

mem (prog)
0x00000000

0xFFFFFFFF

0xFFFF0000

0x80000000 pktModel1

0x0000FFFF

Platform Memory Map

0x80000010

mem

(prog)
OR1K

packetbus1

mem

(stack)

mem (prog)

pktModel2

The application running on the OR1K processor starts a transfer by the first packetnet

peripheral and then on the second.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 46 of 167

int main(int argc, char **argv)

{

 LOG("PACKETNET TEST Application\n\n");

 delay(1000);

 // Write to the transmit register of the first instance, causing the model

 // to transmit. The value 0x77 goes in the packet header, so we can see which

 // instance was triggered.

 writeReg8(0x80000000, 0, 0x77);

 delay(1000);

 // Write to the transmit register of the second instance, causing the model

 // to transmit. The value 0x88 goes in the packet header, so we can see which

 // instance was triggered.

 writeReg8(0x80000010, 0, 0x88);

 delay(1000);

 LOG("PACKETNET TEST Application DONE\n\n");

 return 1;

}

The packetnet ports are instanced in the harness which allows them to be monitored and

written to.

The harness installs a callback on the packetnet input to monitor packets being received

static OP_PACKETNET_WRITE_FN(packetnetFunction) {

 netPacketP p = data;

 if(p && bytes) {

 opMessage("I", HARNESS_NAME "_PKT_RXD",

 "Platform PKT testbench Trigger bytes=%u {%02x}, {%s}, {%02x}

UD=0x%x\n",

 bytes,

 p->head,

 p->data,

 p->tail,

 (Uns32)(UnsPS)userData

);

 // increment this tail value. In our simple protocol this tells anyone

 // watching the packet that we received it.

 p->tail++;

 }

}

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 47 of 167

Using

 //

 // Add callback onto the packetnet connection

 //

 opPacketnetWriteMonitorAdd(pktnet_pkn, packetnetFunction, 0);

and writes a frame of data to the packetnet interface

//

// Send a packetnet and reports the fact

//

static void packetWrite(optModuleP mi) {

 optPacketnetP pkn = opObjectByName(mi, "pktnet",

 OP_PACKETNET_EN).Packetnet;

 netPacket p = { 1, {'I', 'C', 'M', 0, 0, 0 }, 0 };

 opMessage("I", HARNESS_NAME "_PKT_TXS",

 "%s: writePkt START {%02x}, {%s}, {%02x}",

 opObjectHierName(pkn),

 p.head,

 p.data,

 p.tail

);

 // This is the function that triggers the packetnet.

 // All models with a callback installed on this packetnet

 // will be notified while this function is active.

 opPacketnetWrite(pkn, &p, sizeof(netPacket));

 // Now that the function has returned, we are certain that all

 // models have been notified. Their notifier callbacks have finished,

 // and if they chose to modify the data in the packet, we can see the

 // modification here.

 opMessage("I", HARNESS_NAME "_PKT_TXE",

 "%s: writePkt DONE {%02x}, {%s}, {%02x}",

 opObjectHierName(pkn),

 p.head,

 p.data,

 p.tail

);

 opPrintf("\n");

}

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 48 of 167

The example is built and executed with the example script, the execution should provide

output similar to the following:
...

Info PACKETNET TEST Application

Info PACKETNET TEST Application

Info (PKT_PSETXS) testpacketnet/pktModel1: PSE to packetnet START {77} {PSETX} {00}

Info (PKT_PSERXD) testpacketnet/pktModel2: Peripheral PKT model Trigger bytes=8 {77}, {PSETX}, {00} UD=33

Info (testpacketnet_PKT_RXD) Platform PKT testbench Trigger bytes=8 {77}, {PSETX}, {01} UD=0x0

Info (PKT_PSETXE) testpacketnet/pktModel1: PSE to packetnet DONE {77} {PSETX} {02}

Info (PKT_PSETXS) testpacketnet/pktModel2: PSE to packetnet START {88} {PSETX} {00}

Info (PKT_PSERXD) testpacketnet/pktModel1: Peripheral PKT model Trigger bytes=8 {88}, {PSETX}, {00} UD=33

Info (testpacketnet_PKT_RXD) Platform PKT testbench Trigger bytes=8 {88}, {PSETX}, {01} UD=0x0

Info (PKT_PSETXE) testpacketnet/pktModel2: PSE to packetnet DONE {88} {PSETX} {02}

Info PACKETNET TEST Application DONE

Info (testpacketnet_PKT_TXS) testpacketnet/pktNet: writePkt START {01}, {APITX}, {00}

Info (PKT_PSERXD) testpacketnet/pktModel1: Peripheral PKT model Trigger bytes=8 {01}, {APITX}, {00} UD=33

Info (PKT_PSERXD) testpacketnet/pktModel2: Peripheral PKT model Trigger bytes=8 {01}, {APITX}, {01} UD=33

Info (testpacketnet_PKT_TXE) testpacketnet/pktNet: writePkt DONE {01}, {APITX}, {02}

...

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 49 of 167

9 Introducing Basic Processor Introspection
Previously, we saw an example which used standard instantiation attributes to enable

tracing. The trace file output was generated in a fixed order. Occasionally, it might be

necessary to generate trace information in a different format: for example, if a platform is

being used to generate trace output to compare with the output from another tool,

comparison is much easier if the format from the platform can be made to exactly match

the other tool.

The OP API contains a number of functions allowing processor instance registers to be

read and written. These can be used to construct test platforms that generate trace output

from a simulation run in whatever format required. These access functions allow:

• Access to instance program counter;

• Access to any processor register by name;

• Dump of processor registers;

• Disassembly of the current instruction;

• Access to the count of instructions executed by the processor.

There is also a function available that allows a processor model to be stepped by a single

instruction, opProcessorSimulate, which will be used in this example.

9.1 Reading and Writing Registers
There are a set of functions that allow access to the current program counter and to access

the program counter while determining if the current instruction is being executed in the

delay slot (for processors that support delay slot instructions) of a processor.

The processor can be found using the opProcessorNext function applied to a module, for

example to get the first processor in a module (mi), use the following

optProcessorP processor = opProcessorNext(mi, NULL);

To access the current program counter, use opProcessorPC:

Addr currentpc = opProcessorPC(processor); // get current PC

The return value from opProcessorPC is of type Addr, which is a 64-bit unsigned integer.

For processors with address widths less than 64 bits, this value should be cast to an

appropriate sized value if it is to be used subsequently in an arithmetic expression; for

example:

Uns32 currentpc = (Uns32)opProcessorPC(processor); // get current PC as 32-bit value

For processors with delay slot instructions, it is sometimes useful to know whether the

current instruction is a delay slot instruction. To do this, use opProcessorPCDS:

Uns8 delaySlotOffset;

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 50 of 167

Uns32 branchPC = opProcessorPCDS(processor, &delaySlotOffset);

opProcessorPCDS behaves as follows:

1. If the current instruction is not a delay slot instruction, it returns the current

program counter and sets the byref value delaySlotOffset to 0;

2. If the current instruction is a delay slot instruction, it returns the address of the

preceding branch instruction and sets the byref value delaySlotOffset to the

current instruction byte offset from the branch instruction. For example, if there is

a branch instruction at 0x1000 with a delay slot instruction at 0x1004, then if

opProcessorPCDS is called when the processor is executing the delay slot

instruction at 0x1004, it will return 0x1000 and set delaySlotOffset to 4.

The current value of any processor register can be found using opProcessorRegRead,

which fills a byref argument buffer with the current value of a named register:

Bool opProcessorRegRead (optProcessorP processor, optRegP reg, void *buffer);

To write a processor register, there is a similar function opProcessorRegWrite:

Bool opProcessorRegWrite(optProcessorP processor, optRegP reg, void *buffer);

The following code snippet shows how a processor register called R1 can be masked with

a bitmask REG_FLAG_MASK in a platform:

#define REG_FLAG_MASK 0x00f0000f

...

Uns32 regR1;

optRegP reg = opProcessorRegByName(processor, "R1");

if(reg) {

 if (opProcessorRegRead(processor, reg, regR1)) {

 regR1 = regR1 & REG_FLAG_MASK;

 opProcessorRegWrite(processor, reg, regR1);

 }

}

It is the responsibility of the calling function to ensure that the buffer value is the correct

size to hold the register data. For example, the above example implicitly requires that

register R1 is a 32-bit register which will fit in a value of type Uns32. The opRegBits

function may be used to verify this.

The function opProcessorPCSet can be used to set the processor's start-address without

knowing the name of the PC in the particular model being used (not everyone calls it

'PC').

http://intranet/home/build/DailyBuild/HEAD/Linux/Opt/Imperas/doc/api/op/html/op_8h.html#a3f2d662e29a070c4bbd1da9cd0c596b3
http://intranet/home/build/DailyBuild/HEAD/Linux/Opt/Imperas/doc/api/op/html/opCommandCall_8c.html#a5e9b053c2653687346665004aeb841c1

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 51 of 167

It is also possible within a platform to iterate over all the registers in a processor instance

to determine their names and sizes (in bits) using three functions: opProcessorRegNext,

opRegName and opRegBits.

opProcessorRegNext returns an opaque pointer of type optRegP, which describes a single

processor register. It takes as an argument the previously-returned optRegP value; when

passed a NULL pointer, it returns the first optRegP pointer for a processor mode. It can

therefore be used to iterate over all register descriptions for a processor in a simple loop:

optRegP info = 0; // initiate loop with NULL pointer

while((info=opProcessorRegNext(processor, info))) {

 . . .

}

Given an optRegP pointer, the name of the register it corresponds to can be found using

opRegName and the register size in bits can be found using opRegBits:

optRegP info = 0; // initiate loop with NULL pointer

while((info=opProcessorRegNext(processor, info))) {

 const char *name = opRegName(info);

 Uns32 bits = opRegBits(info);

 opPrintf(“Found %u-bit register %s\n”, name, bits);

}

The optRegP returned by opProcessorRegNext can be used, if required, to identify the

register to read or write using opProcessorRegRead or opProcessorRegWrite.

Alternatively the register can be read or written directly using its name using

opProcessorRegReadByName and opProcessorRegWriteByName respectively.

opRegUsageEnum returns an enumeration and opRegUsageString returns a string

describing if the register has special use. Extending the above example to show this

information

optRegP info = 0; // initiate loop with NULL pointer

while((info=opProcessorRegNext(processor, info))) {

 const char *name = opRegName(info);

 Uns32 bits = opRegBits(info);

 opPrintf(“Found %u-bit register %s: usage (%d) %s\n”,

 name,

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 52 of 167

 bits,

 opRegUsageEnum(info),

 opRegUsageString(info));

9.2 Generating Disassembly Output
Processor models contain instruction disassembly functionality that can be accessed from

a platform using opProcessorDisassemble, which returns a string disassembly of an

instruction at a passed address. For example, to print the disassembled instruction at the

current program counter:

opPrintf(“%s”, opProcessorDisassemble(processor, opProcessorPC(processor)));

9.3 Dumping Registers
Processor models also contain functionality to dump all processor register values in a

standard format. This can done using opProcessorRegDump:

opProcessorRegDump(processor);

9.4 Instruction Counts
Every processor also maintains a count of the number of instructions that it has executed

(as a 64-bit unsigned integer). This can be accessed using the OP function

opProcessorICount; for example, to print the number of instructions executed at the end

of simulation:

opPrintf(

 "Simulation finished, “FMT_64u” instructions executed...\n",

 opProcessorICount(processor)

);

NOTE: The macro FMT_64u defines a format string that will correctly print a 64-bit

unsigned integer on both Linux and Windows hosts. It is defined with other similar

macros in ImpPublic/include/host/impTypes.h.

9.5 Example Processor Introspection

An example is provided in Examples/SimulationControl/basicProcessorIntrospection that

utilizes the functions described above.

Take a copy of the example and run the script which will build both the test application,

the hardware definition in the module and the test harness.

> cp -r Examples/SimulationControl/basicProcessorIntrospection .

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 53 of 167

> cd basicProcessorIntrospection

> example.sh

Compiling application.c

Linking application.OR1K.elf

rm application.o

iGen Create OP MODULE module

Copying STUBS module.c.igen.stubs to module.c

Host Depending obj/Linux32/module.d

Host Compiling Module obj/Linux32/module.o

Host Linking Module object model.so

Host Depending obj/Linux32/harness.d

Host Compiling Platform obj/Linux32/harness.o

Host Linking Platform harness.Linux32.exe

Host Linking Platform object model.so

...

Info (MODULE) Introspect processor ‘cpu1’

Found 32-bit register R0: usage (0) general

Found 32-bit register R1: usage (2) stack pointer

Found 32-bit register R2: usage (3) frame pointer

Found 32-bit register R3: usage (0) general

...

Found 32-bit register TTCR: usage (0) general

Found 32-bit register TTMR: usage (0) general

Found 32-bit register EXCPT: usage (0) general

9.6 Example Custom Processor Trace

An example is provided in Examples/SimulationControl/customProcessorTrace that

utilizes the functions described above

Take a copy of the example and run the script which will build both the test application,

the hardware definition in the module and the test harness.

> cp -r Examples/SimulationControl/customProcessorTrace .

> cd customProcessorTrace

> example.sh

When the simulation executes, the following should be observed:

Info (MODULE) Trace processor 'cpu1'

1 : 0x104 : l.addi r3,r0,0x0

2 : 0x108 : l.addi r4,r0,0x0

3 : 0x10c : l.addi r5,r0,0x0

4 : 0x110 : l.addi r6,r0,0x0

5 : 0x114 : l.addi r7,r0,0x0

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 54 of 167

6 : 0x118 : l.addi r8,r0,0x0

…

2100 : 0x177c : l.j 0x0000176c

2101 : 0x1780 : l.nop 0x0

2102 : 0x176c : l.jal 0x00004674

2103 : 0x1770 : l.ori r3,r10,0x0

2104 : 0x4674 : l.addi r1,r1,0xfffffffc

2105 : 0x1774 : l.jalr r4

Simulation finished, stop reason 'CPU has exited' after 2105 instructions executed

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 55 of 167

10 Simulating a Design

10.1 Simulator Scheduler
The scheduler controls the execution of instructions on each of the processor models that

may be in the platform and also when peripheral models timed events occur.

It is the recommended approach to use the simulator internal built-in scheduler to execute

simulation. However, in circumstances when you wish to control how the processor

models instruction execution are scheduled and how time is moved forward OP API

functions can be used in its place.

How processors execute instructions and how time is moved forward may be controlled

when using the standard scheduler by setting the processor MIPS rate and the platform

quantum.

When using a custom scheduler it is the combination of the arguments passed to the

functions that determine how instructions executed and time are related.

It is possible to create the same execution with both the standard and custom schedulers

as shown in the example in section 10.1.3 Example below.

10.1.1 The standard built in (default) simulator scheduler
algorithm

The platforms/modules created using iGen and the OP API would normally be simulated

using the default scheduling algorithm. By using the default algorithm the

harness/modules can be directly imported into the Imperas professional tools without any

modification.

The default scheduling is performed by a call to the opRootModuleSimulate function.

This runs all processor and peripheral instances in the platform. There is one argument, a

root module.

 opRootModuleSimulate(myRootModule)

The default scheduling algorithm described in section 10.6 is used in harness.exe, and all

the examples in the documents up to this point.

10.1.2 Writing a custom scheduler

Examples of when a custom scheduler would be useful are:

1. in co-simulation to allow explicit control of components

2. when fine grain control of the interaction between components in a system is

required

A custom scheduling algorithm is created using the opProcessorSimulate and

opRootModuleTimeAdvance functions in place of the opRootModuleSimulate function.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 56 of 167

The function opProcessorSimulate is applied to only one processor instance. To simulate

the platform all processors and peripherals in the platform must be scheduled. The

function opProcessorSimulate is used for each processor instance in turn to make them

execute a fixed number of instructions. The number of instructions a processor can

execute in a given slice of time is a product of the performance of the processor and the

length of time the time slice occupies.

The sequence to simulate a platform is to schedule each processor to execute the number

of instructions it can nominally achieve in the time slice. Once all processors have

executed any instructions they should perform in a time slice the platform time is moved

forward in time by the appropriate amount using the opRootModuleTimeAdvance

function. In moving time forward any peripheral functionality that is waiting for an

amount of time to expire within this time slice will execute its behavior.

opRootModuleTimeAdvance returns False if the new time is at or beyond a requested stop

time (see opRootModuleSetSimulationStopTime).

10.1.3 Example

This example is found in the customScheduler directory.

$IMPERAS_HOME/Examples/SimulationControl/customScheduler

The example shows how a custom scheduler is used to control the execution of an

application on a processor while moving time forward so that events within peripheral

models occur at the correct rate.

#define INSTRUCTIONS_PER_SECOND 10000000

#define QUANTUM_TIME_SLICE 0.00001

#define INSTRUCTIONS_PER_TIME_SLICE (INSTRUCTIONS_PER_SECOND *

 QUANTUM_TIME_SLICE)

 // must advance to next phase for the API calls that follow

 opRootModulePreSimulate(mi);

 if (options.custom) {

 // run simulation with custom scheduling

 optTime myTime = QUANTUM_TIME_SLICE;

 optStopReason stopReason = OP_SR_SCHED;

 do {

 // move time forward by time slice on root module

 // NOTE: This matches the standard scheduler which moves time forward in

 // the system and then executes instructions on all processors

 opRootModuleTimeAdvance(mi, myTime);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 57 of 167

 opMessage(

 "I", HARNESS_NAME,

 "Advance Time to %g seconds",

 (double)myTime

);

 // run processor for number of instructions calculated for time slice

 stopReason = opProcessorSimulate(proc,

 INSTRUCTIONS_PER_TIME_SLICE);

 if ((stopReason!=OP_SR_SCHED) && (stopReason!=OP_SR_HALT)) {

 opMessage(

 "I", HARNESS_NAME,

 "Simulation Complete (%s)",

 opStopReasonString(stopReason)

);

 break; // finish simulation loop

 }

 myTime += QUANTUM_TIME_SLICE;

 } while (1);

 } else {

 // run with built in standard scheduler

 opRootModuleSimulate(mi);

 }

Compile the test harness, example module and application as before using the following

commands in the memory directory:

> make –C harness

> make –C module

> make –C application CROSS=OR1K

To run the simulation, in the customScheduler directory, run :

run with custom scheduler

> harness/harness.${IMPERAS_ARCH}.exe \

 --program application/application.${CROSS}.elf \

 --output custom.log \

 --custom \

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 58 of 167

 $@

You should see the following output:

Info (harness) Running with custom scheduler

Info (16550_BRS) u1/uartTTY0: baud rate=1152000 parity=N data bits=5 total bits=7

character delay=6usec

Info (harness) Advance Time to 1e-05 seconds

Info (harness) Advance Time to 2e-05 seconds

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x48 ('H')

Info (harness) Advance Time to 3e-05 seconds

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x65 ('e')

Info (harness) Advance Time to 4e-05 seconds

…

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x6c ('l')

Info (harness) Advance Time to 0.00085 seconds

Info (harness) Advance Time to 0.00086 seconds

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x6f ('o')

Info (harness) Advance Time to 0.00087 seconds

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x20 (' ')

Info (harness) Advance Time to 0.00088 seconds

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x38 ('8')

Info (harness) Advance Time to 0.00089 seconds

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x0a (' ')

Info (harness) Advance Time to 0.0009 seconds

Info (harness) Simulation Complete (CPU has exited)

Info (harness) Time at Completion 0.0009 seconds

To run the simulation, with the standard scheduler, in the customScheduler directory, run

:

run with standard scheduler

> harness/harness.${IMPERAS_ARCH}.exe \

 --program application/application.${CROSS}.elf \

 --output standard.log \

 $@

You should see the similar output i.e. the same but without the time advance information

Info (harness) Running with standard scheduler

Info (16550_BRS) u1/uartTTY0: baud rate=1152000 parity=N data bits=5 total bits=7

character delay=6usec

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x48 ('H')

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x65 ('e')

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 59 of 167

…

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x6c ('l')

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x6c ('l')

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x6f ('o')

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x20 (' ')

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x38 ('8')

Info (16550_UWR) u1/uartTTY0: Write to Data register: data=0x0a (' ')

Info (harness) Time at Completion 0.0009 seconds

Note the time at completion is the same in both cases.

10.2 Custom Simulation Tracing with Harness

10.2.1 Controlling Instructions Executed on a Processor

Previous examples have used the function opRootModuleSimulate, which simulates a

design using a built-in scheduling algorithm that simulates each processor for many

instructions, or until the simulation is finished, before returning to the harness. For this

example, we instead want to simulate a processor one instruction at a time, performing

custom instruction tracing after each one completes. To do this, use opProcessorSimulate:

optStopReason opProcessorSimulate (optProcessorP processor, Uns64 instructions);

opProcessorSimulate runs the passed processor for up to instructions more instructions

and then returns. The precise reason why simulation stopped is indicated by the return

code provided by the enumerated type optStopReasonE:

Stop Reason Description

OP_SR_SCHED Scheduler expired.

OP_SR_YIELD Yield encountered.

OP_SR_HALT CPU is halted.

OP_SR_EXIT CPU has exited.

OP_SR_FINISH Simulation finish.

OP_SR_RD_PRIV Read privilege exception.

OP_SR_WR_PRIV Write privilege exception.

OP_SR_RD_ALIGN Read align exception.

OP_SR_WR_ALIGN Write align exception.

OP_SR_FE_PRIV Fetch privilege exception.

OP_SR_ARITH Arithmetic exception.

OP_SR_INTERRUPT Interrupt simulation.

OP_SR_FREEZE Frozen (by opProcessorFreeze).

OP_SR_WATCHPOINT Memory watchpoint is pending.

OP_SR_BP_ICOUNT Instruction count breakpoint is pending.

OP_SR_BP_ADDRESS Address breakpoint is pending.

OP_SR_RD_ABORT Read abort exception.

OP_SR_WR_ABORT Write abort exception.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 60 of 167

OP_SR_FE_ABORT Fetch abort exception.

The three most common return codes are:

OP_SR_SCHED: processor successfully simulated the required number of instructions

and returned

OP_SR_EXIT: processor has exited (but in a multiprocessor platform, other processors

may still be running)

OP_SR_FINISH: simulation has finished

In practice, it is usually sufficient to continue simulation while the return code from

opProcessorSimulate is OP_SR_SCHED, for example:

while(opProcessorSimulate(processor, 1)==OP_SR_SCHED) {

 . . .

}

opPrintf(

 "Simulation finished, “FMT_64u” instructions executed\n",

 opProcessorICount(processor)

);

Note that simulating one instruction at a time is much less efficient than simulating for a

larger number of instructions, so this should only be used when needed, such as when

tracing each instruction as we are doing here.

10.2.2 Generating Disassembly Information

The disassembly information is normally generated when the built-in tracing is enabled,

using --trace. However, API functions are also available to allow some custom tracing to

be generated within the harness.

The disassembly output can be obtained as a string using the opProcessorDisassemble

function and providing the processor and the address of interest

opPrintf(“0x%08x : %s\n”, thisPC, opProcessorDisassemble (processor, thisPC);

10.2.3 Accessing Registers

The registers of a processor can each be individually accessed using the either an iterator

function opProcessorRegNext or by name using opProcessorRegByName. These can then

be queried and values or other information provided.

All of the standard core registers may also be displayed directly from the model as a

listing using the opProcessorRegDump function. This will format the registers as dictated

by the model or if there is no model function as 4 registers per line.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 61 of 167

10.2.4 Example

The following example uses the functions described above to control the order of

instruction disassembly, register dumping and instruction execution.

This example is found in the processorRegisterAccess directory.

