
© 2022 Imperas Software Limited www.imperas.com/www.OVPWorld.org

Imperas Installation and Getting Started Guide

This document explains how to install and get started with the
OVPsim simulator / models and the Imperas professional products

 under Linux and Windows.

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas
Version: 2.3.12
Filename: Imperas_Installation_and_Getting_Started.doc
Project: Imperas / Open Virtual Platforms Installation and Getting Started
Last Saved: Thursday, 16 June 2022
Keywords: Installation, Getting Started, Linux, Windows, Licensing

mailto:docs@imperas.com

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 2 of 111
.

Copyright Notice
Copyright © 2022 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 3 of 111
.

Table of Contents

1 Preface... 7
2 Introduction... 7
3 Hardware and Software Requirements ... 8

3.1 Operating System.. 8
3.2 Hardware... 8
3.3 Host Compiler Versions.. 8

4 Installation... 9
4.1 Installation Tutorial Video.. 9
4.2 Packages.. 9

4.2.1 OVPsim... 9
4.2.2 Imperas Developer .. 10
4.2.3 Imperas Advanced Multicore Software Development Kit............................ 10

4.3 Access and Download of Installation Packages.. 11
4.3.1 Login ... 11
4.3.2 Download the Appropriate Package ... 11
4.3.3 Package Selection ... 11

4.4 Installing Under Linux.. 13
4.5 Installing Under Windows .. 15
4.6 Setting up the Environment .. 17

4.6.1 Required Environment .. 17
4.6.2 Additional Environment.. 18
4.6.3 Script to Setup Required Environment ... 18
4.6.4 Script to Select Simulator Runtime... 19
4.6.5 Script to Select Personality ... 19
4.6.6 Explicit Environment Configuration... 20
4.6.7 Internet Access Via a Proxy Server .. 23

5 Setting up Licensing ... 25
5.1 OVPsim Node Locked License keys .. 25

5.1.1 Obtaining the computer hostname and Host ID.. 25
5.1.2 Setup License File... 26

5.2 Imperas Floating Licenses .. 27
5.2.1 Obtaining the computer hostname and Host ID.. 27
5.2.2 Starting the License Server ... 27
5.2.3 License Queuing ... 28
5.2.4 Fallback License ... 29

6 Windows Development Environment... 30
6.1 Introduction... 30
6.2 MSYS2 / MinGW Environment ... 30

6.2.1 Obtaining MSYS2... 30
6.2.2 Install Utilities... 35
6.2.3 Install Host Toolchains ... 36
6.2.4 Environment.. 37
6.2.5 Completion and test of MSYS/MinGW installation..................................... 41

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 4 of 111
.

7 Additional Toolchain Packages .. 44
7.1 Application Cross Compiler Toolchains... 44
7.2 Peripheral Simulation Engine (PSE) Toolchain ... 46

8 Getting Started .. 47
8.1 ISS Tutorial Video .. 47
8.2 Check Installation ... 47

8.2.1 Simulator Execution.. 47
8.2.2 iGen Installation.. 49
8.2.3 Harness Installation... 50
8.2.4 MPD Installation... 51
8.2.5 eGui Installation.. 52

8.3 Build Environment.. 54
8.3.1 Introduction... 54
8.3.2 Standard Makefiles ... 55
8.3.3 Build Output Selection.. 55
8.3.4 VLNV Component Library... 56

8.4 Generating Deprecated ICM API TLM Interface files 59
8.4.1 Peripheral Models ... 59
8.4.2 Processor Models .. 60

8.5 Hello World Example ... 61
8.5.1 Compiling an application.. 61
8.5.2 Running the simulation using the ISS... 62
8.5.3 Execute example using provided script .. 63
8.5.4 Creating a Virtual Platform Tutorial Video .. 63
8.5.5 Creating and Simulating with a Platform/Module .. 64
8.5.6 Writing your own test harness .. 65

9 Understanding Semihosting Support .. 67
9.1 In Imperas and OVP simulations .. 67
9.2 Replacing function and/or instruction behavior.. 67
9.3 Specific to a Cross Compiler and C Library... 67
9.4 Used to terminate the simulation .. 68
9.5 Caution using with EPKs and non-baremetal platforms................................... 68

10 Understanding Simulation Time Statistics ... 69
11 Understanding the operation of a code morphing simulator..................................... 71

11.1 Instruction Fetch ... 71
11.2 SystemC Interface Transaction Types .. 72

11.2.1 OP API (Current) .. 72
11.2.2 ICM API (Deprecated).. 72

APPENDIX A Installation Packages, Products and Licensing Features.......................... 73
A.1 Installation Packages... 73
A.1.1 Imperas_SDK package.. 73
A.1.2 Imperas_DEV package ... 73
A.1.3 OVPsim package... 74
A.2 License Features.. 74
A.2.1 Executable Programs .. 74
A.2.2 CpuManager Simulator and its Personalities.. 75

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 5 of 111
.

A.2.3 CpuManager Simulator and Non-Interactive (batch) Usage 75
A.2.4 OVPsim Simulator .. 76

APPENDIX B Obtaining an Imperas License .. 77
APPENDIX C Accessing Imperas User Area .. 78

C.1 Initial Login at Imperas User .. 78
C.2 Selecting Imperas Product download.. 78
C.3 Logging into Download area .. 79
C.4 Selecting Files... 79

APPENDIX D Setting Environment Variables .. 80
D.1 Opening System properties on Windows XP.. 80
D.2 Opening System properties on Windows 7 and 10... 80
D.3 Modifying Environment Variables in Windows... 82

APPENDIX E Additional FlexNet Licensing Information .. 83
E.1 Locating the license server software... 83
E.2 Types of Licenses ... 83

11.2.3 E.2.1 Uncounted Node-locked Licenses.. 83
11.2.4 E.2.2 Floating Licenses.. 84

E.3 Starting the License Server ... 85
E.4 Configuring the Host Computer.. 86
E.5 Other License File Configurations.. 86
E.6 The daemon options file.. 87
E.7 License Administration tools .. 88
E.8 License Server Manager as a Windows Service using LMTOOLS 88

APPENDIX F Some Common Problems ... 91
F.1 Segmentation Fault when Native Debug of an OVP Platform 91
F.2 Simulator Reports Internal Abort (ASRT).. 92
F.3 Building on Windows using mingw32-make ... 92

F.3.1 Error in Makefile.pse when building peripherals ... 92
F.4 Licensing... 93

F.4.1 Feature Not Supported.. 93
F.4.2 Long Delay (30 second) at Simulator Start Up .. 94
F.4.3 Cannot Access Date Server .. 94

F.5 Ethernet Adapter Naming/HostId is zero.. 95
F.5.1 How to change the default ‘ens33’ network device to old ‘eth0’................... 95
F.5.2 How to reorder or rename logical interface names in Linux 96
F.5.3 Based on the physical properties .. 96
F.5.4 Based on the MAC address... 97
F.5.5 Based on the driver .. 100
F.5.6 Based on the physical location in the computer .. 101
F.5.7 Ubuntu directly changing logical names .. 102
F.5.8 More Information... 102

F.6 What to try if license server (lmgrd) fails to run .. 102
APPENDIX G Abort Detected in Program .. 104

G.1 Obtaining Backtrace.. 105
G.2 Connecting a Debugger to a running simulation .. 105

APPENDIX H Other Windows Development Environments .. 107

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 6 of 111
.

H.1 Using a Cygwin Environment... 107
H.1.1 Use MINGW GNU Toolset .. 107
H.2.2 Verify use of MINGW GNU Toolset ... 107
H.3.3 Cannot Build OVPsim Examples.. 108

H.4 Building Virtual platforms with Microsoft MSVC... 110

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 7 of 111
.

1 Preface
This document describes how to install the Imperas Professional products, Advanced
Multicore Software Development Kit (M*SDK), Virtual Platform Development and
Simulation (C*DEV, S*DEV and M*DEV), and the Open Virtual Platforms OVPsim
simulator on both Windows and Linux computers. The installation includes tools,
models, documents and examples.

This document further introduces how to compile applications using the supplied
example GNU cross compiler toolchains/tool kits and how to use this binary with a
virtual platform.

Please see other documents that explain how to create platforms / harnesses, processor
models, and peripheral / behavioral models.

2 Introduction
This installation guide is for the installation of the OVP or Imperas Professional products
on a Linux or Windows host computer. We will need the installation files of either
OVPsim from www.OVPworld.org or the Imperas products from www.Imperas.com, and
at least one example compiler toolchain, also from www.OVPworld.org.

OVP is provided as a single installation package ‘OVPsim’.

Imperas products are provided as two installation packages ‘Imperas_SDK’ for M*SDK
and ‘Imperas_DEV’ for C*DEV, S*DEV and M*DEV (configured on installation or
post-install with configuration script).

In order to build native host executables and to cross compile applications under
Windows, we suggest the installation of an MSYS/MinGW1 environment
www.mingw.org. See section 6 for instructions on setting up this environment. This will
make compilation of Applications, Models and Platforms / Simulation harnesses simple.

Part of the installation includes examples files and these will be used to illustrate the
processes and tools used to get your applications running on virtual simulation platforms.
In this document, we will use the RISC-V and the openCores openRISC OR1K as the
target embedded processor.

1 It is also possible to use a Cygwin / MinGW environment but care must be taken to ensure that the
MINGW GNU toolset is used.

http://www.ovpworld.org/
http://www.imperas.com/
http://www.ovpworld.org/
http://www.mingw.org/

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 8 of 111
.

3 Hardware and Software Requirements

3.1 Operating System
These are the versions of the operating systems that are currently used by Imperas for
development and product verification; the product has been shown to operate correctly on
other operating systems.

Product Build Operating System
Linux 32-bit Fedora Core 12
Linux 64-bit2 Fedora Core 18
Windows 32-bit Windows 7 64-bit3 Professional with SP1
Windows 64-bit Windows 7 64-bit Professional with SP1

3.2 Hardware
The product is developed to work on x86 hardware.

Supported Processors: x86 32-bit and 64-bit

Disk space requirements4:

OVP or Imperas Installations: 140MB to 220MB
Toolchain Installations (each) : 60MB to 300MB

3.3 Host Compiler Versions
The following are the GCC compiler versions that are used by
imperas for generation of host code. The products are developed in such a way as to
maintain, as far as possible, backwards compatibility with previous compiler versions, in
particular the GLIBC versions.

Product Build GCC Compiler Version
Linux 32-bit 4.9.1 i686-nptl-linux-gnu (Crosstool-ng)
Linux 64-bit 4.9.1 x86_64-unknown-linux-gnu (Crosstool-ng)
Windows 32-bit 4.4.75 i686-unknown-mingw32
Windows 64-bit 4.9.1 x86_64-unknown-mingw32

2 This is only supported by the Imperas installations, Imperas_SDK and Imperas_DEV.
3 The Imperas 32-bit products are also supported in emulation mode on 64-bit hosts.
4 The disk space indicated is per package install or toolchain install. The actual disk space required is
dependent upon the type and number of packages or toolchains installed.
5 The Windows 32-bit ABI changed at release 4.6 which introduced incompatibilities in the Windows ABI.
The OVP products are compiled with the legacy ABI.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 9 of 111
.

4 Installation
The Imperas professional products and the OVPsim simulator may be installed on a
Linux or Windows platform.

Section 4.2 provides specific information regarding the product packages.

The details of the package installations are shown for Linux users in section 4.4, and
Windows users in section 4.5.

Different major versions of the software should not be installed on top of each other. The
new installation should either be made into a different directory or the old version
uninstalled before the new version is added.

You should avoid making changes to files in the installation directories, as those changes
will be lost when the version is un-installed and a subsequent version is installed.
Different minor versions may be installed together; later minor versions typically provide
updates to products.

4.1 Installation Tutorial Video

The video found on the OVPWorld website page http://www.ovpworld.org/getting-
started-with-ovp-and-imperas will provide a guide through the installation and setup of
OVP and Imperas environments.

4.2 Packages

4.2.1 OVPsim
The OVPsim simulation package (OVPsim) contains:

1. the OVPsim reference simulator
2. the OVP model library
3. the Imperas iGen model template wizard (productivity tool)
4. examples and demonstrations

Refer to section 4.3 for information about downloading this package. Section 4.4 gives
information about installing the package on Windows. Section 4.5 gives information
about installing the package on Linux.

http://www.ovpworld.org/getting-started-with-ovp-and-imperas
http://www.ovpworld.org/getting-started-with-ovp-and-imperas

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 10 of 111
.

4.2.2 Imperas Developer
The Imperas Developer package, (Imperas_DEV) contains:

1. a professional version of the simulator that can be licensed for different
capabilities

a. Controller (C*DEV) : single processor / multi-core processor
b. Standard (S*DEV) : multiple processors / multi-core processors

(homogeneous processor vendor)
c. Multi (M*DEV) : multiple processors / multi-core processors

(heterogeneous processor vendors)
2. the OVPsim package contents
3. Imperas Developer specific examples and demonstrations

Refer to section 4.3 for information about downloading these packages. Section 4.4 gives
information about package installation on Windows. Section 4.5 gives information about
package installation on Linux.

Once the package is installed

• the IMPERAS_PERSONALITY environment variable must be set to one of the
following:
 For Controller (C*DEV) : CPUMAN_CONTROLLER
 For Standard (S*DEV) : CPUMAN_STANDARD
 For Multi (M*DEV) : CPUMAN_MULTI

• the IMPERAS_RUNTIME environment variable must be set to CpuManager

4.2.3 Imperas Advanced Multicore Software Development Kit
The Imperas SDK package (Imperas_SDK) contains:

1. a professional version of the simulator that is licensed for capability
a. Multi (M*SDK) : multiple processors / multi-core processors

(heterogeneous processor vendors)
 : Capable of executing VAP Tools and other

advanced features.
2. the OVPsim package contents
3. the Imperas_DEV package contents
4. The Imperas Verification, Analysis and Profiling (VAP) tools
5. The Imperas Interactive control and Multi-Processor Debugger (MPD)
6. Imperas M*SDK specific examples and demonstrations

Refer to section 4.3 for information about downloading this package. Section 4.4 gives
information about installing the package on Windows. Section 4.5 gives information
about installing the package on Linux.

Once the package is installed

• the IMPERAS_PERSONALITY environment variable must be set to CPUMAN_MULTI
• the IMPERAS_RUNTIME environment variable must be set to CpuManager

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 11 of 111
.

4.3 Access and Download of Installation Packages
First you must download the installation files from either OVPworld.org or Imperas.com.

4.3.1 Login

4.3.1.1 OVP Users
The OVPworld download page can only be accessed when you are registered and logged
into the sites forum. Please register (it can take up to 24 hours to receive an authorization
email) and be logged in from the forums page before continuing.

4.3.1.2 Imperas Users
Imperas customers should go to www.imperas.com and select user login. This accepts the
same username and password as the OVPworld.org site. This will take you to the Imperas
User Home Page. Click on Imperas Product Downloads Imperas link (or Beta if you
require an updated pre-release version to download) and you will be requested to enter
your Imperas user name and password, which should have been provided to you by
Imperas. The imperas user area also provides 64-bit versions of the OVP packages via the
OVP link. See “APPENDIX C
Accessing Imperas User Area” for additional information about accessing the Imperas
User site and downloading packages.

4.3.2 Download the Appropriate Package

To download OVPsim after logging in to the OVPworld website go to the downloads
page http://www.ovpworld.org/download.php, look on the right hand side list and select
the appropriate link for the version you wish to download (Windows or Linux). This will
download the Windows or Linux installer executable for OVPsim.

To download the Imperas professional tools or the Imperas development tools, log into
the Imperas.com site and navigate to the Imperas Product Downloads area. Then, select
the product you wish to download (Windows or Linux).

4.3.3 Package Selection

On the OVPWorld website, a single package is available on the Main Downloads page:

OVPsim package

• OVPsim.<version>.<dot release>.<HOST>32.exe

On the Imperas website, the following packages are available after logging in and
following the link Imperas Current Release Product Downloads:

Developer packages

• Imperas_DEV.<version>.<dot release>.<HOST>32.exe
Imperas_DEV.<version>.<dot release>.<HOST>64.exe

http://www.imperas.com/
http://www.ovpworld.org/download.php

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 12 of 111
.

Advanced Multicore Software Development package
• Imperas_SDK.<version>.<dot release>.<HOST>32.exe

Imperas_SDK.<version>.<dot release>.<HOST>64.exe

In all cases <HOST> can be Windows or Linux

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 13 of 111
.

4.4 Installing Under Linux
This section tells you how to install the Linux version of the products. Windows users
should refer to section 4.5.

Linux Product versions are provided as pre-built binaries in a self-extracting executable
file.

Execute the self-extracting executable file to install. You may need to change the installer
to be executable first:

$ chmod +x Imperas_SDK.<major version>.<minor version>.Linux64.exe6

The self-extracting executable will install the files in the current directory or in a selected
directory. Execute the installer to extract the files:

$./Imperas_SDK.<major version>.<minor version>.Linux64.exe

You will be asked to accept a license agreement. It should be read and, if acceptable,
agreed to by typing yes at the prompt. For example:

Software License Agreement for Imperas Proprietary Software
Imperas Limited.

<.. lines removed ..>

You are not allowed to use this software without a specific signed license
agreement.

Imperas_Software_License_Note (v.1.0)

Please indicate whether you accept the license agreement
yes/no >

Once the license agreement has been accepted, you will be prompted for the directory to
install into:

Install into directory <current directory>/Imperas.<release major version>
yes/no >

If you reply yes, the installation will carry on into the specified directory. If you reply no,
you will be prompted for a directory to install into:

Please provide an installation directory:

6 Note that these instructions assume that an installation of the 64-bit Imperas_SDK package is being done,
but the same general flow is followed for all packages.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 14 of 111
.

This will create <installDir>/Imperas.<release major version>, where
<installDir> is the directory that was entered at the prompt. Since the tools are
installed in a directory tree whose root contains the version, multiple versions may
coexist side by side.

The Linux binary executables and shared objects are in the directory:
 <installDir>/Imperas.<major version>/bin/Linux64.

Model libraries are provided, as shared objects, in the directory:
 <installDir>/Imperas.<major version>/lib/Linux64/ImperasLib

This path must be specified using the IMPERAS_VLNV environment variable.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 15 of 111
.

4.5 Installing Under Windows
This section tells you how to install the Windows version of the tools. Linux users should
refer to section 4.4.

Windows Product versions are provided as executable installers.

