
© 2022 Imperas Software Limited www.OVPworld.org Page 1 of 165 

 
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OVP BHM and PPM API Function Reference 
 
 
 
 
 
 
 
 
 

Imperas Software Limited 
Imperas Buildings, North Weston, 

Thame, Oxfordshire, OX9 2HA, UK 
docs@imperas.com 

 
  
 
 
 
 
 
Author: Imperas Software Limited 
Version: 2.11 
Filename: OVP_BHM_PPM_Function_Reference.doc 
Last Saved: Thursday, 28 April 2022 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 2 of 165 

Copyright Notice 
Copyright © 2022 Imperas Software Limited All rights reserved. This software and 
documentation contain information that is the property of Imperas Software Limited. The 
software and documentation are furnished under a license agreement and may be used or 
copied only in accordance with the terms of the license agreement. No part of the 
software and documentation may be reproduced, transmitted, or translated, in any form or 
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written 
permission of Imperas Software Limited, or as expressly provided by the license 
agreement. 
 
Right to Copy Documentation 
The license agreement with Imperas permits licensee to make copies of the 
documentation for its internal use only. Each copy shall include all copyrights, 
trademarks, service marks, and proprietary rights notices, if any. 
 
Destination Control Statement 
All technical data contained in this publication is subject to the export control laws of the 
United States of America. Disclosure to nationals of other countries contrary to United 
States law is prohibited. It is the reader’s responsibility to determine the applicable 
regulations and to comply with them. 
 
Disclaimer 
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY 
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 3 of 165 

 
1 Introduction......................................................................................................................................... 6 
2 Peripheral Interface Specification..................................................................................................... 7 

2.1 PERIPHERAL MODELATTRS STRUCTURE ....................................................................................... 8 
2.2 BUS PORT DEFINITION ................................................................................................................ 10 
2.3 NET PORT DEFINITIONS............................................................................................................... 11 
2.4 PACKETNET PORT DEFINITIONS .................................................................................................. 12 
2.5 CONN INPUT AND OUTPUT PORT DEFINITIONS ............................................................................ 13 
2.6 PARAMETER DEFINITIONS........................................................................................................... 15 
2.7 COMPLETE EXAMPLE: ................................................................................................................ 17 

3 Behavioral Modeling (BHM)............................................................................................................ 19 
3.1 BHMCREATETHREAD ................................................................................................................. 20 
3.2 BHMTHISTHREAD....................................................................................................................... 22 
3.3 BHMDELETETHREAD.................................................................................................................. 23 
3.4 BHMCREATEEVENT.................................................................................................................... 24 
3.5 BHMCREATENAMEDEVENT........................................................................................................ 25 
3.6 BHMDELETEEVENT .................................................................................................................... 26 
3.7 BHMWAITEVENT........................................................................................................................ 27 
3.8 BHMTRIGGERAFTER................................................................................................................... 28 
3.9 BHMCANCELTRIGGER ................................................................................................................ 29 
3.10 BHMGETSYSTEMEVENT............................................................................................................. 30 
3.11 BHMWAITDELAY ....................................................................................................................... 31 
3.12 BHMGETCURRENTTIME ............................................................................................................. 32 
3.13 BHMGETLOCALTIME ................................................................................................................. 33 
3.14 BHMMESSAGE ............................................................................................................................ 34 
3.15 BHMGETDIAGNOSTICLEVEL ...................................................................................................... 35 
3.16 BHMSETDIAGNOSTICCB ............................................................................................................ 35 
3.17 BHMPRINTF ................................................................................................................................ 37 
3.18 BHMFINISH................................................................................................................................. 38 
3.19 READING PLATFORM PARAMETERS ............................................................................................ 39 

3.19.1 bhmBoolParamValue....................................................................................................... 39 
3.19.2 bhmDoubleParamValue................................................................................................... 39 
3.19.3 bhmInt32ParamValue ...................................................................................................... 40 
3.19.4 bhmInt64ParamValue ...................................................................................................... 40 
3.19.5 bhmStringParamValue..................................................................................................... 41 
3.19.6 bhmUns32ParamValue .................................................................................................... 41 
3.19.7 bhmUns64ParamValue .................................................................................................... 42 

4 Record and Replay............................................................................................................................ 43 
4.1 OVERVIEW ................................................................................................................................. 43 
4.2 EXAMPLE ................................................................................................................................... 43 
4.3 BHMRECORDSTART.................................................................................................................... 46 
4.4 BHMRECORDEVENT ................................................................................................................... 47 
4.5 BHMRECORDFINISH ................................................................................................................... 49 
4.6 BHMREPLAYSTART .................................................................................................................... 50 
4.7 BHMREPLAYEVENT.................................................................................................................... 51 
4.8 BHMREPLAYFINISH .................................................................................................................... 53 
4.9 CONTROLLING RECORD AND REPLAY ......................................................................................... 54 

5 Platform Interaction (PPM)............................................................................................................. 55 
5.1 PPMOPENMASTERBUSPORT....................................................................................................... 55 
5.2 PPMCHANGEREMOTELOADDRESS ............................................................................................. 57 
5.3 PPMOPENADDRESSSPACE .......................................................................................................... 58 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 4 of 165 

5.4 PPMREADADDRESSSPACE.......................................................................................................... 59 
5.5 PPMWRITEADDRESSSPACE ........................................................................................................ 60 
5.6 PPMTRYREADADDRESSSPACE ................................................................................................... 61 
5.7 PPMTRYWRITEADDRESSSPACE ................................................................................................. 62 
5.8 PPMCLOSEADDRESSSPACE ........................................................................................................ 63 
5.9 PPMOPENSLAVEBUSPORT.......................................................................................................... 64 
5.10 PPMCREATESLAVEBUSPORT...................................................................................................... 65 
5.11 PPMMOVELOCALLOADDRESS.................................................................................................... 66 
5.12 PPMDELETELOCALBUSHANDLE ................................................................................................ 67 
5.13 PPMINSTALLREADCALLBACK .................................................................................................... 68 
5.14 PPMINSTALLWRITECALLBACK .................................................................................................. 70 
5.15 PPMINSTALLCHANGECALLBACK................................................................................................ 72 
5.16 PPMINSTALLNBYTECALLBACKS................................................................................................ 74 
5.17 PPMREADABORT........................................................................................................................ 77 
5.18 PPMWRITEABORT ...................................................................................................................... 78 
5.19 PPMOPENNETPORT .................................................................................................................... 79 
5.20 PPMWRITENET........................................................................................................................... 80 
5.21 PPMREADNET ............................................................................................................................ 81 
5.22 PPMINSTALLNETCALLBACK....................................................................................................... 82 
5.23 PPMCREATEDYNAMICBRIDGE ................................................................................................... 83 
5.24 PPMDELETEDYNAMICBRIDGE.................................................................................................... 84 
5.25 PPMCREATEDYNAMICSLAVEPORT............................................................................................. 85 
5.26 PPMDELETEDYNAMICSLAVEPORT............................................................................................. 86 

6 Memory mapped registers................................................................................................................ 87 
6.1 PPMCREATEREGISTER................................................................................................................ 87 
6.2 PPMCREATENBYTEREGISTER .................................................................................................... 89 
6.3 PPMCREATEREGISTERFIELD ...................................................................................................... 92 
6.4 PPMCREATEINTERNALREGISTER................................................................................................ 94 
6.5 PPMCREATEINTERNALNBYTEREGISTER .................................................................................... 95 

7 Direct Bus Access .............................................................................................................................. 96 
7.1 PPMACCESSEXTERNALBUS........................................................................................................ 97 
7.2 PPMEXPOSELOCALBUS .............................................................................................................. 98 

8 Packetnet Interface ........................................................................................................................... 99 
8.1 PACKETNET PORTS ..................................................................................................................... 99 
8.2 RECURSION ................................................................................................................................ 99 
8.3 PACKET SIZE .............................................................................................................................. 99 
8.4 PACKETNET FUNCTIONS ........................................................................................................... 100 
8.5 EXAMPLE ................................................................................................................................. 100 

9 Conn (FIFO) Support ..................................................................................................................... 101 
9.1 PPMCONNPUT .......................................................................................................................... 102 
9.2 PPMCONNGET .......................................................................................................................... 103 
9.3 PPMREGISTERCONNINPUTEVENT............................................................................................. 104 
9.4 PPMREGISTERCONNOUTPUTEVENT ......................................................................................... 105 
9.5 PPMGETCONNINPUTINFO......................................................................................................... 106 
9.6 PPMGETCONNOUTPUTINFO ..................................................................................................... 107 

10 Serial Device Support ..................................................................................................................... 108 
10.1 BHMSEROPENAUTO ................................................................................................................. 109 
10.2 BHMSEROPEN .......................................................................................................................... 112 
10.3 BHMSERREADN ....................................................................................................................... 113 
10.4 BHMSERWRITEN...................................................................................................................... 114 
10.5 BHMSERREADB ....................................................................................................................... 115 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 5 of 165 

10.6 BHMSERWRITEB...................................................................................................................... 116 
10.7 BHMSERCLOSE......................................................................................................................... 117 
10.8 BHMSERLASTERROR................................................................................................................ 118 
10.9 RECORD AND REPLAY .............................................................................................................. 119 

11 Ethernet Device Support ................................................................................................................ 120 
11.1 BHMETHERNETOPENAUTO ...................................................................................................... 121 
11.2 BHMETHERNETOPEN................................................................................................................ 123 
11.3 BHMETHERNETREADFRAMEB ................................................................................................. 124 
11.4 BHMETHERNETREADFRAMEN ................................................................................................. 125 
11.5 BHMETHERNETWRITEFRAMEB................................................................................................ 126 
11.6 BHMETHERNETWRITEFRAMEN................................................................................................ 127 
11.7 BHMETHERNETINSTALLCB...................................................................................................... 128 
11.8 BHMETHERNETCLOSE .............................................................................................................. 129 
11.9 MODES ..................................................................................................................................... 130 
11.10 USER MODE ............................................................................................................................. 131 

11.10.1 User Mode Redirection .................................................................................................. 131 
11.10.2 Changing the Network address ...................................................................................... 132 

11.11 TAP MODE .............................................................................................................................. 133 
11.11.1 Configuring the host ...................................................................................................... 133 
11.11.2 Example Uses................................................................................................................. 136 

11.12 PACKETNET MODE.................................................................................................................... 140 
12 USB Device Support ....................................................................................................................... 141 

12.1 BHMUSBOPEN......................................................................................................................... 142 
12.2 BHMUSBCONTROLTRANSFER.................................................................................................. 143 
12.3 BHMUSBBULKTRANSFER........................................................................................................ 144 
12.4 BHMUSBCLOSE ....................................................................................................................... 145 

View Object Interface .............................................................................................................................. 147 
12.5 PPMADDVIEWOBJECT.............................................................................................................. 148 
12.6 PPMSETVIEWOBJECTCONSTVALUE ......................................................................................... 149 
12.7 PPMSETVIEWOBJECTREFVALUE.............................................................................................. 150 
12.8 PPMSETVIEWOBJECTVALUECALLBACK .................................................................................. 151 
12.9 PPMADDVIEWACTION.............................................................................................................. 152 
12.10 PPMADDVIEWEVENT ............................................................................................................... 153 
12.11 PPMNEXTVIEWEVENT.............................................................................................................. 154 
12.12 PPMTRIGGERVIEWEVENT ........................................................................................................ 155 
12.13 PPMDELETEVIEWOBJECT......................................................................................................... 156 

13 Documentation Interface................................................................................................................ 157 
13.1 PPMDOCADDSECTION.............................................................................................................. 158 
13.2 PPMDOCADDTEXT ................................................................................................................... 159 
13.3 PPMDOCADDFIELDS ................................................................................................................ 160 
13.4 PPMDOCADDFIELD .................................................................................................................. 161 
13.5 PPMDOCADDCONSTFIELD ....................................................................................................... 162 
13.6 DESCRIBING A FIELD ................................................................................................................ 163 
13.7 PPMDOCADDFIELDMSLS........................................................................................................ 164 
13.8 PPMDOCADDCONSTFIELDMSLS............................................................................................. 165 
  



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 6 of 165 

1 Introduction 
This is reference documentation for the BHM and PPM run time function interface, 
defined in 
ImpPublic/include/target/peripheral/ppm.h 
and 
ImpPublic/include/target/peripheral/bhm.h 
 
The functions in this interface are used within code written and compiled for the 
Peripheral Simulation Environment (PSE). 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 7 of 165 

2 Peripheral Interface Specification 
A peripheral model must provide a structure describing its interface, which is part of the 
peripheral model executable (usually called pse.pse) and can be interrogated by the 
simulator before any peripheral code is executed. Recent versions of OVPsim and 
CpuManager require this structure to be present and complete. 
 
The structure must be called modelAttrs and be of type ppmModelAttr.  



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 8 of 165 

2.1 Peripheral modelAttrs structure 
Prototype 

typedef struct ppmModelAttrS { 
 
    //////////////////////////////////////////////////////////////////////// 
    // VERSION and IDENTIFICATION 
    //////////////////////////////////////////////////////////////////////// 
 
    ppmString              versionString;    // Must be PPM_VERSION_STRING 
    ppmModelType           type;             // MUST be set to PPM_PERIPHERAL 
 
    //////////////////////////////////////////////////////////////////////// 
    // Model status 
    //////////////////////////////////////////////////////////////////////// 
 
    ppmVisibility          visibility;           // model instance is invisible 
    ppmReleaseStatus       releaseStatus;        // model release status (enum) 
    Bool                   saveRestore;          // model supports save and restore 
    Bool                   noRecursiveCallbacks; // a callback can be triggered 
                                                 // from within this model 
 
    //////////////////////////////////////////////////////////////////////// 
    // Callbacks 
    //////////////////////////////////////////////////////////////////////// 
 
    ppmBusPortSpecFn       busPortsCB;       // next bus port callback 
    ppmNetPortSpecFn       netPortsCB;       // next net port callback 
    ppmPacketnetPortSpecFn packetnetPortsCB; // next net port callback 
    ppmConnInputPortSpecFn connInputsCB;     // next FIFO input port 
    ppmConnOutputPortSpecFn connOutputsCB;   // next FIFO input port 
    ppmParameterSpecFn     paramSpecCB;      // next parameter callback 
    ppmSaveStateFn         saveCB;           // PSE state save callback 
    ppmRestoreStateFn      restoreCB;        // PSE state restore callback 
    ppmDocFn               docCB;            // This function installs 
                                             // documentation nodes 
 
    //////////////////////////////////////////////////////////////////////// 
    // Data needed by a simulator for peripheral model. 
    //////////////////////////////////////////////////////////////////////// 
 
    // Location of this model 
    ppmVlnvInfo vlnv; 
 
    // Optional Extension library used when the model requires native code 
    ppmString   extension; 
 
    // Path to PDF documentation 
    ppmString    doc; 
 
     // Model family string 
    ppmString    family; 
 
} ppmModelAttr, *ppmModelAttrP; 

 
Description 
Field versionString must be set to the macro PPM_VERSION_STRING. Field type must 
be set to the macro PPM_MT_PERIPHERAL. 
 
Field visibility indicates whether details of the peripheral model should be exposed to 
a debugger. Values for this parameter are defined by type ppmVisibility, as follows: 
 

typedef enum ppmVisibilityE { 
    PPM_VISIBLE, 
    PPM_INVISIBLE 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 9 of 165 

} ppmVisibility; 

 
Field releaseStatus is used for documentation only and indicates the release status of 
the model.  Values for this parameter are defined by type ppmReleaseStatus, as follows: 
 

typedef enum ppmReleaseStatusS { 
    PPM_UNSET, 
    PPM_INTERNAL, 
    PPM_RESTRICTED, 
    PPM_IMPERAS, 
    PPM_OVP, 
} ppmReleaseStatus; 

 
Fields busPortsCB, netPortsCB, packetnetPortsCB, connInputsCB, 
connOutputsCB and paramSpecsCB are iterator function pointers described below. 
 
Fields saveCB and restoreCB are used to define model-specific save and restore 
functions. These are used to checkpoint running simulations and restore such checkpoints 
at a later date. 
 
Field docCB is used to add documentation to a peripheral model. 
 
Field vlnv is a structure which describes where the model is stored in an Imperas VLNV 
tree. 
 
Field doc describes the location of the model’s documentation. 
 
Field family is used by Imperas products. 
 
Field extension is used if this peripheral uses a native code extension library. Normally 
the peripheral program and the extension library binaries are stored in the same directory.  
Set extension to the name of the extension library (without its file extension). 
 
Field noRecursiveCallbacks controls what happens when the model reads or writes to 
a memory region in this model that has a callback associated with it. 
If True, the callback will not occur, if False, it will. In most models, callbacks are 
expected to occur when another model writes to a sensitive region (e.g. a processor 
model writing to a register model in peripheral), so noRecursiveCallbacks should be 
True; however some models trigger their own callbacks on purpose, so need it to be 
False. Note that if this technique is used, the model must protect against infinite 
recursion – the simulator always detects this condition and stops the model after 15 levels 
of recursion. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 10 of 165 

2.2 Bus port definition 
Prototype 

#define PPM_BUS_PORT_FN(_name) ppmBusPortP   _name(ppmBusPortP busPort) 
typedef PPM_BUS_PORT_FN((*ppmBusPortSpecFn)); 

 
Description 
If the model has bus ports it must define a callback function using the prototype macro 
PPM_BUS_PORT_FN, and set the busPortsCB pointer in the modelAttrs structure. The 
ppmBusPort is a structure filled by the model and read by the simulator. When passed 
zero, the function should return a pointer to the first ppmBusPort structure, then each 
consecutive structure, ending with null when all have been passed. 
 
The ppmBusPort structure describes one bus port and contains these fields: 
 
Type Name Description 
 Addr addrHi (slave port only) Size in bytes of the bus port, 

less one byte. 
const char * name name of the port 
ppmBusPortType type type of the port (see below) 
Uns32 addBits (master port only) Number of address bits 

implemented  
const char * description For documentation 
Bool mustBeConnected True if this port must be connected 
Bool remappable (slave port only) True if the model moves the 

decode address at run-time. 
 
Bus port types: 
ppmBusPortType Description 
PPM_MASTER_PORT Port which initiates transaction 
PPM_SLAVE_PORT Port which receives transactions 
 
Example 

static PPM_BUS_PORT_FN(nextBusPort) { 
    if(!busPort) { 
        return busPorts[0].name ? &busPorts[0] : 0; 
    } else { 
        busPort++; 
        return busPort->name ? busPort : 0; 
    } 
} 
 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 11 of 165 

2.3 Net port definitions 
Prototype 

#define PPM_NET_PORT_FN(_name) ppmNetPortP   _name(ppmNetPortP netPort) 
typedef PPM_NET_PORT_FN((*ppmNetPortSpecFn)); 
 

 
Description 
If the model has net ports it must define a callback function using the prototype macro 
PPM_NET_PORT_FN, and set the netPortsCB pointer in the modelAttrs structure. The 
ppmNetPort is a structure filled by the model and read by the simulator. When passed 
zero, the function should return a pointer to the first ppmNetPort structure, then each 
consecutive structure ending with null when all have been passed.  
 
The ppmNetPort structure contains these fields: 
 
Type Name Description 
const char * name name of the port 
ppmNetPortType type type of the port 
const char * description For documentation 
Bool mustBeConnected True if this port must be connected 
ppmNetFunc netCB Pointer to function called when the net is written 
void * userData Passed to the callback 
 
Net port types: 
ppmNetPortType description 
PPM_INPUT_PORT Single wire input 
PPM_OUTPUT_PORT Single wire output 
 
Example 

// example 
 
static PPM_NET_PORT_FN(nextNetPort) { 
    if(!netPort) { 
        return netPorts[0].name ? &netPorts[0] : 0; 
    } else { 
        netPort++; 
        return netPort->name ? netPort : 0; 
    } 
} 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 12 of 165 

2.4 Packetnet port definitions 
Prototype 

#define PPM_PACKETNET_PORT_FN(_name) \ 
    ppmPacketnetPortP   _name(ppmPacketnetPortP packetnetPort) 
 
typedef PPM_PACKETNET_PORT_FN((*ppmPacketnetPortSpecFn)); 

 
Description 
A packetnet is an abstraction facilitating implementation of models of packet-based 
networks. See the OVPsim and CpuManager User Guide for more information about 
packetnets. 
 
If the model has packetnet ports it must define a callback function using the prototype 
macro PPM_PACKETNET_PORT_FN, and set the packetnetPortsCB pointer in the 
modelAttrs structure. The ppmPacketnetPort is a structure filled by the model and read 
by the simulator. When passed zero, the function should return a pointer to the first 
ppmPacketnetPort structure, then each consecutive structure ending with null when all 
have been passed.  
 