$IMPERAS_HOME/Examples/ControlSimulation/processorRegisterAccess

The module is defined in module/module.op.tcl as a platform with a single processor and

memory. The harness that instantiate the module and controls the simulation is in

harness/harness.c, is as follows:

int main(int argc, const char *argv[]) {

 opSessionInit(OP_VERSION);

 opCmdParseStd(MODULE_NAME, OP_AC_ALL, argc, argv);

 optModuleP mr = opRootModuleNew(0, MODULE_NAME, 0);

 const char *u1_path = "module";

 optModuleP mi = opModuleNew(

 mr, // parent module

 u1_path, // modelfile

 MODULE_INSTANCE, // name

 0,

 0

);

 // get the handle for the processor in the module

 optProcessorP processor = opObjectByName(mi, "cpu1",

OP_PROCESSOR_EN).Processor;

 // construction complete

 opRootModulePreSimulate(mr);

 Bool done = False;

 while(!done) {

 Uns32 currentPC = (Uns32)opProcessorPC(processor);

 // disassemble instruction at current PC

 opPrintf("** Instruction Disassemble\n");

 opPrintf(

 "0x%08x : %s\n",

 currentPC,

 opProcessorDisassemble(processor, currentPC)

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 62 of 167

);

 // execute one instruction and check for none scheduler return

 opPrintf("** Instruction Execution\n");

 done = (opProcessorSimulate(processor, 1) != OP_SR_SCHED);

 // dump registers

 opPrintf("** Register Dump\n");

 opProcessorRegDump(processor);

 }

 // print number of instructions executed at end of simulation and reason simulation

stopped

 opPrintf(

 "Simulation finished, "FMT_64u" instructions executed, StopReason is '%s'\n",

 opProcessorICount(processor),

 opStopReasonString(opProcessorStopReason(processor))

);

 opSessionTerminate();

 return 0;

}

Compile the module, test harness and application using the following commands in the

processorRegisterAccess directory:

make -C module

make -C harness

make -C application

To run the simulation, in the processorRegisterAccess directory, run :

./harness/harness.Linux32.exe --program application/asmtest.OR1K.elf

You should see the following output:

** Instruction Disassemble

0x01000074 : l.addi r1,r0,0x0

** Instruction Execution

** Register Dump

--------------- --------------- --------------- ---------------

 R0 : 00000000 R1 : 00000000 R2 : deadbeef R3 : deadbeef

 R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef

 R8 : deadbeef R9 : deadbeef R10: deadbeef R11: deadbeef

 R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef

 R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 63 of 167

 R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef

 R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef

 R28: deadbeef R29: deadbeef R30: deadbeef R31: deadbeef

 PC : 01000078 SR : 00008001 ESR: deadbeef EPC: deadbeef

 TCR: 00000000 TMR: 00000000 PSR: 00000000 PMR: 00000000

 BF:0 CF:0 OF:0

--------------- --------------- --------------- ---------------

… etc …

** Instruction Disassemble

0x01000120 : l.addi r1,r0,0x0

** Instruction Execution

** Register Dump

--------------- --------------- --------------- ---------------

 R0 : 00000000 R1 : 00000000 R2 : 00000001 R3 : ffffffff

 R4 : 80000000 R5 : 7fffffff R6 : deadbeef R7 : deadbeef

 R8 : deadbeef R9 : deadbeef R10: deadbeef R11: deadbeef

 R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef

 R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef

 R20: 80000000 R21: deadbeef R22: deadbeef R23: deadbeef

 R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef

 R28: deadbeef R29: deadbeef R30: deadbeef R31: deadbeef

 PC : deadbeef SR : 00008801 ESR: deadbeef EPC: deadbeef

 TCR: 00000000 TMR: 00000000 PSR: 00000000 PMR: 00000000

 BF:0 CF:0 OF:1

--------------- --------------- --------------- ---------------

Simulation finished, 44 instructions executed, StopReason is 'CPU has exited'

10.3 Interrupt a Running Simulation
Normally, opProcessorSimulate and opRootModuleSimulate will run until they have

completed the requested number of simulated instructions (for opProcessorSimulate) or

time has advanced until the time specified by opRootModuleSetSimulationStopTime (for

opRootModuleSimulate), or until a processor model has performed some explicit action

that terminates the simulation loop early (for example, halting or exiting) or the

simulation completes and all processors have finished execution.

10.3.1 Interrupt Simulation (from a Cntrl-C Handler)

Occasionally, it may be required that the opProcessorSimulate or opRootModuleSimulate

call be terminated early by some external event. For example, the harness may implement

an interrupt handler so that when a user presses Ctrl-C the simulation loop should

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 64 of 167

immediately terminate. This can be done using the opInterrupt1 API call from within a

signal handler, shown in the following code snippet (Linux only):

#include <signal.h>

//

// LINUX signal handler to interrupt the running simulation

//

static void ctrlCHandler(Int32 nativeSigNum, siginfo_t *sigInfo, void *context) {

 opInterrupt();

}

//

// Install a LINUX signal handler to trap any CtrlC

//

static void installCtrlCHandler(void) {

 struct sigaction sa = {{0}};

 sa.sa_sigaction = ctrlCHandler;

 sa.sa_flags = SA_SIGINFO;

 sigfillset(&sa.sa_mask);

 sigaction(SIGINT, &sa, NULL);

}

Within the main function, the Ctrl-C handler is installed:

int main(int argc, char ** argv) {

 . . .

 // install a signal handler to trap any CtrlC

 installCtrlCHandler();

 . . .

}

When the user presses Ctrl-C, while this example is running, a call to the ctrlCHandler

occurs which calls opInterrupt. This will cause any active opProcessorSimulate or

opRootModuleSimulate call to return, and the stopReason for the processor that stops

will be set to OP_SR_INTERRUPT.

This needs to be handled in the main routine, for example:

1 The API function opInterrupt is the only API call that can be made when a simulation is running. This

causes the simulator to return when it reaches a stable state from which it can do so.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 65 of 167

 optProcessorP stoppedProcessor;

 // simulate until done or ctrl-C

 while((stoppedProcessor=opRootModuleSimulate(mr))) {

 if(opProcessorStopReason(stoppedProcessor)==OP_SR_INTERRUPT) {

 opPrintf(

 "%s: interrupt after " FMT_64u " instructions...\n",

 opObjectName ((optObjectP)stoppedProcessor),

 opProcessorICount(stoppedProcessor)

);

 } else {

 break;

 }

 }

In this example, when an interrupt occurs, the platform prints a message and continues

simulation by calling opRootModuleSimulate again (which will continue from where it

was interrupted). In real cases, applications will typically enter a command interpreter

instead at this point.

In the common case that simulation needs to be interrupted on a Ctrl-C event, The API

provides a method that does not require OS-specific signal handler code: simply specify

OP_FP_STOPONCONTROLC, either applied to the root module as an override

 opParamBoolOverride(0, OP_FP_STOPONCONTROLC, 1);

 optModuleP mr = opRootModuleNew(0, 0, 0);

or applied as parameters to the root module

 optModuleP mr = opRootModuleNew(

 0,

 0,

 OP_PARAMS(

 OP_PARAM_BOOL_SET(OP_FP_STOPONCONTROLC, 1)

)

);

This will have exactly the same effect as an OS-specific interrupt handler calling

opInterrupt.

10.3.2 Interrupt a Specific Processor

It may be required that a specific processor is interrupted when it accesses an area of

memory. This can be achieved using the opProcessorYield API call. This will cause the

simulator to return from the opProcessorSimulate or opRootModuleSimulate function

after the instruction in which the opProcessorYield was called has completed.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 66 of 167

In this example opProcessorYield is called when one of the processors makes a write to a

specific address range that triggers the memory watchpoint callback.

OP_BUS_SLAVE_WRITE_FN(extMemoryWrite) {

 opMessage("I", "EXTERNAL_MEMORY_WRITE",

 "%s access at address 0x" FMT_Ax " data 0x%08x",

 processor ? opObjectHierName(processor) : "artifact", addr, *(Uns32 *)data);

 // Calling this API function will interrupt the simulator

 opProcessorYield(processor);

 }

10.3.3 Example

This example is found in the interruptSimulation directory.

$IMPERAS_HOME/Examples/SimulationControl/interruptSimulation

Compile the test harness, module and application using the following commands in the

interruptSimulation directory:

> make -C harness

> make -C module

> make -C application

To run the simulation, in the interruptSimulation directory, run:

> ./harness/harness.Linux32.exe --program application/application.OR1K.elf

You should see output as in example multiprocessor as the two processors execute the

application.

After a number of iterations the application will make a write that will cause a call to

opInterrupt, when data written is 610. This will cause the simulator to return from the

opRootModuleSimulate and a message will be generated of the form:

CPU (writer): fib(15) = 610

Info (MEMORY_ACCESS) top/u1/cpu1 Write at address 0xe0001004 (0xe0001004)

data 0x00000262 (610)

Info (HARNESS) cpu1: interrupt after 1504523 instructions 'Interrupt simulation'

Info (MEMORY_ACCESS) top/u1/cpu2 Read at address 0xe0001004 (0xe0001004) data

0x00000262 (610)

Info (HARNESS) cpu2: interrupt after 1600036 instructions 'Interrupt simulation'

CPU (reader): munge(610) = 185745

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 67 of 167

The application will make a write that will cause a call to opProcessorYield, when the

data written is 6765. This will cause the simulator to return from opRootModuleSimulate

and a message will be generated of the form:

CPU (writer): fib(20) = 6765

Info (MEMORY_ACCESS) top/u1/cpu1 Write at address 0xe0001004 (0xe0001004)

data 0x00001a6d (6765)

Info (HARNESS) cpu1: interrupt after 3147106 instructions 'Yield was encountered'

Info (MEMORY_ACCESS) top/u1/cpu2 Read at address 0xe0001004 (0xe0001004) data

0x00001a6d (6765)

Info (HARNESS) cpu2: interrupt after 3200018 instructions 'Yield was encountered'

CPU (reader): munge(6765) = 22879230

You may also press Ctrl-C repeatedly while the application runs; each time, a line will be

generated of the form:

Info (HARNESS) cpu1: interrupt after <ins count> instructions 'Interrupt simulation'

or:

 Info (HARNESS) cpu2: interrupt after <ins count> instructions 'Interrupt simulation'

depending which processor is running when the Ctrl-C is hit.

10.3.4 Important Notes

10.3.4.1 API Usage in Ctrl-C Handler

When in a Ctrl-C or other similar handler and you want to cause the simulation to be

interrupted i.e. return from the opProcessorSimulate or opRootModuleSimulate functions

the opInterrupt may be used. However, it is important that no other API calls should be

made from within a handler of this type. To do so may result in unexpected behavior.

10.3.4.2 opInterrupt Usage

One important point about opInterrupt is that it is not intended to be asynchronously

thread-safe. In other words, it is not appropriate to asynchronously call opInterrupt when

the simulation thread is not suspended. In virtual platform simulations with multiple

asynchronous threads, the interrupting thread should be designed to work as follows:

1. It should suspend the simulating thread using any appropriate means;

2. It should call opInterrupt to notify the suspended thread that an interrupt has been

requested;

3. It should restart the simulating thread so that the interrupt request can be acted on.

If this sequence is not followed, simulator data structures may become corrupted.

10.4 Generating External Events to a Processor
Processor models written using the VMI interface can be made to react to external

interrupt events on named ports. For example, a processor model can be made to perform

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 68 of 167

a hard reset on an event on its ‘reset’ port or take an exception and execute from an

exception vector on a change to an interrupt or exception port input.

These types of ‘interrupt’ and ‘exception’ events are signaled to processor models using

nets.

A net is a hardware connection that can signal state; typically asserted and de-asserted are

signaled but a net can be used to pass an unsigned 32bit value.

10.4.1 Processor Reset

The processor ‘reset’ port can be connected to a net that can be driven from the test

harness or from another component (typically a peripheral) in the design.

When the ‘reset’ is asserted2 by writing a ‘1’ to the net the processor is held in a reset

state until the ‘reset’ is de-asserted by writing a ‘0’ to the net.

The following illustrates controlling the ‘reset’ connection from a test harness.

The net object ‘reset’ must be found in the module. This can be done by searching for the

object by name, as shown, or the net could be exported from the module using net ports

and connected in the harness

 optNetP reset = opObjectByName(mi, "reset", OP_NET_EN).Net;

and then may be used to assert the reset

 opNetWrite(reset, 1);

or de-assert the reset

 opNetWrite(reset, 0);

the reset is connected to the processor in the module (module.op.tcl snippet):

connect reset to cpu1

ihwconnect -instancename cpu1 -netport reset -net reset

and may be driven from a peripheral in the module, as well as from the harness

ihwaddperipheral -instancename resetControlPeripheral \

 -type resetControl \

 -modelfile peripheral/pse.pse

2 All OVP/Imperas processor models use a high ‘1’ written to the ‘reset’ net to cause the assertion of the

reset; this may not be representative of the true hardware signal polarity.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 69 of 167

ihwconnect -instancename resetControlPeripheral -netport resetOut -net reset

10.4.2 Processor Startup Reset

The processors in a design can be brought out of reset under control of other components,

for example an application on one processor can write a peripheral register which releases

the reset on a second processor which allows it to start execution.

The mechanism used can be modeled to match the same mechanism in the hardware

definition.

The startup reset can also be controlled from the harness. For example the following code

extract shows a two processor system in which the second processor, cpu2, is brought out

of reset 0.1 seconds after the first processor, cpu1, using the cpu2 reset connection,

reset2.

Obtain the reset connections in the design

 // get reset nets

 optNetP reset2 = opObjectByName(mi, "reset2", OP_NET_EN).Net;

assert the reset on processor cpu2

 // Hold processor cpu2 in reset

 opNetWrite(reset2, 1);

simulate for the required amount of time

 opRootModuleSetSimulationStopTime(mr, 0.1);

 opRootModuleSimulate(mr);

release processor cpu2 reset

 // Release processor2

 opNetWrite(reset2, 0);

simulate until both processors complete

 opRootModuleSimulate(mr);

10.4.3 Processor Reset Example

This example is found in the processorResetControl directory.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 70 of 167

$IMPERAS_HOME/Examples/SimulationControl/processorResetControl

This example includes a design that instantiates two processors and one peripheral model.

Two reset lines connect from the peripheral one to each of the processors and is driven by

the peripheral, as shown in the following diagram.

OR1KOR1K

0x00000000

0xFFFFFFFF

0xF0000000

0x0FFFFFFF

Processor Memory Map

module

0xE0000000

Memory

(ram1)

Memory

(ram2)

OR1KOR1K Memory

(ram1)

Memory

(ram2)

B
ri

d
g

e
B

ri
d

g
e

resetControl

reset

reset

harness

reset

net write

ram2

ram1

resetControl

The application on processor cpu1 is controlling the reset of processor cpu2 the

application of which is running a fibonacci application which includes the generation of

code at the reset vector so that on a reset it jumps back to the initial entry point at ‘start’.

The peripheral model has a control register that can be accessed by either processor that

is used to toggle the value of one or both of the reset connections. It also opens a socket,

using the support included in the BHM API calls, and monitors characters received over

the socket. If an ‘r’ character is received both reset lines are driven high then low to

generate a reset, if a ‘q’ character is received the simulation is terminated. The simulation

will also terminate if the socket is disconnected (terminal window closed).

The control register behavioral code of the peripheral, peripheral/user.c, is as follows:

// Control Register Write

PPM_REG_WRITE_CB(controlRegisterWrite) {

 // if bit one set toggle reset1

 if (SWAP4(data) & 1) {

 if(ppmReadNet(handles.resetOut1)) {

 bhmMessage("I", PSENAME "_CRWC1",

 " Control Register Write: Release reset1");

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 71 of 167

 ppmWriteNet(handles.resetOut1, 0);

 } else {

 bhmMessage("I", PSENAME "_CRWS1",

 " Control Register Write: Reset reset1");

 ppmWriteNet(handles.resetOut1, 1);

 }

 }

 // if bit two set toggle reset2

 if (SWAP4(data) & 2) {

 if(ppmReadNet(handles.resetOut2)) {

 bhmMessage("I", PSENAME "_CRWC2",

 " Control Register Write: Release reset2");

 ppmWriteNet(handles.resetOut2, 0);

 } else {

 bhmMessage("I", PSENAME "_CRWS2",

 " Control Register Write: Reset reset2");

 ppmWriteNet(handles.resetOut2, 1);

 }

 }

 // store current write value

 (Uns32)user = data;

}

Note that the data value written is byte swapped. This is because the OR1K processor

being used uses big endian data ordering, the PSE uses host endian data ordering and on

the x86 this is little endian.

The main routine of the peripheral, is as follows:

 if (channel) {

 bhmSerWriteN(channel, startMessage, sizeof(startMessage));

 while (1) {

 //

 // Non Blocking read

 //

 Uns8 buffer[MAXREAD];

 Uns8 bytes = bhmSerReadN(channel, buffer, 1);

 if (bytes) {

 // echo value back to terminal

 bhmSerWriteN(channel, buffer, 1);

 if (buffer[0] == 'r') {

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 72 of 167

 bhmMessage("I", PSENAME "_MT", "generate reset on reset1");

 ppmWriteNet(handles.resetOut1, 1);

 ppmWriteNet(handles.resetOut1, 0);

 bhmMessage("I", PSENAME "_MT", "generate reset on reset2");

 ppmWriteNet(handles.resetOut2, 1);

 ppmWriteNet(handles.resetOut2, 0);

 }

 if (buffer[0] == 'q') {

 bhmMessage("I", PSENAME "_MT", "Force Finish Simulation");

 bhmFinish();

 }

 }

 // polling delay

 bhmWaitDelay(100);

 }

Open a socket, waiting for a connection to be made

 bhmSerOpenAuto();

Attempt to read a single character from the socket. This is a non-blocking read (there is

an equivalent blocking read, bhmSerReadN) so if nothing is available it returns with

result 0.

 bhmSerReadN(channel, buffer, 1);

If a character is available and it is ‘r’ the peripheral toggles the ‘reset’ net

(handles.resetOut is the handle to the opened port on the peripheral to which the reset line

is connected) to generate a reset signal causing the processor to reset.

 ppmWriteNet(handles.resetOut1, 1);

 ppmWriteNet(handles.resetOut,1 0);

Compile the test harness, module, peripheral and application using the following

commands in the processorResetControl directory:

> make –C harness

> make –C module

> make –C peripheral

> make –C application CROSS=OR1K

To run the simulation, in the processorResetControl directory, run:

> ./harness/harness.Linux32.exe \

 --program top/u1/cpu1=application/application1.OR1K.elf \

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 73 of 167

 --program top/u1/cpu2=application/application2.OR1K.elf \

 --override top/u1/resetControlPeripheral/outfile=uart.log \

 --output imperas.log

You should see output as follows:

Simulator log, showing the following.

Initially both processors are held in reset (reset lines active)

Info (HARNESS) Reset processor cpu1 and cpu2

Info (HARNESS) Simulate to 0.001

Info (HARNESS) Release processor cpu1

Info (HARNESS) Simulate to End

After 0.001 seconds of simulation time processor cpu1 reset line, reset1, is released and

the processor starts executing application1. This application executes a delay before

writing to the resetControl peripheral to release the reset to processor cpu2 which then

starts executing application2 which executes the fibonacci sequence several times.

CPU1: starting...

CPU1: delay (1000000)

CPU1: release cpu2 reset

Info (RESET_CONTROL_CRWC2) top/u1/resetControlPeripheral: Control Register

Write: Release reset2

CPU2: starting...

CPU2: fib(0) = 0

CPU2: fib(1) = 1

CPU2: fib(2) = 1

CPU2: fib(3) = 2

CPU1: delay (1000000)

CPU2: fib(4) = 3

…

CPU2: fib(28) = 317811

CPU2: fib(29) = 514229

CPU2: fib(30) = 832040

CPU2: fib(31) = 1346269

CPU2: fib(32) = 2178309

CPU1: reset cpu2

After a delay, coded within application 1, processor cpu1 performs a reset on processor

cpu2, which we see starts re-executing from the reset vector

Info (RESET_CONTROL_CRWS2) top/u1/resetControlPeripheral: Control Register

Write: Reset reset2

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 74 of 167

Info (RESET_CONTROL_CRWC2) top/u1/resetControlPeripheral: Control Register

Write: Release reset2

CPU2: starting...

CPU2: fib(0) = 0

CPU2: fib(1) = 1

CPU2: fib(2) = 1

CPU2: fib(3) = 2

CPU1: delay (1000000)

CPU2: fib(4) = 3

…

CPU2: fib(30) = 832040

CPU2: fib(31) = 1346269

CPU2: fib(32) = 2178309

CPU2: fib(33) = 3524578

CPU2: finishing...

Info (HARNESS) Simulation finished

Info (HARNESS) cpu1 executed 4500024183 instructions, StopReason 'CPU has exited'

Info (HARNESS) cpu2 executed 5203371011 instructions, StopReason 'CPU has exited'

10.5 Processor External Interrupt
In the same way that a ‘reset’ can be signaled to a processor so too can interrupts, that

cause the processor to take an exception i.e. to change execution to an exception vector.

Typically a processor interrupt port will be driven by an interrupt controller and the

interrupt will remain active until acknowledged by interrupt handler software included in

the application that is executing on the processor.

The processor interrupt port, e.g.: ‘intr0’ can be connected to a net that can be driven

from the test harness or from another component (typically a peripheral) in the design.

When the net connected to the ‘intr0’ port is written the processor model will be invoked

to process the interrupt. The processor model may react to an edge i.e. a change in the

level on the port or it may react to a level i.e. it will continue to process the interrupt

while the level is in an active state.

The following illustrates controlling the interrupt pin ‘intr0’ on the processor from a test

harness which can be found in the processorExternalInterruptControl directory.

$IMPERAS_HOME/Examples/SimulationControl/processorExternalInterruptControl

First we need to find the name of the net, if any, connected to the net port on the

processor in the module (mi)

 // get the handle for the processor in the module (only one)

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 75 of 167

 optProcessorP processor = opProcessorNext(mi, 0);

 // get interrupt port connection on processor (if made)

 optNetPortConnP intNC = opObjectByName(processor,

 INTERRUPT_PORT_NAME,

 OP_NETPORTCONN_EN).NetPortConn;

NOTE: When we know that an object returned by opObjectByName can only be a certain

type we can extract the correct union member. To determine the object, if it is not a

certain type, the function opObjectType can be used.

If there is no net connection we can create our own new net in the harness and make the

connection otherwise we can obtain the current net already connected:

 optNetP intr0 = 0;

 if(!intNC) {

 intr0 = opNetNew(mi, INTERRUPT_PORT_NAME "_net", 0, 0);

 opObjectNetConnect(processor, intr0, INTERRUPT_PORT_NAME);

 } else {

 intr0 = opNetPortConnNet(intNC);

 }

and then we can use the net to write and assert the interrupt (we show writing ‘1’ to assert

but this could equally well be any other value)

 opNetWrite(intr0, 1);

and similarly the interrupt can be de-asserted

 opNetWrite(intr0, 0);

The above example can be compiled and run.

Initially instructions are executed to enable interrupts on the processor

Info (HARNESS) Creating net connection to 'intr0' on 'cpu'

Info (HARNESS) Simulate 20 instructions

Info 'top/u1/cpu', 0x0000000000001000: l.ori r30,r0,0x0

Info 'top/u1/cpu', 0x0000000000001004: l.ori r1,r0,0x7

…

Info 'top/u1/cpu', 0x0000000000001020: l.nop 0x0

Info 'top/u1/cpu', 0x0000000000001018: l.sfeq r1,r30

Info 'top/u1/cpu', 0x000000000000101c: l.bnf 0x00001018

The harness generates the interrupt and runs one instruction to ensure that the processor

will see the interrupt line active.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 76 of 167

NOTE: If the interrupt is level sensitive and the simulation is not executed the processor

may not see the interrupt ever being active.

The processor is enabled to simulate exceptions so when the interrupt line becomes active

the interrupt exception, at address 0x00000800, is executed.

Info (HARNESS) Generate Interrupt on 'intr0'

Info (HARNESS) Simulate 1 instruction

Info 'top/u1/cpu', 0x0000000000001020: *** FETCH EXCEPTION ***

Info (HARNESS) Release Interrupt on 'intr0'

Info (HARNESS) Simulate 20 instructions

Info 'top/u1/cpu', 0x0000000000000800: l.addi r30,r30,0x1

Info 'top/u1/cpu', 0x0000000000000804: l.addi r2,r0,0xffffe000

Info 'top/u1/cpu', 0x0000000000000808: l.slli r2,r2,0x10

Info 'top/u1/cpu', 0x000000000000080c: l.sw 0x0(r2),r30

Info 'top/u1/cpu', 0x0000000000000810: l.rfe

One the return from exception is executed the processor continues from the instruction

that was executed.