The installer, when executed, will extract the tools and set up the environment.
Remember to uninstall any existing versions before installing. An uninstall program,
uninstall.exe is provided in the root install directory (i.e.
<installDir>\uninstall.exe, e.g. C:\Imperas\uninstall.exe)

1. Execute the provided installer 2. Read and click through the license agreement

3. Choose the location for installation 4. Start the installation

5. When completed click Finish 6. Finally, read the notes for this release.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 16 of 111
.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 17 of 111
.

4.6 Setting up the Environment
In order to run Imperas products, environment variables have to be set to configure
settings controlling product location, features and licensing.

On Windows, the execution of the installer will setup the required environment or the
environment can be modified on each shell.

On Linux, the environment must be setup in each shell. This could be done manually or
as part of an automated setup script on starting a shell.

The environment variables are divided into required and additional groups, as follows:

4.6.1 Required Environment

Required Environment Variables
IMPERAS_HOME Points to the root of the Imperas installation
IMPERAS_UNAME Is set to the Host OS type, Linux or Windows
IMPERAS_ARCH Is set to the Host architecture, Linux32, Windows64 etc.
IMPERAS_SHRSUF Is set to the suffix for shared libraries, so or dll
IMPERAS_VLNV Points to the root of the compiled library in the Imperas

installation
IMPERAS_RUNTIME Specifies which simulator, Imperas (CpuManager) or

OVPsim, to load at runtime7
IMPERAS_PERSONALITY Specifies the features available from the Imperas product

runtime. This also modifies the license features that will be
required.

NOTE

Prior to product release 20170511.0 a default personality would be assumed if the
environment variable was not set.

This is no longer the case; the personality must always be specified.

The standard environment variable PATH should include
$IMPERAS_HOME/bin/$IMPERAS_ARCH

On Linux, the standard environment variable LD_LIBRARY_PATH should include
$IMPERAS_HOME/bin/$IMPERAS_ARCH and
$IMPERAS_HOME/lib/$IMPERAS_ARCH/External/lib

7 Although specified in the required list the IMPERAS_RUNTIME environment variable may be left unset
in which case the default OVPsim simulator is selected.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 18 of 111
.

4.6.2 Additional Environment

Additional Environment Variables
IMPERAS_ISS If this is set it will select the Imperas Instruction Set

Simulation executable version.

The following must be set manually, if required:

IMPERAS_PROXY_SERVER Only required for Demo and Web licenses, if the internet is
accessed through a proxy server, this should be set to the
value <hostname>:<port>, e.g. myproxyserver.com:3128

IMPERAS_RUNTIME This may be set or left unset. If unset the default OVPsim

simulator will be loaded, this will require an OVPsim
license to be available.

4.6.3 Script to Setup Required Environment

A script setup is provided which can be used to setup the required environment. The
script is provided in the bin directory below the Imperas installation directory.

On Linux, this script should be sourced in a Bourne shell; it defines the shell function
setupImperas, which is then executed passing the full path to the Imperas directory as
the argument.

$ source <installDir>/Imperas.<major version>/bin/setup.sh
$ setupImperas <installDir>/Imperas.<major version>

On Windows, the script can be double clicked in the Windows Explorer or can be called
from a shell. The script will update the Windows environment.

$ call <installDir>/Imperas.<major version>/bin/setup.bat

4.6.3.1 32-bit Product on 64-bit Host
The setupImperas script also allows for the use of a 32-bit product on a 64-bit host. This
requires that the 64-bit host has 32-bit compatibility libraries installed and available.

To specify this configuration, add the -m32 argument to the setupImperas call on Linux:

$ source <installDir>/Imperas.<major version>/bin/setup.sh
$ setupImperas <installDir>/Imperas.<major version> -m32

Or to the call to the setup script on Windows:

$ call <installDir>/Imperas.<major version>/bin/setup.bat -m32

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 19 of 111
.

4.6.3.2 32-bit Compatibility libraries on 64-bit Linux Hosts
When running a 32-bit product on a 64-bit host, or when using some of the OVP
toolchains that are only provided as 32-bit executables in the 64-bit package files, you
will need to have 32-bit compatibility libraries on the 64-bit host machine.

Specific libraries to download will depend on your particular host environment.

If you are using Ubuntu try the following command line:

$ sudo apt-get install lib32z1

If you are using Fedora try the following command line:

$ sudo yum install zlib.i686

If you are using Centos try the following command line:

// Runtime libraries for libc and libcstd+++
$ sudo yum install glibc.i686
$ sudo yum install libstdc++-4.8.5-28.el7_5.1.i686

// Compile time libraries for libc(i686) and libc(x64)
$ sudo yum install glibc-devel.i686 glibc-devel

4.6.4 Script to Select Simulator Runtime

A script switchRuntime is provided which can be used to setup the required runtime in
environment variable IMPERAS_RUNTIME. The script is provided in the bin directory
below the Imperas installation directory. A list of the available simulator runtimes
installed is provided which is selected from and used to set the environment variable

On Linux, this script should be sourced in a Bourne shell; it defines the shell function
switchRuntimeImperas, which is then executed.

$ source <installDir>/Imperas.<major version>/bin/switchRuntime.sh
$ switchRuntimeImperas

On Windows, the script can be double clicked in the Windows Explorer or can be called
from a shell. The script will update the Windows environment.

$ call <installDir>/Imperas.<major version>/bin/switchRuntime.bat

4.6.5 Script to Select Personality

A script selectPersonality is provided which can be used to setup the required
simulator personality in environment variable IMPERAS_PERSONALITY. The script is
provided in the bin directory below the Imperas installation directory. A list of the

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 20 of 111
.

available personalities is provided which is selected from and used to set the environment
variable

On Linux, this script should be sourced in a Bourne shell; it defines the shell function
selectPersonalityImperas, which is then executed.

$ source <installDir>/Imperas.<major version>/bin/selectPersonality.sh
$ selectPersonalityImperas

On Windows, the script can be double clicked in the Windows Explorer or can be called
from a shell. The script will update the Windows environment.

$ call <installDir>/Imperas.<major version>/bin/selectPersonality.bat

4.6.6 Explicit Environment Configuration

4.6.6.1 Linux

As an alternative to using the setup script, on Linux, or using the pre-defined
environment created by the installer, on Windows, the environment can be configured by
setting environment variables explicitly. These sections show how this is done.

As an alternative to using the setup.sh script, the Linux environment can be configured
by setting environment variables explicitly. This section shows how this is done.

Create an environment variable IMPERAS_HOME pointing to the root of the Imperas tree,
for example:

$ export IMPERAS_HOME=<installDir>/Imperas.20130630

Create an environment variable IMPERAS_ARCH for the current architecture, for example:

$ export IMPERAS_ARCH=Linux64

Create an environment variable IMPERAS_SHRSUF for the current architecture, for
example:

$ export IMPERAS_SHRSUF=so

Create an environment variable IMPERAS_VLNV pointing to the root of the Imperas library,
for example:

$ export IMPERAS_VLNV=$IMPERAS_HOME/lib/$IMPERAS_ARCH/ImperasLib

Create an environment variable IMPERAS_RUNTIME specifying which library to load at
runtime. If you have a license for the Imperas tools this should be:

$ export IMPERAS_RUNTIME=CpuManager

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 21 of 111
.

If you have a license for OVPsim then this may be left unset (as this is the default value) or
set to:

$ export IMPERAS_RUNTIME=OVPsim

Add the Imperas executables directory to the search path, for example:

$ export PATH=${PATH}:$IMPERAS_HOME/bin/$IMPERAS_ARCH

Add Imperas shared library directories to the variable LD_LIBRARY_PATH, for example8:

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$IMPERAS_HOME/bin/$IMPERAS_ARCH:\
$IMPERAS_HOME/lib/$IMPERAS_ARCH/External/lib

Set the product personality:

$ export IMPERAS_PERSONALITY=CPUMAN_STANDARD

Next, you must also set up licensing for the program. This is described for both Linux
and Windows installations in section 4.6.7.

4.6.6.2 Windows
As an alternative to using the setup script, setup.bat, or the pre-defined environment
created by the installer the environment can be configured by setting environment
variables explicitly.

This can be done in the MSYS shell or using the Windows System Control Panel.

4.6.6.2.1 MSYS Shell
Create an environment variable IMPERAS_HOME pointing to the root of the Imperas tree,
for example:

$ set IMPERAS_HOME=<installDir>\Imperas

Create an environment variable IMPERAS_ARCH for the current architecture, for example:

$ set IMPERAS_ARCH=Windows64

Create an environment variable IMPERAS_SHRSUF for the current architecture, for
example:

$ set IMPERAS_SHRSUF=dll

Create an environment variable IMPERAS_VLNV pointing to the root of the Imperas library,
for example:

8 This is all one command; note the use of the Linux line continuation character ‘\’ at the end of the first 2
lines

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 22 of 111
.

$ set IMPERAS_VLNV=%IMPERAS_HOME%\lib\%IMPERAS_ARCH%\ImperasLib

Create an environment variable IMPERAS_RUNTIME specifying which library to load at
runtime. If you have a license for the Imperas tools this should be:

$ set IMPERAS_RUNTIME=CpuManager

If you have a license for OVPsim then this may be left unset (as this is the default value) or
set to:

$ set IMPERAS_RUNTIME=OVPsim

Add the Imperas executables directory to the search path, for example:

$ set PATH=%PATH%;%IMPERAS_HOME%\bin\%IMPERAS_ARCH%

Set the product personality:

$ set IMPERAS_PERSONALITY=CPUMAN_STANDARD

Next, you must also set up licensing for the program. This is described for both Linux
and Windows installations in section 4.6.7.
You may also wish to install the preferred Windows development environment, MSYS.
This is described in section 6 Windows Development Environment.

4.6.6.2.2 Windows System Menu
Environment variables on Windows XP can be modified by going to:

Start->Control Panel->System->Advanced->Environment Variables

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 23 of 111
.

Environment variables on Windows 7 and 10 can be modified by going to:

Start->Control Panel->System and Security->System->Advanced System Settings-
>Environment Variables

4.6.7 Internet Access Via a Proxy Server

If you are using a Demo license downloaded from the OVP website, this will require web
access in order to run the simulator.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 24 of 111
.

If this is the case and you use an Internet Proxy Server to access the web, you must set
the environment variable, IMPERAS_PROXY_SERVER, in order to enable access to the
internet.

For example (shown for a Linux host) if the Proxy Server is running on
myproxyserver.com at port 3128

$ export IMPERAS_PROXY_SERVER=”http://myproxyserver.com:3128”

A simple check to ensure this has worked correctly is as follows

$ export IMPERAS_PROXY_SERVER=”http://myproxyserver.com:3128”
$ http_proxy=${IMPERAS_PROXY_SERVER} wget http://www.ovpworld.org

This should cause the index.html to download if all is successful

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 25 of 111
.

5 Setting up Licensing
The OVP and Imperas products are licensed using Flexera license software. In order to
execute you will need a license file and for floating licenses you will need to run a license
server.

Floating licenses to execute the Imperas Professional products are available by contacting
Imperas at license@imperas.com.

In both cases the license file is bound to an individual computer through that computer’s
host ID. To obtain a license file you must provide the host ID and host name of one of
your physical computers that will host the license.

NOTE

Running the Imperas license server within a virtual machine will not work correctly and
is not permitted under the terms of the Imperas Software License Agreement.

5.1 OVPsim Node Locked License keys
OVPsim node locked license keys may be requested directly from
http://www.ovpworld.org/licensekey.php by registered OVP users. Licenses for
commercial use may be obtained from Imperas.

OVPsim licenses, from the OVPWorld website, are uncounted node-locked licenses and
as such do not require a license server or a license daemon.

5.1.1 Obtaining the computer hostname and Host ID
To determine the host ID of a computer, use the lmhostid command of the lmutil utility
program (lmutil on Linux or lmutil.exe on Windows).

If you have already gone through the installation process then the lmutil utility will be in
the directory IMPERAS_HOME/bin/IMPERAS_ARCH which will already be on your executable
path.

From a Linux shell or a Windows Command Prompt/MSYS shell do the following:

$ lmutil lmhostid
lmutil - Copyright (c) 1989-2012 Flexera Software LLC. All Rights Reserved.
The FlexNet host ID of this machine is "002486571114"

NOTE

If the returned host ID is "000000000000" then this may be because you are using an OS
which uses Consistent Network Device Naming. Please see appendix F.5 for ways in
which this problem can be resolved. A license cannot be generated for a NULL host ID.

mailto:license@imperas.com
http://www.ovpworld.org/licensekey.php

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 26 of 111
.

The host name of the computer can be obtained with the -hostname argument applied to
the lmutil utility program. From a Linux shell or a Windows Command Prompt/MSYS
window do the following:

$ lmutil.exe lmhostid -hostname
lmutil - Copyright (c) 1989-2017 Flexera Software LLC. All Rights Reserved.
The FlexNet host ID of this machine is "HOSTNAME=user1-laptop"

5.1.2 Setup License File

OVPsim looks, by default, for the license file in:

$IMPERAS_HOME/OVPsim.lic

If the license file is installed in this location then there is no need to do anything.
However, maintain a copy of the license file elsewhere as this will be deleted if
uninstalling or overwritten when installing a new package containing licensing.

If it is installed in a different location the IMPERASD_LICENSE_FILE9 environment variable
should be set to its location, as shown below.

IMPERASD_LICENSE_FILE=/home/user/Imperas_OVPsim.lic

OVPsim license key files are to a specific version (release) of OVPsim, with a license
feature entry similar to that shown below.

FEATURE IMP_OVPSIM_20170919 imperasd 1.0 1-jul-2017 uncounted HOSTID=...
 SIGN="...”

You will need to obtain a new license file when you install a new version of the
simulator.

NOTE

When using an OVPsim node locked license the simulator product will also require
access to the internet to allow for checking for product updates. Without internet access
an error will be reported.

9 The IMPERASD_LICENSE_FILE environment variable is an alternative to LM_LICENSE_FILE, either
may be used.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 27 of 111
.

5.2 Imperas Floating Licenses
Floating licenses require that a license server is executed on a machine that will be used
to serve licenses to clients. The license server, lmgrd (lmgrd.exe on Windows) is
provided in the binary directory of an installation.

The license to run the Imperas products (and the OVPsim product in some circumstances)
is provided as a floating license where one computer on the network is the license server
and the same or another computer on the network requests (checks out) licenses from it to
enable the product to run. The license server uses a license daemon.

5.2.1 Obtaining the computer hostname and Host ID
To determine the host ID of a computer, use the lmhostid command of the lmutil utility
program (lmutil on Linux or lmutil.exe on Windows).

If you have already gone through the installation process then the lmutil utility will be in
the directory IMPERAS_HOME/bin/IMPERAS_ARCH which will already be on your executable
path.

From a Linux shell or a Windows Command Prompt/MSYS shell do the following:

$ lmutil lmhostid
lmutil - Copyright (c) 1989-2017 Flexera Software LLC. All Rights Reserved.
The FlexNet host ID of this machine is "002486571114"

The host name of the computer can be obtained with the -hostname argument applied to
the lmutil utility program. From a Linux shell or a Windows Command Prompt/MSYS
window do the following:

$ lmutil.exe lmhostid -hostname
lmutil - Copyright (c) 1989-2017 Flexera Software LLC. All Rights Reserved.
The FlexNet host ID of this machine is "HOSTNAME=user1-laptop"

5.2.2 Starting the License Server
The Imperas license daemon (imperasd) must be run on the ‘license server’ using the
Flexera license tools. The FlexNet lmutil tool and the Imperas daemon are provided in
the $IMPERAS_HOME/bin/$IMPERAS_ARCH directory. The daemon can be started, to run
as a background task, using the following command on the license server:

On a Windows machine in an MSYS shell

$ $IMPERAS_HOME/bin/$IMPERAS_ARCH/lmgrd.exe –c license.lic –l license.log

On a Linux machine in a shell

$ $IMPERAS_HOME/bin/$IMPERAS_ARCH/lmgrd –c license.lic –l license.log

By adding -z to the command line it will run in the foreground

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 28 of 111
.

The license server can also be run on Windows using the LMTOOLS utility. Additional
information for getting a license daemon running on a license server can be found in
APPENDIX E, “Additional FlexNet Licensing Information”.

Once you have your license server running, the computer from which the tools are run
needs the IMPERASD_LICENSE_FILE or LM_LICENSE_FILE environment variable to be set.

If the license server was set up to use a specific port, as shown by the following SERVER
line taken from a license file,

SERVER server1 00F346829930 2700

it must be specified before the ‘@’, for example:

IMPERASD_LICENSE_FILE=2700@server1

where server1 is the host name of the license server and 2700 is the port number that the
license server is using.

If the port is not set in the license file one of the default ports (27000-27009) will be used
by the license server and the IMPERASD_LICENSE_FILE environment variable can be set
to @ followed by the host name of the license server, for example:

IMPERASD_LICENSE_FILE=@server1

NOTE

The server name, server1, and the port number, 2700, in the license file may be modified.
If any other entry is modified it will invalidate the license file and the server will no

longer serve licenses.

5.2.3 License Queuing
The license server supports license queuing for server based license daemons. This
allows waiting for licenses becoming available which is useful for batch oriented
execution.

In order to enable queuing, define the environment variable IMPERAS_QUEUE_LICENSE as
shown

$ export IMPERAS_QUEUE_LICENSE=1

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 29 of 111
.

5.2.4 Fallback License
Some of the Imperas simulator products will initially request a main license feature,
however, if this feature cannot be obtained there are a fixed set of license features that
will be attempted, the fallback licenses.
In some circumstances this may not be wanted i.e. ensure that only the specific license
feature is used so others remain available for other specific usage e.g. A batch license can
fallback to obtain an interactive license.

In order to disable the fallback in license feature usage, define the environment variable
IMPERAS_NO_FALLBACK_LICENSE as shown

$ export IMPERAS_NO_FALLBACK_LICENSE=1

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 30 of 111
.

6 Windows Development Environment

6.1 Introduction
The development of platforms, processor and peripheral models on the Windows
operating system has been validated in an environment using MSYS2 and MINGW. A
default build environment is provided with both the Imperas tools and OVPsim
installations that will allow models and platforms to be built in this environment.

Linux users should go to Section 7.

Although not directly supported Cygwin and MSVC can also be supported, see section
Appendix for further information.

6.2 MSYS2 / MinGW Environment
The MSYS2 / MinGW environment is a shell and GNU toolchain to use under Windows.
This should be installed on a Windows 32-bit or a Windows 64-bit host machine.

6.2.1 Obtaining MSYS2
MSYS2 can be obtained from https://www.msys2.org/
Any issues should be reported using the OVP Forum.

6.2.1.1 Download Installer
Download the installer from https://www.msys2.org/ choosing either the 32-bit or 64-bit
installer.

The tested version is the 20180531 release.