The ppmPacketnetPort structure contains these fields: 
 
Type Name Description 
const char * name name of the port 
const char * description Short description of the port 
bool mustBeConnected True if this port must be connected 
ppmPacketnetFunc packetnetCB Function called when packetnet is 

written 
void * userData Passed to the callback 
uns32  sharedDataBytes Maximum number of bytes sent in 

one packet 
void * sharedData Pointer to shared data area 
ppmPacketnetHandlePtr handlePtr Pointer to handle, updated by 

simulator 
 
Example 

static PPM_PACKETNET_PORT_FN(nextPacketnetPort) { 
 
    if(!port) { 
        port = packetnetPorts; 
    } else { 
        port++; 
    } 
    return port->name ? port : 0; 
} 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 13 of 165 

2.5 Conn Input and output port definitions 
Prototype 

#define PPM_CONN_INPUT_FN(_name) \ 
    ppmConnInputPortP   _name(ppmConnInputPortP   port) 
 
typedef PPM_CONN_INPUT_FN ((*ppmConnInputPortSpecFn)); 
 
#define PPM_CONN_OUTPUT_FN(_name) \ 
    ppmConnOutputPortP   _name(ppmConnOutputPortP   port) 
 
typedef PPM_CONN_OUTPUT_FN ((*ppmConnOutputPortSpecFn)); 

 
Description 
A Conn is an abstraction of a hardware FIFO used for point-to-point links between 
processors or peripherals.  
 
If the model has Conn input ports it must define a callback function using the prototype 
macro PPM_CONN_INPUT_FN, and set the connInputsCB pointer in the modelAttrs 
structure. The ppmConnInputPort is a structure filled by the model and read by the 
simulator. When passed zero, the function should return a pointer to the first 
ppmConnInputPort structure, then each consecutive structure, ending with null when all 
have been passed.  
 
If the model has Conn output ports it must define a callback function using the prototype 
macro PPM_CONN_OUTPUT_FN, and set the connOutputsCB pointer in the 
modelAttrs structure. The ppmConnOutputPort is a structure filled by the model and 
read by the simulator. When passed zero, the function should return a pointer to the first 
ppmConnOutputPort structure, then each consecutive structure, ending with null when all 
have been passed. 
 
The ppmConnInputPort  and ppmConnOutputPort  structures contains these fields: 
 
Type Name Description 
const char * name name of the port 
const char * description Short description of the port 
bool mustBeConnected True if this port must be connected 
Uns32 width Width in bits of one word 
 
Example 

ppmConnInputHandle  port1Handle; 
ppmConnOutputHandle port2Handle; 
 
static ppmConnInputPort connInputPorts[] = { 
    { 
        .name            = “port1”, 
        .musrBeConnected = 1, 
        .handlePtr       = &port1Handle, 
        .width           = 32 
    }, 
    { 0 } 
}; 
 
static ppmConnOutputPort connOutputPorts[] = { 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 14 of 165 

    { 
        .name            = “port1”, 
        .musrBeConnected = 1, 
        .handlePtr       = &port2Handle, 
        .width           = 32 
    }, 
    { 0 } 
}; 
 
static PPM_CONN_INPUT_FN(nextConnInputPort) { 
 
    if(!port) { 
        port = connInputPorts; 
    } else { 
        port++; 
    } 
    return port->name ? port : 0; 
} 
 
static PPM_CONN_OUTPUT_FN(nextConnOutputPort) { 
 
    if(!port) { 
        port = connOutputPorts; 
    } else { 
        port++; 
    } 
    return port->name ? port : 0; 
} 
 
ppmModelAttr modelAttrs = { 
    // ... 
    .connInputPortsCB  = nextConnInputPort,   
    .connOutputPortsCB = nextConnOutputPort, 
    // ...   
}; 
 

 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 15 of 165 

2.6 Parameter definitions 
Prototype 

#define PPM_PARAMETER_FN(_name) ppmParameterP _name(ppmParameterP parameter) 
typedef PPM_PARAMETER_FN((*ppmParameterSpecFn)); 

 
Description 
If the model has parameters it must define a callback function using the prototype macro 
PPM_PARAMETER_FN, and set the paramSpecCB pointer in the modelAttrs structure. The 
ppmParameter is a structure filled by the model and read by the simulator. When passed 
zero, the function should return a pointer to the first ppmParameter structure, then each 
consecutive structure ending with null when all have been passed.  
 
Each returned structure describes one parameter. The ppmParameter structure contains 
these fields: 
 
Type Name Description 
const char * name parameter name 
ppmParameterType type parameter type (see table) 
const char * description short description 
type specifications u union of possible type specifications 
void * valuePtr pointer to a variable of the correct type 
 
Each parameter type has a specification structure in a union which can be optionally set 
to check a parameter’s value. If valuePtr is non-zero, it will be used as a destination for 
the value of the parameter with any assignment or override applied. 
 
Parameter types: 
ppmParameterType Description Type specification 
ppm_PT_BOOL boolean default value 
ppm_PT_INT32 signed 32b int min, max and default value 
ppm_PT_UNS32 unsigned 32b int min, max and default value 
ppm_PT_INT64 signed 64b int min, max and default value 
ppm_PT_UNS64 unsigned 64b int min, max and default value 
ppm_PT_DOUBLE floating point number min, max and default value 
ppm_PT_STRING const char * optional max length and default value 
ppm_PT_ENUM enumerated type array of legal values, 1st is default.  
ppm_PT_ENDIAN special enumerated 

type 
default value 

 
Example 

 
// Example: 
 
static PPM_PARAMETER_FN(nextParameter) { 
    if(!parameter) { 
        return parameters; 
    } 
    parameter++; 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 16 of 165 

    return parameter->name ? parameter : 0; 
} 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 17 of 165 

2.7 Complete Example: 
This is extracted from 
 
Examples/Models/Peripherals/creatingDMAC/4.interrupt/dmac.attrs.igen.c 
 
In this example, the bus and net structures are static. In a more complex model they could 
be generated dynamically. 
 

static ppmBusPort busPorts[] = { 
    { 
        .name            = "DMACSP", 
        .type            = PPM_SLAVE_PORT, 
        .addrHi          = 0x13fLL, 
        .mustBeConnected = 1, 
        .remappable      = 0, 
        .description     = "DMA Registers Slave Port", 
    }, 
    { 
        .name            = "MREAD", 
        .type            = PPM_MASTER_PORT, 
        .addrBits        = 32, 
        .mustBeConnected = 0, 
        .description     = "DMA Registers Master Port - Read", 
    }, 
    { 
        .name            = "MWRITE", 
        .type            = PPM_MASTER_PORT, 
        .addrBits        = 32, 
        .mustBeConnected = 0, 
        .description     = "DMA Registers Master Port - Write", 
    }, 
    { 0 } 
}; 
 
static PPM_BUS_PORT_FN(nextBusPort) { 
    if(!busPort) { 
        return busPorts; 
    } 
    busPort++; 
    return busPort->name ? busPort : 0; 
} 
 
static ppmNetPort netPorts[] = { 
    { 
        .name            = "INTTC", 
        .type            = PPM_OUTPUT_PORT, 
        .mustBeConnected = 0, 
        .description     = "Interrupt Request" 
    }, 
    { 0 } 
}; 
 
static PPM_NET_PORT_FN(nextNetPort) { 
    if(!netPort) { 
        return netPorts; 
    } 
    netPort++; 
    return netPort->name ? netPort : 0; 
} 
 
static ppmParameter parameters[] = { 
    { 
        .name        = "readNativeDataChannel", 
        .type        = ppm_PT_BOOL, 
        .description = "Use native code for DMA operation", 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 18 of 165 

        .valuePtr    = &readNativeDataChannel, 
    }, 
    { 0 } 
}; 
 
static PPM_PARAMETER_FN(nextParameter) { 
    if(!parameter) { 
        return parameters; 
    } 
    parameter++; 
    return parameter->name ? parameter : 0; 
} 
 
ppmModelAttr modelAttrs = { 
 
    .versionString = PPM_VERSION_STRING, 
    .type          = PPM_MT_PERIPHERAL, 
 
    .busPortsCB    = nextBusPort,   
    .netPortsCB    = nextNetPort,   
    .paramSpecCB   = nextParameter, 
 
    .vlnv          = { 
        .vendor  = "ovpworld.org", 
        .library = "peripheral", 
        .name    = "dmac", 
        .version = "1.0" 
    },            
}; 

 
The model has one parameter -  readNativeDataChannel. The boolean value, set by the 
platform or by –override on the simulator command line will be written into the 
variable readNativeDataChannel before main() is called in the peripheral model. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 19 of 165 

3 Behavioral Modeling (BHM) 
This section describes functions which affect the execution of peripheral model code, and 
its interaction with the simulator. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 20 of 165 

3.1 bhmCreateThread 
 
Prototype 

typedef void  (*bhmCBThreadFunc)(void *user); 
 
bhmThreadHandle bhmCreateThread( 
    bhmCBThreadFunc cb,        // function which implements the thread 
    void          *user,       // user data passed to the thread 
    const char    *name,       // thread name (used for debugging) 
    void          *sp          // optional address of the TOP of the stack 
); 
 

 
Description 
This function creates a new thread. The return value is a handle to the thread which may 
be used to delete it. If the function fails it will return BHM_INVALID_HANDLE. 
 
A thread requires a stack. If this parameter is zero, a 1Mb stack is allocated. If more is 
required, a region must be reserved and the address of the TOP of the region passed to 
this parameter. The stack region must be 4-byte aligned. 
 
A thread is given a name and can receive a user-defined value, typically used if several 
copies of the same thread are launched with different contexts. 
 
Once started, a thread will run to the exclusion of all other simulator activity until a wait 
of some kind is executed. Therefore a thread’s main loop must include at least one  wait. 
Calls which wait are: 

• bhmWaitEvent(); 
• bhmWaitDelay(); 

 

Threads can be created or destroyed at any time.  
 
Example 
 

#include "peripheral/bhm.h” 
 
bhmThreadHandle thA, thB; 
 
typedef struct myThreadContextS { 
    // store thread specific data here 
} myThreadContext, myThreadContextP; 
 
static BHM_THREAD_CB(myThread) 
{ 
    while(1) { 
        myThreadContextP context = userData; 
        // can use context data here 
       bhmWaitDelay(1000); 
        bhmPrintf(“Running\n”); 
    } 
} 
 
void userInit(void) 
{ 
    thA = bhmCreateThread(myThread, malloc(sizeof(myThreadContext)), “threadA”, 0); 
    thB = bhmCreateThread(myThread, malloc(sizeof(myThreadContext)), “threadB”, 0); 
} 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 21 of 165 

 
 
Notes and Restrictions 

1. The stack should have sufficient space for that thread and any code it uses (libc 
can use a significant amount of stack). 

2. The stack region must be 4-byte aligned. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 22 of 165 

3.2 bhmThisThread 
 
Prototype 

 
bhmThreadHandle bhmThisThread(void); 
 

 
Description 
This function returns the current thread. The return value is a handle to the thread which 
may be used to delete it. 
 
Example 
 

#include "peripheral/bhm.h” 
 
bhmThreadHandle thA, thB;  // only required if you wish to delete the thread 
 
static BHM_THREAD_CB(myThread) 
{ 
    while(1) { 
       bhmWaitDelay(1000); 
        // print the name and handle from inside the thread 
        bhmPrintf(“%s  h=%u\n”, (char*)userData, bhmThisThread()); 
    } 
} 
 
void userInit(void) 
{ 
    // In this example a string is passed as the user data 
    thA = bhmCreateThread(myThread, ”threadA”, “threadA”, 0); 
    thB = bhmCreateThread(myThread, ”threadB”, “threadB”, 0); 
} 

 
 
Notes and Restrictions 

1. bhmThisThread() must be called from within the thread. 
 
 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 23 of 165 

3.3 bhmDeleteThread 
 
Prototype 

Bool bhmDeleteThread(bhmThreadHandle h); 

 
Description 
This function deletes an existing thread.  
 
Example 

#include "peripheral/bhm.h” 
 
// embedded call made on move to control status register 
bhmThreadHandle  th = bhmCreateThread(myThread, NULL, “myThread”, &stack[size]); 
 
bhmWait(1000*1000*1000); 
 
bhmDeleteThread(th); 

 
Notes and Restrictions 

1. bhmDeleteThread can be called from within its own thread (which has the same 
effect as returning from the thread’s main function) or from another thread or 
callback. In the latter case the deleted thread must (by definition) have been 
blocked by a call to bhmWaitEvent() or bhmWaitDelay(), so the affect is as if the 
blocked call caused the thread to finish.  



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 24 of 165 

3.4 bhmCreateEvent 
 
Prototype 

bhmEventHandle bhmCreateEvent(void); 

 
Description 
This function creates an event object which can then be used by bhmWaitEvent(), 
bhmTriggerEvent(), bhmTriggerAfter() and bhmCancelTrigger(). If the function fails it 
will return BHM_INVALID_HANDLE. 
 
Example 

#include "peripheral/bhm.h” 
 
    bhmEventHandle  go_eh = bhmCreateEvent(); 
 

 
Notes and Restrictions 

None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 25 of 165 

3.5 bhmCreateNamedEvent 
 
Prototype 

bhmEventHandle bhmCreateNamedEvent( 
    const char *name, 
    const char *description 
); 

 
Description 
This function creates an event object which can then be used by bhmWaitEvent(), 
bhmTriggerEvent(), bhmTriggerAfter() and bhmCancelTrigger(). 
 
A named event is similar to an un-named event, but is visible to the debugger, which can 
set trigger points on it. It should be used when the event might be meaningful to the user 
of the model. If the function fails it will return BHM_INVALID_HANDLE. 
 
Example 

#include "peripheral/bhm.h” 
 
bhmEventHandle go_eh = bhmCreateEvent("startDMA", "A DMA transfer has started"); 
 

 
Notes and Restrictions 

None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 26 of 165 

3.6 bhmDeleteEvent 
 
Prototype 

Bool bhmDeleteEvent(bhmEventHandle handle); 

 
Description 
This function deletes an event. 
 
Example 

#include "peripheral/bhm.h” 
 
    bhmEventHandle  evt = bhmCreateEvent(); 
 
    bhmDeleteEvent(evt); 
 

 
Notes and Restrictions 

If an event is deleted when a thread is waiting for it, the thread will restart. The return 
code from bhmWaitEvent will be BHM_RR_DELEVENT. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 27 of 165 

3.7 bhmWaitEvent 
 
Prototype 

bhmRestartReason bhmWaitEvent(bhmEventHandle handle); 

 
Description 
The running thread stops until the event is triggered, the event is deleted or the event 
handle is invalid (this return is immediate). 
 
Example 

bhmEventHandle  ev1; 
 
void thread1(void *user) 
{ 
    while(1) { 
        bhmWaitDelay(120 /*uS*/); 
        bhmTriggerEvent(ev1); 
    } 
} 
 
void thread2(void *user) 
{ 
    while(1) { 
  bhmWaitEvent(ev1); 
    } 
} 

 
Notes and Restrictions 

1. This function should not be called from a callback associated with a net, 
packetnet, diagnostic level or view object. 

2. If called from a bus or register callback, a new thread is created. Please refer 
to OVP Peripheral Modelling Guide, section Delays in Callbacks. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 28 of 165 

3.8 bhmTriggerAfter 
 
Prototype 

Bool bhmTriggerAfter(bhmEventHandle event, double delay); 

 
Description 
bhmTriggerAfter returns immediately but ‘queues’ a future trigger on the stated event. 
This queued trigger may be cancelled before the delay expires. If there is already a 
queued trigger, it will be replaced with the new one. Returns false if the handle was not 
valid. 
 
Example 

bhmEventHandle  ev1; 
 
void thread1(void *user) 
{ 
    while(1) { 
        bhmWaitDelay(100 /*uS*/); 
        bhmTriggerAfter(ev1, 20); 
    } 
} 
 
void thread2(void *user) 
{ 
    while(1) { 
  bhmWaitEvent(ev1); 
        // will run at times 120uS, 220uS, 320uS etc. 
    } 
} 

 
Notes and Restrictions 

None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 29 of 165 

3.9 bhmCancelTrigger 
 
Prototype 

Bool bhmTriggerAfter(bhmEventHandle event); 

 
Description 
If an event is waiting to be triggered, bhmCancelTrigger cancels it and returns true. 
If not it returns false (a waiting event is created by calling bhmTriggerAfter). It returns 
false if the handle was not valid. 
 
Example 

bhmEventHandle  ev1; 
 
void thread1(void *user) 
{ 
    … 
    bhmTriggerAfter(ev1, 20); 
    … 
} 
 
void thread2(void *user) 
{ 
    … 
   bhmCancelTrigger (ev1); 
    … 
} 

 
Notes and Restrictions 

None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 30 of 165 

3.10 bhmGetSystemEvent 
 
Prototype 

bhmEventHandle bhmGetSystemEvent(bhmSystemEventType eventType);     

 
Description 
Returns a handle to a system event. System event types include 
 

BHM_SE_START_OF_SIMULATION 
BHM_SE_END_OF_SIMULATION 

 
Start of simulation occurs when all peripherals have executed their initialization code, but 
no application processors have executed any instructions. 
 
End of simulation occurs when the simulator is performing a normal end of simulation 
sequence, i.e. there has not been a fatal error. 
 
Example 

#include "peripheral/bhm.h” 
 
int operationCount = 0; 
 
main() 
{ 
    bhmEventHAndle end = bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION); 
 
 
    …. 
    bhmWaitEvent(end); 
    bhmMessage(“I”, “MY_MODEL”, “Finished after %d operations”, operationCount); 
} 
 

 
Notes and Restrictions 

1. BHM_SE_START_OF_SIMULATION need be used only when it is required 
that all other peripherals have started first. 

2. Two peripherals waking on BHM_SE_START_OF_SIMULATION cannot rely 
on a particular order of execution. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 31 of 165 

3.11 bhmWaitDelay 
 
Prototype 

Bool bhmWaitDelay(double microseconds); 

 
Description 
Pauses the thread for the given time. Returns false if the request was unsuccessful. 
 
The delay will be at least until the end of the current simulation time slice (aka quantum) 
because a time slice that has already started cannot be shortened.  
 
If the delay time falls after the end of the current time slice then the time slice where the 
delayed time occurs will be adjusted so that the end of that time slice occurs at the exact 
time requested.  
 
Excessive use of tiny delays in a peripheral model can thus have a similar effect on 
simulator performance as running with a very small time slice. 
 
Example 

#include "peripheral/bhm.h” 
 
 
void thread1(void *user) 
{ 
    while(1) { 
 
        bhmWaitDelay(50); 
        bhmMessage(“I”, “MY_MODEL”, “Starting…”); 
        . . . 
    } 
} 

 
Notes and Restrictions 

1. This function should not be called from a callback associated with a net, 
packetnet, diagnostic level or view object. 

2. If called from a bus or register callback, a new thread is created. Please refer to 
OVP Peripheral Modelling Guide, section Delays in Callbacks. 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 32 of 165 

3.12 bhmGetCurrentTime 
 
Prototype 

double bhmGetCurrentTime(void); 

 
Description 
Returns the current simulated time in microseconds. 
 
The time returned is the simulation time at the beginning of the current simulation time 
slice (aka quantum). Thus multiple calls within the same time slice may observe time 
seeming to stand still, and peripherals cannot rely on resolving times shorter than the 
length of the simulation time slice. 
 
Example 

#include "peripheral/bhm.h” 
 
... 
    bhmPrintf("The time is %0.0f\n", bhmGetCurrentTime()); 
... 
 

 
Notes and Restrictions 

1. Simulated time starts at zero each time a simulation begins and bears no relation 
to wallclock time.  

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 33 of 165 

3.13 bhmGetLocalTime 
 
Prototype 

double bhmGetLocalTime(void); 

 
Description 
Returns the current simulated time in microseconds from the perspective of the activating 
processor. 
 
The time returned is the simulation time at the start of the current simulation time slice 
(aka quantum) plus a delta time based upon the activating processor instructions executed 
and MIPS rate. Thus multiple calls within the same time slice from a single processor 
will apparently show time moving forward. The time may not increase monotonically 
when a peripheral is accessed from multiple processors in the platform i.e. a call from 
another processor in the same time slice may show time apparently jumping backwards. 
 
Example 

#include "peripheral/bhm.h” 
 
... 
    bhmPrintf("The time is %0.0f\n", bhmGetLocalTime()); 
... 
 

 
Notes and Restrictions 

1. Simulated time starts at zero each time a simulation begins and bears no relation 
to wallclock time.  

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 34 of 165 

3.14 bhmMessage 
 
Prototype 

void bhmMessage( 
    const char *severity, 
    const char *prefix, 
    const char *format, 
    ...); 

 
Description 
Interface to the simulator text output and log streams. bhmMessage produces messages 
with the same format as simulator system messages. In addition, the instance name of the 
peripheral model is inserted into message so when multiple instances of the model are 
used, the programmer does not need to identify the particular instance. 
 
Severity levels: 
“I” Information: nothing is wrong. 
“W” Warning: the simulation can continue normally. 
“E” Error: the simulation cannot proceed correctly. 
“F” Fatal: this will cause the simulator to exit after producing the message. 
 
Prefix: 
The prefix string has no format characters, so is guaranteed to appear verbatim in the 
output stream. It should be a short string (without spaces) making the message easy to 
distinguish from other output. 
 
Format and varargs: conform to gnu libc printf. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
    bhmMessage(“W”, “MY_PERIPH”, “Hello world number %d”, number); 
} 

 
Notes and Restrictions 

1. bhmMessage will insert a new-line at the end of each message. To create tables 
and other formatted output, use bhmPrintf(). 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 35 of 165 

3.15 bhmGetDiagnosticLevel 
Superseded by bhmSetDiagnosticCB(). 
 