Info 'top/u1/cpu', 0x000000000000101c: l.bnf 0x00001018

Info 'top/u1/cpu', 0x0000000000001020: l.nop 0x0

Info 'top/u1/cpu', 0x0000000000001018: l.sfeq r1,r30

…

Info 'top/u1/cpu', 0x0000000000001020: l.nop 0x0

Info 'top/u1/cpu', 0x0000000000001018: l.sfeq r1,r30

Info 'top/u1/cpu', 0x000000000000101c: l.bnf 0x00001018

Info 'top/u1/cpu', 0x0000000000001020: l.nop 0x0

Info 'top/u1/cpu', 0x0000000000001018: l.sfeq r1,r30

Info (HARNESS) Simulation finished

Info (HARNESS) cpu executed 41 instructions, StopReason 'Scheduler has expired'

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 77 of 167

10.5.1 Processor External Interrupt Timer Tick Example

This example is found in the processorExternalInterrupt directory.

$IMPERAS_HOME/Examples/PlatformConstruction/processorExternalInterrupt

This example includes a design that instantiates a processor and a peripheral model (a

simple timer generating a regular interrupt tick), as shown in the following diagram.

OR1KOR1K

0x00000000

0xFFFFFFFF

0xF0000000

0x0FFFFFFF

Processor Memory Map

module
0xE0000000

Memory

(ram1)

Memory

(ram2)

tickIinterrupt

harness

interrupt

net write

Tick Timer

ram1

ram2

Tick Timer

The interrupt line, intr0, is connected to the processor in the module definition

interrupt connection

ihwaddnet -instancename tickInterrupt

connect tickInterrupt to cpu1 intr0

ihwconnect -instancename cpu1 -netport intr0 -net tickInterrupt

and may be driven from a peripheral in the module (as well as from the harness)

ihwaddperipheral -instancename timerPeripheral \

 -type simpleTimer \

 -modelfile peripheral/pse.pse

timer tick interrupt

ihwconnect -instancename timerPeripheral -netport tickOut -net tickInterrupt

The application on the processor is a simple assembler routine that enables interrupts on

the processor and installs reset and interrupt handler software at the vector addresses

0x0000 and 0x0800 respectively. The assembler routine is compiled and loaded without

setting the initial PC, so the processor will start execution from its reset vector.

The peripheral model can be configured for a tick rate using the parameter ‘rate’, in the

example the default is used to generate a tick every 0.01 seconds. A register, when

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 78 of 167

written, is used by the processor application to acknowledge and clear the generated tick

interrupt.

The regular tick is generated within a loop delayed using bhmWaitDelay in the

behavioral code of the peripheral, peripheral/user.c, is as follows:

 while (1) {

 // delay for tick rate

 bhmWaitDelay(delayRate);

 if(PSE_DIAG_LOW)

 bhmMessage("I", "TIMER_PSE", "Generating tick at %g seconds",

 (double) (bhmGetCurrentTime()/1000000));

 ppmWriteNet(handles.tickOut, 1);

 }

And the behavior of the interrupt acknowledge register, in the register write callback of

the peripheral, is as follows:

// interrupt acknowledge (used to clear interrupt)

PPM_REG_WRITE_CB(intAck) {

 (Uns32)user = data;

 if(ppmReadNet(handles.tickOut)) {

 if(PSE_DIAG_HIGH)

 bhmMessage("I", "TIMER_PSE", "Interrupt Acknowledge, clear interrupt");

 ppmWriteNet(handles.tickOut, 0);

 }

}

The application enables the interrupts on the OR1K processor and then waits in a loop for

8 interrupts to be generated. The main loop is

 l.ori r1,r0,8 // r1 = 8 (loop count)

loop1:

 l.sfeq r1,r30 // r1==r30?

 l.bnf loop1 // go to loop if not true

 l.nop // (delay slot)

which tests the value in register r30 and r1 (r1 is initialized to 8) and r30 is incremented

in the interrupt handler code

.global interruptVector

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 79 of 167

.org 0x800

 //

 // EXTERNAL INTERRUPT HANDLER (AT 0x800)

 //

interruptVector:

 l.addi r30,r30,1 // increment count of external exceptions

 l.addi r2,r0,0xe000 // set r2

 l.slli r2,r2,16 // shift to 0xe0000000

 l.sw 0(r2),r30 // write interrupt Acknowledge register

 l.rfe // return from exception

which also write to the interrupt acknowledge register of the peripheral to clear down the

interrupt.

NOTE: The OR1K processor interrupt line is level sensitive so if the interrupt source is

not cleared immediately on the OR1K executing the return from exception routine the

interrupt will become active once again and the exception routine executed again.

Compile the module, peripheral and application using the following commands in the

processorExternalInterrupt directory:

> make –C module

> make –C peripheral

> make –C application CROSS=OR1K

To run the simulation, in the processorExternalInterrupt directory, run:

> harness.exe --modulefile module \

 --objfilenoentry application/asmtest.OR1K.elf \

 --override processorExternalInterrupt /timerPeripheral/diagnosticlevel=3 \

 --output imperas.log

1) We are using –objfilenoentry to load the program without changing the initial PC

of the processor so that we start execution from the reset vector (0x0000)

2) We are turning on diagnostics on the peripheral so that we can see messages

generated when the interrupt is generated and when it is acknowledged by the

processor application

You should see output as follows:

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Generating tick at 0.01 seconds

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Interrupt Acknowledge, clear interrupt

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Generating tick at 0.02 seconds

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Interrupt Acknowledge, clear interrupt

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Generating tick at 0.03 seconds

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Interrupt Acknowledge, clear interrupt

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 80 of 167

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Generating tick at 0.04 seconds

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Interrupt Acknowledge, clear interrupt

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Generating tick at 0.05 seconds

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Interrupt Acknowledge, clear interrupt

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Generating tick at 0.06 seconds

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Interrupt Acknowledge, clear interrupt

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Generating tick at 0.07 seconds

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Interrupt Acknowledge, clear interrupt

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Generating tick at 0.08 seconds

Info (TIMER_PSE) ...Interrupt/timerPeripheral: Interrupt Acknowledge, clear interrupt

10.6 Standard Multiprocessor Scheduling Algorithm
This example uses the standard multiprocessor scheduling algorithm built-in to the

simulator that is used when the opRootModuleSimulate function is called. The standard

scheduling algorithm works as follows:

1. Simulation time is broken into time slices. By default, each time slice is 0.001

seconds (one millisecond).

2. The simulator selects the first processor and simulates it for one time slice. It in

fact does this by calculating the number of instructions that should be executed by

that processor in a time slice, and then simulating for that number of instructions.

The number of instructions in a time slice is:

 (processor nominal MIPS rate) x 1e6 x (time slice duration)

In this example, each processor has the default nominal MIPS rate of 100 MIPS.

This means that each processor will execute 100 x 1e6 x 0.001 = 100,000

instructions per time slice

3. When the first processor has simulated for 100,000 instructions, it is suspended

and the next processor is simulated for the time slice.

4. When all processors have simulated the time slice, simulated time is moved on

and the next slice is started.

This algorithm is an approximation designed to give realistic simulation results with very

high simulator performance: the simulator is not designed to be cycle accurate.

The simulation algorithm is configurable in several ways:

10.6.1 Changing the Time Slice Size

The size of the time slice (in seconds) can be set with:

Bool opRootModuleSetSimulationTimeSlice(optTime newSliceSize);

where type optTime is a long double. Shorter time slices may approximate real system

behavior more closely, but degrade simulator performance.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 81 of 167

10.6.2 Changing Processor Nominal MIPS Rate

The nominal MIPS rate for each processor can be set with a parameter on the processor

instance. See the section titled MIPS Parameter in the Simulation Control of Platforms

and Modules User Guide for an example of this.

10.6.3 Writing Custom Scheduling Algorithms

If the standard multiprocessor scheduling algorithm does not do what is required, a

custom algorithm can be built around calls to opProcessorSimulate for each processor.

This function will simulate a specified processor for an exact number of instructions.

Please note:

1) The user must ensure that the appropriate number of instructions are executed on

each processor, in a multicore platform.

2) When a platform also includes peripheral models time must be updated at an

appropriate rate.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 82 of 167

11 Parallel Simulation: QuantumLeap™
As of VMI version 6.0.0, Imperas Professional Simulation products implement a parallel

simulation algorithm called QuantumLeap™, which enables multicore platform

simulation to be distributed over separate threads on multiple cores of the host machine

for improved performance.

QuantumLeap allows for the parallel execution of both processor and peripheral models

on host processors. This section describes its use with processors; refer to the OVP

Peripheral Modeling Guide for information about parallelization of peripherals.

11.1 License and Runtime for QuantumLeap

Note that QuantumLeap is only supported as a licensed feature of the Imperas

Professional Tools. The Imperas professional simulator, CpuManager, is selected using

the IMPERAS_RUNTIME environment variable:

export IMPERAS_RUNTIME=CpuManager

You will need a license for QuantumLeap™. This will be one of IMP_SIMPARALLEL

or IMP_SIMPARALLEL_MAX (see below for difference). Contact Imperas for more

information.

11.2 Example
A number of examples are found in the Demo/Processors tree in directories ‘many_core’

and ‘multi_core’ that instance a number of processors and run the same standard

application on each of them. These examples utilize the Imperas ISS product which

allows the selection of the processor type, the number of processors and what memory is

included.

In this section we will use the example found at

$IMPERAS_HOME/Demo/Processors/OPENCORES/or1k/generic/many_core

The QuantumLeap algorithm can be enabled by appending the commands (--parallel or

--parallelmax) to the command line, when the command line parser has been included. If

no command line parser is available a control file can be used (control files are described

in the document doc/ovp/OVP_Control_File_User_Guide).

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 83 of 167

To run the simulation, with QuantumLeap enabled, in the many_core directory, run:

> iss.exe --verbose \

 --program ../../../Applications/dhrystone/dhrystone.OR1K-O3-g.elf \

 --processorvendor ovpworld.org --processorname or1k --variant generic \

 --numprocessors 4 –output ql.log --parallel -argv 400000

Which is based upon the Run_QL_AMP4_Dhrystone.sh script. Note The argument --argv

must be the last argument on the command line. All arguments following this argument

are passed to the applications argc argv.

You should see the following output as the four processors execute the Dhrystones

application on parallel host processors:

...

CpuManagerMulti Parallel started: Tue Feb 23 09:18:42 2016

…

 Dhrystone Benchmark, Version 2.1 (Language: C)

 …

Info TOTAL

Info Simulated instructions: 16,496,458,632

Info Simulated MIPS : 7199.9

Info ---

Info

Info ---

Info SIMULATION TIME STATISTICS

Info Simulated time : 41.24 seconds

Info User time : 8.76 seconds

Info System time : 0.28 seconds

Info Elapsed time : 2.29 seconds

Info Real time ratio : 18.00x faster

Info ---

CpuManagerMulti Parallel finished: Tue Feb 23 09:18:45 2016

...

Note that the banners emitted at the start and end of simulation include an indication that

QuantumLeap parallel simulation is now enabled.

These results show a marked improvement in performance over the non QuantumLeap

run that can be performed by removing the --parallel argument

> iss.exe --verbose \

 --program ../../../Applications/dhrystone/dhrystone.OR1K-O3-g.elf \

 --processorvendor ovpworld.org --processorname or1k --variant generic \

 --numprocessors 4 --output non-ql.log --argv 400000

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 84 of 167

…

CpuManagerMulti started: Tue Feb 23 09:18:22 2016

…

Info TOTAL

Info Simulated instructions: 16,496,458,632

Info Simulated MIPS : 2029.1

Info ---

Info

Info ---

Info SIMULATION TIME STATISTICS

Info Simulated time : 41.24 seconds

Info User time : 8.13 seconds

Info System time : 0.00 seconds

Info Elapsed time : 8.14 seconds

Info Real time ratio : 5.07x faster

Info ---

CpuManagerMulti finished: Tue Feb 23 09:18:31 2016

…

11.3 QuantumLeap Results
The actual performance reported may vary and depends on the performance of the native

host. In this example (run on a 3.4Ghz Dell Quad Core i7-3770 desktop machine) the

overall simulation speed is about 7200 simulated OR1K MIPS, approximately a quarter

for each processor. This is almost four times as fast as the same application run without

QuantumLeap.

11.4 QuantumLeap Scheduling Algorithm
The QuantumLeap scheduling algorithm is similar in many respects to the standard

multiprocessor scheduling algorithm. The exact details of the algorithm are proprietary,

but some general characteristics are given here.

Time moves forward in quanta which are calculated in exactly the same way as for the

standard algorithm. During each quantum, processors may run in parallel in independent

native threads, but they are all synchronized at the quantum end before the next quantum

is started. Any processor may also cause the simulation to revert to synchronous mode

during a quantum if the simulator detects that synchronous operation is required (for

example, execution of a test-and-set instruction). In such a case, all other processors are

safely stopped while the atomic action is carried out on the processor requiring

synchronization.

Provided that synchronizing instructions and accesses to shared registers are correctly

described, the simulation is deterministic in the absence of unguarded spin locks

(demonstrate this by running this example simulation several times: instruction counts for

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 85 of 167

each processor will remain the same from run to run). See the OVP Processor Modeling

Guide for a detailed description of how to make processor models compatible with

QuantumLeap.

The actual simulation results can differ between the normal multiprocessor algorithm and

the QuantumLeap algorithm, because of detailed scheduling differences. In the normal

multiprocessor algorithm, preceding processors in the schedule list for this quantum will

all have finished the quantum before an intermediate processor runs, and subsequent

processors will not have run any instructions at all. In the QuantumLeap algorithm, all

other processors can be in some deterministic intermediate state between the start and end

of the quantum when an intermediate processor interacts with them. This usually affects

instruction counts and sometimes program results, but in a correctly-designed program

the standard and QuantumLeap results represent alternative legal paths through the

parallel program. If you examine instruction counts for this example program running

with and without QuantumLeap, you will see that they differ slightly, but the results are

the same.

Any instruction that is intercepted is guaranteed to be run in synchronous mode with all

other processors stopped. This means that legacy intercept libraries can be used with

QuantumLeap without modification.

Sometimes QuantumLeap results are non-deterministic. This can either be due to legal

constructs such as unguarded spin locks (often used to defer expensive synchronization

instructions) or by real program synchronization bugs. QuantumLeap determinism can be

a useful tool for validating parallel algorithm correctness.

11.5 QuantumLeap Options
Command line arguments –-parallelopt, –-parallelthreads and –-parallelmax can be used

to control details of the simulation, as described below.

11.5.1 Option -parallelopt

QuantumLeap algorithm behavior can be modified using command line option

--parallelopt. This option is a bitfield, which currently defines the following bits:

Bit 0: enable nice scheduling behavior

When this bit is 0, QuantumLeap operates in a greedy mode, in which the algorithm

assumes that it can freely use all resources of the host to achieve the fastest possible

simulation. Setting this bit enables nice mode, which suspends native threads more

frequently so that more resources are available to other processes on the host machine.

The effect of nice mode depends on the operating system type and version. Often,

QuantumLeap simulation runs little or no slower; on some operating system versions, the

effect may be to slow simulation more significantly. Validate performance on your

operating system before deciding whether it is appropriate to use this option.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 86 of 167

Bit 1: don’t fix affinity

When this bit is 0, QuantumLeap attempts to fix the affinity of a simulated core to a

particular host core to avoid costs involved in synchronizing host caches that can occur

when host processes are moved from one host core to another. Setting this bit disables

affinity fixing so that simulated core processes can migrate between host cores.

Bit 2: use legacy thread allocation algorithm

When the number of host threads available for parallel simulation is less than the number

of simulated cores, QuantumLeap has to share the limited host resources amongst the

simulated cores. There are two algorithms available: the default algorithm statically

allocates simulated cores to fixed host cpus (or sets of host cpus) and relies upon the host

operating system to schedule those threads fairly; the alternative algorithm schedules host

threads explicitly so that no more than a specified limit execute concurrently (see the –

parallelthreads option below). Setting this bit enables the alternative algorithm.

The default value of –parallelopt is 0, specifying greedy mode simulation, fixed affinities

and static thread allocation without explicit scheduling.

Example

To rerun the previous simulation with greedy scheduling behavior and no fixed affinities:

> iss.exe --verbose \

 --program ../../../Applications/dhrystone/dhrystone.OR1K-O3-g.elf \

 --processorvendor ovpworld.org --processorname or1k --variant generic \

 --numprocessors 4 –output ql.log --parallel --parallelopt 2 -argv 400000

11.5.2 Option -parallelthreads

QuantumLeap option --parallelthreads can be used to specify the maximum number of

parallel threads that should execute at once. This option can be useful in (for example)

regression test runs, to restrict a particular simulation to use of a smaller-than-normal set

of the available processor resources, to ensure that some resources are available for other

runs that might be occurring in parallel on the same machine.

11.5.2.1 Example

To run a simulation in which no more than three parallel threads execute at once:

> iss.exe --verbose \

 --program ../../../Applications/dhrystone/dhrystone.OR1K-O3-g.elf \

 --processorvendor ovpworld.org --processorname or1k --variant generic \

 --numprocessors 4 –output ql.log --parallel -- parallelthreads 3 -argv 400000

Note that standard QuantumLeap supports up to 4 parallel threads. To specify more than

this, a separate license is required; contact Imperas for details.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 87 of 167

11.5.3 Option -parallelmax

QuantumLeap option --parallelmax can be used in a control file to specify that a

simulation should run as many threads as possible in parallel for maximum performance.

This option requires a separate license; contact Imperas for details.

11.5.3.1 Example

To run a simulation using maximum parallelization:

> iss.exe --verbose \

 --program ../../../Applications/dhrystone/dhrystone.OR1K-O3-g.elf \

 --processorvendor ovpworld.org --processorname or1k --variant generic \

 --numprocessors 4 –output ql.log --parallel --parallelmax -argv 400000

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 88 of 167

12 Memory Operations

12.1 Implicit Processor Model Memory
When a new processor instance is created, and no specific memories are created, then by

default an implicit RAM memory that covers the entire addressable memory by the

processor type is also created.

This memory can be directly accessed within the harness using the following functions:

opProcessorRead and opProcessorWrite. In addition, theses functions can also be used to

read and write memory without causing side effects in the processor model, or in any

TLM2.0 models connected to the processor. The function opProcessorApplicationLoad

can be used to load an object file.

12.1.1 Loading object files

An object file can be loaded into processor memory using the

opProcessorApplicationLoad function:

optApplicationP opProcessorApplicationLoad(

 optProcessorP processor,

 const char *objectFile,

 optLoaderControls controls,

 Addr loadOffset

);

The optLoaderControls are used to control how the file is loaded into memory and is

defined as:

OP_LDR_DEFAULT: No special features

OP_LDR_PHYSICAL: Use object file physical addresses if available

OP_LDR_VERBOSE: Report each section as it is loaded

OP_LDR_NO_ZERO_BSS: Do not zero the extent of the BSS section if present

OP_LDR_SET_START: Set the PC to the code start address

OP_LDR_SYMBOLS_ONLY Read the symbols but do not load the code or data

OP_LDR_ELF_USE_VMA Load ELF files using VMA addresses instead of LMA.

OP_LDR_FAIL_IS_ERROR Failure to load will prevent the simulation from running

For ELF files, the Load Memory Address (LMA) is used as the load address by default.

Setting OP_LDR_ELF_USE_VMA in the attrs argument will cause the Virtual Memory

Address (VMA) to be used instead.

In the following example the memory is loaded from file hello.OR1K.elf using physical

address information, and the PC will be set to the entry address defined in the object file:

opProcessorApplicationLoad(processor, “hello.OR1K.elf”, OP_LDR_PHYSICAL, 0);

The algorithm used is as follows:

1. Find the processor passed in argument #1.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 89 of 167

2. Find the bus connected to the instruction or data port3 on that processor.

3. Load the specified object file into memory on that bus.

The loader takes each section address from the object file and looks for memory which

decodes at that address. An error is raised if no memory is mapped at a load address.

The loader uses any address decoding available on the bus, even if the decoded memory

is shared with other processors.

If more than one processor is using the same code memory, the program need be loaded

only once; When OVPsim starts a processor with no explicitly loaded program, it will

look for any other processors of the same architecture with common program memory

and, if one is found, use the start address associated with that processor.

An object file which is not directly related to a processor (e.g. a data file) can be loaded

into memory on a bus using opBusApplicationLoad.

The functions opProcessorApplicationLoad and opBusApplicationLoad return an

optApplicationP which can be interrogated using opApplicationControls,

opApplicationElfCode, opApplicationEndian and opApplicationEntry to find

respectively the control features used when the application was loaded, the 16-bit

processor architecture code, endianness and the executable start address.

12.1.1.1 Supported object formats

The simulator currently supports:

ELF Used by all GNU tool chains

TI COFF An extended version of the COFF format, used by compilers supplied by

Texas Instruments

12.1.1.2 Loading Symbols in object files

When opProcessorApplicationLoad loads an object file into simulated memory it also

reads the symbol tables included in the object file, and records the address-to-symbol

mappings. These mapping can then be used:

▪ When issuing tracing information

▪ When intercepting a function by name (see opProcessorExtensionNew)

Sometimes object code might be loaded by another route (e.g. using a boot-loader

running on a simulated processor) in which case the simulator has no opportunity to read

the symbols. In this situation the function opProcessorApplicationLoad can be used

with the controls set for OP_LDR_SYMBOLS_ONLY to associate symbols addresses

within a processor without loading the code. In this example, instruction tracing will

include code labels found in program.elf, though the code came from another source:

In module.op.tcl the bootloader.elf file is specified as part of the hardware i.e. it is always

present and loaded into the processor memory. This may then execute and re-locate the

3 The port used is dependent upon the processor model and the attributes of the section being loaded.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 90 of 167

code to a different memory space, for example to copy from a ROM area to a RAM area

for execution.

ihwaddprocessor -instancename cpu1 \

 -vendor ovpworld.org -library processor -type or1k -version 1.0 \

 -semihostname or1kNewlib -variant generic \

 -imagefile bootloader.elf

In the module C code callback the program symbol file can be loaded separately that

contains the symbol information at the execution addresses.

static OP_PRE_SIMULATE_FN(modulePreSimulate) {

 opProcessorApplicationLoad(processor, “program.elf”, OP_LDR_SYMBOLS_ONLY, 0);

}

12.2 Loading by Directly Reading and Writing Data
The memory space can also be read and written directly using the opProcessorRead and

opProcessorWrite functions. These functions transfer N bytes of data between a local

buffer and the simulated memory space using the simulated memory address.

12.2.1 Example Loading Program from Hex format file

This example is found in the loadingApplicationProgramHexFormatFile directory.

$IMPERAS_HOME/Examples/SimulationControl/loadingApplicationProgramHexFormatFile

The example shows the use of the write memory and read memory functions to perform

the loading of a program. The program is provided in the form of a hex file with address

and data pairs.

The file loader is written in standard C code as part of the harness. In the same way any

file format can be supported by either incorporating available C code of a reader or

creating a new one.

The hex file format used in this example is based upon a simple sequence of address and

data, with comments marked using ‘#’ and symbols marked with ‘:’ (note symbols will

only be loaded if the Imperas professional simulator is being used), for example:

:01000074 _start

01000074 0000209c ;

01000078 0100409c ;

In this example the loader is implemented so that multiple consecutive addresses can be

written with the same value.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 91 of 167

#load memory addresses with 0x00000000

01000078-01000088 00000000 ;

Following is the loader, found in the file harness/harness.c, which takes the name of the

file containing the data to be loaded and a switch to control the byte swapping.

The initial code is responsible for opening the file, reading it a line at a time and parsing

the line

static int loadHexFile(optProcessorP processor, const char *fileName) {

 FILE *fp;

 char inBuf[MAX_LINE_LENGTH + 1];

 int address, endAddress, data, dataCheck;

 fp = fopen(fileName, "r");

 if (!fp) {

 opMessage("E", HARNESS_NAME "_HEX_LDR",

 "Failed to open Memory Initialization File '%s'",

 fileName);

 return -1;

 }

 opMessage("I", HARNESS_NAME "_HEX_LDR",

 "Loading Hex file '%s'",

 fileName);

 while (fgets(inBuf,MAX_LINE_LENGTH, fp) != 0) {

 if (inBuf[0] == '#') {

 // ignore header

 } else if (inBuf[0] == ':') {

If the initial character is a ‘:’ this indicates that the line is defining a symbol to be loaded.