6.2.1.2 Installation of MSYS2
Execute the program that you downloaded.

msys2-x86_64-20180531.exe

https://www.msys2.org/
https://www.msys2.org/

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 31 of 111
.

Select Next to Install

Select the Installation Folder

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 32 of 111
.

Select a name for the menu shortcut

Install

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 33 of 111
.

Finish the installation

The MSYS shell should start

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 34 of 111
.

In the Msys Shell type the command

pacman -Syu

Allow installation to proceed confirming ‘Y’

Terminate the shell when prompted with the messages

Warning: terminate MSYS2 without returning to shell and check for updates again
warning: for example close your terminal window instead of calling exit

Once the shell has been terminated, start a new shell by executing C:/msys64/msys2.exe.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 35 of 111
.

This will start a new MSYS2 shell

In this shell reissue the command

pacman -Syu

6.2.2 Install Utilities

Now install some common utilities.

pacman --needed -S git base-devel gcc vim make zip unzip

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 36 of 111
.

6.2.3 Install Host Toolchains

The following shows how to install both the 32-bit and 64-bit host toolchains. In practice
only the one targeting your host hardware may be required.

pacman --needed -S mingw-w64-x86_64-gcc mingw-w64-i686-gcc

This will create a mingw32.exe and/or a mingw64.exe in C:\msys64 which should be
used to start the MSYS shell with the correct environment to generate either 32-bit or 64-
bit host executables.

These appear on the Windows toolbar or can be used to create a shortcut your desktop.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 37 of 111
.

6.2.4 Environment
6.2.4.1 Inheritance Configuration

Depending upon the version and your requirements you will need to edit one or more the
following files msys2_shell.cmd, msys2.ini, mingw32.ini and mingw64.ini to uncomment
the following line

MSYS2_PATH_TYPE=inherit

This can be done within the MSYS2 shell using the command

vim /msys2_cmd.shell /msys2.ini /mingw32.ini /mingw64.ini

The screenshot below shows one of the files modified so that the line
MSYS2_PATH_TYPE is no longer commented.

Alternatively, if using the start menu to start the MSYS2 shell, the properties on the start
menu link can be edited to add -use-full-path

Open the links by right-click on the entry in the start menu and select more and then open
file location. The properties on these shortcut files should be edited to add the additional
command line argument.

6.2.4.2 Update make for OVP Scripts

Some OVP scripts make calls to mingw32-make instead of make. To accommodate this a
copy and rename of make.exe should be made.

cd /c/msys64/usr/bin
cp make.exe mingw32-make.exe

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 38 of 111
.

Check that the OVP scripts using mingw32-make are working by creating a batch file
“test.bat” containing

@echo off

;rem move into the Example Directory
set BATCHDIR=%~dp0%
cd /d %BATCHDIR%

mingw32-make -help

pause

In a Windows explorer double click the test.bat icon and ensure you get a cmd shell with
the following help output

6.2.4.3 Update Windows PATH

Some OVP scripts build applications and platforms, using make and the native toolchains
installed previously. In order for these to be found the entries must be made to the
Windows PATH.

The make application is found in the MSYS installation at C:\msys64\usr\bin so this
should be added to the PATH.

The native toolchains are found at either C:\msys64\mingw32\bin or
C:\msys64\mingw64\bin. Only one of these should be added to the PATH.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 39 of 111
.

To add to the Windows environment PATH open Control Panel, select System and
Security, then select System and finally Advanced System Setting and Environment
Variables as shown below

Edit the Path environment variable and browse to the directories user/bin and
mingw64/bin or mingw32/bin, depending upon host, as shown

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 40 of 111
.

6.2.4.4 Stop PATH expansion

MSYS2 performs path expansion in scripts when executed. This can result in bad paths.
As an example, the following script entry is taken from one of those provided in the
harness directory of the Demo Demo/Platforms/riscv_RV64_Virtio_Linux

 --override virtio/smartLoader/command=\"root=/dev/vda ro console=ttyS0\" \

When the shell script, RUN_Virtio_Linux.sh, that contains this line, is executed in an
MSYS2 shell the Linux kernel does not boot as expected but instead a kernel panic is
caused.

[1.120000] VFS: Cannot open root device "C:/msys64/dev/vda" or unknown-
block(0,0): error -6
[1.120000] Please append a correct "root=" boot option; here are the available
partitions:
[1.120000] fe00 65536 vda
[1.120000] driver: virtio_blk
[1.120000] Kernel panic - not syncing: VFS: Unable to mount root fs on
unknown-block(0,0)

As can be seen in the above log output, this is because /dev/vda has been expanded in
the shell to C:/msys64/dev/vda, where the MSYS2 installation is located at C:/msys64.

To stop this from happening the command below must be executed in the shell prior to
executing any scripts.

$ export MSYS2_ARG_CONV_EXCL="*"

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 41 of 111
.

6.2.5 Completion and test of MSYS/MinGW installation

With any of the product packages (OVPsim, Imperas_SDK or Imperas_DEV) installed
and the riscv.toolchain cross compiler package installed you can try running the
HelloWorld example usingOP found in the installation under
Imperas/Examples/HelloWorld.

Start an MSYS shell using either the mingw32 or mingw64 shortcut created previously.

Below we show a valid execution of the script example.sh in the MSYS shell

$ cd /c/Imperas/Examples/HelloWorld/usingOP
$./example.sh
make: Entering directory `/c/Imperas/Examples/HelloWorld/usingOP/application'
Compiling application.c
Linking application.RISCV32.elf
rm application.o
make: Leaving directory `/c/Imperas/Examples/HelloWorld/usingOP/application'
make: Entering directory `/c/Imperas/Examples/HelloWorld/usingOP/platform'
Host Depending obj/Windows64/platform.d
make: Leaving directory `/c/Imperas/Examples/HelloWorld/usingOP/platform'
make: Entering directory `/c/Imperas/Examples/HelloWorld/usingOP/platform'
Host Compiling Platform obj/Windows64/platform.o
Host Linking Platform platform.Windows64.exe
Host Linking Platform object model.dll
make: Leaving directory `/c/Imperas/Examples/HelloWorld/usingOP/platform'

CpuManagerMulti (64-Bit) v20190225.0 Open Virtual Platform simulator from
www.IMPERAS.com.
Copyright (c) 2005-2019 Imperas Software Ltd. Contains Imperas Proprietary
Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

CpuManagerMulti started: Fri Mar 15 14:21:33 2019

Info (RISCV_ANS1) Attribute 'variant' not specified; defaulting to 'RV32I'
Info (OR_OF) Target 'test/CPU1' has object file read from
'application/application.RISCV32.elf'
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz
Flags Align
Info (OR_PD) LOAD 0x00000000 0x00010000 0x00010000 0x000039a4
0x000039a4 R-E 1000
Info (OR_PD) LOAD 0x00004000 0x00014000 0x00014000 0x00000854
0x000008d0 RW- 1000
Hello World
Info
Info ---
Info CPU 'test/CPU1' STATISTICS
Info Type : riscv
Info Nominal MIPS : 100
Info Final program counter : 0x100ac
Info Simulated instructions: 1,815
Info Simulated MIPS : run too short for meaningful result

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 42 of 111
.

Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 0.00 seconds
Info User time : 0.00 seconds
Info System time : 0.00 seconds
Info Elapsed time : 0.00 seconds
Info ---

CpuManagerMulti finished: Fri Mar 15 14:21:33 2019

CpuManagerMulti (64-Bit) v20190225.0 Open Virtual Platform simulator from
www.IMPERAS.com.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

Application Build
To build the application we must have the appropriate Cross Compiler toolchain
installed. By default, this example sets CROSS=RISCV32 and so we must have installed the
package riscv.toolchain.

If this is missing from the installation expect to see an error of the form:

$./example.sh
Fatal (CHECK_PF) One or more of packages from line 'install riscv.toolchain'
are required, but are not installed or selected. Please check Installation and
Environment.
Info Exiting

Platform Build
To build the platform we use the standard Makefile, Makefile.platform, that is
provided, with other standard Makefiles, in IMPERAS_HOME/ImperasLib/buildutils.
This requires that we have the expected host gcc toolchains installed.

If this is missing from the host PATH environment variable expect to see an error of the
form:

$ cd platform
$ make
Host Depending obj/Windows64/platform.d
make: x86_64-w64-mingw32-gcc: Command not found
Host Compiling Platform obj/Windows64/platform.o
make: x86_64-w64-mingw32-gcc: Command not found
make: *** [obj/Windows64/platform.o] Error 127

As you can see the platform cannot be built because the host GCC cannot be found (this
is x86_64-w64-mingw32-gcc as we are running on a 64-Bit Windows host machine). We
need to setup the PATH environment variable to include the host toolchain.

We can setup the PATH environment variable in the shell, shown below the addition of the
bin directory for the 64-bit Host GCC to the PATH

export PATH=$PATH:/c/msys64/mingw64/bin

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 43 of 111
.

however, this is only for this shell so it is better to add into the system environment (see
section Setting Environment Variables in an Appendix of this document).

We can now re-invoke the same make command and build the platform

$ make
Host Depending obj/Windows64/platform.d
Host Compiling Platform obj/Windows64/platform.o
Host Linking Platform platform.Windows64.exe
Host Linking Platform object model.dll

6.2.5.1 Test Windows Batch File Execution

To test the execution from a Windows batch file you can try running the HelloWorld
example usingOP found in the installation under Imperas/Examples/HelloWorld.

Open this directory in a Windows explorer and double-click on the script example.bat

A cmd shell should start and the example execute

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 44 of 111
.

7 Additional Toolchain Packages
Additional Cross Compilers are provided as Linux or Windows installers.

These are available from the OVP website, www.OVPworld.org and the user area of the
Imperas website10, http://www.imperas.com/

IMPORTANT
The Cross Compiler and Peripheral Simulation Engine toolchains are provided only as
32-bit native executables. This requires that a 64-bit host must provide a 32-bit
compatibility mode in order that they can execute. The packages they are provided in are
labeled as 64-bit packages, for example Linux64 only to indicate that they support a
64-bit Imperas or OVPsim installation.

7.1 Application Cross Compiler Toolchains
Imperas provides example pre-built toolchains for creating elf files from application
source code to load and execute on the processors provided by OVP.

The toolchains are available to download at www.OVPworld.org and from the user area
of the Imperas website, www.imperas.com.

NOTE
The Cross Compiler toolchains are provided to allow a user to quickly start generating
application binary code that can be executed on OVP processor models.
It is expected that after the initial experiments a cross compiler toolchain will be selected
from a cross compiler supplier.
Some processors and processor variants are not supported by the cross compiler
toolchains available on the OVPWorld website and alternatives are indicated to download
and install.

Provided as part of these cross compiler toolchains are Makefiles to provide a default
application build environment for specific processor architectures or variants, for
example RISCV32, MIPS32R6, ARM7TDMI, V850.

The installed toolchains and the Makefiles are found in the directory

IMPERAS_HOME/lib/IMPERAS_ARCH/CrossCompiler

The Makefiles are named using the format
<Processor Type/Variant>.makefile.include,

10 The Imperas website provides the same installers but also for 64-bit host computers.

http://www.ovpworld.org/
http://www.imperas.com/
http://www.ovpworld.org/
http://www.imperas.com/

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 45 of 111
.

for example, MIPS32.Makefile.include.

Each cross compiler toolchain should be installed into the current installation of Imperas
Professional or OVPsim.

A Makefile created to build an application elf file should include an appropriate
<NAME>.makefile.include and it is typical to use a variable CROSS to define the one to
be used. The Makefile will use the lines shown below to do this

CROSS?=OR1K
-include
$(IMPERAS_HOME)/lib/$(IMPERAS_ARCH)/CrossCompiler/$(CROSS).makefile.include

The included Makefile defines a number of variables that should be used in the
application Makefile build rules.

There are generic variables that are created by all the Makefiles

IMPERAS_CC
IMPERAS_LINK

And there are specific variables created by only this Makefile, for example

ARM7TDMI_CC
ARM7TDMI_LINK

The use of the specific named variables allow more than included Makefile to be used.

The CROSS variable can be used to define these in a generic Makefile as

$(CROSS)_CC
$(CROSS)_LINK

The final generic application Makefile would become

IMPERAS_HOME := $(shell getpath.exe "$(IMPERAS_HOME)")
include $(IMPERAS_HOME)/bin/Makefile.include

Makefile for Cross Compiling an application for a target processor
type

Various Cross compiler setups, Default or1k
CROSS?=OR1K
-include
$(IMPERAS_HOME)/lib/$(IMPERAS_ARCH)/CrossCompiler/$(CROSS).makefile.inc
lude
ifeq ($($(CROSS)_CC),)
 IMPERAS_ERROR := $(error "Please install the toolchain to support
$(CROSS)")

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 46 of 111
.

endif

SRC ?= application.c
EXE = $(patsubst %.c,%.$(CROSS).elf,$(SRC))

all: $(EXE)

%.$(CROSS).elf: %.o
 $(V) echo "Linking $@"
 $(V) $(IMPERAS_LINK) -o $@ $< $(IMPERAS_LDFLAGS) -lm

%.o: %.c
 $(V) echo "Compiling $<"
 $(V) $(IMPERAS_CC) -g -O0 -c -o $@ $<

clean:
 - rm -f *.elf *.o

By default, this Makefile will build an elf file application.OR1K.elf from a source file
application.c.

To build for a different target we can specify the CROSS variable

$ make CROSS=ARM7TDMI

To build different source we can specify the SRC variable

$ make CROSS=MIPS32R2 SRC=hello.c

7.2 Peripheral Simulation Engine (PSE) Toolchain
The Peripheral Simulation Engine (PSE) is used to execute behavioral code that provides
peripheral models in a virtual platform simulation.
A toolchain is provided to allow the behavioral code to be compiled for the PSE.

This toolchain should be installed into the current installation of Imperas tools or
OVPsim and so will also appear in IMPERAS_HOME/lib/IMPERAS_ARCH/CrossCompiler
and provides the toolchain pse-elf and a Makefile PSE.makefile.include.

The Makefile in a peripheral model source directory should include the pre-defined
Makefile for building PSE behavioral code, Makefile.pse, as shown below

IMPERAS_HOME := $(shell getpath.exe "$(IMPERAS_HOME)")
include $(IMPERAS_HOME)/ImperasLib/buildutils/Makefile.pse

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 47 of 111
.

8 Getting Started
This chapter will look at the basics of using the product installed in the previous sections.

The following should be carried out in a Linux shell or on Windows in an MSYS shell;
some scripts (.bat files) may be executed on Windows by double clicking on them in an
explorer browser.

8.1 ISS Tutorial Video
Detailed information on the usage of the ISS may be found by watching the tutorial video
available when logged into the OVPWorld website at

http://www.ovpworld.org/using-the-imperas-instruction-set-simulator-iss

8.2 Check Installation
This section provides some checks that the tools have been correctly installed.

8.2.1 Simulator Execution

To verify the installation after an OVPsim or an Imperas install one of the Demos that are
downloaded in both installations can be executed. These Demos will work with both the
OVPsim and the Imperas Simulators.

The setting of the environment variable IMPERAS_RUNTIME to OVPsim or CpuManager
will select between OVPsim or the Imperas professional simulator respectively.

In the Processor demos we can execute an application cross compiled for a processor type
using the ISS. The ISS allows the definition of a virtual platform containing processor(s)
and memory, the loading of application elf file(s) and controlling the simulator execution.
There is more information regarding the ISS usage in section 8.5.2 Running the
simulation using the ISS.

Execute the Fibonacci benchmark on a single core RISC-V platform.

Change to the demo directory.

$ cd $IMPERAS_HOME/Demo/Processors/RISCV/riscv32/RV32IMAC/single_core/

Run one of the execution scripts, for example

$ Run_Fibonacci.sh

If Windows explorer is used, change to the directory and double-click the corresponding
.bat file.

http://www.ovpworld.org/using-the-imperas-instruction-set-simulator-iss

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 48 of 111
.

This should provide an output similar to that shown below (this is an OVPsim
installation, for an Imperas installation the output will be the same but with a different
banner):

IMPERAS Instruction Set Simulator (ISS)

OVPsim (64-Bit) v20180221.0 Open Virtual Platform simulator from www.OVPworld.org.
Copyright (c) 2005-2018 Imperas Software Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

OVPsim started: Tue Mar 20 09:52:14 2018

Info (OR_OF) Target 'iss/cpu0' has object file read from
'../../../Applications/fibonacci/fibonacci.RISCV32-O0-g.elf'
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags
Align
Info (OR_PD) LOAD 0x00000000 0x00010000 0x00010000 0x00016998 0x00016998 R-E
1000
Info (OR_PD) LOAD 0x00017000 0x00027000 0x00027000 0x000009c0 0x00000a24 RW-
1000
starting fib(39)...
fib(0) = 0
fib(1) = 1
..<snip>..
fib(37) = 24157817
fib(38) = 39088169
finishing...
Info
Info ---
Info CPU 'iss/cpu0' STATISTICS
Info Type : riscv (RV32IMAC)
Info Nominal MIPS : 100
Info Final program counter : 0x100ac
Info Simulated instructions: 7,120,123,071
Info Simulated MIPS : 1397.8
Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 71.20 seconds
Info User time : 5.09 seconds
Info System time : 0.00 seconds
Info Elapsed time : 5.11 seconds
Info Real time ratio : 13.94x faster
Info ---
OVPsim finished: Tue Mar 20 09:52:15 2018

OVPsim (64-Bit) v20180221.0 Open Virtual Platform simulator from www.OVPworld.org.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

NOTE

The Imperas ISS used in this example is provided in two different executable programs;
iss.exe and issdemo.exe. The demo scripts use the environment variable IMPERAS_ISS
that selects which to use. The environment variable is set up as part of the installation
scripts. iss.exe uses the default OVPsim or Imperas simulator license. issdemo.exe does
not require a license but does require access to the internet.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 49 of 111
.

The issdemo.exe executable is only available to run for a specific number of days after
the release is built.

If you see the following it indicates that issdemo.exe is being executed and the
remaining days for which it will execute.

Info (PER_DDR) 77 Demo License days remain

If the number of days is exceeded the simulator will not run and the following message
will be displayed.

Fatal (PER_TMO) License has expired.
Please contact license@imperas.com to renew
Info Exiting

In this circumstance either:

• change the environment variable IMPERAS_ISS to iss.exe, if you have a current
and valid OVPsim or Imperas license

• update the version of product to a later version, a new release is typically made
each quarter

8.2.2 iGen Installation

The iGen productivity tool igen.exe is used to simplify the generation of hardware
definitions for virtual platforms (modules) and processor and peripheral model templates.