3.16 bhmSetDiagnosticCB 
Prototype 

void bhmSetDiagnosticCB(bhmSetDiagnosticLevel cb); 

 
Description 
Notifies the simulator that this function should be used to change the diagnostic level of 
the peripheral, indicating how much diagnostic output the model should produce. The 
simulator can set different levels for each instance of each model. Diagnostic output is 
intended to help users of the model (model developers can add debug output to their 
model, which should be hidden when the model is published). To ensure interoperability 
and easy familiarization, new models should conform to the following guidelines: 
 
PSE Diagnostics (bits 0-1) 
Level 0 No diagnostic output. 
Level 1 Brief messages during startup (and possibly shutdown) to indicate the 

correct installation of the model in the platform. 
Level 2 Comprehensive output; mode changes, complete operations, etc. 
Level 3 Detailed output. 
 
PSE Semihost Diagnostics (bits 2-3) 
Level 0 No diagnostic output. 
Level 1 Diagnostic output 
 
System Diagnostics (bit 4) 
Level 1 The simulator logs when it interacts with the model; e.g. when registers 

are read or written, when input nets change and when events are triggered. 
 
To limit the size of log files, diagnostic levels can be changed during a simulation. 
Therefore the callback function should set the integer variable which is used to control 
diagnostic output 
 
Example 

#include "peripheral/bhm.h” 
 
int diagLevel = 0; 
 
static void setDiags(Uns32 v) 
{ 
    diagLevel = v; 
} 
 
int main() 
{ 
    bhmSetDiagnosticCB(setDiags); 
 
    if (diagLevel > 0) { 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 36 of 165 

        bhmMessage(“I”, “MY_PERIPH”, “Starting up...”); 
    } 
} 

 
Notes and Restrictions 

1. Must be called before any diagnostic output is required. Should only be called 
once. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 37 of 165 

3.17 bhmPrintf 
 
Prototype 

void bhmPrintf(const char *format, ...); 

 
Description 
Send ‘raw’ characters to the text and log output streams. This function should only be 
used in conjunction with bhmMessage when tabular or formatted output is required. 
Unconstrained use will result in simulation messages whose origin is hard to trace. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
    bhmMessage(“I”, “MY_PERIPHERAL”, “Configuration:”); 
 
    Uns32 I, J; 
    for(I =0; I < height; I++) { 
        bhmPrintf(“|”); 
        for(J=0; J < width; J++) { 
            bhmPrintf(“ %-4s”, config[I][J]); 
        } 
        bhmPrintf(“|\n”); 
    } 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 38 of 165 

3.18 bhmFinish 
 
Prototype 

void bhmFinish(void); 

 
Description 
Terminate the simulation immediately. Normal shutdown procedures will be executed. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
   if(noMoreData()) { 
      if (BHM_DIAG_LOW) bhmMessage(“I”, “MY_MODEL”, “Data exhausted. Processing..”); 
      bhmWaitDelay(50); 
      if (BHM_DIAG_LOW) bhmMessage(“I”, “MY_MODEL”, “Finishing.”); 
      bhmFinish(); 
    } 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 39 of 165 

3.19 Reading platform parameters 
A model instance can change its behavior depending upon parameters set by the platform. 
For instance a single UART model could represent a 16450 or 16550 compatible device, 
the only difference being that the 16550 includes a FIFO in its data path. One of the two 
different behaviors could be selected by a boolean parameter. The parameter actual value 
is set on the instance in the platform. 
Parameters are defined in the model’s modelAttrs table – see section 2.6. 
They are read using one of the following functions. Each function has the same 
semantics; the ptr parameter is written with the actual parameter’s value from the 
platform, or if not specified in the platform, with the default value from the modelAttrs 
table. The function returns true if the parameter has been specified (or overridden) or 
false if the default value is being used. 
Model parameters can be overridden from a control file or command line using the 
override command; refer to the OVP Control File User Guide. 
 
Behaviour of Parameter Value functions: 
condition action returns 
value not set ptr written with default value false 
value set in platform (no override) ptr written with value from platform true 
value set by override ptr written with value from override true 
 

3.19.1 bhmBoolParamValue 
 
Prototype 

Bool bhmBoolParamValue (const char *name, Bool *ptr); 

 
Description 
Read the value of a Boolean parameter. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
    Bool value; 
    Bool isSpecified = bhmBoolParamValue ("myBooleanParameter", &value); 
} 

 
Note 
The function can be used to read a parameter value but is not required. If the valuePtr 
field in the ppmParameter structure points to value, it will be written with the current 
parameter value. 

3.19.2 bhmDoubleParamValue 
 
Prototype 

Bool bhmDoubleParamValue (const char *name, Bool *ptr); 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 40 of 165 

 
Description 
Read the value of a double (floating point) parameter. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
    double value; 
    Bool isSpecified = bhmDoubleParamValue ("myDoubleParameter", &value); 
} 

 
Note 
The function can be used to read a parameter value but is not required. If the valuePtr 
field in the ppmParameter structure points to value, it will be written with the current 
parameter value. 

3.19.3 bhmInt32ParamValue 
 
Prototype 

Bool bhmInt32ParamValue (const char *name, Bool *ptr); 

 
Description 
Read the value of an Int32 parameter. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
    Int32 value; 
    Bool isSpecified = bhmInt32ParamValue ("myInt32Parameter", &value); 
} 

 
Note 
The function can be used to read a parameter value but is not required. If the valuePtr 
field in the ppmParameter structure points to value, it will be written with the current 
parameter value. 

3.19.4 bhmInt64ParamValue 
 
Prototype 

Bool bhmInt64ParamValue (const char *name, Bool *ptr); 

 
Description 
Read the value of an Int64 parameter. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
    Int64 value; 
    Bool isSpecified = bhmInt64ParamValue ("myInt64Parameter", &value); 
} 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 41 of 165 

 
Note 
The function can be used to read a parameter value but is not required. If the valuePtr 
field in the ppmParameter structure points to value, it will be written with the current 
parameter value. 
 

3.19.5 bhmStringParamValue 
 
Prototype 

Bool bhmStringParamValue (const char *name, char *value, Uns32 maxLength); 

 
Description 
Read the value of an string parameter. The string value is copied into the given string. 
Any characters beyond the given maximum length are not copied. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
    char value[128]; 
    Bool isSpecified = bhmUns32ParamValue ( 
         "myStringParameter", 
         value, 
         sizeof(value) 
    ); 
} 

 
Note 
The function can be used to read a parameter value but is not required. If the valuePtr 
field in the ppmParameter structure points to value, it will be written with the current 
parameter value. 

3.19.6 bhmUns32ParamValue 
 
Prototype 

Bool bhmUns32ParamValue (const char *name, Bool *ptr); 

 
Description 
Read the value of an Uns32 parameter. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
    Uns32 value; 
    Bool isSpecified = bhmUns32ParamValue ("myUns32Parameter", &value); 
} 

 
Note 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 42 of 165 

The function can be used to read a parameter value but is not required. If the valuePtr 
field in the ppmParameter structure points to value, it will be written with the current 
parameter value. 

3.19.7 bhmUns64ParamValue 
 
Prototype 

Bool bhmUns64ParamValue (const char *name, Bool *ptr); 

 
Description 
Read the value of an Uns64 parameter. 
 
Example 

#include "peripheral/bhm.h” 
 
{ 
    Uns64 value; 
    Bool isSpecified = bhmUns64ParamValue ("myUns64Parameter", &value); 
} 

 
Note 
The function can be used to read a parameter value but is not required. If the valuePtr 
field in the ppmParameter structure points to value, it will be written with the current 
parameter value. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 43 of 165 

4 Record and Replay 
If a peripheral model communicates with the outside world, e.g. through a real keyboard 
interface, a simulation might be affected by inputs which cannot be exactly reproduced in 
subsequent simulation sessions. This makes impossible regression testing or reproduction 
of particular failures. To overcome this problem, the bhm API presents a simple interface 
to a record/replay mechanism. It is the responsibility of the model writer to use this API  
if replay is required and to ensure that a model using replay does appear to the rest of the 
system to behave exactly as in the original simulation. 

4.1 Overview 
During startup (normally in 'main') the model should call bhmRecordStart() to see if 
recording is required by the simulator and if so, to start the recording. If recording is 
required, bhmRecordEvent() should be called whenever the model changes state due to 
external stimulus. Note that an event contains a time-stamp, a 'type' field which can be 
used to distinguish event types, and a variable length data field (which can be zero). 
  
The model should also call bhmReplayStart() to see if this is a replay session. If so, the 
model should use bhmReplayEvent() to fetch each event, then act according to the 
event. 
 
The location of the log data is managed by the simulation environment. 
 
It is possible that (for testing), a model could both replay from a previous log and 
simultaneously record a new log. 
 
Two record file formats are supported: a legacy binary format file (OVP1) and a new 
text-format file (OVP2). The simulator will read either format file, but by default writes 
the new format only. To force output in the legacy format, set the following environment 
variable: 
 IMPERAS_PSE_RECORD_VERSION=1 
Imperas strongly recommend that the new format file should always be used. 

4.2 Example 
The PciIDE disk model in the intel.ovpworld.org directory supports record/replay. 
During initialization, function bdrv_open is called, which contains this code: 
 

static Bool recording; 
static Bool replaying; 
 
BlockDriverStateP bdrv_open(Uns8 drive, const char *filename, Int32 flags) 
{ 
    static Bool init = False; 
    if (!init) { 
        init = True; 
        diag = bhmGetDiagnosticLevel(); 
        recording = bhmRecordStart(); 
        replaying = bhmReplayStart(); 
    } 
    . . . lines deleted . . . 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 44 of 165 

} 

 
The initialization code sets static Booleans recording and replaying to indicate 
whether record mode and replay mode are active, respectively. Note that it is possible for 
both to be active simultaneously. 
 
Each disk operation supported by the model is described in an enumeration: 
 

typedef enum drEventTypeE { 
    DR_OPEN = 1,        // open() call 
    DR_CLOSE,           // close() call 
    DR_READ,            // read() call 
    DR_READ_DATA,       // read() data block 
    DR_WRITE,           // write() call 
    DR_FSTAT64,         // fstat64() call 
    DR_FSTAT64_DATA,    // fstat64() data block 
    DR_LSEEK64,         // lseek64() call 
} drEventType; 

 
There are functions which use the BHM primitives described in this document to record 
and replay an event of a particular type: 
 

static void drRecordEventOfType(drEventType type, Uns32 bytes, void *data) { 
    bhmRecordEvent(type, bytes, data); 
} 
 
static void drReplayEventOfType(drEventType type, Uns32 bytes, void *data) { 
 
    drEventType actualType; 
    Int32       actualBytes = bhmReplayEvent(NULL, &actualType, bytes, data); 
 
    if(bytes<0) { 
        bhmMessage("F", PREFIX, 
            "Replay file ended: no further replay is possible" 
        ); 
    } else if(type!=actualType) { 
        bhmMessage("F", PREFIX, 
            "Unexpected record type (required=%u, actual=%u)", 
            type, 
            actualType 
        ); 
    } else if(bytes!=actualBytes) { 
        bhmMessage("F", PREFIX, 
            "Unexpected record size (required=%u, actual=%u)", 
            bytes, 
            actualBytes 
        ); 
    } 
} 

 
Each supported primitive operation is wrapped by a utility routine that either implements 
the operation or replays it. If the operation is implemented, it is also recorded if required. 
For example, function drRead implements the basic read operation as follows: 
 

static ssize_t drRead(Int32 fd, void *buf, size_t count) { 
 
    ssize_t result; 
 
    if(replaying) { 
        drReplayEventOfType(DR_READ, sizeof(result), &result); 
        if(result && (result!=-1)) { 
            drReplayEventOfType(DR_READ_DATA, result, buf); 
        } 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 45 of 165 

    } else { 
        result = read(fd, buf, count); 
        if(recording) { 
            drRecordEventOfType(DR_READ, sizeof(result), &result); 
            if(result && (result!=-1)) { 
                drRecordEventOfType(DR_READ_DATA, result, buf); 
            } 
        } 
    } 
 
    return result; 
} 

 
Function bdrvShutdown is called at the end of the simulation and includes code to close 
the record and replay files: 
 

void bdrvShutdown(void) 
{ 
    . . . lines deleted . . . 
 
    bhmRecordFinish(); 
    bhmReplayFinish(); 
} 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 46 of 165 

4.3 bhmRecordStart 
 
Prototype 

Bool bhmRecordStart(void); 

 
Description 
This function is called to determine if recording is required, and if so, prepare a recording 
channel for this model instance. It returns True if recording is required. 
 
Example 
This example is taken from the OVP PS2 Interface peripheral. 
 

#include "peripheral/bhm.h” 
 
static Bool recording = False; 
 
static Bool recordOpen(void) 
{ 
    return (recording = bhmRecordStart()); 
} 
 
void ps2Init( 
    Bool     grabDisable, 
    Bool     cursorEnable, 
    updateFn keyboardCB, 
    updateFn mouseCB 
) { 
    replayOpen(); 
    recordOpen(); 
    . . . etc . . . 
} 

 
Notes and Restrictions 

1. The function must be called before any recordable events have occurred. 
2. If the model also supports save/restore, record/replay state must be reestablished 

as part of the peripheral restore process. For the OVP PS2 Interface peripheral, 
this is done as follows: 
 

void ps2Restore(void) { 
    replayOpen(); 
    recordOpen(); 
} 
 
PPM_SAVE_STATE_FN(peripheralSaveState) { 
    // YOUR CODE HERE (peripheralSaveState) 
} 
 
PPM_RESTORE_STATE_FN(peripheralRestoreState) { 
    ps2Restore(); 
} 

 
 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 47 of 165 

4.4 bhmRecordEvent 
 
Prototype 

void bhmRecordEvent(Uns32 type, Uns32 bytes, void *data); 

 
Description 
This function records one event to the recording channel for this peripheral instance. The 
arguments are: 

1. type: a model-specific event type code. 
2. bytes: the size of the data associated with the event. 
3. data: a pointer to the data block to be recorded. 

If bytes is zero, this is a null event and the data argument is ignored. 
 
Example 
This example is taken from the OVP PS2 Interface peripheral. 
 

#include "peripheral/bhm.h” 
 
typedef enum ktEventTypesE { 
    KT_NULL = 78, 
    KT_EVENT, 
    KT_NO_MORE_EVENTS, 
    KT_FINISH 
} ktEventTypes; 
 
static Bool recording = False; 
 
static void recordNullEvent(void) { 
    if(recording) { 
        bhmRecordEvent(KT_NULL, 0, NULL); 
    } 
} 
 
static void recordEvent(InputStateP is) { 
    if(recording) { 
        bhmRecordEvent(KT_EVENT, sizeof(*is), is); 
    } 
} 
 
static void recordEndOfGroup(void) 
{ 
    if(recording) { 
        bhmRecordEvent(KT_NO_MORE_EVENTS, 0, NULL); 
    } 
} 
 
static void livePoll(Bool disableInput) { 
 
    if (disableInput) { 
        return; 
    } 
 
    InputState  inputState; 
    Uns32       iters = 0; 
 
    while(kbControlPoll(&inputState,kbMouse)) { 
        actOnEvent(&inputState); 
        recordEvent(&inputState); 
        iters++; 
    } 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 48 of 165 

    if(iters == 0) 
        recordNullEvent(); 
    else 
        recordEndOfGroup(); 
} 

 
Notes and Restrictions 

1. In a simulation in which both record and replay are active, it is not necessary to 
explicitly specify values to be recorded using bhmRecordEvent: the simulator 
automatically fills the record stream in this case, and calls to bhmRecordEvent are 
ignored. 

 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 49 of 165 

4.5 bhmRecordFinish 
 
Prototype 

Bool bhmRecordFinish(void); 

 
Description 
Close the recording channel for this peripheral instance. 
 
Example 
This example is taken from the OVP PS2 Interface peripheral. 
 

#include "peripheral/bhm.h” 
 
void ps2Finish(void) { 
    kbControlCleanUp(); 
 
    if(recording) { 
        bhmRecordFinish(); 
    } 
    if(replaying) { 
        bhmReplayFinish(); 
    } 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 50 of 165 

4.6 bhmReplayStart 
 
Prototype 

Bool bhmReplayStart(void); 

 
Description 
This function is called to determine if replay is required, and if so, opens a channel for 
this model instance. The function returns True if replay is required. 
 
Example 
This example is taken from the OVP PS2 Interface peripheral. 
 

#include "peripheral/bhm.h” 
 
static Bool replaying = False; 
 
static Bool replayOpen(void) { 
    return (replaying = bhmReplayStart()); 
} 
 
void ps2Init( 
    Bool     grabDisable, 
    Bool     cursorEnable, 
    updateFn keyboardCB, 
    updateFn mouseCB 
) { 
    replayOpen(); 
    recordOpen(); 
    . . . etc . . . 
} 

 
Notes and Restrictions 

1. The function must be called before any replayable events have occurred. 
2. If the model also supports save/restore, record/replay state must be reestablished 

as part of the peripheral restore process. For the OVP PS2 Interface peripheral, 
this is done as follows: 
 

void ps2Restore(void) { 
    replayOpen(); 
    recordOpen(); 
} 
 
PPM_SAVE_STATE_FN(peripheralSaveState) { 
    // YOUR CODE HERE (peripheralSaveState) 
} 
 
PPM_RESTORE_STATE_FN(peripheralRestoreState) { 
    ps2Restore(); 
} 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 51 of 165 

4.7 bhmReplayEvent 
 
Prototype 

Int32 bhmReplayEvent(double *time, Uns32 *type, Uns32 maxBytes, void *data); 

 
Description 
This function fetches the next event from the replay channel for this peripheral instance. 
It returns the number of bytes of user data associated with this event, which might be 
zero. A return value of -1 indicates that the end of the replay file has been reached and 
there are no more events to be read. Other arguments are as follows: 

1. time: a by-ref argument filled with the time of this event. This parameter is for 
legacy use only and the returned value will always match the current simulated 
time when OVP2-format files are read. Pass NULL if the time is not required. 

2. type: a by-ref argument filled with the model-specific event type code passed 
originally to bhmRecordEvent. 

3. maxBytes: the maximum size of the data associated with the event. Simulation 
will exit with an error if the replayed data exceeds this size. 

4. data: a pointer to a data block to be filled with data. 
If the returned size is zero, this is a null event and the data argument is ignored. 
 
Example 
This example is taken from the OVP PS2 Interface peripheral. 
 

#include "peripheral/bhm.h” 
 
static Bool replaying = False; 
 
static void replayPoll(void) { 
 
    static Bool fetch = True; 
 
    while(fetch) { 
 
        Uns32      type; 
        InputState inputState; 
 
        // get next event from replay file 
        Int32 bytes = bhmReplayEvent( 
            NULL, &type, sizeof(inputState), &inputState 
        ); 
 
        if (bytes < 0) { 
 
            // detect end-of-file 
            fetch = False; 
 
        } else { 
 
            switch(type) { 
 
                case KT_NULL: 
                    return; 
 
                case KT_EVENT: 
                    actOnEvent(&inputState); 
                    break; 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 52 of 165 

                case KT_NO_MORE_EVENTS: 
                    return; 
 
                default: 
                    bhmMessage("F", "PS2_IF", "Illegal entry in record file"); 
                    break; 
            } 
        } 
    } 
} 
 
void ps2Poll(Bool disableInput) { 
 
    if (replaying) { 
 
        replayPoll(); 
        InputState inputState; 
        kbControlPoll(&inputState, kbMouse); 
 
    } else { 
 
        livePoll(disableInput); 
    } 
} 

 
Notes and Restrictions 

1. It is the user's responsibility to ensure that the data buffer is large enough to 
handle any record type read from the replay file. 

2. In a simulation in which both record and replay are active, it is not necessary to 
explicitly specify values to be recorded using bhmRecordEvent: the simulator 
automatically fills the record stream in this case, and calls to bhmRecordEvent are 
ignored. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 53 of 165 

4.8 bhmReplayFinish 
 
Prototype 

Bool bhmReplayFinish(void); 

 
Description 
Close the replay channel for this peripheral instance. 
 
Example 
This example is taken from the OVP PS2 Interface peripheral. 
 

#include "peripheral/bhm.h” 
 
void ps2Finish(void) { 
    kbControlCleanUp(); 
 
    if(recording) { 
        bhmRecordFinish(); 
    } 
    if(replaying) { 
        bhmReplayFinish(); 
    } 
} 

 
Notes and Restrictions 
None. 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 54 of 165 

4.9 Controlling record and replay 
If you are using OVPsim, record or replay is turned on by defining the platform 
parameters record or replay on each peripheral instance that requires this behavior. It is 
usual to set record or replay for all peripherals or no peripherals so that the whole 
platform behaves consistently. See OVPsim and CpuManager User Guide for the 
definition of functions in this example: 
 

#include "op/op.h" 
 
optParamP      params = NULL; 
 
if(replaymode) { 
    params = opParamStringSet(params, "replay", getMyReplayFile()); 
} 
 
optPeripheralP myPSE = opPeripheralNew ( 
    mi, 
    psePath, 
    “pse1”, 
    OP_CONNECTIONS( 
      OP_BUS_CONNECTIONS( 
        OP_BUS_CONNECT(bus_b, "bp1", .slave=1, .addrLo=0x100, .addrHi=0x1ff) 
      ) 
    ), 
    params 
); 

 
If you are using the simulator with the standard command line parser, recording is turned 
on from the command line: 
 

cmd> platform.<ARCH>.exe \ 
    .... \ 
    --modelrecorddir <directory> 
    .... \ 

 
<directory> refers to a directory (folder) which will be created if it does not exist and in 
which the logged events will be stored. Explorer tags each file in the directory so it can 
check that the files are valid and that they match the platform. 
 