 // symbol

 Uns32 symbolAddress;

 char symbol[16];

 if (sscanf(inBuf, ":%08x %s", &symbolAddress, symbol) == 2) {

 opMessage("I", HARNESS_NAME "_HEX_LDR_SYM",

 "Found symbol '%s' at address 0x%08x",

 symbol,

 symbolAddress);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 92 of 167

The following section of code checks the IMPERAS_RUNTIME environment variable to

check for the Imperas Professional simulator. If it is being used the symbols of the

application can be loaded. If the symbol is the ‘_start’ symbol this is also used to set the

PC.

 const char *runTime=getenv("IMPERAS_RUNTIME");

 if(strcmp(runTime, "CpuManager") == 0) {

 opProcessorApplicationSymbolAdd(processor,

 symbol,

 symbolAddress,

 4,

 ORD_SYMBOL_TYPE_FUNC,

 ORD_SYMBOL_BIND_GLOBAL);

 } else {

 opMessage("W", HARNESS_NAME "_HEX_LDR_SF",

 "Symbols cannot be loaded with this product runtime (%s),

"

 "supported in Imperas Professional simulator",

 runTime);

 }

 if(strcmp(symbol, "_start") == 0) {

 opMessage("I", HARNESS_NAME "_HEX_LDR_START",

 "Set start address to 0x%08x",

 symbolAddress);

 opProcessorPCSet(processor, symbolAddress);

 }

 } else {

 opMessage("W", HARNESS_NAME "_HEX_LDR_SND",

 "Found symbol line '%s' but not decoded",

 inBuf);

 }

 } else {

The address and data information is used to write the data to the correct address in the

processor memory space. A read back of the same address is carried out to see that it was

correctly written. The data word will be swapped if the Host endian does not match the

endian of the simulated processor because of the use of OP_HOSTENDIAN_TARGET in

the opProcessorWrite and opProcessorRead functions.

 if (sscanf(inBuf, "%08x-%08x %08x ;", &address, &endAddress, &data) != 3) {

 sscanf(inBuf, "%08x %08x ;", &address, &data);

 endAddress = address;

 }

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 93 of 167

 do {

 //

 // Access the memory through the processor memory space

 //

 if(!opProcessorWrite(

 processor, // processor

 address, // memory address

 &data, // data buffer of data to write

 4, // number of bytes in one object

 1, // number of objects

 True, // debug access (not a true processor access)

 OP_HOSTENDIAN_TARGET

)) {

 opMessage("E", HARNESS_NAME "_HEX_LDR_FW",

 "Failed Data Write at 0x%08x",

 (Uns32)address);

 return -1;

 }

 opProcessorRead(

 processor,

 address,

 &dataCheck,

 4,

 1,

 True,

 OP_HOSTENDIAN_TARGET

);

 if(data != dataCheck) {

 opMessage("E", HARNESS_NAME "_HEX_LDR_FRB",

 "Failed Data Read Back at 0x%08x (0x%08x 0x%08x)",

 (Uns32)address, data, dataCheck);

 return -1;

 }

 opMessage("I", HARNESS_NAME "_HEX_LDR_LD",

 "Load address 0x%08x : 0x%08x",

 address, data);

 } while (address++ < endAddress);

 }

 }

 opMessage("I", HARNESS_NAME "_HEX_LDR",

 "Load Complete");

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 94 of 167

 if (fclose(fp)!=0) {

 opMessage("E", HARNESS_NAME "_HEX_LDR_CF",

 "Failed to close Memory Initialization File");

 return -1;

 }

 return 0;

}

 Note if the processor uses virtual addressing the address of the opProcessorWrite

and opProcessorRead functions will be translated to a physical memory address

using the current virtual address mapping.

The main() routine in the platform file, creates a platform with a single OR1K processor

and a region of memory from 0x00100000 to 0xffffffff. The memory is loaded by a call

to the hexLoader routine that has been described above. If the load fails an error message

is generated.

// Loading application hex file

// Load Hex file into Processor Memory

if (loadHexFile(proc, options.hexfile, False)) {

 opMessage("E", HARNESS_NAME, "Load of Hex File '%s' Failed", options.hexfile);

}

To run the example, take a copy of the example and compile the test harness and the

module hardware definition using the following command in the copied

loadingApplicationProgramHexFormatFile directory:

 make -C harness

 make -C module

In the application directory you will find an assembler file, asmtest.S, and the same file as

hex, asmtest.hex. To run the simulation, type :

 ./harness/harness.Linux32.exe --hexfile application/asmtest.hex

If you are using the Imperas professional simulator, you should see output similar to the

following:

Info (harness_HEX_LDR) Loading Hex file 'application/asmtest.hex'

Info (harness_HEX_LDR_SYM) Found symbol '_start' at address 0x01000074

Info (harness_HEX_LDR_START) Set start address to 0x01000074

Info (harness_HEX_LDR_LD) Load address 0x01000074 : 0x0000209c

Info (harness_HEX_LDR_LD) Load address 0x01000078 : 0x0100409c

Info (harness_HEX_LDR_LD) Load address 0x0100007c : 0xffff609c

Info (harness_HEX_LDR_LD) Load address 0x01000080 : 0x0008809c

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 95 of 167

Info (harness_HEX_LDR_LD) Load address 0x01000084 : 0x000884b0

Info (harness_HEX_LDR_LD) Load address 0x01000088 : 0x0000a484

Info (harness_HEX_LDR_LD) Load address 0x0100008c : 0xffffa3a0

Info (harness_HEX_LDR_LD) Load address 0x01000090 : 0x0000a4a0

Info (harness_HEX_LDR_LD) Load address 0x01000094 : 0x0100a5a0

Info (harness_HEX_LDR_LD) Load address 0x01000098 : 0x002804d4

Info (harness_HEX_LDR_SYM) Found symbol '__exit' at address 0x0100009c

Info (harness_HEX_LDR_LD) Load address 0x0100009c : 0x0000c084

Info (harness_HEX_LDR_LD) Load address 0x010000a0 : 0x0000209c

Info (harness_HEX_LDR_LD) Load address 0x010000a1 : 0x0000209c

Info (harness_HEX_LDR) Load Complete

Info 'u1/cpu1', 0x0000000001000074(_start): l.addi r1,r0,0x0

Info 'u1/cpu1', 0x0000000001000078(_start+4): l.addi r2,r0,0x1

Info 'u1/cpu1', 0x000000000100007c(_start+8): l.addi r3,r0,0xffffffff

Info 'u1/cpu1', 0x0000000001000080(_start+c): l.addi r4,r0,0x800

Info 'u1/cpu1', 0x0000000001000084(_start+10): l.muli r4,r4,0x800

Info 'u1/cpu1', 0x0000000001000088(_start+14): l.lwz r5,0x0(r4)

Info 'u1/cpu1', 0x000000000100008c(_start+18): l.addic r5,r3,0xffffffff

Info 'u1/cpu1', 0x0000000001000090(_start+1c): l.addic r5,r4,0x0

Info 'u1/cpu1', 0x0000000001000094(_start+20): l.addic r5,r5,0x1

Info 'u1/cpu1', 0x0000000001000098(_start+24): l.sw 0x0(r4),r5

Info 'u1/cpu1', 0x000000000100009c(__exit): *** INTERCEPT *** (__exit)

if you are using the OVPsim simulator, you should see output similar to the following:

Info (harness_HEX_LDR) Loading Hex file 'application/asmtest.hex'

Info (harness_HEX_LDR_SYM) Found symbol '_start' at address 0x01000074

Warning (harness_HEX_LDR_SF) Symbols cannot be loaded with this product runtime

(OVPsim), supported in Imperas Professional simulator

Info (harness_HEX_LDR_START) Set start address to 0x01000074

Info (harness_HEX_LDR_LD) Load address 0x01000074 : 0x0000209c

Info (harness_HEX_LDR_LD) Load address 0x01000078 : 0x0100409c

Info (harness_HEX_LDR_LD) Load address 0x0100007c : 0xffff609c

Info (harness_HEX_LDR_LD) Load address 0x01000080 : 0x0008809c

Info (harness_HEX_LDR_LD) Load address 0x01000084 : 0x000884b0

Info (harness_HEX_LDR_LD) Load address 0x01000088 : 0x0000a484

Info (harness_HEX_LDR_LD) Load address 0x0100008c : 0xffffa3a0

Info (harness_HEX_LDR_LD) Load address 0x01000090 : 0x0000a4a0

Info (harness_HEX_LDR_LD) Load address 0x01000094 : 0x0100a5a0

Info (harness_HEX_LDR_LD) Load address 0x01000098 : 0x002804d4

Info (harness_HEX_LDR_SYM) Found symbol '__exit' at address 0x0100009c

Warning (harness_HEX_LDR_SF) Symbols cannot be loaded with this product runtime

(OVPsim), supported in Imperas Professional simulator

Info (harness_HEX_LDR_LD) Load address 0x0100009c : 0x0000c084

Info (harness_HEX_LDR_LD) Load address 0x010000a0 : 0x0000209c

Info (harness_HEX_LDR_LD) Load address 0x010000a1 : 0x0000209c

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 96 of 167

Info (harness_HEX_LDR) Load Complete

Info 'u1/cpu1', 0x0000000001000074: l.addi r1,r0,0x0

Info 'u1/cpu1', 0x0000000001000078: l.addi r2,r0,0x1

Info 'u1/cpu1', 0x000000000100007c: l.addi r3,r0,0xffffffff

Info 'u1/cpu1', 0x0000000001000080: l.addi r4,r0,0x800

Info 'u1/cpu1', 0x0000000001000084: l.muli r4,r4,0x800

Info 'u1/cpu1', 0x0000000001000088: l.lwz r5,0x0(r4)

Info 'u1/cpu1', 0x000000000100008c: l.addic r5,r3,0xffffffff

Info 'u1/cpu1', 0x0000000001000090: l.addic r5,r4,0x0

Info 'u1/cpu1', 0x0000000001000094: l.addic r5,r5,0x1

Info 'u1/cpu1', 0x0000000001000098: l.sw 0x0(r4),r5

Info 'u1/cpu1', 0x000000000100009c: l.lwz r6,0x0(r0)

Processor Exception (PC_PRX) Processor 'u1/cpu1' 0x100009c: l.lwz r6,0x0(r0)

Processor Exception (PC_RPX) No read access at 0x0

Note that:

1. When using the Imperas professional simulator the symbols are loaded and the

semihost library (or1kNewlib, loaded in the module) intercepts ‘__exit’ and

terminates the simulation.

2. When using the OVPsim simulator, no symbols are loaded, the code in ‘__exit’,

loads from address 0x00000000 which causes an exception – this is because there

is no memory mapped at this address.

3. The simulator reports the exception and returns from opRootModuleSimulate

(using opRootModuleStopReason or opProcessorStopReason would show the

status was OP_SR_RD_PRIV although this isn’t shown in this example). The

OP_FP_SIMULATEEXCEPTIONS instance parameter could be used to cause the

exception to be simulated by the processor instead.

12.2.2 Reading and writing memory without side-effects

The functions opProcessorRead and opProcessorWrite can be used to access

processor memory without making any change to the processor state, for example if used

with a debugger, rather than as part of a platform model. This table compares their

behavior with the debugAccess argument, True and False:

Function debugAccess TLM2.0 Effect on tlb Bad access
opProcessorRead True transport_dbg None returns 'False'
opProcessorWrite True transport_dbg None returns 'False'
opProcessorRead False b_transport might update bus err if supported
opProcessorWrite False b_transport might update bus err if supported

12.2.3 Swapping data to host endian

The functions opProcessorRead and opProcessorWrite can be used to convert the

data endianness between that of the simulated processor and the host.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 97 of 167

The endian argument controls the treatment of byte order in the host memory pointed to

by buffer:

Endian Effect

OP_HOSTENDIAN_HOST Byte swapped, if necessary, to be host endian

OP_HOSTENDIAN_TARGET No swapping; result will be same as target processor

OP_HOSTENDIAN_BIG Byte swapped, if necessary, to be big endian

OP_HOSTENDIAN_LITTLE Byte swapped, if necessary, to be little endian

If required, the bytes in each group of objectSize bytes, will be reversed, throughout the

whole buffer (if objectSize = 1 byte, there can be no swapping).

A request to read or write can cross boundaries between different types of memory, or

regions where no device exists. The functions return True if the entire buffer was read or

written successfully, False if any part failed.

The processor argument refers to the target processor for the read or write. The required

endianness is that of the data endian of the processor, which might differ from the code

endian.

12.3 Explicit Local and External Memory
The previous example in this section “Memory Operations” has used an implicit RAM

memory that covers the entire address space that can be accessed by the processor type.

Instead of doing this, processor address spaces can be explicitly specified to contain

separate RAMs and ROMs, with some perhaps shared between processors in a

multiprocessor system. This is typically created in the module iGen definition, see the

document iGen_Platform_and_Module_Creation_User_Guide. It is also possible to

specify that certain address ranges will be modeled by callback functions, which is useful

for modeling simple memory-mapped devices such as uarts4.

12.3.1 Local Memory

The following would normally be generated as part of the module definition using iGen

but is shown here to provide the complete methodology for hardware definition.

In order to use an explicit address space mapping, it is first necessary to create a bus to

which all address-mapped components will be connected. A bus is defined using the

function opBusNew, which takes a bus name and bit width as arguments, for example:

4 But note that in general, it is much better to use Imperas PSE objects to model peripherals, instead of

coding them directly in OP, for many reasons:

1. PSE models run in a protected address space and cannot crash the simulator;

2. PSE models allow concepts such as simulation time and threading to be handled elegantly;

3. A platform consisting of processor models and PSEs is ideally suited to debug with the Imperas

debugger;

4. PSEs can be analyzed using tools built with Imperas intercept technology without having to

modify and recompile the platform.

See the OVP Peripheral Modeling Guide for detailed information on PSEs.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 98 of 167

optBusP bus = opBusNew(“bus”, 32);

This example defines a new bus called ‘bus’ which is 32 bits wide.

The bus must be connected to any processor that uses it by defining the optConnectionsP

in the opProcessorNew function using the OP_BUS_CONNECTIONS and

OP_BUS_CONNECT macros. The processor connects by two busses, the instruction bus

and the data bus (the simulator permits processors to have distinct data and instruction

busses). Most processors use the same address space for both data and instruction

accesses, so often the bus arguments have the same value:

optProcessorP cpu1_c = opProcessorNew(

 mi,

 cpu1_path,

 "cpu1",

 OP_CONNECTIONS(

 OP_BUS_CONNECTIONS(

 OP_BUS_CONNECT(mainBus_b, "INSTRUCTION"),

 OP_BUS_CONNECT(mainBus_b, "DATA")

)

),

 0

);

Any number of memory objects can then be defined and connected to the bus. A memory

is defined using opMemoryNew, which takes a memory name, access privileges, address

range and connections as arguments, for example:

 opMemoryNew(

 mi,

 "mem1",

 OP_PRIV_RWX,

 0x003fffff,

 OP_CONNECTIONS(

 OP_BUS_CONNECTIONS(

 OP_BUS_CONNECT(mainBus_b, "sp1", .slave=1,

 .addrLo=0x01000000, .addrHi=0x013fffff)

)

),

 0

);

This example defines a new memory called mem1 which has an address range

0:0x3fffff (i.e. it is of size 0x400000). The access privileges for the memory are

defined by the enumeration type optPrivE in op.h:

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 99 of 167

OP_PRIV_NONE No access permitted.

OP_PRIV_R Read permitted.

OP_PRIV_W Write permitted.

OP_PRIV_RW Read and write permitted.

OP_PRIV_X Execute permitted.

OP_PRIV_RX Read and execute permitted.

OP_PRIV_WX Write and execute permitted.

OP_PRIV_RWX Read, write and execute permitted.

OP_PRIV_ALIGN Force accesses to be aligned.

 Note that the address argument to opMemoryNew is the memory upper bound, not

the memory size. This is so that it is possible to define a memory of size 2^64

bytes, i.e. to cover the full range of a 64-bit address space.

 The highAddr is the high address within the memory, it is NOT the address at

which the memory is decoded when connected onto a bus. The decoded address

range for the memory is bus base address to bus base address + highAddr.

The memory is connected to a bus in this example using port sp1 of the memory

(memories may be multiport, and can be connected to several busses using different port

names, however, it is usual to use one or more bridges to connect memory regions from

multiple busses onto a single bus on which the memory resides). The memory is

connected with memory address 0 mapped to bus address 0x01000000.

Memories defined with opMemoryNew use the simulator’s internal memory modeling

capabilities. It is possible as an alternative to specify that a memory range should be

modeled using a callback function instead. This is done using opBusSlaveNew:

12.3.2 External Memory: Mapping an address region to a
callback

In this example, an address region is mapped to read and write callbacks supplied by a

user's functions.

typedef struct extMemDescS {

 void *localSource;

 void *localSink;

} extMemDesc;

// called when a read occurs in the range 0x00400000, 0x00400fff,

// copies data from localSource;

OP_BUS_SLAVE_READ_FN(extMemReadCB) {

 extMemDesc *p = userData;

 memcpy(data, p->localSource, bytes)

}

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 100 of 167

// called when a write occurs in the range 0x00400000, 0x00400fff,

// copies data to localSink;

OP_BUS_SLAVE_WRITE_FN(extMemWriteCB) {

 extMemDesc *p = userData;

 memcpy(p->localSink, data, bytes)

}

static extMemDesc extMem;

opBusSlaveNew(

 bus, "external", 0, OP_PRIV_RWX, 0x00400000, 0x00400fff,

 extMemReadCB, extMemWriteCB, 0, &extMem

);

This example specifies that the range 0x400000:0x400fff on the bus should not be

modeled using simulated memory, but should instead be implemented using two callback

functions, extMemReadCB and extMemWriteCB. These callback functions are specified

using the OP_BUS_SLAVE_READ_FN and OP_BUS_SLAVE_WRITE_FN macros. Any time a

simulated processor or device performs a memory read or write in this address range, the

appropriate callback function will be called. The write callback will be passed the value

being written in the data argument. The read callback should fill the data buffer with

bytes bytes of data (the required contents for a read at the passed address).

12.3.2.1 Generating an Invalid access

During the read or write callback functions, defined by OP_BUS_SLAVE_READ_FN

and OP_BUS_SLAVE_WRITE_FN only, the client might decide that the access cannot

be completed. To signal this, either function opProcessorReadAbort or

opProcessorWriteAbort should be called by the client in the read or write callback

respectively.

Use opProcessorReadAbort when the callback was initiated by either of these functions:

opProcessorRead

opBusRead

Use opProcessorWriteAbort when the callback was initiated by either of these

functions:

opProcessorWrite

opBusWrite

In no other context should opProcessorReadAbort or opProcessorWriteAbort be

called.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 101 of 167

If the initiating processor model implements rdAbortExceptCB or wrAbortExceptCB

callback functions in its vmiAttrs structure, then the appropriate callback will be

invoked to allow the processor model to handle the abort. Otherwise, simulation will be

terminated with a memory abort error message.

12.3.2.2 Processor Instruction Execution

When the memory represented by or accessed through an external memory callback is

used to store the executable binary to be executed by the processor the external memory

callback will be called for the processor instruction fetch access but also as an artifact of

simulation.

In order to distinguish between a real instruction fetch and a simulation artifact the

optProcessorP processor argument should be used within the callback. If the read is a

processor instruction fetch the processor argument will be a pointer to the processor

making the access. If the read is a simulation artifact then the processor argument will be

NULL, indicating that it is not a processor making this access.

12.3.2.3 Example

This example is found in the usingExternalMemory directory.

$IMPERAS_HOME/Examples/PlatformConstruction/usingExternalMemory

The example shows how a region of memory could be mapped externally in the module

to simulate areas of memory with different privileges. The choice, for each region, can be

made such that reads/writes are ignored or cause an access error (abort) and an exception.

In this example exceptions are not enabled (argument simulateexceptions is at its default

false value) and so the simulator stops the simulation on an exception.

The three regions defined provide an area providing read/write access, an area that aborts

on either read/write and a region that allows read but aborts on a write.

Module iGen file, module.op.tcl, defines the fixed memory and the module C file is used

to define the dynamic memory added using the OP API with callbacks

 opBusSlaveNew(bus, "externalRW", 0,

 OP_PRIV_RW,

 0x00400000, 0x004000ff,

 extMemoryRead, extMemoryWrite,

 0, 0);

 opBusSlaveNew(bus, "abort", 0,

 OP_PRIV_RW,

 0x00400100, 0x0040010f,

 extAbortRead, extAbortWrite,

 0, 0);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 102 of 167

 opBusSlaveNew(bus, "externalR", 0,

 OP_PRIV_R,

 0x00400110, 0x00400fff,

 extMemoryRead, extMemoryWrite,

 0, 0);

The callbacks are defined using the macros as:

OP_BUS_SLAVE_READ_FN(extMemoryRead) {

 opMessage("I", "EXTERNAL_MEMORY_READ",

 "%s access at address 0x" FMT_Ax,

 initiator.Processor ? opObjectHierName(initiator.Processor) : "artifact", addr);

 // dummy data value

 *(Uns32 *)data = 0xfeedface;

}

OP_BUS_SLAVE_WRITE_FN(extMemoryWrite) {

 opMessage("I", "EXTERNAL_MEMORY_WRITE",

 "%s access at address 0x" FMT_Ax " data 0x%08x",

 initiator.Processor ? opObjectHierName(initiator.Processor) : "artifact",

 addr, *(Uns32 *)data);

}

The memory callbacks provide a very simple ROM implementation that returns the fixed

pattern 0xcefaedfe for any read from the ROM area and ignores any write i.e. the

callback does not store the value written (obviously a real example can do something

much more sophisticated than this if required).

Other callbacks are defined to signal the read or write access failed to the processor using

the macros:

OP_BUS_SLAVE_READ_FN(extAbortRead) {

 opMessage("I", "MEMORY_READ_ABORT", "%s access at address 0x" FMT_Ax,

 initiator.Processor ? opObjectHierName(initiator.Processor) : "artifact", addr);

 opProcessorReadAbort(initiator.Processor, addr);

}

OP_BUS_SLAVE_WRITE_FN(extAbortWrite) {

 opMessage("I", "MEMORY_WRITE_ABORT", "%s access at address 0x" FMT_Ax,

 initiator.Processor ? opObjectHierName(initiator.Processor) : "artifact", addr);

 opProcessorWriteAbort(initiator.Processor, addr);

}

Compile the test platform and application as before using the following commands in the

memory directory:

make –C module

make –C application

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 103 of 167

To run the simulation, in the memory directory, run :

harness.exe –modulefile module --program application/asmtest.OR1K.elf –trace –

tracechange --traceshowicount

You should see the following output:

…

Info 6: 'externalMemory/cpu1', 0x0000000001000088(_start+14): l.lwz r5,0x0(r4)

Info (EXTERNAL_MEMORY_READ) externalMemory/cpu1 access at address

0x400000

Info R5 deadbeef -> cefaedfe

…

Info 10: 'externalMemory/cpu1', 0x0000000001000098(_start+24): l.sw 0x0(r4),r5

Info (EXTERNAL_MEMORY_WRITE) externalMemory/cpu1 access at address

0x400000 data 0x02004000

…

Info 12: 'externalMemory/cpu1', 0x00000000010000a0(_start+2c): l.lwz r3,0x0(r4)

Info (EXTERNAL_MEMORY_READ) externalMemory/cpu1 access at address

0x400200

Info R3 ffffffff -> cefaedfe

…

Info 14: 'externalMemory/cpu1', 0x00000000010000a8(_start+34): l.sw 0x0(r4),r3

Processor Exception (PC_PRX) Processor 'externalMemory/cpu1' 0x10000a8: l.sw

0x0(r4),r3

Processor Exception (PC_WPX) No write access at 0x400200

Note that:

1. The load and store to the external memory region ‘externalRW’ are performed

correctly

2. The load to the external memory region ‘externalR’ is performed correctly but

the store causes an exception – this is because the external region was

specified to have read access permission only.