You can check that it is correctly installed by typing:

$ igen.exe --version

This should provide the version information, for example 20150901.0

$ igen.exe --help

This should start iGen with the help output similar to that shown below:

 flag short argument description

diagnostics
 --apropos command Show igen commands similar to the given argument
 --help -h Print list of flags
 --showcommands Show all igen commands

input
 --batch -b filename Execute this tcl file
 --batchargv argument Argument to --batch file
 --checkmodels Load and check models when writing a platform
 --modellibrary string Processor VLNV library
 --modelname string Processor VLNV name
 --modelvendor string Processor VLNV vendor
...

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 50 of 111
.

8.2.3 Harness Installation

A utility program harness.exe is provided to easily load a hardware definition (module)
and to load and control the execution of applications on processors within the module.

You can check that it is correctly installed by typing:

$ harness.exe --version

This should provide the version information, for example 20150901.0

And an list of arguments supported (abbreviated below) may be obtained using the help
argument as shown:

$ harness.exe --help
 flag short argument description
control
 --callcommand strings Call a command in a plugin. eg.
des/plugin/cmd arg1 arg2
 --controlfile -C filename Read a control file
 --enabletools [processors] Load VAP tools
 --extlib string Add an extension library eg.
des/instance=/v/l/n/v
 --finishafter -I string Finish simulation after this many
instructions. Eg. 1000 or des/inst=1000
 --finishtime -F string Finish simulation at this time
debug
 --gdbconsole [rootmodule] Pop up gdb(s) in console window(s)
 --gdbegui [rootmodule] Start gdb debug in Eclipse (eGui)
 --port strings Open this port number to allow a
connection to a GDB using RSP

diagnostics
 --monitornets [rootmodule] Monitor nets
 --showbuses [root] Show all (static) bus connections
 --showbusses [root] Alias for showbuses
 --showcommands [root] Show commands that can be called
with --callcommand
 --showload [root] Show where each model is loaded from

harness
 --modulefile string Path to a module
 --modulelibrary -L string Module library (defaults to
'module')
 --modulename -N string Module name
 --modulevendor -V string Module vendor
 --moduleversion -S string Module version (defaults to '1.0')
 --parameter name=value Module model parameters

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 51 of 111
.

8.2.4 MPD Installation

MPD is only available as part of the Imperas professional installation.

MPD is the Multicore/Multi-Processor debug and interactive control program to allow
the interactive debug of applications on all processor models and the debug and
development of the behavioral code of peripheral models in a unified environment.

You can check that it is correctly installed by typing:

$ mpd.exe --version

This should provide the version information, for example 20150901.0

And an list of arguments supported (abbreviated below) may be obtained using the help
argument as shown:

$ mpd.exe --help
 flag short argument description
mpd
 --apropos command Show mpd TCL commands similar to the given
argument
 --batch -b filename Execute tcl file(s) in batch mode
…<snip>…
 --port -p integer Simulator port number to connect
 --processordebugbasic string Do not use gdb with this processor
 --processorexe -e string Define the executable for one or more
processors
 --processorgdb -g string Define the gdb path for one or more processors
 --processorgdbflags -f string Define special flags required by a gdb
 --searchpath string Add a path to search for source files
 --showcommands Show all mpd TCL commands
 --simulatorcwd Change to the same working directory as the
simulator

The MPD debug console can be started from the simulator command line.

Execute and debug the Fibonacci benchmark on a single core OR1K platform using MPD

Change to the demo directory.

$ cd $IMPERAS_HOME/Demo/Processors/RISCV/riscv32/RV32IMAC/single_core/

Run the execution script with the additional command line argument --mpdconsole

$ Run_Fibonacci.sh --mpdconsole

The simulation will start up as previously (this is CpuManager the Imperas professional
simulator to support MPD) but the additional output will be observed showing the
connection to the MPD debugger:

CpuManagerMulti (64-Bit) v20180221.0 Open Virtual Platform simulator from

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 52 of 111
.

www.IMPERAS.com.
..<snip>..

Info (GDBT_PORT) Host: HOST, Port: 51701
Info (GDBT_WAIT) Waiting for remote debugger to connect...
..<snip>..

Info (GDBT_MPD) Client connected to platform

And a console will be started executing MPD

MPD (64-Bit) 20180221.0 Multiprocessor debugger from www.IMPERAS.com.
Copyright (c) 2005-2018 Imperas Software Ltd.
Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.
Info (MPD_SCS) Connecting
Info (MPD_SC) Socket connected
Info (MPD_VC) Server is compatible
 idebug (cpu0) >

This now allows us to perform debugging of the application in the simulation platform.

8.2.5 eGui Installation

The package eGui_Eclipse must be installed to provide the Eclipse GUI, eGui, that can
be used with either OVPsim or Imperas professional simulations.

eGui can be used to control the virtual platform simulations and the debugging of cross
compiled applications and peripheral model behavioral code (when used with MPD).

The eGui is invoked from the simulator command line using the arguments --gdbegui or
--mpdegui.

Execute and debug the Fibonacci benchmark on a single core OR1K platform using eGui

Change to the demo directory.

$ cd $IMPERAS_HOME/Demo/Processors/RISCV/riscv32/RV32IMAC/single_core

Run the execution script with the additional command line argument --gdbegui for an
OVPsim installation or --mpdegui if you are using an Imperas professional installation.

$ Run_Fibonacci.sh --mpdegui

If the eGui installation has not been completed correctly you may see the following error
message. In this case please check that the eGui_Eclipse package has been installed into
the same directory as the product installation

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 53 of 111
.

IMPERAS Instruction Set Simulator (ISS)
..<snip>..
Info (GDBT_PORT) Host: HOST, Port: 51747

Fatal (DBC_FNF) EGUI was not found at 'C:\Imperas/bin/Windows64/egui.exe'. Please
check your installation.
Info Exiting

With a correct installation of eGui, the simulation will start up as previously (this is
CpuManager the Imperas professional simulator to support MPD):

CpuManagerMulti (64-Bit) v20180221.0 Open Virtual Platform simulator from
www.IMPERAS.com.
..<snip>..

Info (GDBT_PORT) Host: HOST, Port: 51701
Info (GDBT_WAIT) Waiting for remote debugger to connect...
..<snip>..

Info (GDBT_MPD) Client connected to platform

And an Eclipse session will be started

This now allows us to perform debugging of the application in the simulation platform.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 54 of 111
.

8.3 Build Environment

8.3.1 Introduction

Windows and Unix present a number of challenges to engineers in the different ways file
structure paths are referenced, in particular the ‘\’ (backslash) versus ‘/’ (slash)
differences, and the differences regarding the use of a ‘ ‘ (space) in a name; in Unix a
space is generally treated as a separator, whereas on Windows it can form part of a
filename without the need to be escaped.
To help overcome these issues, a number of utilities and Makefiles have been created
which will help in the building of Modules, Processors and Peripherals.

Look at the file Imperas/Examples/HelloWorld/usingOP/application/Makefile

The first lines of the Makefile:-

ifndef IMPERAS_HOME
 IMPERAS_ERROR := $(error "IMPERAS_HOME not defined, please setup Imperas/OVP
environment")
endif
IMPERAS_HOME := $(shell getpath.exe "$(IMPERAS_HOME)")

This line will modify a Windows long filename format, to the short filename format, so
that in the Makefile, the default value of IMPERAS_HOME is modified from

IMPERAS_HOME = C:\Program Files\Imperas

to
IMPERAS_HOME = C:/PROGRA~1/Imperas

This removes the space separator which would otherwise cause a problem for make.

NOTE
It is recommended to install in a location that does not contain a space, for example the
default installation for Windows is C:\Imperas

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 55 of 111
.

8.3.2 Standard Makefiles

There are a number of Makefiles provided in the directory ImperasLib/buildutils that
should be used to build.

For individual components:
Makefile.harness : for building an executable from an OP harness C file that

loads and configures the hardware module and controls the
simulation

Makefile.module : for building hierarchical hardware definition as native host
shared objects from an iGen input file and/or C source files.
These could be combinations of processor and peripheral
models and include other modules.

Makefile.pse : for building a pse.pse peripheral model behavioral
executable from an iGen input file and/or C source files

Makefile.host : for building native host model shared objects such as
processor models or intercept and extension libraries.

Makefile.TLM.igen : for generating a SystemC TLM2 platform definition file
from an iGen input file

Makefile.TLM.platform : for building an executable from a SystemC TLM2 platform
definition file

Makefile.platform : for building an executable from a platform definition file
Makefile.extlib : for building native host model intercept and extension

libraries that include iGen source files (use Makefile.host
if C source files only).

For building a library:
Makefile.library : this may be used to build the entire VLNV component library

Each component directory should have a Makefile that includes one of the above
standard Makefiles, for example a peripheral model Makefile would be

IMPERAS_HOME := $(shell getpath.exe "$(IMPERAS_HOME)")
include $(IMPERAS_HOME)/ImperasLib/buildutils/Makefile.pse

8.3.3 Build Output Selection

When a component is built using one of the standard Makefiles the target for the binary
can be controlled by setting one of the following variables to 1.

NOVLNV : Build into the current directory. This is typically only used for

examples.
VLNVROOT : Build into the VLNV library, the root of which is specified by this

variable

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 56 of 111
.

SYSTEMVLNV : Build into the product VLNV. Care should be used when selecting
this as it is modifying the installation. Typically, this will only be
used if a patch update for a model is provided.

For example, in a directory containing peripheral model source code we can build the
output binary in the current directory with the command

$ make NOVLNV=1

8.3.4 VLNV Component Library

Components and hardware definitions are generally stored in a VLNV11 library. This
comprises a source library and an output binary library from which they are used by the
simulator.

In the examples, the components may be local and compiled into the same directory for
ease of use.

It is recommended that changes are not made in the provided VLNV library. If new
components are to be created or an existing component is to be modified for a different
purpose it is recommended that a user VLNV library is created in which the component is
given a new unique VLNV reference.

8.3.4.1 Creating a User Component Library

Create a new local VLNV library structure to contain our new models. It is always
recommended to work outside of an OVP or Imperas product installation.

For example, this can be accomplished on a Linux host or in an MSYS shell on a
Windows host using the following commands to create a new library at
myLocalLib/source.

mkdir -p myLocalLib/source/vendor.com/processor/riscv/1.0/model
cp $IMPERAS_HOME/ImperasLib/source/Makefile myLocalLib/source

The Vendor entry should use a company specific name in place of vendor.com above.

We can now create new models within the library VLNV structure, some typical
structures for peripheral models and for hardware modules are shown below. Other
library types include, platform and processor.

Peripherals

PSE vendor.com/peripheral/peripheralName/1.0/pse
Native vendor.com/peripheral/peripheralName/1.0/model

11 VLNV is Vendor Library Name Version and provides for a library directory structure of the form
Vendor/Library/Name/Version with the source library located ImperasLib/source and the output binary
library located at lib/$IMPERAS_ARCH/ImperasLib

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 57 of 111
.

Hardware Definition Module
 Module vendor.com/module/moduleName/1.0/module

The complete library is then built using the Makefile as shown in the previous section

8.3.4.2 Building VLNV Component Library

Used with VLNVSRC and VLNVROOT to specify the root of the source directory and the root
of the output binary VLNV library directory respectively.

$ make -f $IMPERAS_HOME/ImperasLib/buildutils/Makefile.library \
 VLNVSRC=$IMPERAS_HOME/ImperasLib/source \
 VLNVROOT=$IMPERAS_VLNV

It is recommended to run this from the VLNVSRC directory, this can be achieved using the
following

$ make -C $IMPERAS_HOME/ImperasLib/source \
 -f $IMPERAS_HOME/ImperasLib/buildutils/Makefile.library \
 VLNVSRC=$IMPERAS_HOME/ImperasLib/source \
 VLNVROOT=$IMPERAS_VLNV

NOTE

The build system requires that the output library, VLNVROOT, directory exists.
If you are building into your own library directory it may be required to create this
directory before invoking the Makefile.

This is also used to build your own library components in the following way. This
assumes your own VLNV library with correct structure.

$ mkdir -p $HOME/lib/$IMPERAS_ARCH/MyLib
$ make -C $HOME/MyLib/source \
 -f $IMPERAS_HOME/ImperasLib/buildutils/Makefile.library \
 VLNVSRC=$HOME/MyLib/source \
 VLNVROOT=$HOME/lib/$IMPERAS_ARCH/MyLib

8.3.4.3 Selecting a User Component Library

8.3.4.3.1 Selecting for all simulations

By default the Imperas VLNV library is selected using the IMPERAS_VLNV
environment variable, such as shown below

$ export IMPERAS_VLNV=$IMPERAS_HOME/lib/$IMPERAS_ARCH/ImperasLib

This allows all components within this library to be found and used in platforms.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 58 of 111
.

However, when you are creating custom components, they may be created using separate
source and binary libraries which are built using the Makefile described in the previous
section.

The IMPERAS_VLNV environment variable is a list of libraries to be searched. The list uses
a colon (‘:’) as the separator on Linux and a semi-colon (‘;’) as the separator on
Windows.

Thus if a new library, $HOME/lib/$IMPERAS_ARCH/myLib, is created with custom
components we can add this to the IMPERAS_VLNV search path,

For Linux, in a shell or shell script

$ export IMPERAS_VLNV=$IMPERAS_VLNV:$HOME/lib/$IMPERAS_ARCH/myLib

For Windows, in a batch file

$ set IMPERAS_VLNV=%IMPERAS_VLNV%;%HOME%\lib\%IMPERAS_ARCH%\myLib

For Windows, in an MSYS/MINGW shell
Note that a semi-colon is used as the separator but it is also required to quote the
complete string so that it is not pre-processed by Windows but passed complete into the
OVPsim or Imperas product.

$ export IMPERAS_VLNV=”$IMPERAS_VLNV;$HOME/lib/$IMPERAS_ARCH/myLib”

8.3.4.3.2 Selecting for a Specific Simulation

To use a VLNV library only with a specific simulation the command line argument
--vlnvroot can be added. This specifies an additional VLNV library to use for this
simulation.

In the following the module specified and the components it references may be in the
product VLNV library or in the library myLib.

$ harness.exe --modulevendor test.ovpword.org \
 --modulelibrary module \
 --modulename test \
 --moduleversion 1.0 \
 --program application/application.OR1K.elf \
 --vlnvroot $HOME/lib/$IMPERAS_ARCH/myLib

NOTE

This is the recommended approach to use so that it is apparent on the command line
which libraries are being used in which simulations.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 59 of 111
.

8.4 Generating Deprecated ICM API TLM Interface files

The VLNV library no longer provides the deprecated ICM API TLM2.0 interface files. If
these are required, for use on an old project, they must be generated.

The Peripheral model TLM2.0 interface files are generated using the target tlmpse
defined in Makefile.ICM_TLM.igen.
The Processor model TLM2.0 interface files must be individually generated using iGen
to match the specific configuration of the processor models.
The next two sections show how to accomplish this.

8.4.1 Peripheral Models
Used with VLNVSRC to specify the root of the source directory of the VLNV library
directory the tlmpse target will build the tlm2.0 (ICM) TLM interface files.

$ make -f $IMPERAS_HOME/ImperasLib/buildutils/Makefile.ICM_TLM.igen \
 VLNVSRC=$IMPERAS_HOME/ImperasLib/source tlmpse

It is recommended to run this from the VLNVSRC directory, this can be achieved using the
following

$ make -C $IMPERAS_HOME/ImperasLib/source \
 -f $IMPERAS_HOME/ImperasLib/buildutils/Makefile.ICM_TLM.igen \
 VLNVSRC=$IMPERAS_HOME/ImperasLib/source tlmpse

The following shows the generation of the ICM TLM2.0 interface file for the RISCV
PLIC peripheral model.

$ mkdir -p ImperasLib/source/riscv.ovpworld.org/peripheral/PLIC/1.0/tlm2.0
$ igen.exe -modelvendor riscv.ovpworld.org -modellibrary peripheral -modelname
PLIC \
 -icm \
 -writetlm
ImperasLib/source/riscv.ovpworld.org/peripheral/PLIC/1.0/tlm2.0/pse.igen.hpp \
 -userheader ImperasLib/fileheaders/refArmApache.txt

And the generation of the OP TLM2.0 interface file also for the PLIC, which overwrites
the default interface file.

$ igen.exe -modelvendor riscv.ovpworld.org -modellibrary peripheral -modelname
PLIC \
 -op \
 -writetlm
ImperasLib/source/riscv.ovpworld.org/peripheral/PLIC/1.0/tlm/pse.igen.hpp \
 -userheader ImperasLib/fileheaders/refArmApache.txt \
 -overwrite

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 60 of 111
.

8.4.2 Processor Models
Each processor configuration requires a separate TLM interface file to match the specific
configuration of, for example, bus ports and interrupt connections.

The following shows the generation of the ICM TLM2.0 interface file for the ARM
processor configured for variant ARMv5TEJ.

$ mkdir -p ImperasLib/source/arm.ovpworld.org/processor/arm/1.0/tlm2.0
$ igen.exe -modelvendor arm.ovpworld.org --modellibrary processor --modelname
arm -setparameter variant=ARMv5TEJ \
 -icm \
 -writetlm
ImperasLib/source/arm.ovpworld.org/processor/arm/1.0/tlm2.0/arm_ARMv5TEJ.igen.h
pp \
 -userheader ImperasLib/fileheaders/refArmApache.txt

And the generation of the OP TLM2.0 interface file also for variant M5150.

$ igen.exe \
 -modelvendor mips.ovpworld.org --modellibrary processor --modelname mips32 \
 -setparameter variant=M5150 \
 -op \
 -writetlm mips32_M5150.igen.hpp \
 -userheader ImperasLib/fileheaders/refApache.txt

Additional configuration parameters can be assigned by adding further -setparameter
arguments.

For example, generate the TLM2 interface for the ARM CortexA(MPx2 processor with
additional interrupt lines.

$ igen.exe \
 -modelvendor arm.ovpworld.org --modellibrary processor --modelname arm \
 -setparameter variant=CortexA9MPx2 \
 -setparameter override_GICD_TYPER_ITLines=6\
 -op \
 -writetlm arm_Cortex-A9MPx2-GICD_TYPER_ITLine-6.igen.hpp \
 -userheader ImperasLib/fileheaders/refArmApache.txt

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 61 of 111
.

8.5 Hello World Example
There are many examples and demonstrations that are provided in an installation. They
are in the directories $IMPERAS_HOME/Examples and $IMPERAS_HOME/Demo.

There are a number of different ways of building a hardware definition of a platform and
controlling a simulation. In this section we will look at three different aspects using the
provided 'hello world' examples.