Replay is similar; a directory (folder) is specified which contains pre-recorded events: 
 

cmd> platform.<ARCH>.exe \ 
    .... \ 
    --modelreplaydir <directory> 
    .... \ 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 55 of 165 

5 Platform Interaction (PPM) 
PPM function provide access to the platform hardware; buses, bus-ports, nets and net-
ports. 

5.1 ppmOpenMasterBusPort 
 
Prototype 

ppmExternalBusHandle ppmOpenMasterBusPort( 
    char          *busPortName, 
    volatile void *localLoAddress, 
    Uns64          sizeInBytes, 
    SimAddr        remoteLoAddress 
); 

 
Description 
Create a bus bridge from the PSE’s virtual address space to a simulated bus in the 
platform. Connection is by busPortName - the name of a master port in the peripheral 
model, which was connected to a bus during platform construction. 
 
localLoAddress and sizeInBytes specify the connected region in the PSE’s address 
space. 
 
remoteLoAddress specifies the address on the simulated bus that will be accessed from 
the first address in the connected region. 
 
When a bus master port has been opened, reads and writes by the peripheral will be 
mapped to the simulated bus. 
 
It returns a handle to the mapped region so it may be moved or unmapped later. If the 
function fails it will return PPM_INVALID_HANDLE. 
 
Example 

#include “peripheral/ppm.h” 
 
 
Uns8 masterRegion[1024];  // Local region to be mapped. 
 
{ 
    ppmExternalBusHandle h = ppmOpenMasterBusPort( 
        “portA”, 
        &masterRegion[0], 
        Sizeof(masterRegion), 
        0x80000000 
    ); 
 
    // This will fill with FFs the region 0x80000000 to 0x800003FF 
    // on the bus connected to ‘portA’ 
    memset(masterRegion, 0xFF, sizeof(masterRegion)); 
} 

 
Notes and Restrictions 

1. The local region cannot be mapped more than once. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 56 of 165 

2. Reads and writes will be efficiently executed (as in the example, using memset) 
but cannot be accounted by bus traffic analysis tools or by simulation scheduling 
algorithms which take account of bus traffic. To simulate discrete peripheral 
memory cycles, use ppmOpenAddressSpace. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 57 of 165 

5.2 ppmChangeRemoteLoAddress 
 
Prototype 

Bool ppmChangeRemoteLoAddress( 
    ppmExternalBusHandle h, 
    SimAddr remoteLoAddress 
); 

 
Description 
Changes the remote address of an existing window. 
 
Returns False if the operation fails. 
 
Example 

#include “peripheral/ppm.h” 
 
 
Uns8 masterRegion[1024];  // Local region to be mapped. 
 
{ 
    ppmExternalBusHandle h = ppmOpenMasterBusPort( 
        “portA”, 
        &masterRegion[0], 
        Sizeof(masterRegion), 
        0x80000000 
    ); 
 
    // This will fill with FFs the region 0x80000000 to 0x800003FF 
    // on the bus connected to ‘portA’ 
    memset(masterRegion, 0xFF, sizeof(masterRegion)); 
 
    ppmChangeRemoteLoAddress(h, 0x90000000); 
 
    // This will fill with FFs the region 0x90000000 to 0x900003FF 
    memset(masterRegion, 0xFF, sizeof(masterRegion)); 
 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 58 of 165 

5.3 ppmOpenAddressSpace 
 
Prototype 

ppmAddressSpaceHandle ppmOpenAddressSpace(char *busPortName); 

 
Description 
Procedural access to simulated buses. Returns a handle to an address space which may be 
used to read and write directly to that space. 
 
If the function fails it will return PPM_INVALID_HANDLE. 
 
Example 

#include “peripheral/ppm.h” 
 
{ 
    ppmAddressHandle h = ppmOpenAddressSpace(“portA”); 
    if(!h) { 
        // error handling 
    } 
    Uns8 buf[4]; 
 
    ppmReadAddressSpace(h, 0x80000000, sizeof(buf), buf); 
    ppmWriteAddressSpace(h, 0x90000000, sizeof(buf), buf); 
 
    ppmCloseAddressSpace(h); 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 59 of 165 

5.4 ppmReadAddressSpace 
 
Prototype 

Bool ppmReadAddressSpace( 
    ppmAddressSpaceHandle  handle, 
    Uns64                  address, 
    Uns32                  bytes, 
    void                   *data 
); 

 
Description 
Atomic read of data from an address space into a local buffer. 
 
Returns False if the operation fails. 
 
Example 

#include “peripheral/ppm.h” 
 
{ 
    ppmAddressHandle h = ppmOpenAddressSpace(“portA”); 
    Uns8 buf[4]; 
 
    // copy 4 bytes from 0x80000000 - 0x80000003 
    // to 0x90000000 - 0x90000003 
    // on bus connected to portA 
    ppmReadAddressSpace(h, 0x80000000, sizeof(buf), buf); 
    ppmWriteAddressSpace(h, 0x90000000, sizeof(buf), buf); 
 
    ppmCloseAddressSpace(h); 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 60 of 165 

5.5 ppmWriteAddressSpace 
 
Prototype 

Bool ppmWriteAddressSpace( 
    ppmAddressSpaceHandle  handle, 
    Uns64                  address, 
    Uns32                  bytes, 
    void                   *data 
); 

 
Description 
Atomic write of data to an address space from a local buffer. 
 
Returns False if the operation fails. 
 
Example 

#include “peripheral/ppm.h” 
 
{ 
    ppmAddressHandle h = ppmOpenAddressSpace(“portA”); 
    Uns8 buf[4]; 
 
    // copy 4 bytes from 0x80000000 - 0x80000003 
    // to 0x90000000 - 0x90000003 
    // on bus connected to portA 
    ppmReadAddressSpace(h, 0x80000000, sizeof(buf), buf); 
    ppmWriteAddressSpace(h, 0x90000000, sizeof(buf), buf); 
 
    ppmCloseAddressSpace(h); 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 61 of 165 

5.6 ppmTryReadAddressSpace 
 
Prototype 

Bool ppmTryReadAddressSpace( 
    ppmAddressSpaceHandle  handle, 
    Uns64                  address, 
    Uns32                  bytes 
); 

 
Description 
See if atomic read of data from an address space would complete or not. 
 
Returns False if the operation would not complete. 
 
Example 

#include “peripheral/ppm.h” 
 
{ 
    ppmAddressHandle h = ppmOpenAddressSpace(“portA”); 
 
    // try to read 4 bytes from 0x80000000 - 0x80000003 
    // on bus connected to portA 
    Bool ok = ppmTryReadAddressSpace(h, 0x80000000, 4); 
 
    func(ok); 
 
    ppmCloseAddressSpace(h); 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 62 of 165 

5.7 ppmTryWriteAddressSpace 
 
Prototype 

Bool ppmTryWriteAddressSpace( 
    ppmAddressSpaceHandle  handle, 
    Uns64                  address, 
    Uns32                  bytes 
); 

 
Description 
See if atomic write of data to an address space would complete or not. 
 
Returns False if the operation would not complete. 
 
Example 

#include “peripheral/ppm.h” 
 
{ 
    ppmAddressHandle h = ppmOpenAddressSpace(“portA”); 
 
    // try write 4 bytes from 0x90000000 - 0x90000003 
 
    Bool ok = ppmTryWriteAddressSpace(h, 0x90000000, 4); 
 
    func(ok); 
 
    ppmCloseAddressSpace(h); 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 63 of 165 

5.8 ppmCloseAddressSpace 
 
Prototype 

Bool ppmCloseAddressSpace(ppmAddressSpaceHandle h); 

 
Description 
Close an address space. 
 
Returns False if the operation fails. 
 
Example 

#include “peripheral/ppm.h” 
 
{ 
    ppmAddressHandle h = ppmOpenAddressSpace(“portA”); 
    Uns8 buf[4]; 
 
    ppmReadAddressSpace(h, 0x80000000, sizeof(buf), buf); 
    ppmWriteAddressSpace(h, 0x90000000, sizeof(buf), buf); 
 
    ppmCloseAddressSpace(h); 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 64 of 165 

5.9 ppmOpenSlaveBusPort 
 
Prototype 

ppmLocalBusHandle ppmOpenSlaveBusPort( 
    const char *portName, 
    void       *localAddress, 
    Uns64      sizeInBytes 
); 

 
Description 
Expose a region in the PSE’s address space to reads and writes from a simulated bus. The 
local region effectively becomes RAM in the simulated system at the addresses specified 
in the construction of the port connection. 
 
If the function fails it will return PPM_INVALID_HANDLE. 
 
Example 

#include “peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
{ 
    Uns8 rtcRam[32]; 
 
    ppmLocalBusHandle h = ppmOpenSlaveBusPort(“p1”, &rtcRam[0], sizeof(rtcRam)); 
 
    while(1) { 
        bhmWaitDelay(1000 * 1000); 
 
        if(++rtcRam[SECS] == 60) { 
            rtcRam[SECS] = 0; 
            if(++rtcRam[MINS] == 60) { 
               rtcRam[MINS] = 0; 
               if(++rtcRam[HRS] == 24) { 
                  rtcRam[HRS] = 0; 
               } 
           } 
        } 
    } 
} 

 
Notes and Restrictions 

1. The same area of memory can be exposed through more than one port, creating 
dual or multiple ported memories. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 65 of 165 

5.10 ppmCreateSlaveBusPort 
 
Prototype 

void *ppmCreateSlaveBusPort( 
    const char *portName, 
    Uns64      sizeInBytes 
); 

 
Description 
Allocate a window of this many bytes and expose it to the bus connected to the named 
slave port. This function generally supersedes ppmOpenSlaveBusPort(), removing the 
need to allocate the window before exposing it. It is typically used in conjunction with 
ppmCreateNByteRegister() to create a set of memory-mapped registers which are 
accessible from a particular platform bus. 
 
Example 

#include “peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
{ 
    void *regPort = ppmCreateSlaveBusPort("regPort", 24); 
 
    ppmCreateRegister("reg1", "control reg", regPort, 0,  4, .........); 
    ppmCreateRegister("reg2", "data reg",    regPort, 4,  4, .........); 
 
    ..... 
    ppmCreateRegister("reg6", "status reg",  regPort, 20, 4, .........); 
} 

 
Notes and Restrictions 

1. This variant does not allow the moving (remapping) or deletion of the slave port. 
Use ppmOpenSlaveBusPort() is these facilities are required. 

2. See ppmCreateRegister 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 66 of 165 

5.11 ppmMoveLocalLoAddress 
 
Prototype 

Bool ppmMoveLocalLoAddress( 
    ppmLocalBusHandle   h, 
    void                *localAddress 
); 

 
Description 
Move the exposed region in the PSE’s address space. 
 
Returns False if the operation fails. 
 
Example 

#include “peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
{ 
    Uns8 rtcRam[32]; 
 
    Uns8 backupRam[32]; 
 
    ppmLocalBusHandle h = ppmOpenSlaveBusPort(“p1”, &rtcRam[0], sizeof(rtcRam)); 
 
 
    bhmWaitDelay(1000 * 1000); 
 
    if(backupMode()) { 
        // now backupRam is exposed instead of rtcRam 
        ppmMoveLocalLoAddress(h, &backupRam[0]); 
    } 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 67 of 165 

5.12 ppmDeleteLocalBusHandle 
 
Prototype 

Bool ppmDeleteLocalBusHandle(ppmLocalBusHandle h); 

 
Description 
Delete a local mapped region. 
 
Returns False if the operation fails. 
 
Example 

#include “peripheral/ppm.h” 
 
{ 
    Uns8 rtcRam[32]; 
 
    ppmLocalBusHandle h = ppmOpenSlaveBusPort(“p1”, &rtcRam[0], sizeof(rtcRam)); 
 
    ... 
 
    ppmDeleteLocalBusHandle(h); 
} 

 
Notes and Restrictions 
None 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 68 of 165 

5.13 ppmInstallReadCallback 
 
Prototype 

typedef Uns32(*ppmCBReadFunc)(void *addr, Uns32 bytes, void *user); 
 
void ppmInstallReadCallback( 
    ppmCBReadFunc cb, 
    void *user, 
    void *lo, 
    Uns32 bytes 
); 

 
Description 
(deprecated, use ppmInstallNByteCallbacks()) 
Cause a user defined function to be called when a simulated processor or PSE reads from 
the specified region. 
 
Arguments: 
 cb the user function 
 user user defined data which will be passed to the callback. 
 lo base of the sensitized region 
 bytes size of the sensitized region. 
 
Example 

#include “peripheral/ppm.h” 
 
static Uns8 registers[4]; 
 
static PPM_READ_CB(readReg) 
{ 
    If(bytes != 1) { 
        bhmMessage(“F”, “MY_PERIPH”, “Only byte-wide access supported”); 
    } 
    Uns32 offset = (Uns8*)addr – registers; 
 
    if(artifactAccess) { 
        ... 
    } else { 
        switch(offset){ 
        case 0: 
            return calcR0(); 
        case 1:  
            return calcR1(); 
        case 2:  
            return calcR2(); 
        default:  
            return calcR3(); 
        } 
    } 
} 
 
...{ 
    ppmOpenSlaveBusPort(“portA”, registers, sizeof(registers)); 
    ppmInstallReadCallback(readReg, NULL, registers, sizeof(registers)); 
    ppmInstallWriteCallback(writeReg, NULL, registers, sizeof(registers)); 
} 

 
Notes and Restrictions 

1. If the callback reads from it’s own sensitized region, a fatal recursion will occur. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 69 of 165 

2. A callback can be replaced by another on all or part of a region; the last install 
will win. 

3. The callback should not call bhmWaitEvent() or bhmWaitDelay(). 
4. Use the prototype macro to declare the callback. 
5. Delays in callbacks are allowed. Refer to OVP Peripheral Modelling Guide:  

“Delays in Callbacks”. 
6. The callback supports a maximum transfer size of 4 bytes 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 70 of 165 

5.14 ppmInstallWriteCallback 
 
Prototype 

typedef PPM_WRITE_CB((*ppmCBWriteFunc)); 
 
void ppmInstallWriteCallback( 
    ppmCBWriteFunc cb, 
    void *user, 
    void *lo, 
    Uns32 bytes 
); 

 
Description 
(deprecated, use ppmInstallNByteCallbacks) 
Cause a user defined function to be called when a simulated processor or PSE writes to 
the specified region. 
 
Arguments: 
 cb the user function 
 user user defined data which will be passed to the callback. 
 lo base of the sensitized region 
 bytes size of the sensitized region. 
 
Example 

#include “peripheral/ppm.h” 
 
static Uns8 registers[4]; 
 
static PPM_WRITE_CB(writeReg) { 
    If(bytes != 1) { 
        bhmMessage(“F”, “MY_PERIPH”, “Only byte-wide access supported”); 
    } 
    Uns32 offset = (Uns8*)addr – registers; 
    if(artifactAccess) { 
        // prevent side effects? 
    } else { 
        switch(offset){ 
        case 0: 
            R0 = data; 
     updateState(); 
     break; 
        case 1:  
            R1 = data; 
     updateState(); 
       break; 
        case 2:  
            R2 = data; 
     updateState(); 
       break; 
        default:  
            R3 = data; 
     updateState(); 
       break; 
        } 
    } 
} 
 
...{ 
    ppmOpenSlaveBusPort(“portA”, registers, sizeof(registers)); 
    ppmInstallReadCallback(readReg, NULL, registers, sizeof(registers)); 
    ppmInstallWriteCallback(writeReg, NULL, registers, sizeof(registers)); 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 71 of 165 

} 
 

 
Notes and Restrictions 

1. If the callback writes to it’s own sensitized region, a fatal recursion will occur. 
2. A callback can be replaced by another on all or part of a region; the last install 

will win. 
3. The callback should not call bhmWaitEvent() or bhmWaitDelay(). 
4. Use the prototype macro to declare the callback. 
5. The model writer might choose to inhibit side effects if the access is a simulation 

artifact. 
6. Delays in callbacks are allowed. Refer to OVP Peripheral Modelling Guide:  

“Delays in Callbacks”. 
7. The callback supports a maximum transfer size of 4 bytes 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 72 of 165 

5.15 ppmInstallChangeCallback 
 
Prototype 

typedef PPM_WRITE_CB((*ppmCBWriteFunc)); 
 
void ppmInstallChangeCallback( 
    ppmCBWriteFunc cb, 
    void *user, 
    void *lo, 
    Uns32 bytes 
); 

 
Description 
(deprecated, use ppmInstallNByteCallbacks) 
Cause a user defined function to be called when a simulated processor or PSE writes a 
new value to the specified region. 
 
Arguments: 
 cb the user function 
 user user defined data which will be passed to the callback. 
 lo base of the sensitized region 
 bytes size of the sensitized region. 
 
Example 

#include “peripheral/ppm.h” 
 
static Uns8 registers[4]; 
 
static PPM_WRITE_CB(writeReg) { 
    If(bytes != 1) { 
        bhmMessage(“F”, “MY_PERIPH”, “Only byte-wide access supported”); 
    } 
    Uns32 offset = (Uns8*)addr – registers; 
    if(artifactAccess) { 
        // prevent side effects? 
    } else { 
        switch(offset){ 
        case 0: 
            R0 = data; 
     updateState(); 
     break; 
        case 1:  
            R1 = data; 
     updateState(); 
       break; 
        case 2:  
            R2 = data; 
     updateState(); 
       break; 
        default:  
            R3 = data; 
     updateState(); 
       break; 
        } 
    } 
} 
 
{ 
    ppmOpenSlaveBusPort(“portA”, registers, sizeof(registers)); 
    ppmInstallChangeCallback(writeReg, NULL, registers, sizeof(registers)); 
} 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 73 of 165 

 

 
Notes and Restrictions 

1. If the callback writes to it’s own sensitized region, a fatal error will occur. 
2. A callback can be replaced by another on all or part of a region; the last install 

will win. 
3. The callback should not call bhmWaitEvent() or bhmWaitDelay(). 
4. Use the prototype macro to declare the callback. 
5. The model writer might choose to inhibit side effects if the access is a simulation 

artifact. 
6. Delays in callbacks are allowed. Refer to OVP Peripheral Modelling Guide:  

“Delays in Callbacks”. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 74 of 165 

5.16 ppmInstallNByteCallbacks 
Prototype 

/// Memory wide read callback 
#define PPM_NBYTE_READ_CB(_name)  \ 
    void (_name)(                 \ 
        Uns32       offset,       \ 
        void       *data,         \ 
        Uns32       bytes,        \ 
        void       *userData,     \ 
        Bool        artifactAccess) 
 
 
typedef PPM_NBYTE_READ_CB((*ppmNByteReadFunc)); 
 
/// Memory write write callback 
#define PPM_NBYTE_WRITE_CB(_name) \ 
    void (_name)(                 \ 
        Uns32       offset,       \ 
        const void *data,         \ 
        Uns32       bytes,        \ 
        void       *userData,     \ 
        Bool        artifactAccess) 
 
typedef PPM_NBYTE_WRITE_CB((*ppmNByteWriteFunc)); 
 
void ppmInstallNByteCallbacks( 
    ppmNByteReadFunc  read, 
    ppmNByteWriteFunc write, 
    void             *userData, 
    void             *loAddr, 
    Uns32             bytes, 
    Bool              readable, 
    Bool              writable, 
    Bool              isVolatile, 
    bhmEndian         endian 
); 

 
Description 
Cause user defined functions to be called when a simulated processor or PSE reads or 
writes to the specified region. Usually used with ppmCreateSlaveBusPort(). In the 
example below the slave port sp1 will be connected to a bus at an address set by code in 
the platform (or code in module which is part of the platform). The region returned by 
ppmCreateSlaveBusPort() will be mapped to the region on the connected bus. 
 
Arguments: 
 read  The user function called when the region is read 
 write  The user function called when the region is written 
 userData User defined data which will be passed to the callback. 
 loAddr  Base of the sensitized region 
 bytes  Size of the sensitized region. 

readable If true, the region can be read. Must be true if read function is 
specified. If false and there is no callback then the region is 
protected against reading. 

writeable If true, the region can be written. Must be true if write function is 
specified. If false and there is no callback then the region is 
protected against writing. 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 75 of 165 

isVolatile If true, region will be written if the value has changed. If false,  
writes of the same value are suppressed. 

endian Controls byte-swapping. If BHM_ENDIAN_BIG, values will be byte-
swapped. 