3. Although the read memory callback returns the value 0xcefaedfe, the value

that gets loaded into register R5 of the OR1K processor is 0xfeedface. This is

because the native host (x86) is little-endian, whereas the OR1K processor is

big-endian. Depending on the processor being used, memory callbacks may be

required to perform endian swapping to get the desired results.

4. The simulator reports the exception (and returns OP_SR_WR_PRIV from

opRootModuleSimulate, although this isn’t explicitly shown in this

example). The OP_FP_SIMULATEEXCEPTIONS instance attribute could be used

to cause the exception to be simulated instead.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 104 of 167

12.3.3 External Memory: Using Native Memory

Some usages of the OP API require that simulated memory be allocated by the program

rather than using opMemoryNew and allowing the simulator to allocate and maintain the

memory. The function opMemoryNativeDynamic enables such use of native memory in a

platform.

Note that since each call to opMemoryNativeDynamic requires a contiguous block of

memory, this method is not suitable for modeling memory whereby the size is similar to,

or larger than the memory of the host machine. Conversely, memories created using

opMemoryNew can be specified to be as large as desired, and backing the store for such

memories is allocated on demand, using a sparse implementation.

12.3.3.1 Example

This example is found in the nativeMemory directory.

$IMPERAS_HOME/Examples/PlatformConstruction/nativeMemory

iGen definition of static module components

ihwnew -name simpleCpuMemory

ihwaddbus -instancename mainBus -addresswidth 32

ihwaddprocessor -instancename cpu1 \

 -vendor ovpworld.org -library processor -type or1k -version 1.0 \

 -semihostname or1kNewlib -variant generic

ihwconnect -bus mainBus -instancename cpu1 -busmasterport INSTRUCTION

ihwconnect -bus mainBus -instancename cpu1 -busmasterport DATA

ihwaddmemory -instancename mem1 -type ram

ihwconnect -bus mainBus -instancename mem1 \

 -busslaveport sp1 -loaddress 0xf0000000 -hiaddress 0xffffffff

this creates the following fixed definition

 optBusP bus_b = opBusNew(mi, "bus", 32, 0, 0);

 opMemoryNew(

 mi,

 "mem1",

 OP_PRIV_RWX,

 (0xffffffff) - (0xf0000000),

 OP_CONNECTIONS(

 OP_BUS_CONNECTIONS(

 OP_BUS_CONNECT(bus_b, "sp1", .slave=1,

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 105 of 167

 .addrLo=0xf0000000, .addrHi=0xffffffff)

)

),

 0

);

In the generated module C file we can then add the dynamic memory

typedef struct optModuleObjectS {

 Uns32 msize; // size of allocated memory

 void *mem; // allocated memory

} optModuleObject;

// forward declaration of component constructor

static OP_CONSTRUCT_FN(instantiateComponents);

static OP_CONSTRUCT_FN(moduleConstructor) {

 // instantiate module components

 instantiateComponents(mi, object);

 // create native memory (64K)

 object->msize = 0x10000;

 object->mem = STYPE_ALLOC_N(Uns8, object->msize);

 // terminate if memory allocation failed

 if (!object->mem)

 opMessage("F", "MODULE", "Failed to allocate native memory");

 // get first bus in module

 optBusP bus = opBusNext(mi, NULL);

 if (!bus)

 opMessage("F", "MODULE", "Did not find a bus in module '%s'",

opObjectName(mi));

 // connect memory to bus at address range 0x0000:0xffff

 opMemoryNativeNew(

 mi, "native", OP_PRIV_RWX, object->msize-1, object->mem,

 OP_CONNECTIONS(

 OP_BUS_CONNECTIONS(

 OP_BUS_CONNECT(bus, "sp1", .addrLo=0x0, .addrHi=object->msize-1)

)

),

 0

);

}

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 106 of 167

 NOTE the use of STYPE_ALLOC_N which is an Imperas provided wrapped

function (see ImpPublic/include/hostapi/impAlloc.h) with the same result as

malloc.

A processor connected to 'bus' will see memory mapped at 0x0 to 0xFFFF and

0xF0000000 to 0xFFFFFFFF, however the command line argument --showbuses will

only show the statically defined areas

BUS CONNECTIONS: nativeMemory/mainBus (0:ffffffff)

 sp1 on nativeMemory/mem1 (f0000000:ffffffff)

 DATA on nativeMemory/cpu1 (0:0)

 INSTRUCTION on nativeMemory/cpu1 (0:0)

To see all the regions the command line argument --showdomains can be used

BUS simpleCpuMemory/mainBus: DOMAIN simpleCpuMemory/mainBus REGIONS:

 1: 0x00000000:0x00000fff type:RAM priv:rwx raw:rwx list:0 opt:RW flags:MD..... \

 blocks:0 device:.. (master -,native,0x08e76230:0x08e7722f)

 2: 0xf0000000:0xffffffff type:RAM priv:rwx raw:rwx list:0 opt:.. flags:....... blocks:0 device:..

 Making the native memory smaller than the boundaries described by

opMemoryNativeDynamic can cause memory corruptions, because the simulator

may attempt to write beyond the bounds of the allocated space.

The allocated region of memory should be freed in the post simulation callback

static OP_POST_SIMULATE_FN(modulePostSimulate) {

 STYPE_FREE(mem); // free 64K area

}

12.3.4 External Memory: Combining Callbacks and Native
Memory

Occasionally, it can be useful to specify memory regions that combine aspects of

mapping using external callbacks and mapping using native memory pointers (in other

words, a combination of the effects of opBusSlaveNew and opMemoryNativeDynamic).

For example, it might be the case that a memory region should be mapped natively for

read accesses, but use a callback for write accesses. In such cases, function

opBusSlaveNew can be used:

void opBusSlaveNew (

 optBusP bus,

 const char* portName,

 optProcessorP processor,

 optPriv priv,

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 107 of 167

 Addr lowAddr,

 Addr highAddr,

 optBusSlaveReadFn readCB,

 optBusSlaveWriteFn writeCB,

 void* nativeMemory,

 void* userData

);

To specify how the memory is used, three arguments may be used in various

combinations:

1. readCB: if non-NULL, this indicates that read accesses to the memory should use

this callback. If NULL, then read accesses should be performed directly using

pointer memory.

2. writeCB: if non-NULL, this indicates that write accesses to the memory should

use this callback. If NULL, then write accesses should be performed directly using

pointer memory.

3. memory: this is a native pointer to be used for read or write accesses when either

the read or write callback function is NULL.

12.3.5 Debugging Bus Connections

When there are many connections to a bus, visualizing the connections can be difficult, to

help, there are functions to help show what is connected on a bus or all busses in a

module:

void opBusShow(optBusP bus);

void opModuleBusShow(optModuleP module);

Given a bus, the opBusShow function prints details of all the master (e.g. processors) and

slaves (e.g. memories) currently connected to that bus. As an example, the output might

look like this:

BUS MASTERS: 2

 PORT 'DATA' of 'cpu1'

 PORT 'INSTRUCTION' of 'cpu1'

BUS SLAVES: 2

 0x00000000:0x003fffff: PORT 'mp1' of 'mem1'

 0x00400000:0x00400fff: MAPPED r-- RCB:0x8048808 WCB:0x8048857

 0x00401000:0xffffffff: PORT 'mp2' of 'mem2'

Given a module, the opModuleBusShow function prints details of all the master and

slaves currently connected to each of the busses in the module. As an example, the output

might look like this:

BUS MASTERS: 2

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 108 of 167

The same output can also be obtained using the command line argument --showbusses.

The opBusShow, opModuleBusShow and –showbuses provide a static view of the

platform bus connections, they do not show any dynamic bus connections.

The command line arguments are processed as the initial platform construction has been

completed and so they also cannot show any dynamic changes during execution.

The memories have a dynamic view using the memory domains. These can be displayed

using the opModuleDomainDebug function or the command line argument

--showdomains. The command line argument provides the initial view after construction,

the opModuleDomainDebug could be called at any time to provide the current dynamic

memory mappings.

12.4 Adding Memory Access Callbacks
Adding monitor or watchpoint callbacks across address regions allows address accesses

to be observed. A monitor or watchpoint callback can be executed whenever there is

either a read, a write or a fetch access to a specified range of memory addresses.

The monitoring of address accesses can show the behavior of a processor as it runs an

application.

The watchpoint callback can be used to stop the simulation i.e. return from the

opRootModuleSimulate or opProcessorSimulate functions.

The monitors or watchpoints can be placed on a processor access, a bus access or a

memory access.

12.4.1.1 Adding a Memory Monitor

The monitor callbacks can be created for address ranges accessed by a processor, on a

bus or to a memory.

12.4.1.2 Monitoring Processor Accesses

The access, read, write or instruction fetch, from a specific processor can be monitored

using opProcessorReadMonitorAdd , opProcessorWriteMonitorAdd and

opProcessorFetchMonitorAdd functions respectively.

// watch read accesses to the address range 0x01000000:0x01000fff

opProcessorReadMonitorAdd(processor, 0x01000000, 0x01000fff, readCallBack, 0);

// watch write accesses to the address range 0x01000000:0x01000fff

opProcessorWriteMonitorAdd(processor, 0x01000000, 0x01000fff, writeCallBack, 0);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 109 of 167

// watch instruction fetch accesses to the address range 0x01000000:0x01000fff

opProcessorFetchMonitorAdd(processor, 0x01000000, 0x01000fff, fetchCallBack, 0);

12.4.1.3 Monitoring Accesses Over a Bus

An access, read, write or instruction fetch, on a specific bus can be monitored using

opBusReadMonitorAdd , opBusWriteMonitorAdd and opBusFetchMonitorAdd

functions respectively.

// watch read accesses to the address range 0x01000000:0x01000fff

opBusReadMonitorAdd(bus, proc, 0x01000000, 0x01000fff, readCallBack, 0);

// watch write accesses to the address range 0x01000000:0x01000fff

opBusWriteMonitorAdd(bus, proc, 0x01000000, 0x01000fff, writeCallBack, 0);

// watch instruction fetch accesses to the address range 0x01000000:0x01000fff

opBusFetchMonitorAdd(bus, proc, 0x01000000, 0x01000fff, fetchCallBack, 0);

The second argument (proc) is an optional processor argument that may be provided, if

set to a processor handle the bus access monitor will only be triggered on an access by the

specific processor, for monitoring any bus access this argument should be set to NULL

12.4.1.4 Monitoring Accesses to a Memory

An access, read, write or instruction fetch, on a specific memory can be monitored using

opMemoryReadMonitorAdd , opMemoryWriteMonitorAdd and

opMemoryFetchMonitorAdd functions respectively.

// watch read accesses to the address range 0x01000000:0x01000fff

opMemoryReadMonitorAdd(mem, proc, 0x01000000, 0x01000fff, readCallBack, 0);

// watch write accesses to the address range 0x01000000:0x01000fff

opMemoryWriteMonitorAdd(mem, proc, 0x01000000, 0x01000fff, writeCallBack, 0);

// watch instruction fetch accesses to the address range 0x01000000:0x01000fff

opMemoryFetchMonitorAdd(mem, proc, 0x01000000, 0x01000fff, fetchCallBack, 0);

The second argument (proc) is an optional processor argument that may be provided, if

set to a processor handle the Memory access monitor will only be triggered on an access

by the specific processor, for monitoring any Memory access this argument should be set

to NULL

12.4.1.5 Example

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 110 of 167

This example is found in the monitorAccesses directory.

$IMPERAS_HOME/Examples/SimulationControl/monitorAccesses

This example shows the use of a monitor to trap a write to a specific address.

In the main function of the harness a callback on a write to a word at 0x00400000 is

added. The userData field is used to pass a name of the watch point to the callback

function.

 //

// triggered when registered access happens and prints information of access

//

static OP_MONITOR_FN(monitorCallback) {

 opMessage ("I", PREFIX "_MT",

 "Monitor triggered: "

 "callback '%s': processor '%s' : "

 "type '%s' : bytes %u : "

 "address Physical 0x" FMT_A0Nx" Virtual 0x" FMT_A0Nx,

 __FUNCTION__,

 processor ? opObjectName(processor) : "artifact", // if no processor this is an

artifact access

 (const char*)userData,

 bytes,

 addr,

 VA

);

}

//

// iterate across the processors found in the module and register callbacks for read, write

and fetch

//

static void monitorProcessor(optModuleP mi) {

 optModuleP mod;

 if (!(mod = opObjectByName (mi, MODULE_INSTANCE,

OP_MODULE_EN).Module)) {

 opMessage ("F", PREFIX "_NFW", "Can not find module(%s)",

MODULE_INSTANCE);

 }

 // iterate across all processors found in module

 optProcessorP processor = 0;

 while ((processor = opProcessorNext(mod, processor))) {

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 111 of 167

 Addr max = 0;

 optBusPortConnP bpc = opObjectByName(processor, "DATA",

OP_BUSPORTCONN_EN).BusPortConn;

 if(bpc) {

 optBusP bus = opBusPortConnBus(bpc);

 max = opBusMaxAddress(bus);

 }

 Addr min = 0;

 opMessage("I", PREFIX "_BM", "Add monitor for '%s' (0x" FMT_A0Nx " to 0x"

FMT_A0Nx ")\n",

 opObjectHierName(processor), (Addr)0, max);

 opProcessorFetchMonitorAdd(processor, 0, min, max, monitorCallback, "processor-

fetch");

 opProcessorReadMonitorAdd (processor, 0, min, max, monitorCallback, "processor-

read");

 opProcessorWriteMonitorAdd(processor, 0, min, max, monitorCallback, "processor-

write");

 }

}

//

// iterate across the busses found in the module and register callbacks for read, write and

fetch

//

static void monitorBus(optModuleP mi) {

 optModuleP mod;

 if (!(mod = opObjectByName (mi, MODULE_INSTANCE,

OP_MODULE_EN).Module)) {

 opMessage ("F", PREFIX "_NFW", "Can not find module(%s)",

MODULE_INSTANCE);

 }

 // iterate across all busses found in module

 optBusP bus = 0;

 while ((bus = opBusNext(mod, bus))) {

 Addr max = opBusMaxAddress(bus);

 Addr min = 0;

 if (options.busshow) {

 opBusShow(bus); // print the bus connections for each bus found

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 112 of 167

 } else {

 opMessage("I", PREFIX "_BM", "Add monitor for '%s' (0x" FMT_A0Nx " to 0x"

FMT_A0Nx ")\n",

 opObjectHierName(bus), (Addr)0, max);

 opBusFetchMonitorAdd(bus, 0, min, max, monitorCallback, "bus-fetch");

 opBusReadMonitorAdd (bus, 0, min, max, monitorCallback, "bus-read");

 opBusWriteMonitorAdd(bus, 0, min, max, monitorCallback, "bus-write");

 }

 }

}

//

// iterate across the memories found in the module and register callbacks for read, write

and fetch

//

static void monitorMemory(optModuleP mi) {

 optModuleP mod;

 if (!(mod = opObjectByName (mi, MODULE_INSTANCE,

OP_MODULE_EN).Module)) {

 opMessage ("F", PREFIX "_NFW", "Can not find module(%s)",

MODULE_INSTANCE);

 }

 // iterate across all memories found in module

 optMemoryP memory = 0;

 while ((memory = opMemoryNext(mod, memory))) {

 Addr max = opMemoryMaxAddress(memory);

 Addr min = 0;

 opMessage("I", PREFIX "_BM", "Add monitor for '%s' (0x" FMT_A0Nx " to 0x"

FMT_A0Nx ")\n",

 opObjectHierName(memory), (Addr)0, max);

 opMemoryFetchMonitorAdd(memory, 0, min, max, monitorCallback, "memory-

fetch");

 opMemoryReadMonitorAdd (memory, 0, min, max, monitorCallback, "memory-

read");

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 113 of 167

 opMemoryWriteMonitorAdd(memory, 0, min, max, monitorCallback, "memory-

write");

 }

}

The callback functions used for a read, a write or a fetch should be defined using the

macro OP_MONITOR_FN. The callback function is defined below.

//

// triggered when registered access happens and prints information of access

//

static OP_MONITOR_FN(monitorCallback) {

 opMessage ("I", PREFIX "_MT",

 "Monitor triggered: "

 "callback '%s': processor '%s' : "

 "type '%s' : bytes %u : "

 "address Physical 0x" FMT_A0Nx" Virtual 0x" FMT_A0Nx,

 __FUNCTION__,

 processor ? opObjectName(processor) : "artifact", // if no processor this is an

artifact access

 (const char*)userData,

 bytes,

 addr,

 VA

);

}

To run the example, compile the test harness, the module and the application using the

following commands in the monitorAccess point directory:

make –C harness

make –C module

make –C application CROSS=OR1K

To run the simulation, in the monitorAccess directory, run :

./ # run the harness

./harness/harness.Linux32.exe \

 --program application/application.OR1K.elf

You should see output similar to the following:

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 114 of 167

12.4.2 Adding a Memory Watchpoint

Unlike the Memory Monitor a Memory Watchpoint can cause the simulation to return to

the harness and so return control.

OP_ADDR_WATCHPOINT_CONDITION_FN

Note that:

1. The load from address 0x00400000 is captured by the write callback.

2. The simulation is set to finish before the next instruction, which is not

executed.

3. The status code passed as the second argument to opModuleFinish is printed

just before the simulation exits.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 115 of 167

13 Simulation Optimization
A simulator using the OP interface is at liberty to pre-read code that is going to simulate,

then make internal optimization to run that code a quickly as possible. If that code is then

modified by another processor or PSE model, or by an OP API call (e.g..

opProcessorWrite()), then the simulator must discard and re-generate its optimizations.

If however, the code is stored in memory created using opMemoryNativeNew() and

modified by an agent external to OP, the simulator will not know its code is invalid. The

Programmer must therefore notify the simulator using opProcessorFlush().

13.1 Example

In the module creation a native memory is created and connected onto the bus that has

been found in the module. If multiple busses are contained in the module an alternative

function, opObjectByName, could be used to find a specific bus or processor.

 // assume single bus, so first is the one we want

 optBusP bus = opBusNext(mi, NULL);

 if (!bus)

 opMessage("F", "MOD", "No bus in module '%s'", opObjectName(mi));

 // An area of native memory

 Uns32 memsize = 0x03E07FFF - 0x03E00000+1;

 void *nativePointer = STYPE_ALLOC_N(memsize, char);

 memset(nativePointer, 0, memsize);

 // connect memory

 opMemoryNativeNew(

 mi,

 "Native",

 OP_PRIV_RWX,

 memsize-1,

 nativePointer,

 OP_CONNECTIONS(

 OP_BUS_CONNECTIONS(

 OP_BUS_CONNECT(bus1, "sp1", .slave=1,

 .addrLo=0x03E00000, .addrHi=0x03E07FFF)

)

),

 0

);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 116 of 167

During simulation if is possible that the memory may be changed, for example an update

from an external source as shown in this example code using a memcpy to modify the

memory region

…

 // assume single processor, so first is the one we want

 optProcessorP proc = opProcessorNext(mi, NULL);

 if (!proc)

 opMessage("F", "MOD", "No processor in module '%s'", opObjectName(mi));

// copy newData into the native memory region

memcpy(nativePointer, newData, memsize);

// flush processor for the modified address range

opProcessorFlush(proc, 0x03E00000, 0x03E00000+memsize -1);

When the processor is now allowed to continue simulation, it will re-optimize any code

that has been executed from this memory region.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 117 of 167

14 Enabling Peripheral Diagnostics
A peripheral model can be written to provide diagnostics information during its

execution. The diagnostics can be defined by the model developer using the modeling

equivalent of printf within the model (model diagnostics) or provided from the simulation

system (system diagnostics).

14.1 Model Diagnostics
The model diagnostics are controlled by setting the diagnostic level of the peripheral

model. This is enabled in the platform after the PSE has been instantiated using the

opPeripheralDiagnosticLevelSet function call.

It is standard to provide 3 levels of diagnostics within the model diagnostics, each higher

level providing a super set of lower level diagnostics.

For a PSE based peripheral the diagnostics would be controlled by values of 0, 1, 2, or 3

being written.

0 No diagnostics

1 Low diagnostics

2 Medium diagnostics

3 High diagnostics

By setting a value higher than 16 System level diagnostics may also be enabled and

displayed in conjunction with the model based diagnostics level set

16 System diagnostics. At this level (and above) the simulator automatically reports

net and register callbacks, without the addition of code to the model.

The example code below would set the diagnostics to the highest level and so provide the

most verbose output. This could provide details down to the individual register level.

 opPeripheralDiagnosticLevelSet(vga, 3);

14.2 Intercept Library Diagnostics

When the peripheral's behavior is created using native code within an interception library

the diagnostics must be passed through the PSE part of the model using the same

mechanism as for the model diagnostics, mentioned earlier.

The recommended approach is to use high order bits in the diagnostic level for the

intercept library. So, for example, to turn on the highest diagnostics level for both the

PSE and Native elements of a peripheral model, we can use bits 0 and 1 for the PSE and

4 and 5 for the Native.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 118 of 167

#define PSE_DIAG_HIGH 3

#define PSE_DIAG_MEDIUM 2

#define PSE_DIAG_LOW 1

#define INT_DIAG_HIGH (3<<4)

#define INT_DIAG_MEDIUM (2<<4)

#define INT_DIAG_LOW (1<<4)

...

opPeripheralDiagnosticLevelSet(vga, INT_DIAG_HIGH | PSE_DIAG_HIGH);

14.3 Peripheral Debug Support
When simulating a platform with the Imperas professional simulator (CpuManager) full

symbolic debug is available for each peripheral (PSE) model within the integrated debug

environment, eGui.

14.4 Controlling peripheral model diagnostics
The diagnostics generated by a peripheral model can be individually controlled by the use

of overrides either applied on the command line or in the harness. Alternatively, the

diagnostic level can be set for all the peripheral models in the entire design on the

command line.

14.4.1 From Command Line

The overrides that can be applied in a design from the command line can be found using

the --showoverrides argument.

This will provide a listing similar to that shown (a small extract generated for the MIPS

Malta platform) which will show the available overrides

--override MipsMalta/debugpseconstructors

--override MipsMalta/idebug

--override MipsMalta/mi

…

--override MipsMalta/PCI_PM/diagnosticlevel

--override MipsMalta/PCI_PM/trace

--override MipsMalta/PCI_PM/enabletoolspse

--override MipsMalta/PCI_PM/PCIslot

--override MipsMalta/PCI_PM/PCIfunction

--override MipsMalta/PCI_NET/diagnosticlevel

--override MipsMalta/PCI_NET/trace

…

--override MipsMalta/intCtrlMaster/diagnosticlevel

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 119 of 167

--override MipsMalta/intCtrlMaster/trace

--override MipsMalta/intCtrlMaster/enabletoolspse

--override MipsMalta/intCtrlMaster/spen

--override MipsMalta/intCtrlSlave/diagnosticlevel

--override MipsMalta/intCtrlSlave/trace

--override MipsMalta/intCtrlSlave/enabletoolspse

--override MipsMalta/intCtrlSlave/spen

…

These may then be applied to the command line to set the diagnostics level for one or

more of the peripherals

./harness/harness.Linux32.exe --program application/application.OR1K.elf \

 --override MipsMalta/PCI_NET/diagnosticlevel=2 \

 --override MipsMalta/intCtrlSlave/diagnosticlevel=2

By using the command line argument --modeldiags the diagnostics level can be set for

ALL the peripheral models in the design.

For example, the following will set all peripheral model diagnostic levels to 2

./harness/harness.Linux32.exe --program application/application.OR1K.elf \

 --modeldiags 2

14.4.2 From Harness

A diagnostics level may be controlled from the test harness using overrides during the

construction phase using the Uns32 parameter override for the peripheral instance as

shown below

opParamUns32Override(mi, “top/u1/peripheral1/” OP_FP_DIAGNOSTICLEVEL, 2);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 120 of 167

15 Model and Intercept Object Additional Commands
A processor model or an intercept object can install its own commands to be executed as

required during simulation. Commands are typically used to enable or disable

functionality in the model or intercept object or to extract analysis data that the model or

intercept object has been accumulating.