1. Executing an application on a processor using the ISS, see 8.5.2
2. Creating our own hardware definition and executing with fixed harness, see 8.5.5
3. Creating our own harness, see 8.5.6

In previous examples we used the ISS to run the OR1K Fibonacci example. The ISS uses
the model library and allows a binary cross-compiled ELF file to be run on a processor
model variant without a specific hardware definition. It is the simplest way to run and
debug software.

If you need to model hardware then there are several ways to create it.

Look in the Examples/HelloWorld directory:

$ ls $IMPERAS_HOME/Examples/HelloWorld
usingCPP usingHarnessExe usingHarnessInC usingHarnessInCPP usingOP
usingISS usingSystemC

For the simplest, look at usingISS:

$ cp –r $IMPERAS_HOME/Examples/HelloWorld/usingISS .
$ cd usingISS

In this directory you should see an application directory with a file application.c,
which can run on this platform, and Makefile for building the application.

8.5.1 Compiling an application
Compile the Application using the OR1K Cross Compiler toolchain.

$ cd application
$ make

Or

$ make –C application

If you see the following, the toolchain has not been installed or it has not been installed
into the current release that is being executed. (Install the toolchain now.)

Makefile:12: *** "Please install the toolchain to support OR1K ". Stop.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 62 of 111
.

A correct compilation will give you output something like

$ make
Compiling application.c
Linking application.OR1K.elf
rm application.o

To see exactly what is going on add VERBOSE=1 to the command line

$ make CROSS=OR1K VERBOSE=1
echo "Compiling application.c"
Compiling application.c
C:/Imperas/lib/WINDOW~1/CROSSC~1/or32-elf/bin/or32-elf-gcc
-IC:/Imperas/ImpPublic/include/common
-IC:/Imperas/ImpPublic/include/target/common
-IC:/Imperas/ImpPublic/include/target/application
-IC:/Imperas/lib/Windows64/TargetLibraries/include/or32 -c -o application.o
application.c
echo "Linking application.OR1K.elf"
Linking application.OR1K.elf
C:/Imperas/lib/WINDOW~1/CROSSC~1/or32-elf/bin/or32-elf-gcc
-IC:/Imperas/ImpPublic/include/common
-IC:/Imperas/ImpPublic/include/target/common
-IC:/Imperas/ImpPublic/include/target/application
-IC:/Imperas/lib/Windows64/TargetLibraries/include/or32 -nostartfiles
-TC:/Imperas/lib/Windows64/TargetLibraries/or32-elf/or32-
elf-lib.ld -LC:/Imperas/lib/Windows64/TargetLibraries/or32-elf
C:/Imperas/lib/Windows64/TargetLibraries/or32-elf/crt0.o -o
application.OR1K.elf application.o -limperas -lm
rm application.o

This cross compilation of the application for the OR1K processor, will produce a file
called application.OR1k.elf.

Move back up a directory

$ cd ..

8.5.2 Running the simulation using the ISS

Run the compiled application using the ISS:

$ iss.exe --program application/application.OR1K.elf \
 --processorvendor ovpworld.org \
 --processorname or1k \
 --variant generic \
 --verbose

This should provide an output similar to that shown below:

OVPsim (32-Bit) v20150901.0 Open Virtual Platform simulator from
www.OVPworld.org.
Copyright (c) 2005-2015 Imperas Software Ltd. Contains Imperas Proprietary
Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 63 of 111
.

OVPsim started: Fri Sep 18 11:45:52 2015

Info (OP_AL) Found attribute symbol 'modelAttrs' in file
'C:/Imperas/lib/Windows32/ImperasLib/ovpworld.org/processor/or1k/1.0/model.dll'
Info (OP_AL) Found attribute symbol 'modelAttrs' in file
'C:/Imperas/lib/Windows32/ImperasLib/ovpworld.org/semihosting/or1kNewlib/1.0/model.dll'
Info (OR_OF) Target 'platform/cpu1' has object file read from 'application.OR1K.elf'
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align
Info (OR_PD) LOAD 0x00002000 0x00000000 0x00000000 0x0000dc48 0x0000dd64 RWE 2000
Hello World
Info
Info ---
Info CPU 'platform/cpu1' STATISTICS
Info Type : or1k
Info Nominal MIPS : 100
Info Final program counter : 0x1720
Info Simulated instructions: 2,226
Info Simulated MIPS : run too short for meaningful result
Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 0.00 seconds
Info User time : 0.02 seconds
Info System time : 0.00 seconds
Info Elapsed time : 0.02 seconds
Info ---

OVPsim finished: Fri Sep 18 11:45:52 2015

OVPsim (32-Bit) v20150901.0 Open Virtual Platform simulator from www.OVPworld.org.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

NOTE

The ‘Simulated MIPS’ figure provides an indication of how many millions of instructions
the simulator was able to run on your host machine per second. You will get the message
‘run too short for meaningful result’ if the simulated time is less than a second.

8.5.3 Execute example using provided script
For convenience we provide example.bat or example.sh that performs all the required
actions, for example compile the application and runs the simulation:

$./example.sh
...

8.5.4 Creating a Virtual Platform Tutorial Video
Detailed information on how to create a virtual platform description of a hardware
platform may be found by watching the tutorial video available when logged into the
OVPWorld website at

http://www.ovpworld.org/creating-virtual-platforms

http://www.ovpworld.org/creating-virtual-platforms

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 64 of 111
.

8.5.5 Creating and Simulating with a Platform/Module
The previous example showed compiling an application and then using the ISS to run it
on a processor. In the next example we will create a simple hardware definition, a
module, and use the provided harness program to load the hardware definition, load the
application elf file and control the simulation.

$ cp –r $IMPERAS_HOME/Examples/HelloWorld/usingHarnessExe .
$ cd usingHarnessExe

Compile the application in the application directory:

$ make -C application

then look in the module directory

$ cd module
$ ls

We will see there is module.op.tcl and Makefile. The module.op.tcl is the
definition of the hardware using iGen input script commands.

The provided Makefile, includes the standard Makefile Makefile.module, will run iGen
on the input file:

$ make NOVLNV=1
iGen Create OP MODULE module
Host Depending obj/Windows64/module.d
Host Compiling Module obj/Windows64/module.o
Host Linking Module object model.dll

and if you now list the directory, you will see several .c and .h files created by iGen.
These are normal C files that make use of the standard OVP OP API that create
platforms. For examples of platforms/modules written directly in OP, please refer to:
 Writing_Platforms_and_Modules_in_C_User_Guide.pdf

There are many examples of using this approach in the Examples/PlatformConstruction
directory and there are 2 comprehensive documents in doc/ovp that describe the use of
iGen for platforms/modules:
 iGen_Model_Generator_Introduction.pdf
 iGen_Platform_and_Module_Creation_User_Guide.pdf

Also, please look at the iGen section in doc/ovp/index.html. iGen is a platform and
model building wizard/productivity tool to make it easy to create platforms/models.

The running of the Makefile has created the module/model.dll that is a binary
representation of the input .c/.h that was created by iGen from the input .tcl file. This
module/model.dll can be used in other platforms or modules (as part of a
system/subsystem hierarchy), or it can be simulated directly using the provided
harness.exe program:

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 65 of 111
.

$ cd ..
$ harness.exe --modulefile module/model.dll
 --program application/application.OR1K.elf
...
OVPsim started: Wed Mar 23 12:00:23 2016

Hello World using harness.exe

OVPsim finished: Wed Mar 23 12:00:23 2016
...

You can see what control options are available in the harness.exe by using the help
option:

$ harness.exe --help

Try out some such as
 --trace
 --showbuses
 --showlibrarymodules
 --showoverrides
 --gdbconsole

Again there is a script to compile the application, module and run the harness.exe:

$./example.sh

In this example the hardware module definition is in a local directory. The harness can
also load modules from the VLNV library by specifying the arguments --modulename,
--modulelibrary, --modulename and --moduleversion.

For example

$ harness.exe \
 --modulevendor test.ovpworld.org \
 --modulelibrary module \
 --modulename test \
 --moduleversion 1.0

The harness will load the module found in the VLNV library that satisfies the vendor and
name. This command line will essentially load a shared object found at

lib/$IMPERAS_ARCH/ImperasLib/test.ovpworld.org/module/test/1.0

It is possible to omit any of --modulevendor, --modulelibrary or --moduleversion if the
defined arguments still generate a unique item in the VLNV library.

8.5.6 Writing your own test harness
The previous example showed creating a platform/module and using the provided
simulation test harness to run and control the simulation. You can write your own test
harness directly using three OP API to load and simulate.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 66 of 111
.

The OVP OP API provides functions to control a simulation. There are examples of this
in the Examples/SimulationControl directory and there are two documents which
provide common use cases
 Simulation_Control_of_Platforms_and_Modules_User_Guide.pdf
 Advanced_Simulation_Control_of_Platforms_and_Modules_User_Guide.pdf

$ cp –r $IMPERAS_HOME/Examples/HelloWorld/usingHarnessInC .
$ cd usingHarnessInC

This has an application directory and module directory as in the previous examples. It
also has a harness directory:

$ cd harness
$ ls
harness.c Makefile

The harness.c is a regular C program that uses calls to the OVP OP API to control the
loading and simulation of a module. Please refer to the documents mentioned above for
information on the OP API calls etc.

As in previous examples, for convenience a script it provided to compile and run the
complete example:

$./example.sh
...
Compiling application.c
...
iGen Create OP MODULE module
...
Host Linking Harness harness.Windows64.exe
...
OVPsim started: Wed Mar 23 12:21:06 2016

Hello World using C Harness

OVPsim finished: Wed Mar 23 12:21:06 2016

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 67 of 111
.

9 Understanding Semihosting Support

9.1 In Imperas and OVP simulations
The term "semihosting" is can mean several things. In the case of OVP simulations it
refers to specific behavior that is provided by the host system rather than the simulation
platform or an operating system running on the simulation platform.
For example, in an embedded system, to get output on a terminal the platform would
typically include a hardware device, such as a UART, and the application software would
provide a driver to initialize the device and provide low level functions that can be used
by library functions, for example printf, to output characters to the terminal. This adds
complexity to the software and the platform that is not required if we simply wanted to
cross compile and run a bare metal C application on a specific processor variant.
In this example semihosting would be used to provide behavior for the low level
functions without having to add anything to the platform or application code. A semihost
library replaces behavior of the low level function in the cross compiled application with
a native host function provided within a semihosting intercept library.
The semihost library is native code that is loaded as a shared object by the simulator. It is
defined in the instantiation of a processor instance in a platform.

9.2 Replacing function and/or instruction behavior
Different mechanisms may be used to support semihosting. This may be replacing a
function’s behavior or using one or more12 specific instructions to control semihost
operations.

A semihost library may replace a function in its entirety to provide that function itself, for
example the function _write, which sends a character from a buffer to a hardware device
output register, may be intercepted and replaced by a semihost function that takes the
character from the buffer and displays it on the host stdout.

A semihost library may replace a specific instruction, typically a software interrupt
instruction, which is a way of the application program requesting an action from a host
operating system, but that in this case is intercepted and the function performed

9.3 Specific to a Cross Compiler and C Library
The way a semihost library is intended to work is specific to a processor type and also to
the cross compiler toolchain and C library used during the application compilation and
linkage. It is, therefore, important that the correct semihost library is included with the
processor instantiation in a platform for the cross compiler and C library used to build the
application that will execute on the processor.

12 The actual number of instruction types that can be used is limited in a semihost library

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 68 of 111
.

Example mips32 cross compiler toolchain uses mips32Newlib semihost library.
The C library used in the application compilation in this case is specified by a linker
script, mipssim-hosted.ld. This controls the C library included. The semihosting is
performed at the low level function level, as defined in the .intercept table of the
semihost file mips32Newlib.c in the VLNV library.

Example ARM Linaro cross compiler toolchain used armAngel semihost library.
The C library used in the application compilation in this case is specified by a specs file,
aprofile-ve.specs. This controls the C library included. The semihosting is performed
at the instruction level, as defined in the armOSOperation function of the semihost file
armAngel.c in the VLNV library.

9.4 Used to terminate the simulation
The semihost library may also detect other events in the execution of application
software, for example a call to exit or a jump-to-self.
An embedded processor would never stop executing instructions, unless put into a
specific mode. In order to stop an application 'running off the end' designers typically put
spin loops in areas of code that are used to capture unwanted events from which the
program cannot recover including the exit function code.
The execution of a spin loop could cause the application to run forever and make the
simulation appear to lock-up so the semihost library is used to detect spin loops or calls to
exit and terminate the simulation.

9.5 Caution using with EPKs and non-baremetal
platforms

The semihost library replaces functions and/or instructions behavior so it is not the case
that a semihost library should always be used. In an EPK or other non-baremetal platform
care should be taken to avoid the situation that code is not executed when expected
because a symbol has happened to match one defined in the semihost library and has
caused the functions normal behavior to be replaced by that of the semihost library.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 69 of 111
.

10 Understanding Simulation Time Statistics
At the end of simulation, if the verbose flag has been used, some statistics will be
reported by the simulator. This provides information to indicate how many instructions
were executed on the OVP Processor model and the equivalent simulated Millions of
Instructions Per Second (MIPS) that were executed. This can be used as an indication of
how well the simulator performed on the host machine running the particular application.

The typical simulation statistics is shown below. Most entries are self explanatory but are
described in the following sections

Info ---
Info CPU 'platform/cpu0' STATISTICS
Info Type : arm (Cortex-A9UP)
Info Nominal MIPS : 100
Info Final program counter : 0x4b8
Info Simulated instructions: 22,400,008,761
Info Simulated MIPS : 5720.7
Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 224.00 seconds
Info User time : 3.92 seconds
Info System time : 0.00 seconds
Info Elapsed time : 3.93 seconds
Info Real time ratio : 56.98x faster
Info ---

OVP Fast processor model configuration information

Info Type : arm (Cortex-A9UP)
Info Nominal MIPS : 100

The model type and, if selected, the configuration variant are displayed. The nominal
MIPS for the processor model, by default, is 100 MIPS. This has an effect when running
with 'wallclock' enabled or when in a multi-processor system. With -wallclock enabled
it is used to control the maximum execution performance i.e. only 100 million
instructions will be executed in a real time 1 second. In a multi-processor system (without
wallclock enabled) it provides an execution ratio between processors e.g. a 200 MIPS
processor will execute twice the instructions as a 100 MIPS processor in a simulation unit
of time.

Program execution information

Info Final program counter : 0x4b8
Info Simulated instructions: 22,400,008,761

'Simulated instructions' will vary depending upon the application being executed, this
count indicates the number of simulated processor instructions for the processors in the

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 70 of 111
.

platform. The final program counter can be useful as an easy way of showing the
application program executes in a deterministic way over a number of simulation runs.

Simulated MIPS

Info Simulated MIPS : 5720.7

The 'Simulated MIPS' will be a measure of the number of 'Simulated instructions' over
the host elapsed time and is an indication of the performance of the simulator.

There is an overhead at the start of simulation with Just-In-Time code morphing
simulators and so the Simulated MIPS are not calculated if the simulated run time is
below a threshold. If you see the following output you are typically running too few
instructions i.e. your application is too short.

Info Simulated MIPS : run too short for meaningful result

Simulation time statistics

The simulated time is the time it would have taken to run the application based upon the
MIPS configuration of the processor and the number of instructions the application took
to complete.

Info Simulated time : 224.00 seconds

The time fields are real time information from the native host machine relating to the
simulator execution.

Info User time : 3.92 seconds
Info System time : 0.00 seconds
Info Elapsed time : 3.93 seconds

The "real time ratio" is an indication of how much quicker the simulator was able to
execute the processor instructions than the real silicon based upon the OVP Fast
processor model MIPS rate configuration and the time the simulator took to execute the
instructions on the native host machine.

Info Real time ratio : 56.98x faster

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 71 of 111
.

11 Understanding the operation of a code morphing
simulator

11.1 Instruction Fetch
A code morphing simulator operates in two phases to provide the behavior of a target
processor executing a sequence of instructions.

1. Morphing cross compiled target instructions (for example ARM Cortex-A9, MIPS
1074Kc, V850) to a sequence of native host instructions

2. Executing the sequence of native host instructions to provide the behavior
expected of the target

In 1 we are executing in 'morph time' using the translations specified by the OVP
processor model. During the translation process, each instruction is read from the virtual
platform memory using a debug (artifact) transaction. This access must have no effect on
the system and must be implemented as a 'back door' access that bypasses any behavior
of the system; including timing or delays that may be in a SystemC TLM2 virtual
platform implementation.
The code morpher will continue reading instructions and morphing code until it has
constructed an entire 'code block'. This may be a few or many instructions.
Once a code block is created, the block is executed. We are now in 2, in 'run time', for
each target instruction behavior, a) the instruction is reread from memory - but this time
as a 'real' transaction that will have an effect on the system that the fetch would normally
have and b) the native code is executed to create the behavior.

Figure 1: Real and Artifact accesses over time

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 72 of 111
.

11.2 SystemC Interface Transaction Types

In SystemC TLM2 interface code is generated for each OVP fast processor model.

There is also generic OVP processor interface code that is provided in the installed
component source library.
The component VLNV source library is found at IMPERAS_HOME/ImperasLib/source,
with the V/L/N/V of the TLM2 support models
ovpworld.org/modelSupport/tlmProcessor/1.0 containing the interface file

11.2.1 OP API (Current)
 tlm/tlmProcessor.hpp
 tlm/tlmBusPort.hpp

In this file you will find the function read that will perform a TLM2 read (fetch)
transaction by calling either socket->b_transport() for a 'real' access or socket-
>transport_dbg() for a debug or simulation artifact access.

11.2.2 ICM API (Deprecated)
 tlm2.0/tlmProcessor.cpp

In this file you will find the function icmCpuMasterPort::readUpCall that will perform a
TLM2 read (fetch) transaction by calling either socket->b_transport() for a 'real'
access or socket->transport_dbg() for a debug or simulation artifact access.

IMPORTANT NOTE

The SystemC virtual platform must provide both debug and real interface connections.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 73 of 111
.

APPENDIX A

Installation Packages, Products and Licensing Features

A.1 Installation Packages
There are three main product installation packages available to download via the Imperas
or OVP World websites.

1. Imperas_SDK
2. Imperas_DEV
3. OVPsim

In addition to the product installation packages above are a number of installers providing
specific demonstrations and example toolchains to be used in compilation of peripheral
models and cross compilation of processor application code.

A.1.1 Imperas_SDK package
The Imperas_SDK package is available from the Imperas website and provides the
M*SDK and M*TST product features.