 
Example 

#include “peripheral/ppm.h” 
 
PPM_NBYTE_READ_CB(readNCB) { 
    const char *txt = userData; 
    bhmPrintf( 
        "Read %s bytes=%u user=%s  offset=%u\n", 
        artifactAccess ? “artifact” : “real”, 
        bytes, 
        txt, 
        offset 
    );    
    Uns32 b; 
    Uns8 *p; 
    for(p = data, b = 0; b < bytes; b++) { 
        *p++ = nextByte(); 
    } 
} 
 
PPM_NBYTE_WRITE_CB(writeNCB) { 
    const char *txt = userData; 
    bhmPrintf( 
        "Write %s bytes=%u user=%s  offset=%u\n", 
        artifactAccess ? “artifact” : “real”, 
        bytes, 
        txt, 
        offset 
    );    
  
    Uns32 b; 
    const Uns8 *p; 
    for(p = data, b = 0; b < bytes; b++) { 
        bhmPrintf(" 0x%x", *p++); 
    } 
    bhmPrintf("\n"); 
} 
 
int main() { 
    Uns32 bytes = 64; 
    void *handle = ppmCreateSlaveBusPort("sp1", bytes); 
    ppmInstallNByteCallbacks( 
        readNCB, 
        writeNCB, 
        "read write", 
        handle, 
        bytes, 
        1, 
        1, 
        0, 
        endian 
    ); 
} 

 
Notes and Restrictions 

1. If a callback writes to it’s own sensitized region, a fatal error will occur. 
2. A callback can be replaced by another on all or part of a region; the last install 

will win. 
3. The callback should not call bhmWaitEvent() or bhmWaitDelay(). 
4. Use the prototype macro to declare the callback. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 76 of 165 

5. The model writer might choose to inhibit side effects if the access is a simulation 
artifact. 

6. If the read callback is specified, the readable flag is ignored and assumed to be 
true. 

7. If the write callback is specified, the writable flag is ignored and assumed to be 
true. 

8. Delays in callbacks are allowed. Refer to OVP Peripheral Modelling Guide:  
“Delays in Callbacks”. 

9. To signal that the read or write cannot be completed, the callback should call 
ppmReadAbort or ppmWriteAbort. 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 77 of 165 

5.17 ppmReadAbort 
Prototype 

 
void ppmReadAbort(void); 

 
Description 
In a bus or register read callback, signal that the read cannot be completed. This will 
abort the read in the application processor that initiated it. 
 
Notes and Restrictions 

1. This function may only be used in a callback context. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 78 of 165 

5.18 ppmWriteAbort 
 
Prototype 

 
void ppmWriteAbort(void); 

 
Description 
In a bus or register write callback, signal that the write cannot be completed. This will 
abort the read in the application processor that initiated it. 
 
Notes and Restrictions 

1. This function may only be used in a callback context. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 79 of 165 

5.19 ppmOpenNetPort 
 
Prototype 

ppmNetHandle ppmOpenNetPort(const char *portName);  

 
Description 
Makes a connection to the net connected to the given net port. 
 
It returns a handle to the net. If the function fails it will return PPM_INVALID_HANDLE. 
 
A net is a means of connecting a function call in one model (the net driver) to a function 
call-back in one or more other models (the receivers). The net does not model contention; 
a net takes the last written value. Writing a net with the same value will cause call-backs 
to occur. A net value is a 32-bit integer; it can mean whatever the user wishes, but 
typically takes the values zero or non-zero to mean logic 0 or 1. 
 
Example 

 
#include “peripheral/ppm.h” 
 
ppmNetHandle h = ppmOpenNetPort("int2"); 
 
void raiseInt(void) { 
    ppmWriteNet(h, 1); 
} 
 
void lowerInt(void) { 
    ppmWriteNet(h, 0); 
} 

 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 80 of 165 

5.20 ppmWriteNet 
 
Prototype 

void ppmWriteNet(ppmNetHandle handle, ppmNetValue value); 

 
Description 
 
Propagate a value to all ports connected to the given net. Any other connected port will 
cause its net callbacks to occur. 
 
Example 

 
#include “ppm.h” 
 
ppmNetHandle h = ppmOpenNetPort("int2"); 
 
void raiseInt(void) { 
    ppmWriteNet(h, 1); 
} 
 
void lowerInt(void) { 
    ppmWriteNet(h, 0); 
} 

 
 
Notes and Restrictions 

1. There is no simulation of net contention; the net takes the last value written. 
2. Care should be taken if ppmWriteNet() is called from a net callback; A cyclic net 

topology in the platform will cause a fatal recursion. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 81 of 165 

5.21  ppmReadNet 
 
Prototype 

ppmNetValue ppmReadNet(ppmNetHandle handle); 

 
Description 
Returns the last value written to the net.  
 
Example 

#include "peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
{ 
    ppmNetHandle h = ppmOpenNetPort("int2"); 
} 
 
ppmNetValue old = 0; 
 
void checkNet(void) { 
    ppmNetValue new = ppmReadNet(h); 
    if (new != old) { 
       bhmMessage("I", "NY_PERIPHERAL", "Net 'int2' changed"); 
        old = new; 
    } 
} 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 82 of 165 

5.22 ppmInstallNetCallback 
 
Prototype 

typedef PPM_NET_CB((*ppmCBNetFunc)); 
 
void ppmInstallNetCallback( 
    ppmNetHandle  handle, 
    ppmCBNetFunc  cb, 
    void          *userData 
); 

 
Description 
Install a function callback on a net. The function will be called when any device writes a 
value to the net (even if the new value is same as the current value). 
 

Example 
#include "peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
ppmNetValue old = 0; 
 
PPM_NET_CB(netChanged) { 
    if (new != old) { 
        bhmMessage("I", "NY_PERIPHERAL", "Net 'int2' changed"); 
        old = new; 
    } 
} 
 
...{ 
    ppmNetHandle h = ppmOpenNetPort("int2"); 
    ppmInstallNetCallback(h, netChanged, 0); 
} 
 

 
 
Notes and Restrictions 

1. The callback should not call bhmWaitEvent() or bhmWaitDelay(). 
2. Use the prototype macro PPM_NET_CB to declare the callback. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 83 of 165 

5.23 ppmCreateDynamicBridge 
 
Prototype 

Bool ppmCreateDynamicBridge( 
    const char  *slavePort, 
    SimAddr     slavePortLoAddress, 
    Uns64       windowSizeInBytes, 
    const char  *masterPort, 
    SimAddr     masterPortLoAddress 
); 

 
Description 
Create a region of windowSizeInBytes starting at slavePortLoAddress on the bus 
connected to slavePort. Reads or writes by bus masters on this bus to this region will be 
mapped to the bus connected to masterPort, starting at address masterPortLoAddress.  
 
Example 

#include "peripheral/ppm.h" 
...{ 
    ppmCreateDynamicBridge( "sp1", 0x40000000, 0x1000, "mp1", 0x100); 
} 

 
Notes and Restrictions 

1. The region formed by windowSizeInBytes starting at slavePortLoAddress must 
not overlap any other static or dynamic decoded region on the connected bus. 

2. The region formed by windowSizeInBytes starting at masterPortLoAddress can 
overlap other master regions, resulting in shared or 'dual ported' regions. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 84 of 165 

5.24 ppmDeleteDynamicBridge 
 
Prototype 

void ppmDeleteDynamicBridge( 
    const char *slavePort, 
    SimAddr    slavePortLoAddress, 
    Uns64      windowSizeInBytes 
); 

 
Description 
Delete a previously constructed Dynamic Bridge of windowSizeInBytes starting at 
slavePortLoAddress on the bus connected to slavePort. Reads or writes by bus masters on 
this bus to this region will be no longer mapped to another bus. 
 
Example 

#include "peripheral/ppm.h" 
 
...{ 
    ppmCreateDynamicBridge( "sp1", 0x40000000, 0x1000, "mp1", 0x100); 
} 
 
...{ 
    ppmDeleteDynamicBridge( "sp1", 0x40000000, 0x1000); 
} 

 
Notes and Restrictions 

1. Only use this to remove a complete region created by ppmCreateDynamicBridge. 
2. Do not attempt to split a region by un-mapping part of an existing region. 
3. Do not attempt to un-map a region created by other means. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 85 of 165 

5.25 ppmCreateDynamicSlavePort 
 
Prototype 

void ppmCreateDynamicSlavePort( 
    const char *slavePort, 
    SimAddr    slaveLoAddress, 
    Uns64      sizeInBytes, 
    void       *localLowAddress 
); 

 
Description 
Expose the local region localLowAddress of size sizeInBytes starting at 
slavePortLoAddress to the remote bus connected to slavePort. Reads or writes by bus 
masters on the remote bus will be mapped to the local region. 
 
Example 

#include "peripheral/ppm.h" 
 
unsigned char   remappedRegion[sizeInBytes]; // allocate an area to be read/written 
 
const    char   *portName = "sp1"; 
static   SimAddr loAddr   = initialAddress();  // remember port addr 
 
ppmCreateDynamicSlaveBusPort(  // set the initial port address 
    portName, 
    loAddr, 
    sizeInBytes, 
    remappedRegion 
); 

 
Notes and Restrictions 

1. Do not overlap the remote region with any other static or dynamically mapped 
devices. 

2. More than one mapping can be made onto the local region, to give dual port 
behavior or to model folding caused by (for example) incomplete address 
decoding. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 86 of 165 

5.26 ppmDeleteDynamicSlavePort 
 
Prototype 

void ppmCreateDynamicSlavePort( 
    const char *slavePort, 
    SimAddr    slavePortLoAddress, 
    Uns64      sizeInBytes 
); 

 
Description 
Remove a mapping that was created using ppmCreateDynamicSlavePort. 
 
Example 

#include "peripheral/ppm.h" 
 
unsigned char remappedRegion[sizeInBytes];   // area to be read/written 
const char     *portName = "dp1"; 
static SimAddr loAddr    = initialAddress(); // remember port addr 
 
ppmCreateDynamicSlaveBusPort(  // set the initial port address 
    portName, 
    loAddr, 
    remappedRegion, 
    sizeInBytes 
); 
ppmDeleteDynamicSlavePort(       // remove the old mapping 
    portName, 
    loAddr, 
    sizeInBytes 
); 

 
Notes and Restrictions 

1. Do not use this function to remove any other kind of mapped region. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 87 of 165 

6 Memory mapped registers 

6.1 ppmCreateRegister 
Prototype 

registerHandle ppmCreateRegister( 
    const char     *name,           // name of register 
    const char     *description,    // to appear in the debugger 
    void           *base,           // base of local window 
                                    // (returned by ppmCreateSlaveBusPort) 
    Uns32          offset,          // from base of window                                             
    Uns64          bytes,           // size of this register 
    ppmCBReadFunc  readCB,          // called by a bus read 
    ppmCBWriteFunc writeCB,         // called by a bus write 
    ppmCBviewFunc  viewCB,          // called by debugger to non-destructively 
                                    // fetch the current value 
    void          *userData         // will be passed to the 3 callbacks. 
    Bool           isVolatile       // if false, writes of the same value will be 
                                    // optimized away 
); 

 
Description 
(deprecated, use ppmCreateNByteRegister) 
 
Similar to ppmInstallReadCallback and ppmInstallWriteCallback, but 
additionally creates an object visible to the debugger. The register-object has a name and 
description. It is accessed by a bus access of the correct size. 
 
The debugger can view the register without changing its value (which might occur if the 
register is read by a regular bus access, e.g. at the debug prompt:  print /x 
*myRegisterPointer) using the viewCB function. 
 
The register has debugger trigger-events associated with bus reads and writes. 
 
Reads and writes to the register will trigger debugger event-points and ( if the model's 
diagnostic level is set to enable system diagnostics) cause a message to be sent to the 
simulator log. 
 
If the function fails it will return PPM_INVALID_HANDLE. 
 
Example 

#include "peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
static PPM_READ_CB(readCB) { 
    if (!artifactAccess) { 
        readDone();   // side-effect of the read 
    } 
    return reg1; 
} 
 
static PPM_WRITE_CB(writeCB) { 
    reg1 |= data;   // write behavior need not be straight-forward 
} 
 
static PPM_VIEW_CB(viewCB) { 
    *(Uns32*)data = reg1;    // return the true value without side effects 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 88 of 165 

} 
 
 
void installRegs (){ 
    void *regPort = ppmCreateSlaveBusPort("regPort", 24); 
 
    ppmCreateRegister( 
        "reg1",                  // name 
        "control register1",     // description 
         regPort,                // base of window 
         0,                      // offset from window base 
         4,                      // size in bytes 
         readCB,                 // bus read function 
         writeCB,                // bus write function 
         viewCB,                 // debugger view function 
         True                    // volatile register 
    ); 
 
    ppmCreateRegister( 
        "reg2",                  // name 
        "control register2",     // description 
         regPort,                // base of window 
         4,                      // offset from window base 
         4,                      // size in bytes 
         readCB,                 // bus read function 
         writeCB,                // bus write function 
         viewCB,                 // debugger view function 
         False                   // non-volatile register 
    ); 
} 
 

 
In the example, 'reg1' occupies the first 4 bytes of the 24-byte port. The register callback 
will occur whenever a write occurs to its location, regardless of value; 'reg2' occupies the 
next 4 bytes. The register callback will not occur when the same value is re-written. 
 
The remaining 16 bytes of the window are implemented by memory which was allocated 
by the call to ppmCreateSlaveBusPort(). 
 
Notes and Restrictions 

1. Registers should not overlap. 
2. Use the prototype macro to declare the callback. 
3. Register size is limited to a maximum of 4 bytes. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 89 of 165 

6.2 ppmCreateNByteRegister 
Prototype 

registerHandle ppmCreateNByteRegister( 
    const char     *name,           // name of register 
    const char     *description,    // to appear in the debugger 
    void           *base,           // base of local window 
                                    // (returned by ppmCreateSlaveBusPort) 
    Uns32          offset,          // from base of window                                             
    Uns64          bytes,           // size of this register 
    ppmNByteReadFunc  readCB,     // called by a bus read 
    ppmNByteWriteFunc writeCB,    // called by a bus write 
    ppmNByteViewFunc  viewCB,     // called by debugger to non-destructively 
                                    // fetch the current value 
    void          *data,            // where the data is stored 
    void          *userData,        // will be passed to the 3 callbacks. 
    Bool           isVolatile,      // if false, writes of the same value will be 
                                    // optimized away 
    Bool           readable,        // true if register can be read 
    Bool           writable,        // true if register can be written 
 
    bhmEndian      endian           // if big endian, data will be byte-swapped 
); 

 
Description 
Creates a memory mapped register object which is also visible to the debugger. 
 
The recommended way to model memory mapped registers is to reserve a region of 
memory in the peripheral model’s address space (the window) which will be mapped to a 
region on a simulated bus. Registers are then installed with different offsets from the base 
of the window. Each register has a name and description, a separate region when it’s data 
is stored, plus optional read, write and view callbacks. It is accessed when an application 
processor (or other bus master) reads or writes to an address on the simulated bus that is 
mapped to the window in the peripheral model. 
 
Setting readable False and not supplying readCB will cause the accessing device to 
simulate  a bus error if a read from the register attempted. Setting writable False not 
supplying writeCB  will cause a bus error if a write to the register is attempted. 
 
Without a readCB callback, data will be read by the simulator from the storage referenced 
by the data pointer. A read larger than the bytes parameter is illegal. A read of fewer 
bytes will access part of the data. 
 
Without a writeCB callback, data will be written to the storage referenced by the data 
pointer. A write larger than the bytes parameter is illegal. A write of fewer bytes will 
modify part of the data. 
 
Without a viewCB callback, by a debugger from the storage referenced by the data 
pointer. A read of fewer bytes will access part of the data. 
 
If the function fails it will return PPM_INVALID_HANDLE. 
 
Callbacks 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 90 of 165 

If a read or write requires side effects then the readCB and or writeCB must be supplied. 
Note that more than one register can share a callback; the userData pointer can be used 
to distinguish which register was accessed. If at any time the true value of the register is 
not stored in the location referenced by data, then viewCB must also be supplied. The 
viewCB is used by the debugger so must not cause side-effects. 
 
Masking 
Masking of bit fields during reads and writes can be implemented by the simulator when 
required. See ppmCreateRegisterField. 
 
Diagnostics 
The register has debugger trigger-events associated with bus reads and writes. Reads and 
writes to the register will trigger debugger event-points and (if the model's diagnostic 
level is set to enable system diagnostics) cause a message to be sent to the simulator log. 
 
Endian 
If the endian parameter is not the same as the host, then the simulator will byte-swap 
data supplied to and from the callbacks (if supplied) or byte-swap data as it is read or 
written to the data pointer. 
Swapping is always byte-wise (b0,b1,b2,b3 becomes b3,b2,b1,b0). 
 
Example 

#include "peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
Uns32 reg1, reg2; 
 
void installRegs (){ 
    void *regPort = ppmCreateSlaveBusPort("regPort", 24); 
 
    ppmCreateNByteRegister( 
        "reg1",                  // name 
        "control register1",     // description 
         regPort,                // base of window 
         0,                      // offset from window base 
         sizeof(reg1),           // size in bytes 
         0,                      // bus read function 
         0,                      // bus write function 
         0,                      // debugger view function 
        &reg1,                   // storage 
         0,                      // userData 
         True,                   // volatile register 
         BHM_ENDIAN_LITTLE 
    ); 
 
    ppmCreateNByteRegister( 
        "reg2",                  // name 
        "control register2",     // description 
         regPort,                // base of window 
         4,                      // offset from window base 
         sizeof(reg2),           // size in bytes 
         readCB,                 // read function 
         writeCB,                // write function 
         viewCB,                 // debugger view function 
        &reg2, 
         0, 
         True,                   // volatile register 
         BHM_ENDIAN_LITTLE 
    ); 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 91 of 165 

 
    // access to the part of the port that has no registers 
    Uns8 *otherMemory = regPort; 
    otherMemory[8] = ... 
    ... = otherMemory[23]; 
 

 
In the example, reg1 occupies the first 4 bytes of the 24-byte port. The contents of  the 
variable reg1 will always be the register’s value. 
reg2 occupies the next 4 bytes. It’s read, write and view functions are handled by 
callbacks which may or may not use the reg2 variable. 
The remaining 16 bytes of the window have no visible registers but will appear on the 
simulated bus. This can be accessed by code in the peripheral via (for example) the 
otherMemory pointer. 
 
Notes and Restrictions 
 

1. Registers should not overlap.  
2. To declare the callbacks, use the prototype macros 

PPM_NBYTE_READ_CB 
PPM_NBYTE_WRITE_CB 
PPM_NBYTE_VIEW_CB 

3. Callback functions must validate the size (number of bytes) of each access and act 
accordingly. 

4. If the model is programmable endian, see bhmEndianParamValue()  
5. A non-volatile register will not be written if the new value is known to be the 

same as the old – this allows the code generator to make optimizations. 
6. Delays in callbacks are allowed. Refer to OVP Peripheral Modelling Guide:  

“Delays in Callbacks”. 
7. To signal that the read or write cannot be completed, the readCB or writeCB 

functions should call ppmReadAbort or ppmWriteAbort. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 92 of 165 

6.3 ppmCreateRegisterField 
 
Prototype 

void ppmCreateRegisterField( 
    registerHandle  reg,            // handle from the containing register 
    const char     *name,           // name of register field 
    const char     *description,    // to appear in documentation 
    Uns32          offset,          // from the LSB of the register                                     
    Uns32          bits,            // size of this field 
    Bool           read,            // can be read 
    Bool           write            // can be written 
); 

 
Description 
Create the description of a register bit field. A field describes a particular range of bits in 
a peripheral memory mapped register. Fields are (or will be) visible to the debugger. 
Fields allow read and write masking to be implemented without callbacks.. 
 
Example 

#include "peripheral/ppm.h” 
 
Uns64 reg1; 
 
reg = ppmCreateNByteRegister( 
        "reg1",                  // name 
        "control register",      // description 
         regPort,                // base of window 
         0,                      // offset from window base 
         sizeof(reg1),           // size in bytes 
         0,                      // bus read function 
         0,                      // bus write function 
         0,                      // debugger view function 
          
         False                   // not a volatile register 
    ); 
 
// 
// Define bits 4 to 5 
// 
ppmCreateRegisterField( 
        reg,                     // containing register 
        "field",                 // name 
        "The first field",       // description 
         4,                      // offset from LSB 
         2,                      // number of bits 
         True                    // can be read 
         True,                   // can be written 
);  

 
Masking 
For registers created using ppmCreateNByteRegister(), each bit-field access 
permission creates automatic masking of the data variable: 

• if readCB is not supplied, when the register is read, bitfields with the read 
parameter false will be read as zero. 

• if writeCB is not supplied, when the register is written, bitfields with the write 
parameter false will be unchanged. 

 
Notes and Restrictions 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 93 of 165 

1. Register field numbers range from zero to the width of the register in bits, less 
one. 

2. Register field number zero is the LSB. 
3. Register fields must not overlap. 
4. Register fields must not lie beyond width of the register 
5. Register fields can be created in any order. 

 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 94 of 165 

6.4 ppmCreateInternalRegister 
 
Prototype 

void *ppmCreateInternalRegister( 
    const char     *name,           // name of register 
    const char     *description,    // to appear in the debugger 
    Uns64          bytes,           // size of this register 
    ppmCBviewFunc  viewCB,          // called by debugger to non-destructively 
                                    // fetch the current value 
    void           *userData        // will be passed to the callback. 
); 

 
Description 
(deprecated, use ppmCreateNByteInternalRegister) 
 
Similar to ppmCreateRegister; creates a register with no direct bus access. Can be 
used, for example, to implement a register which is accessed via an index counter. 
 
The debugger can view the register but cannot set a trigger point on its changing (since 
no read or write occurs).  
 
If the function fails it will return PPM_INVALID_HANDLE. 
 