Commands are installed in a processor model using vmirtAddCommand(). See

OVP_VMI_Run_Time_Function_Reference.doc.

Commands are installed in a intercept object using vmiosAddCommand(). See

OVP_VMI_OS_Support_Function_Reference.doc, and opProcessorExtensionNew() in

this document.

Commands are called, from a harness, using opCommandCall(). A command can be

called any time after it has been installed and before the simulation terminates, but the

user needs to be aware of when installation occurs. Models and intercept objects are

recommended to install their commands in their constructors, in which case the earliest

'safe' time to call a command is immediately before opRootModuleSimulate() or

opProcessorSimulate().

This example calls a command that is installed by a processor model and lists all the

available commands on the processor using an iterator function

int main(int argc, const char *argv[]) {

 opSessionInit(OP_VERSION);

 opCmdParseStd (argv[0], OP_AC_ALL, argc, argv);

 optModuleP mr = opRootModuleNew(0, 0, 0);

 optModuleP mi = opModuleNew(mr, "module", "u1", 0, 0);

 opRootModulePreSimulate(mr);

 // get processor, assumes only a single processor

 optProcessorP processor = opProcessorNext(mi, NULL);

 // Run the processor for 100 instructions

 opProcessorSimulate(processor, 100);

 // Call a command that had been created in a processor model

 // Pointer to the call command result string. This could be any string

 const char *result;

 opPrintf("Call Model Commands\n\n");

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 121 of 167

 // Setup command for reading MIPS COP0 registers

 const char* cmdToExecute = "u1/cpu1/mipsCOP0";

 optCommandP cmd = opObjectByName(mr,

 cmdToExecute,

 OP_COMMAND_EN).Command;

 if(!cmd)

 opMessage("F", "harness", "Command '%s' not found", cmdToExecute);

 // Setup calling arguments to read COP0 'Config' register

 const char *cmd1Argv[] = {"0", "16", "0"};

 result = opCommandCall(cmd,

 3,

 cmd1Argv);

 opPrintf("Call Command result '%s'\n", result);

 // Setup calling arguments to read COP0 'PrId' register

 const char *cmd2Argv[] = {"0", "15", "0"};

 result = opCommandCall(cmd,

 3,

 cmd2Argv);

 opPrintf("Call Command result '%s'\n", result);

 opPrintf("Discover installed commands\n");

 // iterates over all commands on all processor instances

 opModuleCommandsShow(mi);

 const char *procName = "cpu1";

 opPrintf("Commands for %s\n", procName);

 optProcessorP proc = opObjectByName(mi, procName,

OP_PROCESSOR_EN).Processor;

 // iterates over all commands on this processor instance

 opProcessorCommandIterAll(proc, printCommand, 0);

 opPrintf("Complete Simulation\n\n");

 // run simulation to completion

 opRootModuleSimulate(mr);

 opSessionTerminate();

 return 0;

}

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 122 of 167

Note that although each command can use its arguments in any way, it is normal practice

to use the Unix convention of passing the command name as the first argument. Thus

argv[0] is the command name and argv[1] is the first true argument.

An example of calling commands that are created within a processor model is in

$IMPERAS_HOME/Examples/SimulationControl/callingInstalledCommands.

This uses the MIPS32 model commands.

In harness/harness.c an array is defined for the arguments for the command. This is a

Linux like argv, argc array; with argument zero the name of the command

 const char *cmd1Argv[] = {"mipsCOP0", “-register”, "16", “-select”, "0"};

When calling the command this array is passed to the opCallCommand function.

 result = opCommandCall(cmd,

 5,

 cmd1Argv);

The result returned from the opCommandCall function is a string passed back from the

command itself after execution. It can represent success or failure of the command or it

can be an information string; this is command dependent.

An OP API harness can discover what commands are available, for a module or for a

particular processor model.

The example uses the MIPS32 model commands.

All the installed commands can be shown for a module using

 // iterates over all commands on all processor instances

 opModuleCommandsShow(mi);

This provides the output in a form that can be used on the command line to call the

command, with the help message provided in brackets

Discover installed commands

--callcommand u1/cpu1/mipsCOP0 [query a COP0 register value using <register>

<select>]

--callcommand u1/cpu1/mipsWriteRegister [Write to a processor register using

<resource> <offset> <value>]

--callcommand u1/cpu1/mipsReadRegister [Read a processor register using <resource>

<offset>]

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 123 of 167

--callcommand u1/cpu1/mipsCacheEnable [enable tag or full cache model]

--callcommand u1/cpu1/mipsCacheDisable [Disables tag or full cache model]

--callcommand u1/cpu1/mipsCacheReport [Report current cache statistics]

--callcommand u1/cpu1/mipsCacheReset [reset the cache model]

--callcommand u1/cpu1/mipsCacheRatio [Report current hit ratio for selected cache]

--callcommand u1/cpu1/mipsCacheTrace [Control the tracing of cache accesses]

--callcommand u1/cpu1/mipsDebugFlags [Set the processor model debug flags to

<value>]

--callcommand u1/cpu1/itrace [enable or disable instruction tracing]

--callcommand u1/cpu1/isync [specify instruction address range for synchronous

execution]

Alternatively, the commands of a specific processor instance can be extracted and printed

by an command function defined using the macro OP_COMMAND_FN. The function is

declared using the provided prototype macro. Arguments to the function are the

command name and user data.

static OP_COMMAND_FN(printCommand) {

 opPrintf("Command %s\n", opObjectHierName(command));

}

The function printCommand will be called for every installed command on a particular

processor:

 optProcessorP proc = opObjectByName(mi, procName,

OP_PROCESSOR_EN).Processor;

 // iterates over all commands on this processor instance

 opProcessorCommandIterAll(proc, printCommand, 0);

that provides the output listing the command only

Commands for cpu1

Command u1/cpu1/isync

Command u1/cpu1/itrace

Command u1/cpu1/mipsCOP0

Command u1/cpu1/mipsCacheDisable

Command u1/cpu1/mipsCacheEnable

Command u1/cpu1/mipsCacheRatio

Command u1/cpu1/mipsCacheReport

Command u1/cpu1/mipsCacheReset

Command u1/cpu1/mipsCacheTrace

Command u1/cpu1/mipsDebugFlags

Command u1/cpu1/mipsReadRegister

Command u1/cpu1/mipsWriteRegister

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 124 of 167

16 Introspecting and Querying Platforms & Components

As we have seen in many of the previous examples the OP API provides a large set of

functions to allow objects to be found in a simulation and for these objects then to be

queried for information.

When wishing to obtain information from objects in a design it is possible to search for

the object using its name with the opObjectByName function which, using a union of

object types, allows the correct type to be returned. The following shows how a bus

object named ‘busMain’ would be found within the module instance mi using this

function

 optBusP bus = opObjectByName(mi, “busMain”, OP_BUS_EN).Bus;

An alternate way of finding the an object is to use a combination of an iterator function

and the query functions. The following shows how we could iterate within the same

module, mi for the bus named ‘busMain’.

 optBusP bus = 0;

 while ((bus = opBusNext(mi, bus))) {

 const char *busName = opObjectHierName(bus);

 if (strcmp(busName,”busMain”) == 0) {

 opPrintf(“Found bus ‘busMain’\n”);

 break;

 }

}

Each object type has its own iterator and query functions available.

16.1 Platform Introspector:
Examples/PlatformConstruction/walker

The full set of iterator and query functions will not be listed in this document but the

example found in IMPERAS_HOME/Examples/PlatformConstruction/walker makes

use of all the introspection and query functions in the harness (harness/harness.c) to find

objects for each type and fully iterate across them and print their respective information.

The harness instances a module that contains a processor, bus, peripheral and memory

 optModuleP mi = opRootModuleNew(0, 0, 0);

 if(!options.modulepath) {

 options.modulepath = MODULE_DIR;

 }

 opModuleNew(mi, options.modulepath, MODULE_INSTANCE, 0, 0);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 125 of 167

 opRootModulePreSimulate(mi);

and then for this module it calls a ‘walker’ function that given the name of an object from

which to start (obtained from the custom command line argument ‘objectname) iterates

all the objects

optObjectP startObject = opObjectByName(mi, options. objectname, 0);

…

 walkObject(0, startObject);

…

The walkObject function obtains, using the opObjectType(), the optStrType from the

enumeration optStrTypeE so that it can call the correct object iterator

The enumeration of object types is

Enumeration Object Type Description

OP_APPLICATION_EN Application program object file.

OP_BRIDGE_EN Instance of a bridge.

OP_BUS_EN Bus interconnect instance.

OP_BUSSLAVE_EN Pair of read/write callbacks on a bus region.

OP_BUSPORT_EN Bus port specification.

OP_BUSPORTCONN_EN Bus port instance.

OP_COMMAND_EN Model or plugin command.

OP_EXTENSION_EN Instance of an extension applied to a model.

OP_EXTELAB_EN An elaborated extension.

OP_FIFO_EN The FIFO instance.

OP_FIFOPORT_EN FIFO port definition.

OP_FIFOPORTCONN_EN FIFO port instance.

OP_FORMAL_EN The formal parameter specifying a legal

parameter of a model.

OP_FORMALENUM_EN A name and value pair.

OP_MEMORY_EN Instance of a memory.

OP_MMC_EN Instance of an MMC.

OP_MMREGISTER_EN Memory Mapped Register.

OP_MODULE_EN Instance of a module.

OP_NET_EN Net instance.

OP_NETMONITOR_EN Net callback installed before the platform is

built.

OP_NETPORT_EN Net port definition, used when querying the

model.

OP_NETPORTCONN_EN Net port connection instance.

OP_PACKETNET_EN Interconnect used to model packet networks such

as Ethernet or CAN bus.

OP_PACKETNETMONITOR_EN Packetnet callback installed before the platform

is built.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 126 of 167

OP_PACKETNETPORT_EN Packetnet port definition, used when querying

the model.

OP_PACKETNETPORTCONN_EN Packetnet port instance.

OP_PARAM_EN Parameter of module or component instance.

OP_PERIPHERAL_EN Instance of a peripheral model.

OP_PROCESSOR_EN Instance of a processor model.

Once the object type is known a specific function is called to iterate.

At a low level we could be walking over a bus instance as shown in the following:

static void walkBus(Uns32 indent, optBusP o){

 indentText(indent++);

 opPrintf("Bus: \"%s\"\n", opObjectHierName(o));

 indentText(indent);

 opPrintf("addrBits : %d\n", opBusAddrBits(o));

 walkBusSlaveList(indent, o);

 walkParamList(indent, o);

 walkFormalList(indent, o);

 walkApplicationList(indent, o);

}

For this bus instance we walk over and display query information for the objects that are

related to the bus, for example the walkBusSlaveList will iterate across all the bus slaves

connected to this bus and provide information of that object

static void walkBusSlaveList(Uns32 indent, optBusP o){

 optBusSlaveP ch = 0;

 while((ch = opBusSlaveNext(o,ch))) {

 walkBusSlave(indent, ch);

 }

}

16.2 Running the platform & component introspecting
harness: walker

Take a copy of the introspection and query example in

$IMPERAS_HOME/Examples/SimulationControl/walker

The introspection and query harness and the example module can be built with the

following commands

> make –C harness

> make –C module

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 127 of 167

and then executed with

> ./harness/harness.Linux32.exe

The following output has been reduced to show some of the information that would be

observed:

Module: ""

. path : "(null)"

. Formal: "debugpseconstructors"

. . Type: "Boolean"

. . Desc: "Start the debugger BEFORE PSE constructors have run"

. . default:0

…

. Module: "u1"

. . path : "module"

. . Bus: "u1/mainBus"

. . . addrBits : 32

. . . Parameter: (cursor)

. . Memory: "u1/ram1"

. . . priv : 7

. . . maxAddress : fffffff

. . . BusPort: "u1/ram1/sp1"

. . . . description : "(null)"

. . . . type : 2

. . . . domainType : 0

. . . . addrHi : 0

. . . . addrBitsMin : 0

. . . . addrBitsMax : 0

. . . . mustConnect : 0

. . . . isDynamic : 0

…

. . Peripheral: "u1/periph0"

. . . path :

"Imperas/lib/Linux32/ImperasLib/freescale.ovpworld.org/peripheral/KinetisUART/1.0/ps

e.pse"

. . . BusPort: "u1/periph0/bport1"

…

16.3 Using the walkers command line
You can use the command line options to specify the module to load and the object to

walk (introspect):

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 128 of 167

> ./harness/harness.Linux32.exe \

 --modulepath module \

 --objectname u1/periph0

This will load the module from the path 'module', and will start the walking from the

object named 'u1/periph0' and will introspect the peripheral:

OVPsim started: Mon Mar 14 12:56:57 2016

Peripheral;'u1/periph0'

. path : ImperasLib/freescale.ovpworld.org/peripheral/KinetisUART/1.0/pse.pse"

. BusPort;'u1/periph0/bport1'

. . description : "(null)"

. . type : 2

. . domainType : 0

. . addrHi : 0xfff

. . addrBitsMin : 0

. . addrBitsMax : 0

. . mustConnect : 0

. . isDynamic : 0

. BusPortConn;'u1/periph0/bport1'

. . type : 2

. . addrHi : 0x100013f7

. . addrLo : 0x100003f8

. . isDynamic : 0

. . Bus: u1/mainBus

. NetPort;'u1/periph0/DirectWrite'

. . description : "(null)"

. . type : 2

. . mustConnect : 0

. NetPort;'u1/periph0/DirectRead'

. . description : "(null)"

. . type : 1

. . mustConnect : 0

. NetPort;'u1/periph0/Interrupt'

. . description : "(null)"

. . type : 2

. . mustConnect : 0

. NetPort;'u1/periph0/Reset'

. . description : "(null)"

. . type : 1

. . mustConnect : 0

. NetPortConn;'u1/periph0/DirectWrite'

. . type : 0

. . Net: u1/directWrite

. NetPortConn;'u1/periph0/DirectRead'

. . type : 0

. . Net: u1/directRead

. Parameter: (cursor)

. Parameter: "u1/periph0/outfile" uartTTY0.log

. Formal: "u1/periph0/diagnosticlevel" (system)

. . Type: "Uns32"

. . Desc: "Set the peripheral model diagnostic level to this value"

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 129 of 167

. . min:0 max:4294967295 default:0

...

. Formal: "u1/periph0/replay" (model)

. . Type: "String"

. . Desc: "Replay external events from this file"

. . max:0 default:((null))

OVPsim finished: Mon Mar 14 12:56:57 2016

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 130 of 167

17 Save / Restore

17.1 Introduction

The Imperas simulator supports save and restore. This allows a simulation to be run to a

specific time or event in the future, stopped and the current state saved. This state may

then be restored into the simulator and execution continued which allows multiple

simulations to be carried out from a known state without having to re-execute any of the

previous simulation.

The simulator automatically performs save and restore on known internal state of a

component, for example defined register structures in processors and peripherals. Where

the component has additional specific internal state callback functions are used to define

how this state should be saved and restored.

17.2 Checking Supported

For any object in a design the opObjectSaveRestoreSupported can be used to determine if

that object supports save and restore.

All components used within a design should support save and restore. Each component

can be interrogated to see if it supports save and restore, for example to find the

processors and peripherals status in a module

//

// function to report and return save / restore status of an object

//

static Bool reportSupported(optObjectP obj) {

 Bool ok = opObjectSaveRestoreSupported((optObjectP) obj);

 opMessage("I", "SAVE_RESTORE_CHECK", "'%s' ('%s/%s/%s/%s') : %s",

 opObjectName(obj),

 opVLNVVendor(opObjectVLNV(obj)),

 opVLNVLibrary(opObjectVLNV(obj)),

 opVLNVName(opObjectVLNV(obj)),

 opVLNVVersion(opObjectVLNV(obj)),

 ok ? "supported" : "not supported");

 return ok;

}

//

// iterate across components and check they all support save/restore

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 131 of 167

//

static void checkSupported(optModuleP mi) {

 Bool allSupport = True;

 opMessage("I", "SAVE_RESTORE_CHECK",

 "Check all components support save/restore");

 // Processors

 optProcessorP proc = 0;

 while ((proc = opProcessorNext(mi, proc))) {

 Bool ok = reportSupported(proc);

 allSupport &= ok;

 }

 // Peripherals

 optPeripheralP per = 0;

 while ((per = opPeripheralNext(mi, per))) {

 Bool ok = reportSupported(per);

 allSupport &= ok;

 }

 if (!allSupport) {

 opMessage("W", "SAVE_RESTORE_CHECK",

"Not all components fully support save/restore: may not work in all operation modes!");

 }

}

17.3 Validating Processor Model Save and Restore

There are a set of OP API functions that can be used to verify that save and restore is

correctly working in a processor model.

NOTE: These functions are not intended to be used for the save and restore of a design.

They allow the state of a processor and its associated memory to be saved and restored

for the purpose of verifying the save and restore capabilities of a processor module during

development. The save and restore for a design is controlled using the Imperas M*SDK

product interactive interfaces, see section 17.4 “Using Save and ”.

The processor and memory state can be saved and restored locally within the harness to

allow a verification harness to be created using the set of functions

opMemoryStateSave

opProcessorStateSave

opMemoryStateRestore

opProcessorStateRestore

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 132 of 167

The state can also be saved to and restored from a file using the following

opMemoryStateSaveFile

opProcessorStateSaveFile

opMemoryStateRestoreFile

opProcessorStateRestoreFile

Take a copy of the processor model validation save and restore example in

$IMPERAS_HOME/Examples/SimulationControl/processorSaveRestoreValidation

The example module can be built with the following commands

> make –C harness

> make –C module

and then executed with

> harness/harness.Linux32.exe

This executes 100 instructions on the processor, saves state and then runs a further 1000

instructions. At this point the processor and memory state is restored and the simulation

runs until completion. Instruction tracing is performed to verify that the instructions

executed after the save/restore point are the same in each case.

The following shows an extract from the simulation output on the initial execution of

instructions 101 onwards:

Info 99: 'top/u1/cpu1', 0x00000000000017d4(_strlen+3c): l.and r4,r4,r5

Info 100: 'top/u1/cpu1', 0x00000000000017d8(_strlen+40): l.movhi r5,0x8080

Simulator StopReason = Instruction count breakpoint is pending

OP_SR_BP_ICOUNT @ST1 : Save State

Info 101: 'top/u1/cpu1', 0x00000000000017dc(_strlen+44): l.ori r5,r5,0x8080

Info 102: 'top/u1/cpu1', 0x00000000000017e0(_strlen+48): l.and r4,r4,r5

Info 103: 'top/u1/cpu1', 0x00000000000017e4(_strlen+4c): l.sfnei r4,0x0

Info 104: 'top/u1/cpu1', 0x00000000000017e8(_strlen+50): l.bnf 0x000017bc

Info 105: 'top/u1/cpu1', 0x00000000000017ec(_strlen+54): l.nop 0x0

Info 106: 'top/u1/cpu1', 0x00000000000017bc(_strlen+24): l.addi r3,r3,0x4

Info 107: 'top/u1/cpu1', 0x00000000000017c0(_strlen+28): l.lwz r4,0x0(r3)

Subsequently after the simulation is stopped and restored at instruction 1100 we get the

same instruction execution sequence:

…

Info 1098: 'top/u1/cpu1', 0x00000000000019f0(___sfvwrite+1d0): l.ori r4,r18,0x0

Info 1099: 'top/u1/cpu1', 0x00000000000019f4(___sfvwrite+1d4): l.sfgts r7,r6

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 133 of 167

Info 1100: 'top/u1/cpu1', 0x00000000000019f8(___sfvwrite+1d8): l.bf 0x00001c0c

Simulator StopReason = Instruction count breakpoint is pending

OP_SR_BP_ICOUNT @ST2 : Restore state

Info 101: 'top/u1/cpu1', 0x00000000000017dc(_strlen+44): l.ori r5,r5,0x8080

Info 102: 'top/u1/cpu1', 0x00000000000017e0(_strlen+48): l.and r4,r4,r5

Info 103: 'top/u1/cpu1', 0x00000000000017e4(_strlen+4c): l.sfnei r4,0x0

Info 104: 'top/u1/cpu1', 0x00000000000017e8(_strlen+50): l.bnf 0x000017bc

Info 105: 'top/u1/cpu1', 0x00000000000017ec(_strlen+54): l.nop 0x0

Info 106: 'top/u1/cpu1', 0x00000000000017bc(_strlen+24): l.addi r3,r3,0x4

Info 107: 'top/u1/cpu1', 0x00000000000017c0(_strlen+28): l.lwz r4,0x0(r3)

…

17.4 Using Save and Restore in simulation

The save and restore is controlled from the Imperas M*SDK command line interface

using the ‘save’ and ‘restore’ commands. These commands save and restore respectively

the complete state of the design to a file.

This can be illustrated using the example:

IMPERAS_HOME/Examples/PlatformConstruction/simpleCpuMemoryUart

Take a copy of the example and run the example script so that the application, harness

and module are generated and compiled.

The following requires that a valid installation of M*SDK is available.

Start the platform with Imperas MPD using command line (integrated or remote) or eGui.

This example will show the use of the integrated command line version with tracing

enabled to show the instruction execution of the processor and also the UART console

enabled to see the UART output

harness.exe \

 --modulefile module \

 --program application/application.OR1K.elf \

 --idebug \

 --trace –traceshowicount \

 --override simpleCpuMemoryUart/periph0/console=1

This will bring up the interactive command line mode with tracing enabled.