These include

1. Verification, Analysis and Profiling (VAP) tools
2. Multicore debugger for debugging of applications running on processor

models and peripheral models in a unified environment
3. M*SIM and Imperas ISS professional simulators
4. Imperas Generator Wizard (iGen) for generating virtual platforms and model

(processor and peripheral) templates
5. Model Library
6. Examples and Demonstrations

The setting of the IMPERAS_PERSONALITY environment variable to
CPUMAN_MULTI is required to select the product features provided in the SDK
product.

A.1.2 Imperas_DEV package
The Imperas_DEV package is available from the Imperas website and provides the
Developer installations; C*DEV, S*DEV13 and M*DEV which provide different
simulator features. The package provides the DEV product features.

These include

1. M*SIM and Imperas ISS professional simulators

13 The ‘Standard’ Developer simulator configuration provides similar capabilities to the OVPsim simulator.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 74 of 111
.

2. Imperas Generator Wizard (iGen) for generating virtual platforms and model
templates

3. Model Library
4. Examples and Demonstrations

The setting of the IMPERAS_PERSONALITY environment variable is used to select the
simulator features, between those provided by Controller (C*DEV), Standard (S*DEV)
Multi (M*DEV) or ISS products.

A.1.3 OVPsim package
The OVPsim package is available from the OVP World website. The package provides
the product features.

These include

1. OVPsim reference simulator
2. Imperas Generator Wizard (iGen) for generating virtual platforms and model

templates
3. Model Library
4. Examples and Demonstrations

A.2 License Features

A.2.1 Executable Programs

The following table shows the executable programs that are provided in the product
packages.

Any specific license feature required to execute in conjunction with a simulator license is
as detailed in the following section.

Product Name Package License Feature Simulator / Personality
mpd.exe Imperas_SDK (simulator) Not required
igen.exe All (simulator) Any / Any
ipost.exe Imperas_SDK IMP_IPOST not applicable
cpuGen Imperas_SDK (simulator) +

IMP_CPUGEN
Any / Any

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 75 of 111
.

A.2.2 CpuManager Simulator and its Personalities
The CpuManager simulator runtime can be configured to provide different levels of
simulation and feature support. The configuration of the simulator is controlled with the
IMPERAS_PERSONALITY environment variable. The simulator has NO default
personality and the environment variable must be set before running the product. The
license features that the simulator will checkout are controlled by the personality.

Simulator Personality Product License Feature
CPUMAN_CONTROLLER C*DEV IMP_CPUMAN_CONTROLLER
CPUMAN_STANDARD S*DEV IMP_CPUMAN_STANDARD
CPUMAN_MULTI M*DEV IMP_CPUMAN_MULTI
CPUMAN_MULTI M*SDK IMP_CPUMAN_MULTI and

IMP_VAP (if required)
CPUMAN_MULTI M*TST Interactive Usage

IMP_CPUMAN_MULTI and IMP_MPD, IMP_VAP
(as required)
Batch Usage
IMP_CPUMAN_MULTI_BATCH and
IMP_VAP_BATCH (as required)

CPUMANAGER_SINGLE14 M*SIM-S IMP_CPUMAN_SINGLE
CPUMAN_ISS ISS IMP_CPUMAN_ISS

OVPSIM OVPsim IMP_OVPSIM
CPUMAN_DV S*IDV IMP_CPUMAN_DV
CPUMAN_DV_ASYNC A*IDV IMP_CPUMAN_DV_ASYNC

A.2.3 CpuManager Simulator and Non-Interactive
(batch) Usage
The CpuManager simulator supports interactive and non-interactive modes of operation;
each are separately licensed.

The non-interactive usage is controlled using the IMPERAS_BATCH_LICENSE environment
variable.

If the environment variable is set it causes the simulator to operate in different modes
defined by the value:

0 use interactive license (default normal operation)
1 use non-interactive (batch) license
2 use non-interactive (batch) license or use interactive license if the batch license is

not available
If the environment variable is not set the interactive mode is used.

If batch (non-interactive) mode is being used, then a BATCH version of the license feature
is required. For example, using personality CPUMAN_MULTI in batch mode would require

14 M*SIM-S is an alternative to M*SIM and can be used as an alternative in M*DEV and M*SDK product
installations

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 76 of 111
.

the license feature IMP_CPUMAN_MULTI_BATCH instead of the normal license feature
IMP_CPUMAN_MULTI used in interactive (standard) operation. If the Imperas VAP tools are
being used in batch mode, the license key IMP_VAP_BATCH will be used in preference to
IMP_VAP.

A.2.4 OVPsim Simulator

The OVPsim simulator does not use the IMPERAS_PERSONALITY environment variable
and provides fixed simulation support, equivalent of the Developer S*DEV product.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 77 of 111
.

APPENDIX B

Obtaining an Imperas License

To obtain an

Imperas license send an email request to license_support@imperas.com,
OVPsim license visit the OVPworld.org license page, or send an email to

license@ovpworld.org

The email sent must contain the following information:

Name
e-mail address
Phone number
Company Address

of the person responsible for the Imperas/OVP Tools

Host id15
Host Name
Type (Linux, Windows)

of the machine running the license server

1.1.1 15 This is the FlexLM information obtained using the

lmutil(.exe) that is installed with all packages. See section
4.6.7 Internet Access Via a Proxy Server

If you are using a Demo license downloaded from the OVP website, this will require web
access in order to run the simulator.

If this is the case and you use an Internet Proxy Server to access the web, you must set
the environment variable, IMPERAS_PROXY_SERVER, in order to enable access to the
internet.

For example (shown for a Linux host) if the Proxy Server is running on
myproxyserver.com at port 3128

$ export IMPERAS_PROXY_SERVER=”http://myproxyserver.com:3128”

A simple check to ensure this has worked correctly is as follows

$ export IMPERAS_PROXY_SERVER=”http://myproxyserver.com:3128”
$ http_proxy=${IMPERAS_PROXY_SERVER} wget http://www.ovpworld.org

This should cause the index.html to download if all is successful
Setting up Licensing

mailto:license_support@imperas.com
mailto:license@ovpworld.org

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 78 of 111
.

APPENDIX C

Accessing Imperas User Area

C.1 Initial Login at Imperas User

Login at www.imperas.com and select the "User Login" link. At this point you will use
the same username and password that is used on the OVP World website.

C.2 Selecting Imperas Product download

The Imperas products are found at the “Downloads” link for the Imperas Current Release
Product.

http://www.imperas.com/

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 79 of 111
.

C.3 Logging into Download area
When any of the links are selected you will get a popup in which the company username
and password should be entered. This is common to all users of a company, university
etc. and is provided by Imperas.

C.4 Selecting Files
You are now in a page listing all the available Imperas product packages. Select the link
for the package that you wish to download.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 80 of 111
.

APPENDIX D

Setting Environment Variables

D.1 Opening System properties on Windows XP
In order to set an environment variable using Windows XP follow these steps

Select ‘Control Panel’

Select ‘System’ to bring up the ‘System properties’ dialogue box.

D.2 Opening System properties on Windows 7 and 10
Select ‘Control Panel’ and then select ‘System and Security’

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 81 of 111
.

Now select ‘System’

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 82 of 111
.

Finally select ‘Advanced system settings’

D.3 Modifying Environment Variables in Windows

Select ‘Advanced’ tab and then ‘Environment Variable’

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 83 of 111
.

APPENDIX E

Additional FlexNet Licensing Information

E.1 Locating the license server software
The license server and daemon are provided as part of the OVPsim or Imperas releases or
may be downloaded from the Imperas and OVPWorld websites.

After installing the OVPsim or Imperas packages the license server, lmgrd, and the
Imperas license daemon, imperasd, can be found in the binary installation directory.

On a Windows machine the server will be found

 $IMPERAS_HOME/bin/$IMPERAS_ARCH/lmgrd.exe

On a Linux machine the server will be found

 $IMPERAS_HOME/bin/$IMPERAS_ARCH/lmgrd

The deamon, imperasd, is found in the same directory.

E.2 Types of Licenses
There are several different types of license files. A license can be node-locked, which
means the tools can only run on a single computer, or it can be floating in which case one
computer acts as a license server, which runs a license daemon, and the tools may run on
any computer that can contact the server over the local area network to check out a
license.

In the case of a node-locked license, you will send Imperas/OVPworld the host name and
host ID of the computer that you will run the tools on. In the case of a floating license
you will need to choose one computer to be the license server and send the host name and
host ID of that computer to Imperas/OVPworld to obtain your license. Note the license
server may be the same computer you run the tools on.

In addition a license may be uncounted, which means that any number of copies of the
program may run simultaneously, or it may be counted which means that only a specified
number of instances of the program may be active at one time.

11.2.3 E.2.1 Uncounted Node-locked Licenses
An uncounted node-locked license is the simplest sort of license. It does not require a
license server or a license daemon to be running. You can tell your license is node-locked

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 84 of 111
.

if it has only uncounted FEATURE lines and comment lines (which start with a #) in it.
For example:

OVPsim non-commercial license keys
Generated on 2011-04-30
Hostname1 PC1
FEATURE IMP_OVPSIM_20130630 imperasd 1.0 25-aug-2013 uncounted \
 HOSTID=002119426114 SIGN="0874 1401 CA64 337B FC3B 9CE6 9D29 \
 CFD3 F89E F4C1 D090 9084 CE9A E2A8 D8BA 0F6F BEF9 CC19 ACF4 \
 A7F9 6834 145A 0B11 0BED AD50 6672 47B2 1758 7B24 65D2"

You can tell if a license feature is uncounted by looking for the word uncounted
following the expiration date of the feature.

If a license contains only node-locked, uncounted features then you only need to set the
environment variable IMPERASD_LICENSE_FILE to point at it, e.g.:

 IMPERASD_LICENSE_FILE=~/Imperas/license.lic

See the respective installation instructions for Windows and Linux for examples of how
to set an environment variable.

11.2.4 E.2.2 Floating Licenses
If your license is a floating license then you will need a license daemon program running
on a license server. With a floating license any computer that can find the license server
on the local area network can run the tools.

An example of a floating license looks like:

SERVER server1 00F346829930
VENDOR imperasd /path-to-deamon/imperasd
USE_SERVER
################## Feature List ####################
FEATURE IMP_SIMULATOR imperasd 1.0 25-aug-2013 5 TS_OK SIGN="5763\
 07C3 196A 858A 5455 A9EF 541E D2D4 6A75 1ED5 B3BF AE94 F141 \
 1A7A BE50 CD76 3466 A503 3035 4464 9788 4911 AEC5 F73B 18E7 \
 92AC 27CF B8A4 9FF3 0DE4 "
FEATURE IMP_CPUMANAGER imperasd 1.0 25-aug-2013 5 TS_OK SIGN="10D9 \
 9297 4903 02EE 90C9 95BC 3371 9B72 11D4 F9E2 056F BBF2 AA5F \
 4DBE 681B 0193 A355 B1B2 1638 6BBF 01CD A006 5E73 56C1 FD5D \
 EAB6 B2E0 70C3 893F 9755"

Here we see SERVER, VENDOR and USE_SERVER lines in addition to the FEATURE lines we
saw in an uncounted node-locked license. Also, after the expiration date on the FEATURE
lines we see 5 instead of uncounted indicating this is a counted license. When either of
these is true a license server will be required.

The format of the SERVER line is as follows:

 SERVER <host name> <host ID> {<port>}

<host name> should be the host name of the license server. This can be edited if it is not

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 85 of 111
.

correct.
<host ID> is the host id of the license server. This cannot be changed without
invalidating the license file. The license server must be the computer with this host ID.
{<port>} is an optional integer value which specifies the port the server communicates
through. It should usually be left blank, in which case a port in the default range of 27000
to 27009 will be used. If it is specified in the license file then the same value must be
specified on the IMPERASD_LICENSE_FILE environment variable on the computer
running the target program.

The format of the VENDOR line is as follows:

VENDOR <vendor_daemon_name> <path to vendor daemon file>

<vendor_daemon_name> should be imperasd. <path to vendor daemon file>
should be edited to be the path of the imperasd (imperasd.exe on Windows) file
located in the directory $IMPERAS_HOME/bin/$IMPERAS_ARCH for example:

VENDOR imperasd /usr/Imperas/bin/Linux32/imperasd
or
VENDOR imperasd C:\Imperas\bin\Windows32\imperasd.exe

E.3 Starting the License Server
The Imperas license daemon (imperasd) must be run on the license server using the
Flexera license tools. The FlexNet lmutil tool and the Imperas daemon are provided in
the $IMPERAS_HOME/bin/$IMPERAS_ARCH directory. The daemon can be started using
the following command on the license server:

On a Windows machine in an MSYS shell

$ $IMPERAS_HOME/bin/$IMPERAS_ARCH/lmgrd.exe –c license.lic –l license.log

On a Linux machine in a shell

$ $IMPERAS_HOME/bin/$IMPERAS_ARCH/lmgrd –c license.lic –l license.log

Where license.lic is the name of the license file which must be able to be read from
the license server and license.log is the name of a file where the license manager will
write informational and debug messages.

The license server may also be started in a foreground mode by adding the -z switch

$ $IMPERAS_HOME/bin/$IMPERAS_ARCH/lmgrd –z –c license.lic

If the license server is a different computer than you installed the tools on, you may want
to copy the license manager tools and the daemon file from

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 86 of 111
.

$IMPERAS_HOME/bin/$IMPERAS_ARCH to the license server. The license tools all start
with “lm” and the daemon file is named either imperasd or imperasd.exe.

The lmgrd command will need to be re-run every time the license server is rebooted.

On Linux it can be placed in a boot script file (e.g. in /etc/rc.local).

On Windows it can be started as a service each time the computer is rebooted. The
command lmtools will start a GUI program where you can configure the windows lmgrd
service from the Config Services tab.

E.4 Configuring the Host Computer
On the computer that will be running the tools you simply have to set the
IMPERASD_LICENSE_FILE environment variable to point to the license server,

IMPERASD_LICENSE_FILE=@server1

where server1 is the hostname of the license server. The command hostname may be
used on both Windows and Linux to find out the host name of a particular computer. This
example assumes that the default port (27000-27009) is being used by the license server.
If the license server was set up to use a different port it must be specified before the ‘@’,
for example:

IMPERASD_LICENSE_FILE=9999@server1

Here, 9999 is the port number that the license server is using.

See the respective installation instructions for Windows and Linux for examples of how
to set an environment variable.

E.5 Other License File Configurations
Flexera license software has many different ways to configure it. You may already have
other FlexNet licenses running on your computers. By default we have configured things
to be as independent of other installations as possible, but your particular situation may
require alternative configurations.

Also, Flexera license software supports many different options to control how licenses
are managed than are discussed her. If you need to use any of those additional capabilities
please consult the Flexera license software End Users Manual.

Searching the internet for “FlexLM End Users Manual” or “FlexNet End User Manual”
should locate a copy of this manual.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 87 of 111
.

E.6 The daemon options file
Use of the licenses can be customized by using a daemon options file.

To make Flexera license software use an options file, either specify the full path to the
file in the license file or name the file imperasd.opt and place it in the same directory
as the license file.

Each line of the options file controls one option. The most commonly used options are:

EXCLUDE feature[:keyword=value] type {name | group_name}

Exclude a user or host from using a license feature.

where featurename is the name of the feature as specified in the license file, type is
normally USER, HOST or GROUP, and name is the name of the user or group to exclude.

INCLUDE feature[:keyword=value] type {name | group_name}

This option is the same as EXCLUDE but allows a user to use a license feature, but note,
if any INCLUDE lines are used then one must be provided for each user who will use the
license.

GROUP group_name user_list

Defines a name (group_name) for a group of users, so it can be used in other options like
include & exclude. username list is just a list of names separated by a space.

RESERVE num_lic feature[:keyword=value] type {name | group_name}

Reserve licenses for a specific user, group or host.

where num_lic is the number of licenses to be reserved, and the other variables are the
same as for EXCLUDE.

For a list of other options please consult the FlexLM End Users Manual.

Searching the internet for “FlexLM End Users Manual” or “FlexNet End User Manual”
should locate a copy of this manual.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 88 of 111
.

E.7 License Administration tools
There are several utilities that aid administration of the licenses and this section briefly
describes the most frequently used.

lmutil lmstat

allows users to see:

• which daemons are running
• which users are using which features

Options:
-a - Display all information.
-A - List all active licenses.
-c - Use the given license file.
-f - List all users of featurename.
-S - List all users of a vendor's features (for example, arcd)
-s - Display status of clients running on given host.

lmutil lmdown gracefully shutdown all daemons.
Use -c to shutdown a specific license. Providing no arguments shuts down the license(s)
specified by the environment variable LM_LICENSE_FILE. Use of lmdown should be
protected to prevent unintentional loss of licenses.

lmutil lmremove most commonly used to remove licenses that are still checked out
after a node crashes.

lmremove remove all instances of the specified feature by the given user on host.

lmutil lmreread make the license daemon reread the given license file.

This will start any new daemons that have been added and cause currently running
daemons to read their license files again.

Use either lmutil lmreread imperasd or lmutil lmreread –c <licensefile>.

E.8 License Server Manager as a Windows Service
using LMTOOLS

To configure a license server manager (lmgrd) as a service, you must have Administrator
privileges. The service will run under the LocalSystem account. This account is required
to run this utility as a service.

To configure a license server as a service:
1. Run the lmtools utility, this is found in Imperas/bin/Windows32

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 89 of 111
.

2. Click the Configuration using Services button, and then click the Config Services
tab.

3. In the Service Name, type the name of the service that you want to define, for
example, Imperas License Manager. If you leave this field blank, the service will be
given a default name.
4. In the Path to the lmgrd.exe file field, enter or browse to lmgrd.exe for this license
server.
5. In the Path to the license file field, enter or browse to the license file for this license
server.
6. In the Path to the debug log file, enter or browse to the debug log file that this license
server writes.

3

4
5
6

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 90 of 111
.

7. Start the license server

8. Check the license server status

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 91 of 111
.

APPENDIX F

Some Common Problems

F.1 Segmentation Fault when Native Debug of an OVP
Platform

When an platform is being debugged the simulation may stop with the message

“Program received signal SIGSEGV, Segmentation fault.”

This will have occurred in the call to opSessionInit() when the licensing is initialized.
The latest version of the Flexera license software licensing code utilized by the OVP and
Imperas products contains a feature that causes a segmentation fault when attempting to
run under a debugger.

This has no effect on the execution of the OVP virtual platform and it is possible to
continue the simulation and debugging the platform beyond this point. Simply continue
the simulation.

The following is the contents of an example .gdbinint script that may be used to ignore
this issue

handle SIGSEGV nostop
handle SIGSEGV noprint

The OVP and Imperas simulators also may use of the floating point exceptions during
simulation, these may be ignored when debugging by adding the following

handle SIGFPE nostop
handle SIGFPE noprint

Finally, additional options that we have found useful are

set break pending on
set backtrace limit 100

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 92 of 111
.