Example 

#include "peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
static PPM_VIEW_CB(viewCB) { 
    *(Uns32*)data = reg1;    // return the value without side effects 
} 
 
 
void installRegs (){ 
    ppmCreateInternalRegister( 
        "reg1",                  // name 
        "control register",      // description 
         4,                      // size in bytes 
         viewCB                  // debugger view function 
         0 
    ); 
} 

 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 95 of 165 

6.5 ppmCreateInternalNByteRegister 
 
Prototype 

void *ppmCreateInternalNByteRegister( 
    const char     *name,           // name of register 
    const char     *description,    // to appear in the debugger 
    Uns64          bytes,           // size of this register 
    ppmCBviewFunc  viewCB,          // called by debugger to non-destructively 
                                    // fetch the current value 
    void          *data, 
    void          *userData         // will be passed to the callback. 
); 

 
Description 
Similar to ppmCreateRegister; creates a register visible to the debugger but with no 
direct bus access.  
 
The debugger can view the register but cannot set a trigger point on its changing (since 
no read or write occurs).  
 
If the function fails it will return PPM_INVALID_HANDLE. 
 
Example 

#include "peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
Uns32 regInt; 
 
void installRegs (){ 
    ppmCreateInternalNByteRegister( 
        "regInt",                 // name 
        "internal register",      // description 
         sizeof(regInt),          // size in bytes 
         0,                       // debugger view function 
        &regInt,                  // storage 
         0                        // not used 
    ); 
} 

 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 96 of 165 

7 Direct Bus Access 
This interface allows direct access to a simulated bus without use of a port. Since the 
model needs to know the name of the bus to connect to, it's use is not recommended for 
re-usable models. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 97 of 165 

7.1 ppmAccessExternalBus 
 
Prototype 

ppmExternalBusHandle ppmAccessExternalBus( 
    char             *remoteBusName, 
    volatile void    *localLoAddress, 
    Uns64            sizeInBytes, 
    SimAddr          remoteLoAddress 
); 

 
Description 
Create a bridge from a local (PSE) memory region to the simulated bus with the given 
name. Reads and writes by the PSE to the local region will be mapped to the region of the 
external bus. Note that ppmChangeRemoteLoAddress can be used to subsequently move 
the remote region. 
 
Arguments: 
 remoteBusName name of the simulated bus. 
 localLoAddress PSE address of the base of the region 
 sizeInBytes  of the region 
 remoteLoAddress base of the region on the simulated bus. 
 
Example 

#include "peripheral/ppm.h” 
 
Uns8 readWriteRegion[1024]; 
 
...{ 
    ppmExternalBusHandle h = ppmAccessExternalBus( 
        "systembus", 
        readWriteRegion, 
        sizeof(readWriteRegion), 
        0x80000000 
    ); 
    memset(readWriteRegion, 0, sizeof(readWriteRegion)); 
} 
 

 
Notes and Restrictions 

1. Regions should not overlap on the local or remote buses. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 98 of 165 

7.2 ppmExposeLocalBus 
 
Prototype 

ppmLocalBusHandle ppmExposeLocalBus ( 
    char        *remoteName, 
    SimAddr     remoteLoAddress, 
    Uns64       sizeInBytes, 
    void        *localLoAddress 
); 

 
Description 
Create a bridge that exposes a region of the local (PSE) address space to a simulated 
address space. The name of  the bus and address region on the bus is specified in this call 
rather than by a  port connection, i.e. there is no port declared in the peripheral. 
 
If the function fails it will return PPM_INVALID_HANDLE. 
 
Example 

#include "peripheral/ppm.h” 
#include "peripheral/bhm.h” 
 
Uns8 graphicsRam[4094]; 
 
...{ 
    ppmExternalBusHandle h = ppmExposeLocalBus( 
        "systembus", 
        graphicsRam, 
        sizeof(graphicsRam), 
        0x80000000              // graphics ram mapped here 
    ); 
    while(1) { 
        bhmWaitDelay(frameUpdatePeriod); 
        updateDisplay(graphicsRam, sizeof(graphicsRam)); 
    } 
} 

 
Notes and Restrictions 

1. A single region of PSE memory can be exposed more than once 
2. The regions to where it is exposed cannot overlap. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 99 of 165 

8 Packetnet Interface 
Models that communicate with Ethernet, USB CAN, GSM etc. can use the packetnet 
abstraction of a packet based network. A packet transaction is modeled as an 
instantaneous event; network speed and latency must be modeled in the transmitting or 
receiving devices. A packetnet communicates by callbacks and shared memory. The 
transmitting model creates a packet in its local memory then calls the transmit function. 
This causes a notification function to be called in each receiving model in turn, passing a 
pointer to and number of bytes in the packet. The notification function can modify the 
data if required. When every notification function has returned, the transmit function 
returns, then the transmitting model can examine the packet if required. 
 
Note that peripheral models each occupy their own address spaces. Therefore the 
simulator copies the data as and when required, so the models must not rely on pointers 
in the data. The contents of a received packet should not be used after the notification 
function has returned. 
 
The order that the connected models receive a packet is determined by the order of 
construction in the C code, but should not be relied on. 
 
The peripheral model API can send and receive through the packetnet interface. 
Packetnet Direction 
A packetnet is bidirectional; a model can send and receive from the same packetnet 
(though it does not have to). 

8.1 Packetnet ports 
A named packetnet port represents the connection between a packetnet and a peripheral 
model instance. 

8.2 Recursion 
Common to several methods of communication between models, it is possible by 
carelessly connecting packetnets to create a loop so that a call in one model results in a 
call back into the same function in that model. The simulator detects and prevents deep 
recursion on any packetnet.  
 
A peripheral model will not receive notification for a packet that it is sending. 

8.3 Packet size 
Physical networks have a maximum packet size. Larger data are broken into smaller units 
handled by the protocol stack. A peripheral model must specify the maximum number of 
bytes to be sent in one packet when it connects to a packetnet, though it can send fewer 
bytes if needed. All peripheral models on one packetnet must define the same maximum 
size. It is an error for the test-bench to transmit a packet larger than the size set by 
peripherals on the packetnet. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 100 of 165 

8.4 Packetnet functions 
 
Send a packet to all receivers on a packetnet: 
 

void ppmPacketnetWrite(ppmPacketnetHandle h, void *data, Uns32 bytes) 

 
Note that a pointer to the handle appears in the packetnet port definition structure that is 
returned to the simulator by the packetnet port iterator function. 
 
This defines the packetnet notification callback used to notify this peripheral model when 
a packet has arrived. 
 

static PPM_PACKETNET_CB(receivePacketnet) { 
   ... 
} 
 
/* receivePacketnet goes in the ppmPacketnetFunc field of the packetnetport 
structure */ 

 
The function pointer goes in the ppmPacketnetFunc field of the packetnetport definition 
structure. 

8.5 Example 
An example using a packetnet is in: 
 

$IMPERAS_HOME/Examples/Models/Peripherals/packetnet 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 101 of 165 

9 Conn (FIFO) Support 
A Conn is an abstraction of a hardware FIFO used for point-to-point links between 
processors or peripherals. Definition of conn ports is covered in section 2.5. 
 
A peripheral model puts data into a FIFO or gets data out using a polled interface. To 
prevent unnecessary polling it can bind a FIFO to an event and wait on the event which is 
triggered when the FIFO has space or has data available. A peripheral can query a FIFO 
to determine its dimensions, connections and how much data is currently in the FIFO. 
The following functions provide this capability. 
 
Function Port Description 
ppmConnPut output Put a word into a conn if space is available 
ppmConnGet input Get a word from a conn id data is available 
ppmRegisterConnOutputEvent output bind an output port to an event 
ppmRegisterConnInputEvent input Bind an output port to an event 
ppmConnGetOutputInfo output Get info about the FIFO on output an port 
ppmConnGetInputInfo input Get info about the FIFO on an input port 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 102 of 165 

9.1 ppmConnPut 
 
Prototype 

Bool ppmConnPut(ppmConnOutputHandle conn, void *value);  

 
Description 
Puts the given data into the FIFO if there is space and returns True. If not it returns False. 
The size of data copied to the FIFO depends on the specified width in bits, rounded up 
the the nearest byte. The port handle was initialised by the simulator to a non-zero value 
if the port is connected or to zero if not. It is an error to put data into an unconnected port. 
 
Example 

 
#include “peripheral/ppm.h” 
 
// initialised by the simulator (see section 2.5) 
ppmConnOutputHandle outputPort; 
 
void putWord (char data) { 
 
    if(outputPort ) { 
        if(ppmConnPut(outputPort, &data)) { 
            bhmPrintf(“Data was sent\n”); 
        } else { 
            bhmPrintf(“Data was NOT sent\n”); 
        } 
    } 
} 

 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 103 of 165 

9.2 ppmConnGet 
 
Prototype 

Bool ppmConnGet(ppmConnInputHandle conn, void *value);  

 
Description 
Gets data from the FIFO if available and returns True. If not it returns False. 
The size of data copied from the FIFO depends on the specified width in bits, rounded up 
the the nearest byte. The port handle was initialised by the simulator to a non-zero value 
if the port is connected or to zero if not. It is an error to get data from an unconnected 
port. 
 
Example 

 
#include “peripheral/ppm.h” 
 
// initialised by the simulator (see section 2.5) 
ppmConnInputHandle inputPort; 
 
void getData (void) { 
 
    if(inputPort ) { 
        char data; 
        if(ppmConnGet(inputPort, &data)) { 
            bhmPrintf(“Data ‘%c’ was received\n”, data); 
        } else { 
            bhmPrintf(“Data was NOT received\n”); 
        } 
    } 
} 

 
Notes and Restrictions 
None. 
 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 104 of 165 

9.3 ppmRegisterConnInputEvent 
 
Prototype 

Bool ppmRegisterConnInputEvent(ppmConnInputHandle conn, bhmEventHandle event);  

 
Description 
Binds a FIFO input port to a pre-defined event. The event will be triggered (once) when 
data becomes available in the FIFO. Returns True if the binding was successful. 
 
Example 

 
#include “peripheral/ppm.h” 
 
// initialised by the simulator (see section 2.5) 
ppmConnInputHandle inputPort; 
 
void constructor(void) { 
    if(inputPort ) { 
        bhmEventHandle inputEvent = bhmCreateEvent(); 
        ppmRegisterConnInputEvent(inputPort, inputEvent); 
    } 
} 
 
char getWord (void) { 
 
    char data = 0; 
    if(inputPort ) { 
        while(!ppmConnGet(inputPort, &data)) { 
            bhmWaitEvent(); 
        } 
        bhmPrintf(“Data received\n”); 
    } 
    return data; 
} 

 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 105 of 165 

9.4 ppmRegisterConnOutputEvent 
 
Prototype 

Bool ppmRegisterConnOutputEvent(ppmConnOutputHandle conn, bhmEventHandle event);  

 
Description 
Binds a FIFO output port to a pre-defined event. The event will be triggered (once) when 
space for data becomes available in the FIFO. Returns True if the binding was successful. 
 
Example 

 
#include “peripheral/ppm.h” 
 
// initialised by the simulator (see section 2.5) 
ppmConnInputHandle outputPort; 
 
void constructor(void) { 
    if(outputPort) { 
        bhmEventHandle outputEvent = bhmCreateEvent(); 
        ppmRegisterConnOutputEvent(outputPort, outputEvent); 
    } 
} 
 
char putWord (char data) { 
 
    if(outputPort) { 
        while(!ppmConnPut(outputPort, &data)) { 
            bhmWaitEvent(); 
        } 
        bhmPrintf(“Data sent\n”); 
    } 
} 

 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 106 of 165 

9.5 ppmGetConnInputInfo 
 
Prototype 

Bool ppmGetConnInputInfo (ppmConnInputHandle conn, octcnConnInfoP info);  

 
Description 
Fetches information from an input port about the connected FIFO. 
 
Example 

 
#include “peripheral/ppm.h” 
#include “ocl/oclcnTypes.h” 
 
// initialised by the simulator (see section 2.5) 
ppmConnInputHandle inputPort; 
 
void printInfo(void) { 
    if(inputPort) { 
        octcnConnInfo info; 
 
        ppmGetConnInputInfo(inputPort, &info); 
 
        bhmPrintf(“words     : %u\n”, info->words); 
        bhmPrintf(“bits      : %u\n”, info->bits); 
        bhmPrintf(“numFilled : %u\n”, info->numFilled); 
        bhmPrintf(“numEmpty  : %u\n”, info->numEmpty); 
    } 
} 

 
Notes 

1. The structure octcnConnInfo is defined in file 
$IMPERAS_HOME/ImpPublic/include/host/ocl/oclcnTypes.h 

This structure is also used by the vmi interface. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 107 of 165 

9.6 ppmGetConnOutputInfo 
 
Prototype 

Bool ppmGetConnOutputInfo (ppmConnOutputHandle conn, octcnConnInfoP info);  

 
Description 
Fetches information from an output port about the connected FIFO. 
 
Example 

 
#include “peripheral/ppm.h” 
#include “ocl/oclcnTypes.h” 
 
// initialised by the simulator (see section 2.5) 
ppmConnOutputHandle outputPort; 
 
void printInfo(void) { 
    if(outputPort) { 
        octcnConnInfo info; 
 
        ppmGetConnOutputInfo(inputPort, &info); 
 
        bhmPrintf(“words     : %u\n”, info->words); 
        bhmPrintf(“bits      : %u\n”, info->bits); 
        bhmPrintf(“numFilled : %u\n”, info->numFilled); 
        bhmPrintf(“numEmpty  : %u\n”, info->numEmpty); 
        bhmPrintf(“inputs    : %u\n”, info->inputs); 
        bhmPrintf(“outputs   : %u\n”, info->outputs); 
    } 
} 

 
Notes 

1. The structure octcnConnInfo is defined in file 
$IMPERAS_HOME/ImpPublic/include/host/ocl/oclcnTypes.h 

This structure is also used by the vmi interface. 
 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 108 of 165 

10 Serial Device Support 
This interface provides a serial channel to a device outside the simulation environment. It 
is intended for use in a serial character device model such as a UART.  
 
Using this interface is optional but will ensure the model has a control interface similar to 
other serial devices. 
 
There are four functions and one variant: 
 
Function Use 
bhmSerOpenAuto Open a new serial channel using standard model parameters. 
bhmSerReadN Read available characters (does not block). 
bhmSerWriteN Write characters (does not block). 
bhmSerReadB Read available characters (can block). 
bhmSerWriteB Write characters (can block). 
bhmSerClose Close the channel and flush output. 
bhmSerOpen Open a new channel. Does not use standard model parameters. 
 
The definition of a serial device using the model generation tool, iGen, should also make 
use of the formal macro BHM_SER_OPEN_AUTO_FORMALS. This defines all of the 
parameters that are automatically added to a model when the serial interface is used. 
 
See the section 10.1 bhmSerOpenAuto for a description of the parameters. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 109 of 165 

10.1 bhmSerOpenAuto 
Prototype 

bhmChannelHandle bhmSerOpenAuto (void); 

 
Description 
Create a new serial channel using parameters specified by the platform.  
 
Returns a positive integer which should be passed as the channel argument to other 
bhmSer*() functions. This function cannot fail – the simulator will exit if an error occurs.  
 
Using this function gives the model the following parameters, which can be set in the 
platform in the usual way: 
 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 110 of 165 

 
Parameter Type Meaning 
client Boolean If true (client mode), connect to a listening socket with the 

hostname and portnum supplied. 
If false (server mode), create a listening socket on this host. 

hostname String In client mode, specify the host to connect to. 
connectnonblocking Boolean If true, bhmSerOpenAuto() will not wait for a connection, 

allowing simulation to proceed. Output data will be 
discarded. No input data will arrive. 
If false, bhmSerOpenAuto() will block until a connection is 
made. 

console Boolean If true, an interactive console window will be opened on the 
host and connected to the port. 
Parameters portnum, portfile & infile will be ignored. 

portnum Integer In client mode, specify the port to connect to. 
In server mode, listen on this TCP/IP port for a connection. 
If zero, allocate a TCP port from the pool and listen on that 
port.  
The allocated port number will be reported on the simulator 
console. (see portFile below). 

infile String Name of file to read for device input instead of using a port 
or a console. Note that each call to bhmSerRead() will read 
as many characters as requested from this file. 

outfile String Name of file to write device output. 
Can be used in addition to console or portnum. 

portFile String In server mode, if portnum was specified as zero, write the 
allocated port number to this file. 

log Boolean If true, serial output will be reported to the simulator log in 
addition to other outputs. 

finishOnDisconnect Boolean If true, disconnecting the port will cause the simulation to 
finish. 

xchars Integer 
ychars Integer 

When console is true these parameters can be used to 
modify the initial character dimensions of the console. 

 
If none of console, portnum or infile are specified in the platform, calls to the 
bhmSerRead functions will always return 0. 
 
If none of console, portnum or outfile are specified in the platform, calls to the 
bhmSerWrite functions for the channel will always return 0 and data written will be 
discarded. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 111 of 165 

connectnonblocking mode allows the simulation to continue without a connection. The 
connection can occur any time a bhmSerRead or bhmSerWrite function is called. If 
finishOnDisconnect is false, disconnecting a port (from the other end) does not stop the 
simulation; a new connection can be made at any time. 
connectnonblocking mode does not affect the blocking behaviour of the bhmSerRead or 
bhmSerWrite functions. 
 
In server mode, the listening port is on the local host. If client mode, hostname can 
specify another host. The local host’s name resolution service is used. portnum is usually 
set to a convenient number for connection to another simulation or program. In a scripted 
environment, portnum can be set to zero; the port is chosen by the host so does not clash 
with other simulations on the same host. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 112 of 165 

10.2 bhmSerOpen 
Prototype 

bhmChannelHandle bhmSerOpen ( 
    Uns32      *portp, 
    const char *logfile, 
    const char *outfile, 
    const char *sourcefile, 
    const char *portfile, 
    Bool        client, 
    Bool        nonblocking, 
    Bool        verbose, 
    Bool        console, 
    Bool        finishOnDisconnect, 
    Uns32       xchars, 
    Uns32       ychars 
); 

 
Description 
Create a new serial channel. This function is identical to bhmSerOpenAuto()but is 
configured with arguments instead of model parameters. Please refer to section 10.1. 
Note that a model using more than one channel with different parameters values must use 
this function (since model parameters are common to the whole model, and not specific 
to the channel). 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 113 of 165 

10.3 bhmSerReadN 
Prototype 

Uns32 bhmSerReadN (Int32 channel, Uns8 *buffer, Uns32 bytes); 

 
Description 
Read as many bytes as are available from the channel, up to the maximum specified by 
bytes, into the supplied buffer and return how many were actually read.  
 
This call will not block. Use function bhmSerReadB() instead if blocking semantics are 
required. 
 
One usage scenario for this function is to call it at the period of the intended baud rate of 
the device, using bhmWaitDelay() to create the interval, as shown in the example below. 
Note that this will not be the real-time baud-rate. 
 
Example 

 
#include "peripheral/bhm.h” 
 
Int32 ch = bhmSerOpenAuto(); 
 
while(notDeadYet) { 
    bhmWaitDelay(convertToMicroSeconds(getBaudRateReg)); 
    Uns8 c; 
    Int32 actual = bhmSerReadN(ch, &c, 1); 
    If(actual) { 
        putInRxRegister(c); 
        setRxReadyBit(); 
    } 
} 
bhmSerClose(ch); 

 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 114 of 165 

10.4 bhmSerWriteN 
Prototype 

Uns32 bhmSerWriteN (Int32 channel, Uns8 *buffer, Uns32 bytes); 

 
Description 
Attempt to send the given number of bytes from buffer to the serial device and return 
how many were actually sent. 
 
This call will not block. Use function bhmSerWriteB() instead if blocking semantics are 
required. 
 
If the output is being written to a file it will be flushed after the data is written. 
 
Example 

 
#include "peripheral/bhm.h” 
 
Int32 ch = bhmSerOpenAuto(); 
 
… 
    if (txDataReady()) { 
        Uns8 c = getTxData(); 
        Int32 actual = bhmSerWriteN(ch, &c, 1); 
        if(actual != 1) { 
            errorReport(); 
        } 
    } 
… 
bhmSerClose(ch); 

 
Notes and Restrictions 
None. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 115 of 165 

10.5 bhmSerReadB 
Prototype 

Uns32 bhmSerReadB (Int32 channel, Uns8 *buffer, Uns32 bytes); 

 
Description 
Read as many bytes as are available from the channel, up to the maximum specified by 
bytes, into the supplied buffer and return how many were actually read.  
 
This function will block the current PSE thread until data is available. Use function 
bhmSerReadN() instead if non-blocking semantics are required. Note that only the PSE 
thread is blocked (not the simulation as a whole). 
 
One usage scenario for this function is to call it at the period of the intended baud rate of 
the device, using bhmWaitDelay() to create the interval, as shown in the example below. 
Note that this will not be the real-time baud-rate. 
 
Example 

 
#include "peripheral/bhm.h” 
 
Int32 ch = bhmSerOpenAuto(); 
 
while(notDeadYet) { 
    bhmWaitDelay(convertToMicroSeconds(getBaudRateReg)); 
    Uns8 c; 
    Int32 actual = bhmSerReadB(ch, &c, 1); 
    If(actual) { 
        putInRxRegister(c); 
        setRxReadyBit(); 
    } 
} 
bhmSerClose(ch); 

 
Notes and Restrictions 

1. This function should not be called from a callback associated with a net, 
packetnet, diagnostic level or view object. 