First let us set a breakpoint after 3500 instructions have been executed and run the

simulation:

idebug (cpu1) > ::iseticountpoint -icount 3500

idebug (cpu1) > continue

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 134 of 167

We will see the output

…

CpuManagerMulti started: Mon Feb 29 14:48:19 2016

…

Info 1: 'simpleCpuMemoryUart/cpu1', 0x0000000000000100(start): l.addi r2,r0,0x0

Info 2: 'simpleCpuMemoryUart/cpu1', 0x0000000000000104(start+4): l.addi r3,r0,0x0

Info 3: 'simpleCpuMemoryUart/cpu1', 0x0000000000000108(start+8): l.addi r4,r0,0x0

Info 4: 'simpleCpuMemoryUart/cpu1', 0x000000000000010c(start+c): l.addi r5,r0,0x0

Info 5: 'simpleCpuMemoryUart/cpu1', 0x0000000000000110(start+10): l.addi r6,r0,0x0

Info 6: 'simpleCpuMemoryUart/cpu1', 0x0000000000000114(start+14): l.addi r7,r0,0x0

Info 7: 'simpleCpuMemoryUart/cpu1', 0x0000000000000118(start+18): l.addi r8,r0,0x0

Info 8: 'simpleCpuMemoryUart/cpu1', 0x000000000000011c(start+1c): l.addi r9,r0,0x0

…

Info 3498: 'simpleCpuMemoryUart/cpu1', 0x0000000000001924(_strlen+78): l.sub

r11,r3,r6

Info 3499: 'simpleCpuMemoryUart/cpu1', 0x0000000000001914(_strlen+68): l.addi

r3,r3,0x1

Info 3500: 'simpleCpuMemoryUart/cpu1', 0x0000000000001918(_strlen+6c): l.lbs

r4,0x0(r3)

Icountpoint 1 for cpu1 triggered at 3500

0x0000191c in strlen (str=0x4afb "0 world\n\n") at ../../../../../../src/gcc-

3.4.2/newlib/libc/string/strlen.c:88

88 in ../../../../../../src/gcc-3.4.2/newlib/libc/string/strlen.c

The console of the UART will show the text

Hello

We will now save the state of the design into a file ‘file.sav’

idebug (cpu1) > save file.sav

and then set a new breakpoint after 5000 instructions have been executed and continue

the simulation:

idebug (cpu1) > ::iseticountpoint -icount 5000

idebug (cpu1) > continue

which will execute further instructions from 3501 to the next break at 5000

Info 3501: 'simpleCpuMemoryUart/cpu1', 0x000000000000191c(_strlen+70): l.sfeqi r4,0x0

Info 3502: 'simpleCpuMemoryUart/cpu1', 0x0000000000001920(_strlen+74): l.bnf 0x00001914

Info 3503: 'simpleCpuMemoryUart/cpu1', 0x0000000000001924(_strlen+78): l.sub r11,r3,r6

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 135 of 167

Info 3504: 'simpleCpuMemoryUart/cpu1', 0x0000000000001914(_strlen+68): l.addi r3,r3,0x1

…

Info 4997: 'simpleCpuMemoryUart/cpu1', 0x000000000000191c(_strlen+70): l.sfeqi r4,0x0

Info 4998: 'simpleCpuMemoryUart/cpu1', 0x0000000000001920(_strlen+74): l.bnf 0x00001914

Info 4999: 'simpleCpuMemoryUart/cpu1', 0x0000000000001924(_strlen+78): l.sub r11,r3,r6

Info 5000: 'simpleCpuMemoryUart/cpu1', 0x0000000000001914(_strlen+68): l.addi r3,r3,0x1

Icountpoint 2 for cpu1 triggered at 5000

0x00001918 in strlen (str=0x4af4 "lo UART0 world\n\n") at ../../../../../../src/gcc-

3.4.2/newlib/libc/string/strlen.c:88

88 in ../../../../../../src/gcc-3.4.2/newlib/libc/string/strlen.c

And the UART console now shows

Hello UART0 world

We can now restore the simulation state back to the point at which we stopped at 3500

instructions, and then run the simulation to completion

idebug (cpu1) > restore file.sav

idebug (cpu1) > continue

we see that the simulation starts from instruction 3501 once again

Info 3501: 'simpleCpuMemoryUart/cpu1', 0x000000000000191c(_strlen+70): l.sfeqi r4,0x0

Info 3502: 'simpleCpuMemoryUart/cpu1', 0x0000000000001920(_strlen+74): l.bnf 0x00001914

Info 3503: 'simpleCpuMemoryUart/cpu1', 0x0000000000001924(_strlen+78): l.sub r11,r3,r6

Info 3504: 'simpleCpuMemoryUart/cpu1', 0x0000000000001914(_strlen+68): l.addi r3,r3,0x1

Info 3505: 'simpleCpuMemoryUart/cpu1', 0x0000000000001918(_strlen+6c): l.lbs r4,0x0(r3)

Info 3506: 'simpleCpuMemoryUart/cpu1', 0x000000000000191c(_strlen+70): l.sfeqi r4,0x0

…

Until it terminates on reaching _exit (which was intercepted by the loaded semihosting

library)

…

Info 5947: 'simpleCpuMemoryUart/cpu1', 0x0000000000001974(_exit+40): l.ori r3,r10,0x0

Info 5948: 'simpleCpuMemoryUart/cpu1', 0x00000000000047f0(__exit): *** INTERCEPT *** (__exit)

exit (code=0) at ../../../../../../src/gcc-3.4.2/newlib/libc/stdlib/exit.c:64

64 in ../../../../../../src/gcc-3.4.2/newlib/libc/stdlib/exit.c

CpuManagerMulti finished: Mon Feb 29 15:00:20 2016

The UART console is now showing the additional output generated when the application

program is re-executed from the restored state.

Hello UART0 world

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 136 of 167

UART0 world

NOTE: In this example the save / restore is not fully implemented in the components

used but the automatic simulator save and restore is sufficient.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 137 of 167

18 Encapsulating Models for use in other Environments
An essential purpose of the OP API is to allow Imperas simulation models to be exported

to other environments (for example, SystemC).

18.1 SystemC
Integration with SystemC using OP is available and is described in the document OVPsim

Using OVP Models in SystemC TLM2.0 Platforms.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 138 of 167

19 Integration with Client Debuggers
It is a common requirement to be able to integrate OP platforms with client debuggers.

To support this requirement, additional capabilities are supported in the Imperas

Professional Tools product (not OVPsim), as described in the following sections.

19.1 Memory Access
The functions opProcessorRead and opProcessorWrite with the debugAccess

argument equal to True should be used to examine or modify memory without causing

side effects. See section 12 on Memory Operations.

19.2 Register Query
Debuggers often need to know the processor registers supported, so that they can be

presented to the user and watchpoints can be set on register value changes (see section

19.9.1 for more information about watchpoints). The supported processor registers can be

found using the processor register iterator:

optRegP opProcessorRegNext (

 optProcessorP processor,

 optRegP reg

);

The iterator should be passed NULL as the reg argument on the first call. On subsequent

calls, it should be passed the value returned on the previous call. For each non-NULL value

returned, the register name, width in bits, usage and group can be found using these

functions:

const char *opRegName (optRegP reg);

Uns32 opRegBits (optRegP reg);

optRegUsage opRegUsageEnum (optRegP reg);

const char *opRegUsageString (optRegP reg);

optRegGroupP opRegGroup (optRegP reg);

The register group (optRegGroupP) allows allocation of registers into model-specific

sets, to ease presentation for processors that contain many registers (see the next section).

19.3 Register Group Query
Debuggers often need to know the processor register groups supported. Register groups

are model-specific sets into which registers are allocated to ease presentational problems

when a processor model contains a large number of registers. The supported processor

register groups can be found using the processor register group iterator:

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 139 of 167

optRegGroupP opProcessorRegGroupNext (

 optProcessorP processor,

 optRegGroupP group

);

The iterator should be passed NULL as the group argument on the first call. On

subsequent calls, it should be passed the value returned on the previous call. For each

non-NULL value returned, the group name can be found using:

const char *opRegGroupName(optRegGroupP group);

The registers within a group can be found using the by-group register iterator:

optRegP opRegGroupRegNext (

 optProcessorP processor,

 optRegGroupP group,

 optRegP reg

);

Like the other iterators, the iterator should be passed NULL as the reg argument on the

first call. On subsequent calls, it should be passed the value returned on the previous call.

19.4 Mode State Query
Debuggers often need to know the processor modes supported, so that they can be

presented to the user and watchpoints can be set on mode changes (see section 19.9.1 for

more information about watchpoints). The supported processor modes can be found using

the processor mode iterator:

optModeP opProcessorModeNext (

 optProcessorP processor,

 optModeP mode

);

The iterator should be passed NULL as the mode argument on the first call. On subsequent

calls, it should be passed the value returned on the previous call. For each non-NULL value

returned, a string name, processor-specific code and description string can be found using

these functions:

const char *opModeName (optModeP mode);

Uns32 opModeCode (optModeP mode);

const char * opModeDescription (optModeP mode);

The current processor mode info can be found using:

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 140 of 167

optModeP opProcessorModeCurrent (optProcessorP processor);

19.5 Exception State Query
Debuggers often need to know the processor exceptions supported, so that they can be

presented to the user and watchpoints can be set on exception events (see section 19.9.1

for more information about watchpoints). The supported processor exceptions can be

found using the processor exception iterator:

optExceptionP opProcessorExceptionNext (

 optProcessorP processor,

 optExceptionP exception

);

The iterator should be passed NULL as the exception argument on the first call. On

subsequent calls, it should be passed the value returned on the previous call. For each

non-NULL value returned, , a string name, processor-specific code and description string

can be found using these functions:

const char * opExceptionName (optExceptionP exception);

Uns32 opExceptionCode (optExceptionP exception);

const char * opExceptionDescription (optExceptionP exception);

The current processor exception description can be found using:

optExceptionP opProcessorExceptionCurrent (optProcessorP processor);

19.6 Processor Freezing
Two routines allow specific processors in a multiprocessor platform to be frozen and

unfrozen:

void opProcessorFreeze (optProcessorP processor);

void opProcessorUnfreeze (optProcessorP processor);

When in a frozen state, a processor in a multiprocessor simulation will not be scheduled

when opRootModuleSimulate is called. It is therefore possible to restrict simulation to a

subset of processors in a multiprocessor platform by freezing those processors that should

not be run. A function is also available to test the frozen state of a specific processor:

Bool opProcessorFrozen (optProcessorP processor);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 141 of 167

19.7 Address Breakpoints
Two routines allow breakpoints to be set and cleared for a specific processor and address:

void opProcessorBreakpointAddrSet (

 optProcessorP processor,

 Addr addr

);

void opProcessorBreakpointAddrClear (

 optProcessorP processor,

 Addr addr

);

When a breakpoint has been set for a specific address, any attempt by the processor to

execute at that address will cause opRootModuleSimulate or opProcessorSimulate to

return with the processor’s optStopReason set to OP_SR_BP_ADDRESS.

19.8 Instruction Count Breakpoints
Two routines allow a breakpoint to be set and cleared that causes a processor to stop

executing after a specific number of instructions:

void opProcessorBreakpointICountSet (

 optProcessorP processor,

 Uns64 delta

);

void opProcessorBreakpointICountClear (

 optProcessorP processor

);

Once the specified number of instructions has elapsed, opRootModuleSimulate or

opProcessorSimulate will return with the processor’s optStopReason set to

OP_SR_BP_ICOUNT.

There is only one active ICount breakpoint on any processor; a second call to

opProcessorBreakpointICountSet (before the count is reached) will replace the

previous value. When the ICount breakpoint is reached, the breakpoint deletes itself.

19.9 Memory, Bus and Processor Watchpoints
A powerful watchpoint API is implemented specifically aimed at debugger integration.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 142 of 167

19.9.1 Watchpoint Creation and Deletion

Three routines are available to set read, write or access (both read and write) watchpoints

on a range of memory addresses in a memory:

optWatchpointP opMemoryReadWatchpointNew (

 optMemoryP memory,

 Addr addrLo,

 Addr addrHi,

 void* userData,

 optAddrWatchpointConditionFn notifierCB

);

optWatchpointP opMemoryWriteWatchpointNew (

 optMemoryP memory,

 Addr addrLo,

 Addr addrHi,

 void* userData,

 optAddrWatchpointConditionFn notifierCB

);

optWatchpointP opMemoryAccessWatchpointNew (

 optMemoryP memory,

 Addr addrLo,

 Addr addrHi,

 void* userData,

 optAddrWatchpointConditionFn notifierCB

);

Three more routines allow watchpoints to be specified on a bus range:

optWatchpointP opBusReadWatchpointNew (

 optBusP bus,

 Addr addrLo,

 Addr addrHi,

 void* userData,

 optAddrWatchpointConditionFn notifierCB

);

optWatchpointP opBusWriteWatchpointNew (

 optBusP bus,

 Addr addrLo,

 Addr addrHi,

 void* userData,

 optAddrWatchpointConditionFn notifierCB

);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 143 of 167

optWatchpointP opBusAccessWatchpointNew (

 optBusP bus,

 Addr addrLo,

 Addr addrHi,

 void* userData,

 optAddrWatchpointConditionFn notifierCB

);

Three routines allow watchpoints to be specified on a processor address range. For each,

a physical argument specifies whether the address range is in processor physical

memory (if True) or virtual memory (if False)5:

optWatchpointP opProcessorReadWatchpointNew (

 optProcessorP processor,

 Bool physical,

 Addr addrLo,

 Addr addrHi,

 void* userData,

 optProcWatchpointConditionFn notifierCB

);

optWatchpointP opProcessorWriteWatchpointNew (

 optProcessorP processor,

 Bool physical,

 Addr addrLo,

 Addr addrHi,

 void* userData,

 optProcWatchpointConditionFn notifierCB

);

optWatchpointP opProcessorAccessWatchpointNew (

 optProcessorP processor,

 Bool physical,

 Addr addrLo,

 Addr addrHi,

 void* userData,

 optProcWatchpointConditionFn notifierCB

);

One routine allows a watchpoint to be established on a register in a processor:

optWatchpointP opProcessorRegWatchpointNew (

 optProcessorP processor,

 optRegP reg,

 void* userData,

5 See the section 19.9.2 for a definition of what exactly virtual and physical mean in this context.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 144 of 167

 optProcWatchpointConditionFn notifierCB

);

One routine allows a watchpoint to be established on a processor mode switch:

optWatchpointP opProcessorModeWatchpointNew (

 optProcessorP processor,

 void* userData,

 optProcWatchpointConditionFn notifierCB

);

Finally, one routine allows a watchpoint to be established on a processor exception:

optWatchpointP opProcessorExceptionWatchpointNew (

 optProcessorP processor,

 void* userData,

 optProcWatchpointConditionFn notifierCB

);

Each function returns an optWatchpointP opaque type pointer for the watchpoint that

was created. The userData argument allows a client-specific data pointer to be

associated with the watchpoint object for later use (see below). A previously-created

watchpoint can be deleted using:

void opWatchpointDelete (optWatchpointP watchpoint);

The notifierCB arguments to the watchpoint addition functions above allow a notifier

callback function to be associated with each watchpoint that decides whether the

watchpoint should be triggered or not (i.e., it allows the specification of conditional

watchpoints).

For memory watchpoints, the prototype of the notifier is:

#define OP_ADDR_WATCHPOINT_CONDITION_FN(_name) \

Bool _name (\

 optProcessorP processor, \

 optWatchpointP watchpoint, \

 Addr PA, \

 Addr VA, \

 Uns32 bytes, \

 void* userData, \

 void* value)

typedef OP_ADDR_WATCHPOINT_CONDITION_FN ((* optAddrWatchpointConditionFn));

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 145 of 167

In this case, the notifier is passed the physical and virtual addresses of the memory

access, the number of bytes being accessed and a pointer to a buffer containing those

bytes.

For other watchpoint types, the prototype of the notifier is:

#define OP_PROC_WATCHPOINT_CONDITION_FN (_name) \

Bool _name (\

 optWatchpointP watchpoint, \

 optProcessorP processor, \

 void* userData)

typedef OP_PROC_WATCHPOINT_CONDITION_FN ((* optProcWatchpointConditionFn));

In both cases, if the notifier is NULL or returns False then any processor triggering the

watchpoint will stop before it executes its next instruction with optStopReason

OP_SR_WATCHPOINT. Otherwise, if the notifier returns True, the triggering processor will

not stop but instead continue executing normally.

19.9.2 Semantics of Physical and Virtual Watchpoints

The functions opProcessorReadWatchpointNew, opProcessorWriteWatchpointNew

and opProcessorAccessWatchpointNew each take an argument physical which

indicates whether the watch point should be physical or virtual. The semantics of these

are as follows:

19.9.2.1 Physical Watchpoints

Physical watchpoints are created on the externally-connected processor bus. Creating a

physical watchpoint is therefore equivalent to creating a bus watchpoint on the processor

data bus.

When a physical memory watch point is set, it applies to the addressed physical memory

irrespective of the route by which that is accessed. For example, if you set a physical

watch point on address 0x10000, the watch point will trigger if the processor is in a non-

TLB mapped mode and accesses address 0x10000, or if it is a TLB mapped mode where

VA=0x50000 (say) maps to 0x10000 and an access is made to VA=0x50000.

19.9.2.2 Virtual Watchpoints

When a virtual memory watch point is set, it applies to the memory addressed by the

virtual address range as viewed from the current processor mode. As a contrived

example:

1. Suppose that a processor is currently in TLB-mapped kernel mode, and that

virtual address 0x50000 maps to physical address 0x10000.

2. A watch point is set using opProcessor*WatchPointNew for virtual address

VA=0x50000.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 146 of 167

3. The watch point is triggered by any accesses to VA=0x50000 in TLB-mapped

kernel mode (as expected), or any aliased access to PA=0x10000.

4. The mapping for VA=0x50000 in TLB-mapped kernel mode is changed to

PA=0x20000.

5. The watch point is still triggered by any accesses to 0x50000 in TLB-mapped

kernel mode (as expected). Note that the physical memory for the watch point has

changed from 0x10000 to 0x20000. Accesses that change memory at

PA=0x10000 by any route no longer trigger the watch point.

6. The processor enters TLB-mapped user mode. Say that in this mode

VA=0x50000 is mapped to PA=0x60000 and VA=0x70000 is mapped to

PA=0x20000.

7. The processor accesses VA=0x50000 in TLB-mapped user mode. The watch

point does not trigger because VA=0x50000 maps to PA=0x60000, which does

not correspond to VA=0x50000/PA=0x20000 in TLB-mapped kernel mode.

8. The processor accesses VA=0x70000 in TLB-mapped user mode. The watch

point triggers because VA=0x70000 maps to PA=0x20000.

These semantics avoid much spurious watch point triggering when processors switch

modes. When a user places a memory watch point at virtual address 0x20000, he almost

always means virtual address 0x20000 in the current mode.

19.9.3 Watchpoint Attribute Query

There are various functions that allow watchpoint attributes to be queried. The type of a

watchpoint can be found using:

typedef enum optWatchpointTypeE {

 OP_WP_MEM_READ , // Memory read watchpoint

 OP_WP_MEM_WRITE , // Memory write watchpoint

 OP_WP_MEM_ACCESS , // Memory access watchpoint

 OP_WP_REG , // Register watchpoint

 OP_WP_MODE , // Mode change watchpoint

 OP_WP_EXCEPTION // Exception watchpoint

} optWatchpointType;

optWatchpointType opWatchpointType (optWatchpointP watchpoint);

The client data pointer that was associated with the watchpoint when it was created can

be found using:

void* opWatchpointUserData (optWatchpointP watchpoint);

For memory address range watchpoints, the bounding addresses can be found using:

Addr opWatchpointAddressLo (optWatchpointP watchpoint);

Addr opWatchpointAddressHi (optWatchpointP watchpoint);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 147 of 167

These functions return zero for other watchpoint types. For processor register

watchpoints, the register which is being watched can be found using:

optRegP opWatchpointReg (optWatchpointP watchpoint);

This function returns NULL for other watchpoint types or if the watchpoint has not been

triggered.

For processor register watchpoints, there are query functions which return pointers to the

current and previous value of the register being watched:

void* opWatchpointRegCurrentValue (optWatchpointP watchpoint);

void* opWatchpointRegPreviousValue (optWatchpointP watchpoint);

19.9.4 Handling Triggered Watchpoints

When a watchpoint triggers (because a read or write occurs to the address range over

which it is sensitive, or because the processor register or mode it is watching changes, or

an exception occurs), opRootModuleSimulate or opProcessorSimulate will return

with the processor’s optStopReason set to OP_SR_WATCHPOINT. Because watchpoints can

be specified with overlapping ranges and on multiple registers and other events

simultaneously, it is possible for multiple watchpoints to be triggered by a single

processor instruction. To enable these all to be handled, an iterator function is available

that returns the next triggered watchpoint or NULL if there are no currently triggered

watchpoints:

optWatchpointP opRootModuleWatchpointNext (optModuleP module);

Once the returned watchpoint has been handled by the debugger, it must be reset using:

void opWatchpointReset (optWatchpointP watchp);

Then a subsequent call to opRootModuleWatchpointNext will return the next triggered

watchpoint that has not been reset, and so on until all watchpoints have been handled by

the client debugger and a NULL is returned. For each triggered watchpoint, the processor

which triggered it can be found using:

optProcessorP opWatchpointTriggeredBy (optWatchpointP watchpoint);

19.10 Handling Simultaneous Debug Events
It is possible that execution of a single processor instruction could potentially cause an

address breakpoint, an instruction count breakpoint and a watchpoint all to trigger. In this

case, the priority order is as follows:

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 148 of 167

1. The instruction count breakpoint is triggered first, causing the processor to be

stopped for optStopReason OP_SR_BP_ICOUNT before the instruction is executed;

2. When simulation is resumed by opRootModuleSimulate or

opProcessorSimulate, the address breakpoint is triggered next, causing the

processor to be stopped for optStopReason OP_SR_BP_ADDRESS, again before the

instruction is executed;

3. When simulation is resumed by opRootModuleSimulate or

opProcessorSimulate, the instruction completes. After completion, the

processor is stopped for optStopReason OP_SR_WATCHPOINT, at which point the

triggered watchpoints can be found and reset using

opRootModuleWatchpointNext and opWatchpointReset.

19.11 Debugger Integration Examples
There are two examples using the address breakpoint, instruction count breakpoint and

watchpoint constructs in the debuggerIntegration directory:

$IMPERAS_HOME/Examples/DebuggerIntegration/multiProcessor

$IMPERAS_HOME/Examples/DebuggerIntegration/modeAndException

The first example uses the two processor shared memory application first seen in the

iGen Platform and Module Creation User Guide. We will add a custom harness to

exercise the breakpoint and memory watchpoint debugger integration commands (see

section 19.11.1).

The second example uses a simpler single processor assembler example to exercise the

mode change and exception watchpoints (see section 19.11.2).

19.11.1 Multi Processor Debugger Integration Example

The following sections refer to the example which may be found in:

$IMPERAS_HOME/Examples/DebuggerIntegration/multiProcessor

19.11.1.1 Establishing Watchpoints

The simulation harness for this example is harness.c in the example harness directory.

Once the simulation module has been instantiated and the applications loaded into

simulated memory, the platform establishes a write watchpoint on the first word of the

shared memory between the two processors as follows:

applyWatchpoint(processor0, SHARED_LOW, 4, OP_WP_MEM_WRITE);

Function applyWatchpoint is as follows:

static void applyWatchpoint(

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 149 of 167

 optProcessorP proc,

 Addr address,

 Addr size,

 watchType type

) {

 if (type == OP_WP_MEM_ACCESS) {

 // create access watchpoint

 optWatchpointP rwp = opProcessorAccessWatchpointNew(

 proc, False, address, address+size-1, (void *)(id++), 0

);

 opPrintf(

 "%s: ACCESS watchpoint is %u\n", opObjectName(proc), getWatchpointId(rwp)

);

 } else if (type == OP_WP_MEM_READ) {

 // create read watchpoint

 optWatchpointP rwp = opProcessorReadWatchpointNew(

 proc, False, address, address+size-1, (void *)(id++), 0

);

 opPrintf(

 "%s: READ watchpoint is %u\n", opObjectName(proc), getWatchpointId(rwp)

);

 } else if (type == OP_WP_MEM_WRITE) {

 // create write watchpoint

 optWatchpointP wwp = opProcessorWriteWatchpointNew(

 proc, False, address, address+size-1, (void *)(id++), 0

);

 opPrintf("%s: WRITE watchpoint is %u\n", opObjectName(proc),

getWatchpointId(wwp));

 }

}

The function adds access, read or write watchpoints for the specified address range, as

specified by the type enum.

In our call, a write watchpoint is made on the first four bytes of shared memory which

corresponds to the address specified by the ENCRYPT_INDEX macro in the application.

Whenever this address is written control will be returned to the debugger.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 150 of 167

In a real debugger, the address and object size would of course be found by the debugger

from the object file, typically in response to a user command.

The platform also establishes some register watchpoints for processor0 only using:

applyRegWatchpoints(processor0);

Function applyRegWatchpoints is as follows:

static void applyRegWatchpoints(optProcessorP processor) {

 optWatchpointP rwp1 = opProcessorRegWatchpointNew(

 processor, opProcessorRegByName(processor, "r3"), (void *)(id++), 0

);

 optWatchpointP rwp2 = opProcessorRegWatchpointNew(

 processor, opProcessorRegByName(processor, "r9"), (void *)(id++), 0

);

 optWatchpointP rwp3 = opProcessorRegWatchpointNew(

 processor, opProcessorRegByUsage(processor, OP_REG_SP), (void *)(id++), 0

);

 opPrintf("REGISTER watchpoint 1 is %u\n", getWatchpointId(rwp1));

 opPrintf("REGISTER watchpoint 2 is %u\n", getWatchpointId(rwp2));

 opPrintf("REGISTER watchpoint 3 is %u\n", getWatchpointId(rwp3));

}

This function establishes register change watchpoints on three registers; two are found by

name (r3 and r9) and the third is found by usage (the OR1K stack register, r1). In a real

debugger, the registers would of course be selected dynamically.