F.2 Simulator Reports Internal Abort (ASRT)
The simulator will only report an assertion when it has detected that the internal state is
no longer valid. This can be caused by a bug in the simulator, which should be reported
to Imperas including a test case16 that can be used to reproduce the problem at the
Imperas site.

However, often these problems are caused when the simulator is being used incorrectly.

Asynchronous Calls to a running simulator
One such error is making asynchronous calls to a running simulator. There must be no
asynchronous calls made to the running simulator. If the simulation is to be interrupted
the procedure that is described in the ‘OVPsim and CpuManager User Guide’ must be
followed.

If this procedure is not followed the asynchronous calls can cause the simulator to be
interrupted during a system state update and hence the state can become corrupted.

When this occurs it is typical to see the following assertions reported by the simulator
and for the simulation to terminate.

> Internal Abort (ASRT)
>
/home/release/build/20130630.6/Imperas/SimCommon/source/morph/codeBlock.c:1407
> : Assertion failure : bad native address bounds

> Internal Abort (ASRT)
> /home/release/build/20130630.6/Imperas/SimCommon/source/morph/xRef.c:690
> : Assertion failure : resolved cross-reference found

F.3 Building on Windows using mingw32-make

F.3.1 Error in Makefile.pse when building peripherals

There is a known bug in the version of GNU make 3.80. This version is sometimes
installed as part of the MinGW installation as mingw32-make and will result in the error
shown below when attempting to build a peripheral model

/c/Imperas/Examples/Models/Peripherals/creatingDMAC/1.registers
$ mingw32-make NOVLNV=1

16 A test case should include the virtual platform source code, the application code being executed and clear
instructions of how to reproduce the problem. All these files should be sent as a zip or tar file. It is useful to
extract the files and check in a clean directory that the instructions sent can re-produce the problem.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 93 of 111
.

C:/Imperas/ImperasLib/buildutils/Makefile.pse:39: *** missing `endif'. Stop.

/c/Imperas/Examples/Models/Peripherals/creatingDMAC/1.registers
$

You can check the version of mingw32-make that you have installed with the command
“mingw32-make --version”

$ mingw32-make --version
GNU Make 3.80
Copyright (C) 2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

$

F.4 Licensing

F.4.1 Feature Not Supported

If you see a message similar to the following:

Error (LIC_NE) License not available. FLEXLM reports:

License server system does not support this feature.
Feature: IMP_OVPSIM
License path: C:\Imperas\bin\Windows\OVPsim.lic;
FlexNet Licensing error:-18,147
For further information, refer to the FlexNet Licensing End User Guide,
available at "www.macrovision.com".

License server system does not support this feature.
Feature: IMP_OVPSIM_20130630
License path: C:\Imperas\bin\Windows\OVPsim.lic;
FlexNet Licensing error:-18,147
For further information, refer to the FlexNet Licensing End User Guide,
available at "www.macrovision.com".

Fatal (LIC_FE) If you have a license from OVPworld, put it in
$IMPERAS_HOME/OVPsim.lic
Alternatively, set IMPERASD_LICENSE_FILE environment variable to your
license file or server location.
If you don't have a key, click on download at www.OVPworld.org
Info Exiting

You do not have the correct license FEATURE available in your license file.

In the above output you can see that the simulator first attempts to obtain the license
feature IMP_OVPSIM and then attempts to obtain the feature IMP_OVPSIM_20130630.

The feature IMP_OVPSIM may be obtained by contacting Imperas; this is a license that
can be used with any version of the OVPsim simulator.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 94 of 111
.

The feature IMP_OVPSIM_20130630 is contained in licenses generated from the OVP
World license page automatically. It is generated for the current product version and can
only be used with that product version.

This license error could be caused by one of the following:

1. The license file has not been obtained
a. Check the license file does include this FEATURE

2. The incorrect license file is being used or the license file has been corrupted
a. Check the IMPERASD_LICENSE_FILE variable is pointing to the correct

license file or license server for floating licenses
b. Check the license file has not been corrupted. Use a hex editor to ensure

only valid ASCII characters and <CR>, <LF> are present
3. The incorrect simulator is being used

a. Check that IMPERAS_RUNTIME has been set correctly
If your license(s) are supplied by Imperas for the Imperas tools,
IMPERAS_RUNTIME should be set to CpuManager so that the correct
Imperas licenses are used.

4. The simulator personality is not set correctly
a. Check that IMPERAS_PERSONALITY has been set correctly. This variable

select the product you have purchased and selects the license feature that
will be requested. See section 4.

F.4.2 Long Delay (30 second) at Simulator Start Up

If you experience a long delay when you start one of the Imperas products, this is most
likely due to the product trying to request a license to run, and there being a problem in
connecting to a defined license server.

The IMPERASD_LICENSE_FILE variable is set to a list of servers. If one of these servers
does not exist, the license software will wait for (typically) 30 seconds (to give a server
over a network time to respond) before continuing to the next server.

If you experience a delay at start up check that all the servers listed in your
IMPERASD_LICENSE_FILE variable list really exist and are functioning correctly. Remove
any non-existent servers from the list.

F.4.3 Cannot Access Date Server

If you see an error message such as :

Error (LIC_SRVNS) License not available. FLEXLM reports:
Bad Status connecting to internet date server.
Feature: IMP_OVPSIM_20120313
FlexNet Licensing error:+97,210
Fatal (LIC_SRVNS) Exiting:
Info Exiting

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 95 of 111
.

When using a version locked license, the simulator will access a date server. This error
will occur if the simulator is not able to connect to the internet.

You may see this message if you are using an internet proxy server. In this case you need
to inform the Imperas products of the proxy server using the IMPERAS_PROXY_SERVER
environment variable. This is set to an <address>:<port> pair for the proxy server
access.

For example

export IMPERAS_PROXY_SERVER=192.168.2.1:1234

F.5 Ethernet Adapter Naming/HostId is zero
If you see an error such as:

Invalid host.
The hostid of this system does not match the hostid
specified in the license file.
Feature: IMP_OVPSIM_20100528.0
Hostid: 112233445566
License path: /home/Imperas.20130630/OVPsim.lic
FlexNet Licensing error:-9,57. System Error: 19 "(null)"
For further information, refer to the FlexNet Licensing End User Guide,
available at "www.macrovision.com".

This problem occurs when the license system checks the hostid in the license file
against the hostid of the license server. The hostid is the MAC address of the server’s
ethernet device named eth0 .

If the network interface is enabled on a different device, e.g. eth1 the license system does
not read a valid MAC address and a NULL host Id is reported. This may be caused
because on modern operating systems Consistent Network Device Naming may be used.
See the following link for further information
http://fedoraproject.org/wiki/Features/ConsistentNetworkDeviceNaming

The solution is to enable the network interface on eth0 or to rename the network
interface to eth0.

There are a number of ways this can be achieved, the following was taken from
http://www.science.uva.nl/research/air/wiki/LogicalInterfaceNames

F.5.1 How to change the default ‘ens33’ network device to old
‘eth0’

The following URL explains the full procedure

http://fedoraproject.org/wiki/Features/ConsistentNetworkDeviceNaming
http://www.science.uva.nl/research/air/wiki/LogicalInterfaceNames

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 96 of 111
.

http://unix.stackexchange.com/questions/81834/how-can-i-change-the-default-ens33-
network-device-to-old-eth0-on-fedora-19

The minimum set of stages that were required when performed are:

1. Edit /etc/default/grub. Note you need root privileges to edit this file.
2. At the end of GRUB_CMDLINE_LINUX line append net.ifnames=0 biosdevname=0
3. Save the file
4. type the command grub2-mkconfig -o /boot/grub2/grub.cfg
5. type the command reboot

F.5.2 How to reorder or rename logical interface names in Linux

On Linux systems the start-up order of network interfaces is unpredictable. It is usually
consistent between reboots, but can change after an upgrade to a new kernel or the
addition or replacement of a network card. For example, what used to be eth0 could
become eth1 or eth2.

While there is some logic to which network interface gets which name, Linux
documentation states that this may change, and users or programs should not assume a
particular order. This is inconvenient, in particular if your management interface is at
eth1 at one node in a cluster and at eth2 in another node of the same cluster (which we
have experienced).
There are ways to achieve consistency. They can be divided in four methods:
1. Order the network interfaces based on physical properties of the NIC. (e.g. the physical
location in the machine)
2. Order the network interfaces based on the MAC address of the NIC.
3. Order the network interfaces based on the driver of the NIC.
4. Order the network interfaces based on the physical location of the NIC in the computer

So you have to pick a method that suits your system. Imperas recommends to use
ifrename (based on physical properties, especially useful if you often change network
cards in your hosts) or writing a udev rule (based on the MAC address).

Note: Linux kernels up to 2.4 did only probe for the first Ethernet card, ignoring other
NICs. We assume you use a 2.6 or higher kernel or already fixed this, for example by
specifying ether=0,0,eth1 as kernel parameter∞.

F.5.3 Based on the physical properties

Perhaps the most elegant way to name the Ethernet NIC is to do so based on their
physical properties, like link speed and port type.

http://unix.stackexchange.com/questions/81834/how-can-i-change-the-default-ens33-network-device-to-old-eth0-on-fedora-19
http://unix.stackexchange.com/questions/81834/how-can-i-change-the-default-ens33-network-device-to-old-eth0-on-fedora-19
http://www.tldp.org/HOWTO/BootPrompt-HOWTO-11.html

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 97 of 111
.

F.5.3.1 Using the ifrename tool

ifrename is a tool specifically designed to (re)name network interfaces based on
characteristics like MAC address (wildcards supported), bus information, and hardware
settings. It uses a control file /etc/iftab to specify rules about how the interfaces will
be named.

Example /etc/iftab file
eth2 mac 08:00:09:DE:82:0E
eth3 driver wavelan interrupt 15 baseaddress 0x390
eth4 driver pcnet32 businfo 0000:02:05.0
wildcard name: pick the lowest available name of air0, air1, air2, etc.
air* mac 00:07:0E:* arp 1

F.5.3.2 Using the ethtool and ip programs

It is possible to check the NIC properties using the ethtool program, and to change the
name using the ip program:

if ethtool eth0 | grep -q "Port: FIBRE"; then
 ip link set dev eth0 name not_eth0
 ip link set dev eth1 name eth0
 ip link set dev not_eth0 name eth1
fi

The disadvantage of ethtool is that it can only be run by root, even when you're only
using it to query for information.

F.5.4 Based on the MAC address

Secondly, it is also possible to name the network interface based on the MAC address of
each NIC. The advantage is that it is possible to use this method if you have two NICs
which use the same driver (unlike the next method: based on driver).

First, you must determine the MAC address of your interfaces. You can do this locally on
a machine running

ifconfig -a

The MAC address is listed as hwaddr (hardware address). Alternatively, you can even
determine MAC addresses remotely using ping and /sbin/arp.

There are three ways to map the MAC address to the logical interface name. Either by
using the udev rules, with the get-mac-address.sh script, or by using the nameif
program.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 98 of 111
.

The udev method should work on all recent Linux distributions, and is recommended.
The get-mac-address.sh script and the nameif program are know to work with Debian,
while on Red Hat, you can change the interface configuration file.

F.5.4.1 Using udev rules
udev replaced devfs in Linux 2.6. First make sure that your Linux system has udev
installed, rather then devfs. If you have a /etc/udev directory, but not /etc/devfs
directory, you are probably fine. If not, be aware that changing your kernel from devfs to
udev is possible, but is not just a matter of adding a new module. Perhaps for now,
another method is easier for you.

Now that you have udev, it is rather simple. You only need to create a udev rule mapping
the MAC address to the interface name. Store this in a file inside
the/etc/udev/rules.d/ directory:

KERNEL=="eth?", SYSFS{address}=="00:37:e9:17:64:af", NAME="eth0" # MAC
of first NIC in lowercase
KERNEL=="eth?", SYSFS{address}=="00:21:e9:17:64:b5", NAME="eth1" # MAC
of second NIC in lowercase

Most distributions already come with an example config file for you.
E.g. /etc/udev/rules.d/network-devices.rules
 or
/etc/udev/rules.d/010_netinterfaces.rules.
More information can be found
at http://www.reactivated.net/writing_udev_rules.html∞ or http://www.debianhelp.co.uk/
udev.htm∞. (Thanks to Casey Scott and Ron Hermsen for the pointers.)

Another possible rule is:

SUBSYSTEM=="net", DRIVERS=="?*", ATTRS{address}=="00:16:3e:00:02:00",
NAME="eth0"
SUBSYSTEM=="net", DRIVERS=="?*", ATTRS{address}=="00:16:3e:00:02:01",
NAME="eth1"

I'm not sure about the difference between these rules. Information is welcome (please
leave a comment below)

F.5.4.2 Using the interface configuration file
If you run a Red-Hat-based distribution, you can simply add the MAC address in the
interface configuration file /etc/sysconfig/network-scripts/ifcfg-eth0:

DEVICE=eth0
HWADDR=00:37:e9:17:64:af

http://www.reactivated.net/writing_udev_rules.html
http://www.debianhelp.co.uk/udev.htm
http://www.debianhelp.co.uk/udev.htm

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 99 of 111
.

You can give it any DEVICE name you want, like DEVICE=ethmgmt, as long as you
remember to rename the config file:
/etc/sysconfig/network-scripts/ifcfg-ethmgmt

Source: http://forums.serverwatch.com/showthread.php?t=18476∞

F.5.4.3 Using the get-mac-address.sh script
Another solution is to use the get-mac-address.sh script to map interface names by MAC
address. On Debian, this script is distributed as part of the ifupdown
package∞(in /usr/share/doc/ifupdown/examples/get-mac-address.sh). Copy this script to a
saner place (e.g. /usr/local/bin), and you can setup /etc/network/interfaces in this manner:

auto lo eth0 eth1

iface lo inet loopback

mapping eth0 eth1
 script /usr/local/bin/get-mac-address.sh
 map 00:37:E9:17:64:AF netA
 map 00:21:E9:17:64:B5 netB

iface netA inet static
 address etc...

iface netB inet static
 address etc...

Source: https://www.gelato.unsw.edu.au/archives/gelato-technical/2004-
February/000334.html∞

The disadvantage of this method is that defines a mapping, rather then changing the
actual logical interface name.

F.5.4.4 Using the nameif program
Alternative to the get-mac-address.sh script, you can also use the slightly more
convenient nameif program, which is distributed as part of the net-tools package∞ on
Debian.

The advantage of nameif is that you can specify the interface names in
the /etc/mactab file:

ethmgnt 00:37:E9:17:64:AF
ethwireless 00:21:E9:17:64:B5

It is not possible to rename an interface to a name of an existing interface. So you can't

http://forums.serverwatch.com/showthread.php?t=18476
http://packages.debian.org/ifupdown
http://packages.debian.org/ifupdown
https://www.gelato.unsw.edu.au/archives/gelato-technical/2004-February/000334.html
https://www.gelato.unsw.edu.au/archives/gelato-technical/2004-February/000334.html
http://packages.debian.org/net-tools

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 100 of 111
.

rename eth1 to eth0 as long as eth0 still exists. It is possible to still swap the names
eth0 and eth1 by using a temporary name (e.g. first rename eth1 to ethfoo, then eth0
to eth1 and finally ethfoo to eth0). Note that this method may lead to problems if you
use common names such as eth0 and eth1. If you upgrade a kernel, the names may be
different than you expected, and you may rename a NIC to eth0 while eth0 still exists,
leading to name collisions. Therefore, it is recommended to use other names like
ethmgmnt, ethwired, ethwireless and eth10ge, as shown in the example above.

F.5.5 Based on the driver

Warning: This only works if the driver is available as a loadable module. Not if it is built
into the kernel.

This is a relative easy method, since it does not rely on external scripts. The idea is to just
load the kernel module for your eth0 interface before the modules for other network
cards.

First of all, you must determine which driver is used for each network card. Linux does
have a system to load the appropriate driver automatically, based on the PCI ID of the
network card. There is no single command to simply get the driver (and other information
like the link speed) based on just the interface name in Linux. Look for kernel messages:

dmesg | grep eth

This should give you a the driver name. You can verify if the name indeed does exist and
is loaded:

lsmod

Note that running modprobe tg3 en then modprobe e1000 does start them in the correct
order, with the correct interface names. This is a good check if this approach (using the
driver to decide the interface name) can work.

F.5.5.5 Red Hat
In Red Hat, if the driver is called tg3 (the Tigon driver), you specify the network name
by adding this entry in /etc/modules.conf:

~alias eth0 tg3

http://pci-ids.sourceforge.net/

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 101 of 111
.

F.5.5.1 Debian
On a Debian system, /etc/modules.conf is generated automatically and should not be
edited directly. Instead, create a file in the subdirectory /etc/modules/ (do not
use /etc/modprobe.d/). For example, create the file /etc/modutils/interfaces and
add the appropriate modules.

alias eth0 tg3
alias eth1 e1000

Next, update /etc/modules.conf by running:

update-modules

In some scenarios the kernel did already load the modules for the drivers, even
before /etc/modules.conf was read. The result was that in effect, the specification
in /etc/modules.conf was ignored, and this method did not work. As an alternative, it
is possible to also list the drivers, in the appropriate order,
in /etc/modules (thus not /etc/modules.conf):

tg3
e1000

The result will be that the tg3 driver is loaded before the e1000 kernel.
Since /etc/modules only exists for Debian, this will not work for other distributions.

F.5.6 Based on the physical location in the computer
Warning: This only works if the driver is built into the kernel, not as a loadable module.

Note: It is relatively hard to get this to work, and we encountered problems with it. The
other methods are recommended.

It is possible to name the network interfaces based on the interrupt (IRQ) and memory
address. This should work if you have network cards in PCI busses, and it involves
appending the proper parameters to the "ether=" or "netdev=" kernel parameters.

Detect the PCI slot of the devices using

lspci -v

This is reported to fail sometimes for certain cards. Now, write down the IRQ and IO
(memory) address of each network card, and use this information to specify the interface
name in your LILO or GRUB configuration file.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 102 of 111
.

For LILO, you add a line to the appropriate boot configuration. For example:

append="netdev=irq=21,io=0x2040,name=eth0

netdev=irq=20,io=0x3000,name=eth1 netdev=irq18,io=0x2000,name=eth2"

Under grub, it can just be listed as parameter. e.g.:

kernel /boot/vmlinuz netdev=irq=24,name=eth0

F.5.7 Ubuntu directly changing logical names

The following information is taken from the page found at
https://help.ubuntu.com/10.04/serverguide/network-configuration.html

The Ethernet interface logical names are configured in the file

/etc/udev/rules.d/70-persistent-net.rules

To control which interface receives a particular logical name, find the line matching the
interfaces physical MAC address and modify the value of NAME=ethX to the desired
logical name. Reboot the system to commit the changes.