2. If called from a bus or register callback, a new thread may be created. Please refer 
to OVP Peripheral Modelling Guide, section Delays in Callbacks. 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 116 of 165 

10.6 bhmSerWriteB 
Prototype 

Uns32 bhmSerWriteB (Int32 channel, Uns8 *buffer, Uns32 bytes); 

 
Description 
Attempt to send the given number of bytes from buffer to the serial device and return 
how many were actually sent. 
 
This function will block the current PSE thread until data can be written. Use function 
bhmSerWriteN() instead if non-blocking semantics are required. Note that only the PSE 
thread is blocked (not the simulation as a whole). 
 
If the output is being written to a file it will be flushed after the data is written. 
 
Example 

 
#include "peripheral/bhm.h” 
 
Int32 ch = bhmSerOpenAuto(); 
 
… 
    if (txDataReady()) { 
        Uns8 c = getTxData(); 
        Int32 actual = bhmSerWriteB(ch, &c, 1); 
        if(actual != 1) { 
            errorReport(); 
        } 
    } 
… 
bhmSerClose(ch); 

 
Notes and Restrictions 

1. This function should not be called from a callback associated with a net, 
packetnet, diagnostic level or view object. 

2. If called from a bus or register callback, a new thread may be created. Please refer 
to OVP Peripheral Modelling Guide, section Delays in Callbacks. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 117 of 165 

10.7 bhmSerClose 
Prototype 

void bhmSerClose (Int32 channel); 

 
Description 
Close an open channel, flushing any buffered data. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 118 of 165 

10.8 bhmSerLastError 
Prototype 

Uns32 bhmSerLastError (Int32 channel); 

 
Description 
If bhmSerReadN, bhmSerReadB, bhmSerWriteN or bhmSerWriteB return zero, use this 
function to check the unix-like errno.  
 
Example 

 
#include "peripheral/bhm.h” 
 
Uns8 c; 
Int32 actual = bhmSerReadB(ch, &c, 1); 
if(actual ==0) { 
    Uns32 error = bhmSerLastError(ch); 
    if (error != 0) { 
        bhmPrintf(“Error %u during bhmSerReadB\n”, error); 
    } 
}  

 
 Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 119 of 165 

10.9 Record and Replay 
The serial channel is subject to the simulator’s record and replay feature: in record 
mode, all serial input data is recorded to a file specified by the simulator. In replay 
mode, the normal channel input is disabled and replaced with the replay data, such 
that data is presented at the same rate as in the recording. bhmSerRead is a polled 
interface; calls that return data or no data will occur in the same order as recorded. 
The serial channel will check for differences in the time of each call. 
 
If using more than one channel in a platform, pay attention to which channel is 
connected to which external device; channels will block for a connection in the order 
that their models are instanced. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 120 of 165 

11 Ethernet Device Support 
This group of functions connects a model of an ethernet device to either a virtual LAN 
which uses the host computers TCP/IP socket IP,  the physical ethernet of the host 
computer or to a virtual network modeled using packetnets. Section 11.9 describes the 
three modes of operation. 
 
Summary: 

 
The model should open the ethernet channel in its constructor by calling either 
bhmEthernetOpenAuto() or bhmEthernetOpen(). The returned handle is passed to the 
other functions. The model should define a function to process incoming packets and 
install it using bhmEthernetInstallCB() 
 
Note that a peripheral model can have only one instance of the ethernet interface. 
 
The write functions have a blocking and non-blocking version. In the blocking version, if 
the operation would block, then the peripheral is de-scheduled until the end of the 
quantum, when the operation is re-tried. The non-blocking version will either succeed or 
fail immediately. 
 
The model should assemble ethernet frames then send them to the virtual network using 
bhmEthernetWriteFrameB or bhmEthernetWriteFrameN.  
 
The channel should be closed during model destruction. 
 

Function Use 
bhmEthernetOpenAuto Connect to ethernet. Configuration is by platform 

parameters 
bhmEthernetOpen Connect to ethernet. Configuration is from function 

arguments 
bhmEthernetWriteFrameB Write a frame to ethernet. Blocking 
bhmEthernetWriteFrameN Write a frame to ethernet. Non-blocking. 
bhmEthernetInstallCB Specify a function to be called when each packet arrives 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 121 of 165 

11.1 bhmEthernetOpenAuto 
Prototype 

bhmChannelHandle bhmEthernetOpenAuto (void); 

 
Description 
Open a new ethernet channel. The ethernet model can be configured using a standard set 
of model parameters that will be compatible with other ethernet models. This is the 
recommended function. 
 
The model must declare these parameters: 
 
Parameter Purpose 
tapDevice Enable TAP mode and name the TAP device. Passing null puts the 

device in User Mode. 
Redir Redirection instruction. For use with User Mode only. 
tftpPrefix Enable TFTP server and set the path to the root of the TFTP directory 
network Set the  User Mode (IPv4) address of the local network device. 
logfile Record a wireshark compatible log to a file of this parameter’s value 
 
The macro BHM_ETHERNET_OPEN_AUTO_FORMALS contains declarations of the parameters 
so should be used as per the example. 
 
Return 
Returns a non-negative handle if successful. If the function fails it will return 
BHM_INVALID_HANDLE (and print an error message). 
 
Example 
To declare parameters for use by bhmEthernetOpenAuto() 
 

#include “peripheral/bhm.h” 
#include “peripheral/ppm.h” 
 
static ppmParameter parameters[] = { 
 
    .... 
    BHM_ETHERNET_OPEN_AUTO_FORMALS, 
    .... 
    { 0 } 
}; 
 
static PPM_PARAMETER_FN(nextParameter) { 
    if(!parameter) { 
        parameter = parameters; 
    } else { 
        parameter++; 
    } 
    return parameter->name ? parameter : 0; 
} 
 
ppmModelAttr modelAttrs = { 
    .... 
    .paramSpecCB = nextParameter, 
    .... 
}; 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 122 of 165 

 
To initialize the interface: 

#include “peripheral/bhm.h” 
 
Int32 ethernet; 
 
int main(....) { 
    .... 
    ethernet = bhmEthernetOpenAuto(); 
    .... 
} 

 
 
Notes and Restrictions 

1. A model should not open more than one ethernet channel. 
2. Wireshark file format is used by tools for analyzing ethernet traffic. It can be read 

by tools including Wireshark and tcpdump. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 123 of 165 

11.2 bhmEthernetOpen 
Prototype 

bhmChannelHandle bhmEthernetOpen( 
    const char *tap_device, 
    const char *redir, 
    const char *tftp_path 
); 

 
Description 
Open a new ethernet channel. The ethernet model must be configured using the function 
arguments. bhmEthernetOpenAuto() is usually more convenient to use. 
 
Function arguments: 
Argument Purpose 
tapDevice Enable TAP mode and name the TAP device. Passing null puts the 

device in User Mode. 
redir Redirection instruction. For use with User Mode only. 
tftpPrefix Enable TFTP server and set the path to the root of the TFTP directory 
 
Return 
Returns a positive handle if successful. If the function fails it will return 
BHM_INVALID_HANDLE (and print an error message). 
 
Example 
To initialize the interface: 
 

#include “peripheral/bhm.h” 
 
Int32 ethernet; 
 
int main(....) { 
    .... 
    ethernet = bhmEthernetOpen(“tap”, NULL, “/var/tmp/imperasFTPdir”); 
    .... 
} 

 
Notes and Restrictions 

1. A model should not open more than one ethernet channel. 
 
 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 124 of 165 

11.3 bhmEthernetReadFrameB 
Prototype 
 

Uns32 bhmEthernetReadFrameB( 
    Int32 ch, 
    Uns8 *buffer, 
    Uns32 length, 
    Uns32 timeMS, 
    Uns32 poll 
); 

 
Description 
(Deprecated. Use bhmEthernetInstallCB).  



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 125 of 165 

11.4 bhmEthernetReadFrameN 
Prototype 
 

Uns32 bhmEthernetReadFrameB( 
    Int32 ch, 
    Uns8 *buffer, 
    Uns32 length, 
); 

 
Description 
(Deprecated. Use bhmEthernetInstallCB). 
 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 126 of 165 

11.5 bhmEthernetWriteFrameB 
Prototype 
 

Uns32 bhmEthernetWriteFrameB( 
    Int32 ch, 
    Uns8 *buffer, 
    Uns32 length, 
); 

 
Argument Purpose 
Int32 ch Channel number returned by bhmEthernetOpenAuto() etc. 
Uns32 *buffer Buffer to be sent 
Uns32 length Number of bytes to be sent 
 
Return 
Returns the number of characters sent. This will be length or zero if the operation fails. 
 
Description 
Waits until the frame is transmitted. Returns the length of the transmitted frame or zero if 
the operation fails. Note that the current PSE thread will be blocked though other threads 
in this model could run if they are enabled. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 127 of 165 

11.6 bhmEthernetWriteFrameN 
Prototype 
 

Uns32 bhmEthernetWriteFrameB( 
    Int32 ch, 
    Uns8 *buffer, 
    Uns32 length, 
); 

 
Argument Purpose 
Int32 ch Channel number returned by bhmEthernetOpenAuto() etc. 
Uns32 *buffer Buffer to be sent 
Uns32 length Number of bytes to be sent 
 
Return 
Returns the number of characters sent. This will be length or zero if the operation fails. 
 
Description 
Returns immediately the length of the transmitted frame or zero if the operation fails. The 
current PSE thread will not be blocked. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 128 of 165 

11.7  bhmEthernetInstallCB 
Prototype 
 

typedef void (*bhmEtherPacketFn)(void *userData, Uns8 *data, Uns32 bytes); 
 
void bhmEthernetInstallCB( 
   Int32            ch, 
   bhmEtherPacketFn cb, 
   void            *userData 
); 

 
Argument Purpose 
Int32 ch Channel number returned by bhmEthernetOpenAuto() etc. 
bhmEtherPacketFn cb Function to be called with each packet 
void *userData pointer passed to the callback 
 
Description 
Install a callback to be called each time a packet arrives from the ethernet interface. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 129 of 165 

11.8 bhmEthernetClose 
Prototype 

Uns32 bhmEthernetClose (Int32 ch); 

 
Description 
Closes the given channel. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 130 of 165 

11.9 Modes 
The ethernet interface has these modes: 
 

1. User mode is selected by default. 
2. TAP mode is selected by setting the tapDevice parameter. 
3. Packetnet mode is selected by connecting packetnet port phy to at least one other 

model. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 131 of 165 

11.10 User Mode   
User mode (also known as SLiRP) makes no special requirements on the host; it runs 
with user privileges, but implements a limited set of networking functions. 
 
Operation 
User mode creates a virtual subnet with default addresses 10.0.2.x. Our  device has the 
default IP address 10.0.2.15. SLiRP creates a gateway with address 10.0.2.2 from this 
subnet to the host’s network and performs Network Address Translation. 
 
User mode forwards TCP and UDP requests across the bridge and maintains virtual 
circuits so that replies are routed back to the interface. Software running on the platform 
can access the host’s network as a client using protocols such as FTP, Telnet and HTTP. 
By default, incoming requests are blocked so the device cannot operate as a server. 
However, the redir parameter can be used to redirect requests to a particular port 
number on the host into the model on a different port number. 
 
User mode has these features: 
 
1. A TFTP (Trivial File Transfer Protocol) server. 

A platform can use the model to fetch files from the host’s file system using a TFTP 
client. The TFTP server responds to the TFTP protocol directed to any IP address. 

 
2. A DHCP server. 

 The model is granted an IP address from a simulated local network so it does not 
clash with devices on the host’s physical network. Addresses are allocated by default 
in the 10.0.2.x range. 

 
3. A NAT bridge to the hosts computer’s ethernet.  

The model can communicate with the ethernet of the host computer (and hence with 
the internet). 

 
 

11.10.1 User Mode Redirection 
The redir parameter or argument is a string containing a comma separated list of 
redirection commands. Each redirection is of the form: 
 

<protocol>:<host port>:<ip address>:<virtual port> 

 
for example, this will redirect the host’s port 4444 to the telnet port of the model, 
allowing a user to telnet to a guest linux running on a virtual platform. 
 

tcp:4444::23 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 132 of 165 

11.10.2 Changing the Network address 
The network parameter changes the network address from its default of 10.0.0.0. The 
format is the standard period-separated four numbers 0-255. e.g. 
 

network=192.168.0.0 

 
Note that the values from this parameter are masked to prevent being set to a public IP 
address. Run the simulator with –verbose to see a summary of IP addresses from each 
ethernet adapter. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 133 of 165 

11.11 TAP Mode 
TAP mode is selected by setting the tapDevice parameter to the name of the TAP device. 
In this mode a driver is installed on the host computer which makes the host’s ethernet 
device respond to the ethernet address of this model’s interface. The model connects 
(exclusively) to this device and is now visible on the host’s ethernet and can perform any 
function of a real ethernet device. This mode has more capability but requires root access 
to the host. The redir parameter is not used in this mode. 
 

11.11.1 Configuring the host 
In order to communicate from the target to host and/or Internet some network 
configuration may be needed, 
both on target and on host.  This section lists the necessary steps to get the tunneling 
working, and 
following sections show some example configurations.  The exact steps will depend on 
OS versions and on 
the existing kernel and network configurations on host and target. 
 
The first five steps to get tunneling working differ based on the host operating system.  
The last steps are the same regardless of the host. 
 

11.11.1.1 TAP Setup for Linux Host Platforms  
1. Create a TAP device on the host.  Ensure it's accessible by the user starting 

simulation. For example: 
 

# create tap0 interface, owned by <user> 
host> tunctl -u <user> -t tap0           

     
Normally, this loads automatically the tun driver as needed, but it may be necessary to do 
this manually. 
 
2. Configure host's TAP interface. For example: 

 
host> ifconfig tap0 192.168.9.4 up 

 
 Make sure that target.eth0 and host.tap0 are on the same private network, e.g. 
192.168.9.0/24. 
 
3. Ensure connectivity between tap0 and other interfaces on the host.  Different 

approaches are possible, e.g. IP forwarding, bridging, proxy ARP.  For IP 
forwarding: 

 
host> sysctl -w net.ipv4.ip_forward=1 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 134 of 165 

 4. Modify the host's firewall as needed, especially in TAP mode, so modify host forward 
filtering as needed. For example: 
 

host> iptables -t filter -I FORWARD -i tap0 -j ACCEPT  

 
 In some cases this isn't enough.  Inspect the "filter" table with: 
 

host> iptables -t filter -L  

 
 5. In TAP mode, configure SNAT as needed.  If the tap0 interface uses a reserved IP 
address, e.g. 192.168.9.4, the packets that it sends to Internet must have their source IP 
translated using SNAT (Source Network Address Translation, or masquerading), 
otherwise response packets will never reach back to it. Force SNAT if Inet router needs it 
(where wlan0 is a host interface connected to Internet).  For example: 
 

host> iptables -t nat -A POSTROUTING -o wlan0 -j MASQUERADE   # 

 

11.11.1.2 TAP Setup for Windows Host Platforms  
1. Download the TAP-windows virtual ethernet adapter from 
      http://openvpn.net/index.php/download/community-downloads.htm  
 
and install it by running the installer as administrator: 
 

• When choosing components, select "TAP Virtual Ethernet Adapter" to install 
        a virtual network interface; and "TAP Utilities" to provides menu commands 
          "TAP-Windows - Utilities - Add a new TAP virtual ethernet adapter" and 
          "TAP-Windows - Utilities - Delete ALL TAP virtual ethernet adapters". 
        that can be run later as the administrator to change things. 

• Choose an installation directory.  The default is satisfactory. 
 

After installation, "Device Manager" will show an additional entry under "Network 
adapters" with a name starting with "Tap-Windows Adapter V9".  In addition, within the 
"Control Panel" context "Network and Internet - Network Connections" there will be an 
additional entry referencing the added network adapter.  This entry usually is named 
something like "Local Area Connection <n>" and has the initial state "Network cable 
unplugged". 
 

⇒ If you are using OpenVPN for virtual private networking, it seems to use 
⇒ the last TAP-windows virtual adapter installed.  To verify, disconnect and then 
⇒ re-connect with OpenVPN while watching the status of the icons in the 
⇒ Network and Internet - Network Connections. 
⇒  Then, in the next step, choose  TAP_Windows Adapter V9 <n>  
⇒ that is shown with the state  Network cable unplugged. 

        
2. Configure the host's TAP interface.  This includes giving the network connection a 

http://openvpn.net/index.php/download/community-downloads.htm


OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 135 of 165 

  name that is easily referenced via a command line argument and IP address.  These steps 
can be done in the GUI from the 
 Network and Internet - Network Connections: 
Select the icon for the connection and rename it to a (preferable short) single word name 
like tap0. 

• Assign an IP address by executing "Properties" for the icon, double-clicking 
on Internet Protocol Version 4 (TCP/IPv4), selecting Use the following IP 
address, and then entering an IP address and Subnet mask.  For example 
192.168.9.4 and 255.255.255.0 respectively. 

The IP address can also be changed from the command line as administrator by using this 
command: 
 

host> netsh interface ipv4 set address static tap0 192.168.9.4 255.255.255.0 

 
3. Ensure connectivity between the virtual ethernet address and other interfaces on the 

host. This is done by enabling IP routing on the Windows host.  For example, run 
services.msc and ensure that "Routing and Remote Access" service is enabled and 
either started or set to automatically start.  

 
    The command prompt can be used to verify that IP routing is enabled, e.g. 
 

host> ipconfig /all 

 
4. Modify host's firewall as needed, especially in TAP mode. 
    For example, it may be necessary to enable ICMP requests in order to ping host.tap0 
from target.eth0. For example: 
 

host> netsh firewall set icmpsetting 8 enable 

 
5. In TAP mode, configure Internet Connection Sharing. For example, on Vista run 

services.msc and enable "Internet Connection Sharing", then edit the properties of 
the Internet network connection to enable sharing with tap0.  

 
NOTE: this may change the manually assigned IP to tap0 in step 2 above, and the 
following examples need to be tweaked accordingly. 
 
6. Temporarily disable anti-virus software or configure the software to make an 
     exception for the platform executable - platform.exe.  This is needed as the 
     accesses to the host resources by the virtual platform may be mistaken as 
     those made by code that the anti-virus software is designed to thwart. 

11.11.1.3 Common Steps for TAP Setup  
1. Find out the dwc_emac instances that will be used by target kernel.  For example, the 

AlteraCycloneV platform has two instances of the dwc_emac model: iEMAC0 and 
iEMAC1.  The default socfpga configuration in vanilla Linux kernels enables only 
the second instance, iEMAC1. 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 136 of 165 

2. Start simulation, using the desired network mode for each dwc_emac instance.  To 
start AlteraCycloneV with iEMAC0 in SLiRP (default) mode and iEMAC1 in TAP 
mode: 

 
host> platform.exe --override AlteraCycloneV/iEMAC1/tapDevice=tap0  

 
3. Verify that the target OS has loaded the corresponding NIC driver and it has 

successfully initialized the model.  To check this on Linux: 
 

target> ifconfig -a  

 
The default socfpga configuration in vanilla Linux kernels has the stmicro driver linked 
into the kernel. On other setups it may be necessary to manually load the driver. 
 
4. Configure the network interface, e.g. eth0, on target, if the previous step shows that it 

isn't configured already.  On a Linux target this can be done with: 
 

target> ifconfig eth0 10.0.2.7 netmask 255.255.255.0 up  

 
In SLiRP mode, target.eth0 interface and slirp.gw interface have to be on the same 
network, which is usually 10.0.2.0/24.  
 
In TAP mode, target.eth0 and host.tap0 interfaces have to be on the same network.  
Following examples use 192.168.9.0/24.  
 