The platform also demonstrates how to query the registers by register group. Function

queryRegisters lists all registers found on the processor, by group:

static void queryRegisters(optProcessorP processor) {

 opPrintf("%s REGISTERS\n", opObjectName(processor));

 optRegGroupP group = 0;

 while((group=opProcessorRegGroupNext(processor, group))) {

 opPrintf(" GROUP %s\n", opRegGroupName(group));

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 151 of 167

 optRegP reg = 0;

 while((reg=opRegGroupRegNext(processor, group, reg))) {

 opPrintf(" REGISTER %s\n", opRegName(reg));

 }

 }

}

19.11.1.2 Running the Simulator

The simulator is run in a loop which calls opRootModuleSimulate. There are two modes

of operation: a normal mode (which runs to the next debug event or termination) and an

instruction step mode (used to single-step past an address breakpoint):

 Bool stepOver = False;

 Bool finished = False;

 optProcessorP stopProcessor = 0;

 // Simulation loop

 while(!finished) {

 // Simulate the platform using the default scheduler

 // All breakpoints are set and cleared together, ala gdb behavior

 if(stepOver) {

 opProcessorBreakpointICountSet(stopProcessor, 1);

 stopProcessor = opRootModuleSimulate (root);

 stepOver = False;

 } else {

 applyBreakpoints(processor0, breakpoints0);

 applyBreakpoints(processor1, breakpoints1);

 stopProcessor = opRootModuleSimulate(root);

 clearBreakpoints(processor0, breakpoints0);

 clearBreakpoints(processor1, breakpoints1);

 }

 optStopReason sr = stopProcessor ? opProcessorStopReason(stopProcessor)

 : OP_SR_EXIT;

 … actions depending on stopReason here

 }

In the single step mode, an instruction count breakpoint is set for one instruction and then

the platform is simulated:

 opProcessorBreakpointICountSet(stopProcessor, 1);

 stopProcessor = opRootModuleSimulate (root);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 152 of 167

 stepOver = False;

In the normal mode, address breakpoints are established, the simulation is run until the

next debug event or termination and then address breakpoints are removed:

 applyBreakpoints(processor0, breakpoints0);

 applyBreakpoints(processor1, breakpoints1);

 stopProcessor = opRootModuleSimulate(root);

 clearBreakpoints(processor0, breakpoints0);

 clearBreakpoints(processor1, breakpoints1);

The approach of resetting the breakpoints every time the debugger retains control used

here is consistent with the approach taken by GDB.

Each processor has its own table of breakpoints which are specified in a NULL

terminated static array:

// List of breakpoint addresses for processor 0 (encrypt)

const static Addr breakpoints0[] = {

 0xf2c, // main

 0 // terminator

};

// List of breakpoint addresses for processor 1 (decrypt)

const static Addr breakpoints1[] = {

 0x0f2c, // waitForFrame

 0x1000, // main

 0 // terminator

};

The addresses of routines in the application were obtained by examining the objdump

output for the application executable. If the application is modified these tables may need

to be updated. Again, a real debugger would read these from the application ELF file and

not rely on fixed addresses:

The routines to set and clear breakpoints are as follows:

static void applyBreakpoints(optProcessorP processor, const Addr breakpoints[]) {

 Uns32 i;

 for(i=0; breakpoints[i]; i++) {

 opProcessorBreakpointAddrSet(processor, breakpoints[i]);

 }

}

static void clearBreakpoints(optProcessorP processor, const Addr breakpoints[]) {

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 153 of 167

 Uns32 i;

 for(i=0; breakpoints[i]; i++) {

 opProcessorBreakpointAddrClear(processor, breakpoints[i]);

 }

}

Each time opRootModuleSimulate returns, the loop decides what to do next depending

on the system state.

1. If the optStopReason was OP_SR_EXIT or OP_SR_FINISH, the simulation has

terminated.

 case OP_SR_EXIT:

 case OP_SR_FINISH:

 finished = True;

 break;

2. Otherwise, if the optStopReason was OP_SR_BP_ICOUNT an instruction count

breakpoint has been hit (the debugger is single-stepping over an address

breakpoint location):

 case OP_SR_BP_ICOUNT:

 opPrintf(

 "Processor %s icount %u stopped at icount\n",

 opObjectName (stopProcessor),

 (Uns32)opProcessorICount(stopProcessor)

);

 break;

3. Otherwise, if the optStopReason was OP_SR_BP_ADDRESS an address breakpoint

has been hit. In this case, the simulation switches mode to step for one instruction

to get past the breakpoint address:

 case OP_SR_BP_ADDRESS:

 opPrintf(

 "Processor %s icount %u breakpoint at address 0x%08x\n",

 opObjectName (stopProcessor),

 (Uns32)opProcessorICount(stopProcessor),

 (Uns32)opProcessorPC(stopProcessor)

);

 stepOver = True;

 break;

4. Otherwise, if the optStopReason was OP_SR_WATCHPOINT a watchpoint has

triggered. In this case, the triggered watchpoints are scanned and reported:

 case OP_SR_WATCHPOINT:

 opPrintf(

 "Processor %s icount %u stopped at watchpoint\n",

 opObjectName (stopProcessor),

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 154 of 167

 (Uns32)opProcessorICount(stopProcessor)

);

 handleWatchpoints(root);

 break;

5. Otherwise, the optStopReason is reported and simulation continues (no other

optStopReason value is expected in this simulation).

 default:

 opPrintf(

 "Processor %s icount %u stopped with unexpected reason 0x%x (%s)\n",

 opObjectName (stopProcessor),

 (Uns32)opProcessorICount(stopProcessor),

 sr,

 opStopReasonString(sr)

);

 break;

Function handleWatchpoints reports and resets all triggered watchpoints. The function

iterates over all triggered but unhandled watchpoints, finding the watchpoint id and the

processor that caused the watchpoint to trigger:

static void handleWatchpoints(optModuleP mi) {

 optWatchpointP wp;

 while((wp=opRootModuleWatchpointNext(mi))) {

 Uns32 id = getWatchpointId(wp);

 optProcessorP processor = opWatchpointTriggeredBy(wp);

 optWatchpointType type = opWatchpointType(wp);

The userData associated with a watchpoint is used to record an arbitrary watchpoint id

number:

static Uns32 getWatchpointId(optWatchpointP watchpoint) {

 return (UnsPS)opWatchpointUserData(watchpoint);

}

The watchpoint type is used to disambiguate the register and address watchpoint cases. If

this is a register watchpoint, details about it are printed, together with the old and new

values of the register:

 switch (type) {

 case OP_WP_REG: {

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 155 of 167

 // a register watchpoint was triggered

 optRegP reg = opWatchpointReg(wp);

 Uns32 *newValueP = (Uns32 *)opWatchpointRegCurrentValue(wp);

 Uns32 *oldValueP = (Uns32 *)opWatchpointRegPreviousValue(wp);

 // indicate old and new value of the affected register

 opPrintf(

 " Register watchpoint %u (processor %s:%s) triggered 0x%08x-

>0x%08x\n",

 id,

 opObjectName(processor),

 opRegName(reg),

 *oldValueP,

 *newValueP

);

If register watchpoints have fired more than 100 times, any one that fires is deleted the

next time it is triggered, otherwise it is reset:

 // delete watchpoint after 100 triggers

 if(regWatchPointCount++>100) {

 opWatchpointDelete(wp);

 } else {

 opWatchpointReset(wp);

 }

 break;

 }

(This behavior would not be required in a real debugger integration – it is done here

simply so that the example output is not swamped by register change callback messages).

If the watchpoint is a memory read, write or access, information about the address range

is printed and the watchpoint reset:

 case OP_WP_MEM_READ:

 case OP_WP_MEM_WRITE:

 case OP_WP_MEM_ACCESS: {

 // a memory watchpoint was triggered

 opPrintf(

 " %s watchpoint %u (range 0x%08x:0x%08x) triggered by processor %s\n",

 (type==OP_WP_MEM_READ) ? "Read" :

 (type==OP_WP_MEM_WRITE) ? "Write" :

 "Access",

 id,

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 156 of 167

 (Uns32)opWatchpointAddressLo(wp),

 (Uns32)opWatchpointAddressHi(wp),

 opObjectName(processor)

);

 opWatchpointReset(wp);

 break;

 }

If the watchpoint type is not recognized then a message is issued and the watchpoint

reset:

default: {

 opPrintf(

 " unknown watchpoint type %u triggered by processor %s\n",

 type,

 opObjectName (processor)

);

 opWatchpointReset(wp);

 break;

 }

Note that if a watchpoint is not reset then the next call to opRootModuleWatchpointNext

will return the same watchpoint, resulting in an infinite loop.

19.11.1.3 Compiling and Running the Example

First, take a copy of the example:

> cp -r $IMPERAS_HOME/Examples/DebuggerIntegration/multiProcessor .

> cd multiProcessor

Build the test platform and application with the following commands:

> make -C module

> make -C application

> make -C harness

To run the simulation:

> harness/harness.Linux32.exe --argv application/constitution.txt

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 157 of 167

Alternatively, an example.sh script (example.bat for Windows) has been provided which

will do the build and run as a single command:

> ./example.sh

You should see the following output:

P0: WRITE watchpoint is 0

REGISTER watchpoint 1 is 1

REGISTER watchpoint 2 is 2

REGISTER watchpoint 3 is 3

P0 REGISTERS

 GROUP GPR

 REGISTER R0

 REGISTER R1

 REGISTER R2

 . . . many similar lines deleted . . .

 REGISTER R29

 REGISTER R30

 REGISTER R31

 GROUP System

 REGISTER PC

 REGISTER SR

 REGISTER EPCR

 REGISTER EEAR

 REGISTER ESR

 REGISTER PICMR

 REGISTER PICSR

 REGISTER TTCR

 REGISTER TTMR

 GROUP Integration_Support

 REGISTER EXCPT

Processor P1 icount 45 breakpoint at address 0x00001000

Processor P1 icount 46 stopped at icount

Processor P1 icount 90 breakpoint at address 0x00000f2c

Processor P1 icount 91 stopped at icount

Processor P0 icount 2 stopped at watchpoint

 Register watchpoint 1 (processor P0:R3) triggered 0xdeadbeef->0x00000000

Processor P0 icount 8 stopped at watchpoint

 Register watchpoint 2 (processor P0:R9) triggered 0xdeadbeef->0x00000000

Processor P0 icount 31 stopped at watchpoint

. . . many similar lines deleted . . .

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 158 of 167

 Register watchpoint 2 (processor P0:R9) triggered 0x000055f4->0x0000582c

Processor P0 icount 578 stopped at watchpoint

 Register watchpoint 3 (processor P0:R1) triggered 0xfffffe10->0xfffffe0c

Processor P0 icount 153361 stopped at watchpoint

 Write watchpoint 0 (range 0x11000000:0x11000003) triggered by processor P0

**** FRAME 0 ****

THE CONSTITUTION OF THE UNITED STATES OF AMERICA

Preamble

We the People of the United States, in Order to form a more perfect Union, establish

justice, insure domestic Tranquility, provide for the common defense, promote the

. . . many similar lines deleted . . .

No person shall be a Representative who shall not have attained to the age of twenty five

years, and been seven years a citizen of the United States, and who shall not, when

elected, be an inh

Processor P1 icount 374775 breakpoint at address 0x00000f2c

Processor P1 icount 374776 stopped at icount

Processor P0 icount 305408 stopped at watchpoint

 Write watchpoint 0 (range 0x11000000:0x11000003) triggered by processor P0

Processor P0 icount 457455 stopped at watchpoint

 Write watchpoint 0 (range 0x11000000:0x11000003) triggered by processor P0

**** FRAME 1 ****

abitant of that state in which he shall be chosen.

. . . many similar lines deleted . . .

Processor P1 icount 4523854 breakpoint at address 0x00000f2c

Processor P1 icount 4523855 stopped at icount

**** FRAME 25 ****

tution between the states so ratifying the same.

Done in convention by the unanimous consent of the states present the seventeenth day of

September in the year of our Lord one thousand seven hundred and eighty seven and of

. . . many similar lines deleted . . .

Virginia: John Blair, James Madison Jr.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 159 of 167

North Carolina: Wm. Blount, Richd. Dobbs Spaight, Hu Williamson

Processor P1 icount 4703775 breakpoint at address 0x00000f2c

Processor P1 icount 4703776 stopped at icount

**** FRAME 26 ****

South Carolina: J. Rutledge, Charles Cotesworth Pinckney, Charles Pinckney, Pierce

Butler

Georgia: William Few, Abr Baldwin

The example first shows the result of the register group iterator and the by-group register

iterator: there are two groups (GPR and System) containing the OR1K GPRs and system

registers, respectively.

Each address breakpoint that is encountered is reported with lines of this form:

Processor P1 icount 45 breakpoint at address 0x00001000

Instruction count breakpoints are reported with lines of this form:

Processor P1 icount 46 stopped at icount

Register watchpoints are reported by a pair of lines of this form, giving the old and new

values of the affected register:

Processor P0 icount 2 stopped at watchpoint

 Register watchpoint 1 (processor P0:R3) triggered 0xdeadbeef->0x00000000

Memory watchpoints are reported by a pair of lines of this form:

Processor P0 icount 153361 stopped at watchpoint

 Write watchpoint 0 (range 0x11000000:0x11000003) triggered by processor P0

19.11.2 Mode and Exception Debugger Integration Example

The following sections refer to the example which may be found in:

$IMPERAS_HOME/Examples/DebuggerIntegration/modeAndException

19.11.2.1 Establishing Watchpoints

The simulation harness for this example is harness.c in the example harness directory.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 160 of 167

The harness has a similar structure to the previous example, multiProcessor, but

instances only a single processor and adds watchpoints for mode changes and exceptions.

Once processor memory has been loaded, the platform establishes processor mode

change and exception watchpoints as follows:

 // Apply watchpoints on mode switches and exceptions

 applyWatchpoint(processor, 0, 0, OP_WP_MODE);

 applyWatchpoint(processor, 0, 0, OP_WP_EXCEPTION);

Function applyWatchpoint has been enhanced from the version in the previous example

to add mode and exception watchpoints as follows:

 switch(type) {

...

 case (OP_WP_MODE):

 wp = opProcessorModeWatchpointNew(

 proc, (void *)(id++), 0

);

 typeName = "MODE";

 break;

 case (OP_WP_EXCEPTION):

 wp = opProcessorExceptionWatchpointNew(

 proc, (void *)(id++), 0

);

 typeName = "EXCEPTION";

 break;

...

 }

 opPrintf("%s: %s watchpoint is %u\n", opObjectName(proc), typeName,

getWatchpointId(wp));

19.11.2.2 Running the Simulator

The simulator loop is similar to that in multiProcessor. The only significant difference

is in function handleWatchpoints. The function once more iterates over all triggered but

unhandled watchpoints, finding the watchpoint id and the processor that caused the

watchpoint to trigger:

static void handleWatchpoints(optModuleP mi) {

 optWatchpointP wp;

 while((wp=opRootModuleWatchpointNext(mi))) {

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 161 of 167

 Uns32 id = getWatchpointId(wp);

 optProcessorP processor = opWatchpointTriggeredBy(wp);

 optWatchpointType type = opWatchpointType(wp);

In this platform, it uses the watchpoint type to disambiguate the mode and exception

watchpoint cases. If this is a mode change watchpoint, details about it are printed,

together with the mode's code and name, and the watchpoint is reset:

 switch(type) {

 case OP_WP_MODE: {

 // a mode switch watchpoint was triggered

 optModeP mode = opProcessorModeCurrent(processor);

 Uns32 modeCode = mode ? opModeCode(mode) : 0;

 const char *modeName = mode ? opModeName(mode) : "none";

 // report new mode

 opPrintf(

 " watchpoint %u (processor %s:MODE) triggered mode -> %d (%s)\n",

 id,

 opObjectName(processor),

 modeCode,

 modeName ?: ""

);

 opWatchpointReset(wp);

 break;

 }

If this is an exception watchpoint, information about the exception type is printed and the

watchpoint reset.:

 case OP_WP_EXCEPTION: {

 // an exception watchpoint was triggered

 optExceptionP except = opProcessorExceptionCurrent(processor);

 Uns32 exceptCode = except ? opExceptionCode(except) : 0;

 const char *exceptName = except ? opExceptionName(except) : "none";

 const char *exceptDesc = except ? opExceptionDescription(except) : "";

 // report current exception

 opPrintf(

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 162 of 167

 " watchpoint %u (processor %s:EXCEPTION) triggered exception -> %d

%s: %s)\n",

 id,

 opObjectName(processor),

 exceptCode,

 exceptName ?: "",

 exceptDesc ?: ""

);

 opWatchpointReset(wp);

 break;

 }

19.11.2.3 Compiling and Running the Example

First, take a copy of the example:

> cp -r $IMPERAS_HOME/Examples/DebuggerIntegration/multiProcessor .

> cd multiProcessor

Build the test platform and application with the following commands:

> make -C module

> make -C application

> make -C harness

To run the simulation:

> harness/harness.Linux32.exe --argv application/constitution.txt

Alternatively, an example.sh script (example.bat for Windows) has been provided which

will do the build and run as a single command:

> ./example.sh

You should see the following output:

cpu1: MODE watchpoint is 0

cpu1: EXCEPTION watchpoint is 1

Processor cpu1 icount 26 stopped at watchpoint

 watchpoint 0 (processor cpu1:MODE) triggered mode -> 1 (USER)

Processor cpu1 icount 29 stopped at watchpoint

 watchpoint 0 (processor cpu1:MODE) triggered mode -> 0 (SUPERVISOR)

 watchpoint 1 (processor cpu1:EXCEPTION) triggered exception -> 1792 ILL: Illegal

instruction)

Processor cpu1 icount 36 stopped at watchpoint

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 163 of 167

 watchpoint 0 (processor cpu1:MODE) triggered mode -> 1 (USER)

Processor cpu1 icount 38 stopped at watchpoint

 watchpoint 0 (processor cpu1:MODE) triggered mode -> 0 (SUPERVISOR)

 watchpoint 1 (processor cpu1:EXCEPTION) triggered exception -> 1792 ILL: Illegal

instruction)

Processor cpu1 icount 45 stopped at watchpoint

 watchpoint 0 (processor cpu1:MODE) triggered mode -> 1 (USER)

Processor cpu1 icount 48 stopped at watchpoint

 watchpoint 0 (processor cpu1:MODE) triggered mode -> 0 (SUPERVISOR)

 watchpoint 1 (processor cpu1:EXCEPTION) triggered exception -> 1792 ILL: Illegal

instruction)

Processor cpu1 icount 55 stopped at watchpoint

 watchpoint 0 (processor cpu1:MODE) triggered mode -> 1 (USER)

Each mode change watchpoint that is encountered is reported with lines of this form:

Processor cpu1 icount 26 stopped at watchpoint

 watchpoint 0 (processor cpu1:MODE) triggered mode -> 1 (USER)

Exception watchpoints are reported with lines of this form:

Processor cpu1 icount 29 stopped at watchpoint

 watchpoint 0 (processor cpu1:MODE) triggered mode -> 0 (SUPERVISOR)

 watchpoint 1 (processor cpu1:EXCEPTION) triggered exception -> 1792 ILL: Illegal

instruction)

Note that exceptions that occur in USER mode cause both an exception and mode

watchpoint trigger at the same time, as the exception causes a switch from user to

supervisor mode.

19.12 Scheduler Notification
Without changing the platform or the scheduler, an integrated debugger can be notified

when significant actions occur that might require debugger intervention. This is useful

when calls to opRootModuleSimulate or opProcessorSimulate are made in code that

is not accessible to the debugger - for example from a SystemC platform.

Use the function opSessionDebuggerNotifiersAdd to install callbacks on these actions.

This function accepts a pointer to the root module and a struct containing pointers to

callbacks for specific phases of simulation:

void opSessionDebuggerNotifiersAdd (

 optModuleP root,

 optDebuggerNotifiersP notifiers

);

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 164 of 167

The optDebuggerNotifiers structure is defined as:

typedef struct optDebuggerNotifiersS {

 // Callback into a debugger at the start of simulation

 optSimulateStartFn start;

 // Callback into a debugger before PSE constructors have run

 optSimulateStartFn endPeripheralCons;

 // Callback into a debugger after platform constructor has run

 optSimulateStartFn endPlatformCons;

 // Callback into a debugger after all constructors have run

 optSimulateStartFn endCons;

 // Callback into a debugger after processor has executed a slice

 optSimulatePostProcessorFn postProcessor;

 // Callback into a debugger after peripheral has completed a callback or thread

 optSimulatePostPeriphFn postPeripheral;

 // Callback into a debugger when time advances

 optSimulateTimeAdvanceFn advance;

 // Callback into a debugger at end of simulation

 optSimulateEndFn end;

 // User data, passed to each callback

 void* userData;

} optDebuggerNotifiers;

Macros are provided that define each of the function prototypes for the callbacks:

#define OP_SIMULATE_START_FN(_name) \

void _name (\

 optModuleP module, \

 void* userData)

typedef OP_SIMULATE_START_FN((*optSimulateStartFn));

#define OP_SIMULATE_POST_PROCESSOR_FN(_name) \

Bool _name (\

 optProcessorP processor, \

 void* userData) typedef

OP_SIMULATE_POST_PROCESSOR_FN((*optSimulatePostProcessorFn));

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 165 of 167

#define OP_SIMULATE_POST_PERIPH_FN(_name) \

Bool _name (\

 optPeripheralP peripheral, \

 void* userData) typedef

OP_SIMULATE_POST_PERIPH_FN((*optSimulatePostPeriphFn));

/// opSessionDebuggerNotifiersAdd

#define OP_SIMULATE_END_FN(_name) \

void _name (\

 optProcessorP processor, \

 void* userData)

 typedef OP_SIMULATE_END_FN((*optSimulateEndFn));

#define OP_SIMULATE_TIME_ADVANCE_FN(_name) \

Bool _name (\

 optAdvanceTimeInfo info, \

 void* userData)

typedef OP_SIMULATE_TIME_ADVANCE_FN((*optSimulateTimeAdvanceFn));

A typical use of these callbacks might look like (note that not all callbacks need be used -

unneeded ones may be set to 0):

static OP_SIMULATE_START_FN (startSim) {

 // called once:

 // Before at the start of simulation

 ...

}

static OP_SIMULATE_START_FN (endConstructors) {

 // called once

 // after all constructors have run

 ...

}

static OP_SIMULATE_POST_PROCESSOR_FN (debugProc) {

 // called after processor has executed a slice

 optStopReason reason = opProcessorStopReason(processor);

 if (debuggerNeedsToActOnThisReason(reason)) {

 ...

 }

 if(debuggerWantsToFinish()) {

 return False;

 } else {

 return True;

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 166 of 167

 }

}

static OP_SIMULATE_TIME_ADVANCE_FN (advanceTime) {

 // called when (and only when) time is advanced

 ...

 return True;

}

static OP_SIMULATE_END_FN (finishSim) {

 // called when no more instructions to execute, but before destruction.

 ...

}

int main(...) {

 optDebuggerNotifiers notify = {

 .start = startSim,

 .endPeripheralCons = 0,

 .endPlatformCons = 0,

 .endCons = endConstructors,

 .postProcessor = debugProc,

 .postPeripheral = 0,

 .advance = advanceTime,

 .finish = finishSim,

 .userData = myPointer

 };

 // Load the design

 optModuleP root = opRootModuleNew(0, 0, 0);

 // request callbacks.

 opSessionDebuggerNotifiersAdd (root, ¬ify);

 ...

}

opSessionDebuggerNotifiersAdd must be called during the construction phase after

opRootModuleNew is called. There will be one call to startSim, then a call to

debugProc each time a processor core stops executing. This might be because the

simulator has executed all the instructions requested of this processor or it might be that a

breakpoint, watchpoint or other simulator event has occurred. debugProc will be called if

either opRootModuleSimulate(root) or opProcessorSimulate(processor) are used.

If the processor has multiple cores, there will be callbacks for each core.

Advanced Simulation Control of Platforms and Modules User Guide

© 2022 Imperas Software Limited.www.OVPworld.org Page 167 of 167

The function debugProc should return True if the simulation can continue after the

callback or False if the simulation should finish, in which case end of simulation events

will be triggered but no more instructions will be simulated.

The function finishSim will be called once, before the platform is destroyed.

The function postPeripheral is required only if you wish to debug PSE code. Leave

the callback pointer null if not required. It should return True if the simulation can

continue after the callback or False if the simulation should finish.

The function advanceTime will be called when the simulator moves simulated time

forwards. It should return True if the simulation can continue after the callback or False

if the simulation should finish.

The userData value set in the optDebuggerNotifiers struct will be passed to every

callback.