F.5.8 More Information

http://www.tldp.org/HOWTO/Ethernet-HOWTO-8.html
http://www.tldp.org/HOWTO/BootPrompt-HOWTO-11.html

F.6 What to try if license server (lmgrd) fails to run
When you try and run the license server

on Ubuntu you get an error
./lmgrd: No such file or directory

On CentOS you get an error
-bash: ./lmgrd: /lib/ld-lsb.so.3: bad ELF interpreter: No such file or
directory

The license manager daemon (the version used by OVP/Imperas) is not officially
supported on Ubuntu or CentOS, it is supported on the RedHat Enterprise Linux
distribution. It can, however, be used on the Ubuntu and CentOS Linux operating system
distributions.

The LSB support package is required, if it is not already present it may be obtained using
the command

https://help.ubuntu.com/10.04/serverguide/network-configuration.html
http://www.tldp.org/HOWTO/Ethernet-HOWTO-8.html
http://www.tldp.org/HOWTO/BootPrompt-HOWTO-11.html

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 103 of 111
.

On Ubuntu
sudo apt-get install lsb

On CentOS
yum -y install redhat-lsb

On Debian
$bash: no such file or directory: ./lmgrd

The lsb library naming is not conventional and so may not be found by the license server.
Setting a link between the expected name and the actual may resolve the issue

sudo ln -s /lib64/ld-linux-x86-64.so.2 /lib64/ld-lsb-x86-64.so.3

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 104 of 111
.

APPENDIX G

Abort Detected in Program

The Imperas and OVP products contain a function to trap aborts. This may trap aborts
caused anywhere in the execution flow i.e. it may not be specifically within the Imperas
product but in a platform or shared object loaded by the Imperas product.

The Imperas/OVP simulators load shared objects for processor models, peripheral models
and intercept (including semihost) libraries so it is possible that a segmentation fault or
abort can be caused in the loaded code.

This may appear to be a fault in the simulator but it is more likely to be a fault in one of
the models or platforms that are loaded by the simulator. The following can be used to
help find the problem in the software that you have created.

An abort will be reported in the following manner. For an example, an abort has been
caused in the virtual platform when run using the command line

platform.Linux32.exe -program dhrystone.ARM_CORTEX_A15.elf

The abort is reported during the run as follows

 SystemC 2.3.0-ASI --- Jun 6 2013 16:33:50
 Copyright (c) 1996-2012 by all Contributors,
 ALL RIGHTS RESERVED

CpuManager (32-Bit) v20190306.0 Open Virtual Platform simulator from
www.IMPERAS.com.
Copyright (c) 2005-2013 Imperas Software Ltd. Contains Imperas Proprietary
Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

<snip>

Internal Abort (ABRT) Imperas/Common/source/targetOS/tosSignal.c:656 : Abort
reached.
Uncaught Exception (SIGSEGV) at 0x5b5d30

This could be due to an error in your native code (for example the platform,
semihost library etc.) or an error in the simulator.
Use the following approaches to try to find the source of the error:
1. Rerun the simulation under a debugger.
2. Set environment variable IMPERAS_BACKTRACE=1 to generate a backtrace (Linux
only).
3. Set environment variable IMPERAS_LOOP_ON_EXCEPTION=1 to cause the simulator
to enter a wait loop on exception, so that a debugger can be attached.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 105 of 111
.

If you believe the error originates within the simulator, please contact
Imperas support (support@imperas.com)
Info Exiting

To aid in tracking down the cause of the abort there are two features, explained in the
abort output

G.1 Obtaining Backtrace

A backtrace can be generated (on Linux only) which may help you determine if the error
originates in the code that you have added. The following shows the same platform run
with the IMPERAS_BACKTRACE=1 set on the command line, i.e.

IMPERAS_BACKTRACE=1 platform.Linux32.exe dhrystone.ARM_CORTEX_A15.elf

And this results in the following extra information

*** backtrace 19 stack frames:

/home/graham/Imperas/bin/Linux32/libCpuManager.so(+0x8923b) [0x2e523b]
/home/graham/Imperas/bin/Linux32/libCpuManager.so(+0x892e5) [0x2e52e5]
/home/graham/Imperas/bin/Linux32/libCpuManager.so(+0x8932a) [0x2e532a]
/home/graham/Imperas/bin/Linux32/libCpuManager.so(+0x8930c) [0x2e530c]
/home/graham/Imperas/bin/Linux32/libCpuManager.so(+0x1db4eb) [0x4374eb]
/home/graham/Imperas/bin/Linux32/libCpuManager.so(+0x1db64b) [0x43764b]
[0xf1e40c]
/user/systemc-2.3.0/lib-linux/libsystemc-2.3.0.so(bindingEv+0x49) [0x18ff19]
/user/systemc-2.3.0/lib-linux/libsystemc-2.3.0.so(elab_doneEv+0x1f) [0x19012f]
/user/systemc-2.3.0/lib-linux/libsystemc-2.3.0.so(elabEv+0x14c) [0x174bfc]
/user/systemc-2.3.0/lib-linux/libsystemc-2.3.0.so(initEb+0x30) [0x176b60]
/user/systemc-2.3.0/lib-linux/libsystemc-2.3.0.so(_7scimeE+0x2d) [0x176c2d]
/user/systemc-2.3.0/lib-linux/libsystemc-2.3.0.so(20sc_stvpolE+0xdc) [0x1778ec]
/user/systemc-2.3.0/lib-linux/libsystemc-2.3.0.so(_startEv+0x73) [0x177b83]
platform.Linux32.exe(sc_main+0x1d5) [0x805109f]
/user/systemc-2.3.0/lib-linux/libsystemc-2.3.0.so(sc_elab+0xa4) [0x163b94]
/user/systemc-2.3.0/lib-linux/libsystemc-2.3.0.so(main+0x32) [0x163a02]
/lib/libc.so.6(__libc_start_main+0xe6) [0xad1bb6]
platform.Linux32.exe(__gxx_person_v0+0x159) [0x8050841]

Internal Abort (ABRT) Imperas/Common/source/targetOS/tosSignal.c:630 : Abort
reached.
Uncaught Exception (SIGSEGV) at 0x18fd30

Info Exiting

G.2 Connecting a Debugger to a running simulation

The simulator can be forced to wait at exit for a debugger to be connected.

The following shows the same platform run with the environment variable
IMPERAS_LOOP_ON_EXCEPTION=1 set on the command line, i.e.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 106 of 111
.

IMPERAS_LOOP_ON_EXCEPTION=1 platform.Linux32.exe dhrystone.ARM_CORTEX_A15.elf

This simulation will not finish. In a separate shell you can now start a suitable host
debugger and examine the running processes on the host for the one running your
platform executable, platform.Linux32.exe in this case.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 107 of 111
.

APPENDIX H

Other Windows Development Environments

H.1 Using a Cygwin Environment

H.1.1 Use MINGW GNU Toolset
Although, the MSYS environment is recommended it is also possible to make use of the
Cygwin environment.

If an installation of cygwin is used as the environment it must be ensured that the
MINGW GNU tools are used during the build of any application or DLL.

Using the MINGW GNU toolset provides a native Windows executable.

Using the Cygwin GNU toolset generates executables and DLLs that will reference and
be reliant on the Cygwin DLLs. This will create executables and DLLs that are not
portable and therefore not compatible in other environments. There are compatibility
issues even between different versions of Cygwin.

H.2.2 Verify use of MINGW GNU Toolset
To verify that the correct environment is being used check the version of gcc that is found
on the path in a cygwin shell. The following illustrates that the incorrect version of gcc
would be used is from the Cygwin install.

We should modify the path so that the MINGW GNU tools appear before the Cygwin
tools.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 108 of 111
.

We can see now that the GNU tools are being found from the MINGW installation before
the Cygwin.
Note that this installation of MINGW has been made under an MSYS installation.

Note that when creating Makefiles or scripts to build executables and DLLs it is often
useful to use MINGW specific names of the GNU tool executables. These appear in the
mingw/bin directory as, for example, mingw-gcc.exe. By doing this you will guarantee
that you do not inadvertently pick up the Cygwin tools. There are mingw-* named copies
of all the GNU tools.

H.3.3 Cannot Build OVPsim Examples

The Mingw gnu tools are native Windows tools and as such are not expecting Cygwin
path names.

There is a utility cygpath that will convert a Cygwin path into a native windows path.
This may be used to give the correct path for the MINGW GNU tools.

cygpath –w $(pwd)

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 109 of 111
.

Unfortunately this cannot be used in conjunction with the Makefile system provided with
the OVPsim examples because the Windows native path contains a ‘:’ which is a special
character when used in Makefiles!
The OVPsim examples are all verified for use in the MSYS environment.

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 110 of 111
.

H.4 Building Virtual platforms with Microsoft MSVC
The Microsoft Visual C++ environment may be used to build the virtual platform
executable for a Windows host.

When building Virtual Platforms for MSVC a specific build environment must be created
to replicate the platforms build infrastructure that is provided as
IMPERAS_HOME/ImperasLib/buildutils/Makefile.platform.

NOTE: An alternate runtime loader library must be used with MSVC.
The Imperas simulator represents time using 80-bit floating point, declared as long
double in C. The MSVC compiler treats this as 64-bit floating point. A program compiled
with MSVC will crash if linked to a program expecting 80-bit floating point numbers.
Therefore when linking a platform compiled with MSVC to the Imperas Simulator please
link to the library libRuntimeLoader64bTime.dll.
(The library libRuntimeLoader.dll must be linked to a platform compiled with gcc).

Below is an example of an nmakefile that can be used to compile a virtual platform using
MSVC:

IMPERAS_INC = $(IMPERAS_HOME)/ImpPublic/include/host
IMPERAS_LIB = $(IMPERAS_HOME)/bin/$(IMPERAS_ARCH)

CFLAGS = /GR /vmg /MTd /EHsc /nologo /W3 /DSC_INCLUDE_DYNAMIC_PROCESSES \
 /D_CRT_SECURE_NO_WARNINGS /D_CRT_SECURE_NO_DEPRECATE \
 /D_CRT_NONSTDC_NO_DEPRECATE \
 /wd 4267

LDFLAGS = /SUBSYSTEM:CONSOLE /nologo \
 /LIBPATH:$(IMPERAS_LIB) libRuntimeLoader64bTime.lib \
 /ignore:4075

CPP = cl.exe
LD = link.exe
MKDIR = mkdir

IMPERAS_INC = -I$(IMPERAS_INC)

PLATFORM_EXE = $(PLATFORM).$(IMPERAS_ARCH).exe

################################### RULES #####################################

all: $(PLATFORM_EXE)

$(PLATFORM).obj: $(PLATFORM).c
 @ echo # Compiling $@
 $(V) $(CPP) -c $(IMPERAS_INC) $(CFLAGS) %s /Fo"$@"

rule for the executable
$(PLATFORM_EXE): $(PLATFORM).obj
$(IMPERAS_HOME)/bin/$(IMPERAS_ARCH)/libRuntimeLoader64bTime.dll
 @ echo # Linking $@

Imperas Installation and Getting Started Guide

© 2022 Imperas Software Limited www.imperas.com/www.OVPworld.orgPage 111 of 111
.

 $(V) $(LD) /OUT:$@ $(PLATFORM).obj $(LDFLAGS)

clean:
 rm -f *.obj *.exe

	1 Preface
	2 Introduction
	3 Hardware and Software Requirements
	3.1 Operating System
	3.2 Hardware
	3.3 Host Compiler Versions

	4 Installation
	4.1 Installation Tutorial Video
	4.2 Packages
	4.2.1 OVPsim
	4.2.2 Imperas Developer
	4.2.3 Imperas Advanced Multicore Software Development Kit

	4.3 Access and Download of Installation Packages
	4.3.1 Login
	4.3.1.1 OVP Users
	4.3.1.2 Imperas Users

	4.3.2 Download the Appropriate Package
	4.3.3 Package Selection

	4.4 Installing Under Linux
	4.5 Installing Under Windows
	4.6 Setting up the Environment
	4.6.1 Required Environment
	4.6.2 Additional Environment
	4.6.3 Script to Setup Required Environment
	4.6.3.1 32-bit Product on 64-bit Host
	4.6.3.2 32-bit Compatibility libraries on 64-bit Linux Hosts

	4.6.4 Script to Select Simulator Runtime
	4.6.5 Script to Select Personality
	4.6.6 Explicit Environment Configuration
	4.6.6.1 Linux
	4.6.6.2 Windows
	4.6.6.2.1 MSYS Shell
	4.6.6.2.2 Windows System Menu

	4.6.7 Internet Access Via a Proxy Server

	5 Setting up Licensing
	5.1 OVPsim Node Locked License keys
	5.1.1 Obtaining the computer hostname and Host ID
	5.1.2 Setup License File

	5.2 Imperas Floating Licenses
	5.2.1 Obtaining the computer hostname and Host ID
	5.2.2 Starting the License Server
	5.2.3 License Queuing
	5.2.4 Fallback License

	6 Windows Development Environment
	6.1 Introduction
	6.2 MSYS2 / MinGW Environment
	6.2.1 Obtaining MSYS2
	6.2.1.1 Download Installer
	6.2.1.2 Installation of MSYS2

	6.2.2 Install Utilities
	6.2.3 Install Host Toolchains
	6.2.4 Environment
	6.2.4.1 Inheritance Configuration
	6.2.4.2 Update make for OVP Scripts
	6.2.4.3 Update Windows PATH
	6.2.4.4 Stop PATH expansion

	6.2.5 Completion and test of MSYS/MinGW installation
	6.2.5.1 Test Windows Batch File Execution

	7 Additional Toolchain Packages
	7.1 Application Cross Compiler Toolchains
	7.2 Peripheral Simulation Engine (PSE) Toolchain

	8 Getting Started
	8.1 ISS Tutorial Video
	8.2 Check Installation
	8.2.1 Simulator Execution
	8.2.2 iGen Installation
	8.2.3 Harness Installation
	8.2.4 MPD Installation
	8.2.5 eGui Installation

	8.3 Build Environment
	8.3.1 Introduction
	8.3.2 Standard Makefiles
	8.3.3 Build Output Selection
	8.3.4 VLNV Component Library
	8.3.4.1 Creating a User Component Library
	8.3.4.2 Building VLNV Component Library
	8.3.4.3 Selecting a User Component Library
	8.3.4.3.1 Selecting for all simulations
	8.3.4.3.2 Selecting for a Specific Simulation

	8.4 Generating Deprecated ICM API TLM Interface files
	8.4.1 Peripheral Models
	8.4.2 Processor Models

	8.5 Hello World Example
	8.5.1 Compiling an application
	8.5.2 Running the simulation using the ISS
	8.5.3 Execute example using provided script
	8.5.4 Creating a Virtual Platform Tutorial Video
	8.5.5 Creating and Simulating with a Platform/Module
	8.5.6 Writing your own test harness

	9 Understanding Semihosting Support
	9.1 In Imperas and OVP simulations
	9.2 Replacing function and/or instruction behavior
	9.3 Specific to a Cross Compiler and C Library
	9.4 Used to terminate the simulation
	9.5 Caution using with EPKs and non-baremetal platforms

	10 Understanding Simulation Time Statistics
	11 Understanding the operation of a code morphing simulator
	11.1 Instruction Fetch
	11.2 SystemC Interface Transaction Types
	11.2.1 OP API (Current)
	11.2.2 ICM API (Deprecated)

	APPENDIX A Installation Packages, Products and Licensing Features
	A.1 Installation Packages
	A.1.1 Imperas_SDK package
	A.1.2 Imperas_DEV package
	A.1.3 OVPsim package
	A.2 License Features
	A.2.1 Executable Programs
	A.2.2 CpuManager Simulator and its Personalities
	A.2.3 CpuManager Simulator and Non-Interactive (batch) Usage
	A.2.4 OVPsim Simulator

	APPENDIX B Obtaining an Imperas License
	APPENDIX C Accessing Imperas User Area
	C.1 Initial Login at Imperas User
	C.2 Selecting Imperas Product download
	C.3 Logging into Download area
	C.4 Selecting Files

	APPENDIX D Setting Environment Variables
	D.1 Opening System properties on Windows XP
	D.2 Opening System properties on Windows 7 and 10
	D.3 Modifying Environment Variables in Windows

	APPENDIX E Additional FlexNet Licensing Information
	E.1 Locating the license server software
	E.2 Types of Licenses
	11.2.3 E.2.1 Uncounted Node-locked Licenses
	11.2.4 E.2.2 Floating Licenses

	E.3 Starting the License Server
	E.4 Configuring the Host Computer
	E.5 Other License File Configurations
	E.6 The daemon options file
	E.7 License Administration tools
	E.8 License Server Manager as a Windows Service using LMTOOLS

	APPENDIX F Some Common Problems
	F.1 Segmentation Fault when Native Debug of an OVP Platform
	F.2 Simulator Reports Internal Abort (ASRT)
	F.3 Building on Windows using mingw32-make
	F.3.1 Error in Makefile.pse when building peripherals

	F.4 Licensing
	F.4.1 Feature Not Supported
	F.4.2 Long Delay (30 second) at Simulator Start Up
	F.4.3 Cannot Access Date Server

	F.5 Ethernet Adapter Naming/HostId is zero
	F.5.1 How to change the default ‘ens33’ network device to old ‘eth0’
	F.5.2 How to reorder or rename logical interface names in Linux
	F.5.3 Based on the physical properties
	F.5.3.1 Using the ifrename tool
	F.5.3.2 Using the ethtool and ip programs

	F.5.4 Based on the MAC address
	F.5.4.1 Using udev rules
	F.5.4.2 Using the interface configuration file
	F.5.4.3 Using the get-mac-address.sh script
	F.5.4.4 Using the nameif program

	F.5.5 Based on the driver
	F.5.5.5 Red Hat
	F.5.5.1 Debian

	F.5.6 Based on the physical location in the computer
	F.5.7 Ubuntu directly changing logical names
	F.5.8 More Information

	F.6 What to try if license server (lmgrd) fails to run

	APPENDIX G Abort Detected in Program
	G.1 Obtaining Backtrace
	G.2 Connecting a Debugger to a running simulation

	APPENDIX H Other Windows Development Environments
	H.1 Using a Cygwin Environment
	H.1.1 Use MINGW GNU Toolset
	H.2.2 Verify use of MINGW GNU Toolset
	H.3.3 Cannot Build OVPsim Examples

	H.4 Building Virtual platforms with Microsoft MSVC