5. Update target's IP routing.  After configuring the eth0 interface on the previous step, 

the target should know how to communicate with nodes from eth0's network (e.g. 
10.0.2 or 192.168.9).  On Linux this can be verified with: 
 
target> route -n           # check routing to eth0's network 

 
To update the routing on a Linux target for communication with nodes on other networks: 
      

target> route add default gw 10.0.2.2                     # add default GW 

 
6. Update target's DNS resolution.  On a Linux target: 
 

# (SLiRP mode) 
target> echo "nameserver 10.0.2.3" > /etc/resolv.conf 
 
# TAP mode 
target> echo "nameserver 192.168.0.1" > /etc/resolv.conf  

 

11.11.2 Example Uses 

11.11.2.1 Manual Target Network Configuration 
 

 # start simulation 
 host> platform.exe  
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 137 of 165 

# start and configure eth0 
target> ifconfig eth0 10.0.2.7 netmask 255.255.255.0 up 
 
# add default GW 
target> route add default gw 10.0.2.2     
                      
# set up DNS 
target> echo "nameserver 10.0.2.3" > /etc/resolv.conf  
 
# browse google 
target> lynx http://www.google.com/                           

 

11.11.2.2 DHCP Target Network Configuration 
 

# start simulation 
host> platform.exe 
                                        
# start eth0 
target> ifconfig eth0 up 
 
# lease an IP address from DHCP server 
target> udhcpc -i eth0 
 
# configure eth0 
target> ifconfig eth0 10.0.2.15 netmask 255.255.255.0  
 
# add default GW 
target> route add default gw 10.0.2.2    
                       
# set up DNS 
target> echo "nameserver 10.0.2.3" > /etc/resolv.conf 
 
# browse google 
target> lynx http://www.google.com/   

 

11.11.2.3 Linux Host TAP Networking Configuration 
with IP Routing (requires root access) 
 
target.eth0 / host.tap0 connectivity: 
 

# create tap0 interface, owned by <user> 
host> tunctl -u <user> -t tap0 
 
# start tap0 
host> ifconfig tap0 192.168.9.4 up 
 
# start simulation 
host> platform.exe --override AlteraCycloneV/iEMAC1/tapDevice=tap0  
 
# start eth0 
target> ifconfig eth0 192.168.9.3 up  
 
# check connection 
target> ping -c 1 192.168.9.4   

                              
host.tap0 / Internet connectivity, using IP forwarding and NAT: 
  (this example assumes that host has a wlan0 interface with a reserved address, e.g. 
192.168.0.5, connected to an Internet router 192.168.0.1, which provides also DNS): 
 

# enable IP forwarding 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 138 of 165 

host> sysctl -w net.ipv4.ip_forward=1 
                          
# force SNAT if Inet router needs it 
host> iptables -t nat -A POSTROUTING -o wlan0 -j MASQUERADE 
 
# modify host forward filtering as needed 
host> iptables -t filter -I FORWARD -i tap0 -j ACCEPT  
 
# add default GW 
target> route add default gw 192.168.9.4 
 
# set up DNS 
target> echo "nameserver 192.168.0.1" > /etc/resolv.conf 
 
# browse Google 
target> lynx http://www.google.com/  

 
               target                  host               Internet router 
                   |                        / \                        | 
192.168.9.3|    192.168.9.4/    \192.168.0.5   |192.168.0.1 
               eth0               tap0   wlan0                  / 
                   \__________/         \___________/ 
 

11.11.2.4  Linux Host TAP Networking Configuration 
Bridging Two Targets (requires root access) 
target1.eth0 / target2.eth0 / host.br0 connectivity 

 
# create tap interfaces, owned by <user> 
host> tunctl -u <user> -t tap0 
host> tunctl -u <user> -t tap1 
 
# ensure tap interfaces are un-configured 
host> ifconfig tap0 0.0.0.0 down 
host> ifconfig tap1 0.0.0.0 down 
 
# create a bridge interface 
host> brctl addbr br0   
host> brctl addif br0 tap0 
 
# attach tap interfaces to the bridge 
host> brctl addif br0 tap0 
host> brctl addif br0 tap1 
 
# activate bridge and its ports 
host> ifconfig tap0 up   
host> ifconfig tap1 up 
host> ifconfig br0 up 
    or 
# bridge may be assigned an IP address to communicate with host 
host> ifconfig br0 192.168.9.1 up 
 
# check that filtering doesn't limit bridge's functionality 
host> ebtables -t filter –L 
 
# start two simulators 
host> platform.exe --override AlteraCycloneV/iEMAC1/tapDevice=tap0 
host> platform.exe --override AlteraCycloneV/iEMAC1/tapDevice=tap1 
 
# start eth0 on each target 
target1> ifconfig eth0 192.168.9.3 up 
target2> ifconfig eth0 192.168.9.4 up 
 
# check the connections 

http://www.google.com/


OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 139 of 165 

target1> ping -c 1 192.168.9.1 
target2> ping -c 1 192.168.9.3 

 
        target1                      host                       target2 
          |                                |[192.168.9.1]         | 
          |                                br0                          | 
          |192.168.9.3    port1/   \port2                  |192.168.9.4 
         eth0                 tap0         tap1                eth0 
            \____________/            \__________/ 

11.11.2.5 Windows Host TAP Networking Configuration 
 With IP Routing  (requires administrator access) 
target.eth0 / host.tap0 connectivity 
 

# ensure Tap-windows has been installed and named "tap0" 
host>   netsh interface ipv4 set address tap0 static 192.168.9.4 255.255.255.0 
host>   netsh interface ipv4 set interface tap0 Forwarding=enabled 
 
# start simulation 
host>   platform.exe --override AlteraCycloneV/iEMAC1/tapDevice=tap0 
 
# start eth0 interface 
target> ifconfig eth0 192.168.9.3 up                      
target> ping -c 1 192.168.9.4 
 
# check the connection 
host>   ping 192.168.9.3 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 140 of 165 

11.12  Packetnet mode 
A peripheral model with an ethernet interface should have a packetnet port called phy. 
Connecting this port to other packetnet devices will enable packetnet mode. When the 
device uses the bhmEthernet API to send a packet, it will be distributed to other models 
on the packetnet (see section 11.5). When other models send a packet, this model’s 
installed callback will be called (see section 11.7). 
 
It is expected that packetnet mode will be used to model a virtual network within the 
platform. Note that while the bhmEthernet API is similar to the ppmPacketnet API,  
writing the model to use the bhmEthernet API allows the model to be used unmodified 
with internal or external networks, whereas using the ppmPacketnet API limits the 
model to using internal networks. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 141 of 165 

12 USB Device Support 
This interface provides a USB channel to a device outside the simulation environment 
This interface is under development and cannot be used. Please contact Imperas. 
 
Function Use 
bhmUSBOpen Open a new USB interface 
bhmUSBControlTransfer Send a control message 
bhmUSBBulkTransfer Send bulk data 
bhmUSBClose close the interface 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 142 of 165 

12.1 bhmUSBOpen 
Prototype 

Int32 bhmUSBOpen (void); 

 
Description 
This interface is under development and cannot be used. Please contact Imperas. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 143 of 165 

12.2 bhmUSBControlTransfer 
Prototype 

Int32 bhmUSBControlTransfer (void); 

 
Description 
This interface is under development and cannot be used. Please contact Imperas. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 144 of 165 

12.3 bhmUSBBulkTransfer 
Prototype 

Int32 bhmUSBBulkTransfer (void); 

 
Description 
This interface is under development and cannot be used. Please contact Imperas. 
 
Notes and Restrictions 
None. 
 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 145 of 165 

12.4 bhmUSBClose 
Prototype 

void bhmUSBclose (void); 

 
Description 
This interface is under development and cannot be used. Please contact Imperas. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 146 of 165 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 147 of 165 

View Object Interface 
This section describes functions to create and provide view objects. 
 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 148 of 165 

12.5 ppmAddViewObject 
 
Prototype 

ppmViewObjectP ppmAddViewObject( 
    ppmViewObjectP parent,  
    const char    *name,  
    const char    *description 
); 

 
Description 

Create a view object. 
 
parent is a pointer to the parent object (NULL for top level, i.e. peripheral instance).  
 
description may be 0. 
 

If the function fails it will return PPM_INVALID_HANDLE (and print an error message). 
 
Notes and Restrictions 
None 
 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 149 of 165 

12.6 ppmSetViewObjectConstValue 
 
Prototype 

void ppmSetViewObjectConstValue( 
    ppmViewObjectP   object,  
    vmiViewValueType type,  
    void            *pValue 
); 

 
Description 

Set constant value for view object (value copied at time of call).  
 
pValue is a pointer to item. 

 
Notes and Restrictions 
None 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 150 of 165 

12.7 ppmSetViewObjectRefValue 
 
Prototype 

void ppmSetViewObjectRefValue( 
    ppmViewObjectP   object,  
    vmiViewValueType type,  
    void            *pValue 
);  

 
Description 

Set value pointer for view object (pointer dereferenced each time value is viewed).  
Use this to associate a view object with a C variable in the model such that the 
variable is automatically read when the view object is evaluated.  
 
pValue is a pointer to item in persistent memory (must be valid for lifetime of object) 

 
Notes and Restrictions 
None 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 151 of 165 

12.8 ppmSetViewObjectValueCallback 
 
Prototype 

void ppmSetViewObjectValueCallback( 
    ppmViewObject      object,  
    ppmCBViewValueFunc valueCB,  
    void              *userData 
); 

 
Description 

Set value callback for view object. 
 

valueCB will be passed the userData value and should be declared as: 
 
ppmViewValueType valueCB ( 
    void  *userData, 
    void  *buffer,  
    Uns32 *bufferSize 
) { 
 ... 
} 

 
See the documentation for the vmiviewGetViewObjectValue function the VMI View 
Function Reference Manual for more info on what this function is expected to return. 

 
Notes and Restrictions 
None 
 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 152 of 165 

12.9 ppmAddViewAction 
 
Prototype 

void ppmAddViewAction( 
    ppmViewObject       object,  
    const char         *name,  
    const char         *description,  
    ppmCBViewActionFunc actionCB,  
    void               *userData 
); 

 
Description 

Add an action to a view object. 
 
actionCB will be passed the userData value and should be declared as: 
 
 void actionCB(void * userData); 

 
object may be 0 for top level, i.e. peripheral instance. 
 
description may be 0. 

 
Example 

#include “peripheral/ppm.h”  
 
 
// 
// Action callback invoked when simulator/debugger wants to perform an action. 
// Change model state. 
// 
void resetCounterActionCB(void *userData) { 
    resetCounter(); 
} 
 
... 
         
ppmAddViewAction( 
    viewCounterReg,                   // Parent view object. Counter register. 
    "reset", 
    "reset the timer counter", 
    resetCounterActionCB, 
    0 
); 

 
Notes and Restrictions 
None 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 153 of 165 

12.10 ppmAddViewEvent 
 
Prototype 

ppmViewEvent ppmAddViewEvent( 
    ppmViewObject  object,  
    const char    *name,  
    const char    *description 
); 

 
Description 

Add an event to a view object 
 
object may be 0 for top level, i.e. peripheral instance. 
 
description may be 0. 
 

If the function fails it will return PPM_INVALID_HANDLE (and print an error message). 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 154 of 165 

12.11 ppmNextViewEvent 
 
Prototype 

ppmViewEvent ppmNextViewEvent( 
    ppmViewObject object,  
    ppmViewEvent  old 
); 

 
Description 

Iterate through the view events on a view object.  
 
old should be set to 0 for the first call, then the returned value used for each 
subsequent call until 0 is returned.  
 
object may be 0 for top level, i.e. peripheral instance. 
 

If the function fails it will return PPM_INVALID_HANDLE (and print an error message). 
 
Example 

#include “peripheral/ppm.h”  
 
... 
  ppmViewEventP v = NULL; 
  while ((v = ppmNextViewEvent(object, v))) { 
      // use v here 
  } 
... 
 

 
Notes and Restrictions 
None.  
 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 155 of 165 

12.12 ppmTriggerViewEvent 
 
Prototype 

void ppmTriggerViewEvent(ppmViewEvent event); 

 
Description 

Trigger a view event. 
 
Notes and Restrictions 
None 
 

 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 156 of 165 

12.13 ppmDeleteViewObject 
 
Prototype 

void ppmDeleteViewObject(ppmViewObject object); 

 
Description 

Delete a view object (including any child objects). 
 
Notes and Restrictions 
None 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 157 of 165 

13 Documentation Interface 
The Imperas documentation generator can product a document from a peripheral model. 
While some parts of the model can be documented automatically by extracting 
information from the model, some words must be supplied by the model writer to fully 
describe it. This API is used to produce headings, paragraphs and specific documentation 
formats for registers or instructions. 
 
The  ppmModelAttr structure has an entry docCB which should be set to a function 
defined using the PPM_DOC_FN prototype. This function should use the following PPM 
functions to create documentation for the model. 
 
Example 
This example is abridged from the OVP arm.ovpworld.org PL011 model. 
 

// Define the documentation constructor 
 
ppmDocNodeP Root1_node = ppmDocAddSection(0, "Root"); 
    { 
        ppmDocNodeP doc2_node = ppmDocAddSection(Root1_node, "Description"); 
        ppmDocAddText(doc2_node, "ARM PL011 UART"); 
        ppmDocNodeP doc_12_node = ppmDocAddSection(Root1_node, "Limitations"); 
        ppmDocAddText(doc_12_node, "This is not a complete model of the PL011."); 
        ppmDocNodeP doc_22_node = ppmDocAddSection(Root1_node, "Reference"); 
        ppmDocAddText(doc_22_node, "ARM PrimeCell UART (PL011) (ARM DDI 0183)"); 
        ppmDocNodeP doc_32_node = ppmDocAddSection(Root1_node, "Licensing"); 
        ppmDocAddText(doc_32_node, "Open Source Apache 2.0"); 
    } 
    ppmDocNodeP Registers1_node = ppmDocAddSection(0, "Registers"); 
    { 
        ppmDocNodeP dr2_node = ppmDocAddFields(Registers1_node, "dr", 32); 
        ppmDocAddText(dr2_node, "UARTDR"); 
    } 
    { 
        ppmDocNodeP flags2_node = ppmDocAddFields(Registers1_node, "flags", 32); 
        ppmDocAddText(flags2_node, "UARTFR"); 
            ppmDocAddField(flags2_node, "TXFE", 7, 1); 
            ppmDocAddField(flags2_node, "RXFF", 6, 1); 
            ppmDocAddField(flags2_node, "TXFF", 5, 1); 
            ppmDocAddField(flags2_node, "RXFE", 4, 1); 
    } 
} 
 
ppmModelAttr modelAttrs = { 
 
    . . . lines omitted for clarity . . . 
 
    .docCB = installDocs, 
 
    . . . lines omitted for clarity . . . 
}; 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 158 of 165 

13.1 ppmDocAddSection 
 
Prototype 

ppmDocNodeP ppmDocAddSection(ppmDocNodeP parent, const char *name); 

 
Description 
This function is called to create a new section node. The name of the section is given by 
the name argument. The section could be a root section (in which case the parent is 
NULL) or a child of a previously-defined section (given as the parent argument). 
 
Once created, a section node will typically be used as a parent of other section nodes or 
text nodes. 
 
Example 
Please refer to the example at the start of this section. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 159 of 165 

13.2 ppmDocAddText 
 
Prototype 

ppmDocNodeP ppmDocAddText(ppmDocNodeP node, const char *text); 

 
Description 
This function is called to create a new text node, defining a paragraph with the given text. 
Leaf-level sections will typically contain one or more text nodes. 
 
Example 
Please refer to the example at the start of this section. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 160 of 165 

13.3 ppmDocAddFields 
 
Prototype 

ppmDocNodeP ppmDocAddFields( 
    ppmDocNodeP parent, 
    const char *name, 
    Uns32       width 
); 

 
Description 
This function is called to create a new documentation node, defining a collection of fields 
that make up an instruction format. The width parameter should specify the overall width 
of the instruction, usually in bits. 
 
Example 
Please refer to the example at the start of this section. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 161 of 165 

13.4 ppmDocAddField 
 
Prototype 

ppmDocNodeP ppmDocAddField( 
    ppmDocNodeP parent, 
    const char *name, 
    Uns32       offset, 
    Uns32       width 
); 

 
Description 
This function is called to create a new documentation node, defining a field within a 
collection of fields that make up an instruction format. The width parameter should 
specify the width of the field, usually in bits. The offset is specified in bits from the 
least significant end. The parent node must be created with ppmDocAddFields. 
 
Example 
Please refer to the example at the start of this section. 
 
Notes and Restrictions 

1. Fields are numbered from zero, zero being the LSB. 
2. Fields can be added to a fields collection in any order. 
3. Fields but must not overlap other fields.  
4. The most significant bit of the most significant field must not exceed the width of 

the fields collection. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 162 of 165 

13.5 ppmDocAddConstField 
 
Prototype 

ppmDocNodeP ppmDocAddConstField( 
    ppmDocNodeP parent, 
    Uns64       value, 
    Uns32       offset, 
    Uns32       width 
); 

 
Description 
This function is called to create a new documentation node, defining a field within a 
collection of fields that has a constant value. The width parameter should specify the 
width of the field, usually in bits. The parent node must be created with 
ppmDocAddFields. 
 
Example 
Please refer to the example at the start of this section. 
 
Notes and Restrictions 

1. Each field can be added to a fields collection in any order but must not overlap 
with other fields. 

2. The most significant bit of the most significant field must be less than the width 
of the fields collection. 

3. The value should not be larger than the specified number of bits can represent. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 163 of 165 

13.6 Describing a field 
Note that the node returned by ppmDocAddField (and ppmDocAddConstField) can have 
further text nodes attached to describe it. 
 
Example 

VMI_DOC_FN(modelDoc) { 
 
    // Create a new chapter 
    ppmDocNodeP chapter = ppmDocAddSection(0, "Added instructions"); 
 
    // Document an instruction 
    ppmDocNodeP INST1 = ppmDocAddFields(chapter, "INST1", 16); 
 
        // Add fields to the instruction 
        ppmDocAddField(INST1, "FIELD1",   0, 4); 
        ppmDocAddField(INST1, "FIELD2",   4, 4); 
        ppmDocNodeP FIELD3 = ppmDocAddField(INST1, “FIELD3",   8, 4); 
        ppmDocAddConstField(INST1,    1,  12,4); 
 
        ppmDocAddText(FIELD3, “This is field3.”); 
 
      . . . more instructions, omitted for clarity . . . 
} 

 
Used with the Imperas documentation generator, this will produce this documentation: 
 
Chapter 1. Added Instructions 
 
1.1 INST1 
 
15                         12 11                          8 7                            4 3                            0 
            0x1              FIELD3          FIELD2         FIELD1 
 
1.1.1 FIELD3 
This is field3. 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 164 of 165 

13.7 ppmDocAddFieldMSLS 
 
Prototype 

ppmDocAddFieldMSLS( 
    parent, 
    name, 
    msb, 
    lsb 
) 

 
Description 
A macro to document a field specifying MSB and LSB instead of offset and width. 
 
Notes and Restrictions 
None. 
 



OVP BHM and PPM API Functions Reference 
 

© 2022 Imperas Software Limited www.OVPworld.org Page 165 of 165 

13.8 ppmDocAddConstFieldMSLS 
Prototype 

ppmDocAddConstFieldMSLS( 
    parent, 
    value, 
    msb, 
    lsb 
) 

 
Description  
A macro to create a constant field specifying MSB and LSB instead of offset and width. 
 
Notes and Restrictions 
None. 
 
## 


	1 Introduction
	2 Peripheral Interface Specification
	2.1 Peripheral modelAttrs structure
	2.2 Bus port definition
	2.3 Net port definitions
	2.4 Packetnet port definitions
	2.5 Conn Input and output port definitions
	2.6 Parameter definitions
	2.7 Complete Example:

	3 Behavioral Modeling (BHM)
	3.1 bhmCreateThread
	3.2 bhmThisThread
	3.3 bhmDeleteThread
	3.4 bhmCreateEvent
	3.5 bhmCreateNamedEvent
	3.6 bhmDeleteEvent
	3.7 bhmWaitEvent
	3.8 bhmTriggerAfter
	3.9 bhmCancelTrigger
	3.10 bhmGetSystemEvent
	3.11 bhmWaitDelay
	3.12 bhmGetCurrentTime
	3.13 bhmGetLocalTime
	3.14 bhmMessage
	3.15 bhmGetDiagnosticLevel
	3.16 bhmSetDiagnosticCB
	3.17 bhmPrintf
	3.18 bhmFinish
	3.19 Reading platform parameters
	3.19.1 bhmBoolParamValue
	3.19.2 bhmDoubleParamValue
	3.19.3 bhmInt32ParamValue
	3.19.4 bhmInt64ParamValue
	3.19.5 bhmStringParamValue
	3.19.6 bhmUns32ParamValue
	3.19.7 bhmUns64ParamValue


	4 Record and Replay
	4.1 Overview
	4.2 Example
	4.3 bhmRecordStart
	4.4 bhmRecordEvent
	4.5 bhmRecordFinish
	4.6 bhmReplayStart
	4.7 bhmReplayEvent
	4.8 bhmReplayFinish
	4.9 Controlling record and replay

	5 Platform Interaction (PPM)
	5.1 ppmOpenMasterBusPort
	5.2 ppmChangeRemoteLoAddress
	5.3 ppmOpenAddressSpace
	5.4 ppmReadAddressSpace
	5.5 ppmWriteAddressSpace
	5.6 ppmTryReadAddressSpace
	5.7 ppmTryWriteAddressSpace
	5.8 ppmCloseAddressSpace
	5.9 ppmOpenSlaveBusPort
	5.10 ppmCreateSlaveBusPort
	5.11 ppmMoveLocalLoAddress
	5.12 ppmDeleteLocalBusHandle
	5.13 ppmInstallReadCallback
	5.14 ppmInstallWriteCallback
	5.15 ppmInstallChangeCallback
	5.16 ppmInstallNByteCallbacks
	5.17 ppmReadAbort
	5.18 ppmWriteAbort
	5.19 ppmOpenNetPort
	5.20 ppmWriteNet
	5.21  ppmReadNet
	5.22 ppmInstallNetCallback
	5.23 ppmCreateDynamicBridge
	5.24 ppmDeleteDynamicBridge
	5.25 ppmCreateDynamicSlavePort
	5.26 ppmDeleteDynamicSlavePort

	6 Memory mapped registers
	6.1 ppmCreateRegister
	6.2 ppmCreateNByteRegister
	6.3 ppmCreateRegisterField
	6.4 ppmCreateInternalRegister
	6.5 ppmCreateInternalNByteRegister

	7 Direct Bus Access
	7.1 ppmAccessExternalBus
	7.2 ppmExposeLocalBus

	8 Packetnet Interface
	8.1 Packetnet ports
	8.2 Recursion
	8.3 Packet size
	8.4 Packetnet functions
	8.5 Example

	9 Conn (FIFO) Support
	9.1 ppmConnPut
	9.2 ppmConnGet
	9.3 ppmRegisterConnInputEvent
	9.4 ppmRegisterConnOutputEvent
	9.5 ppmGetConnInputInfo
	9.6 ppmGetConnOutputInfo

	10 Serial Device Support
	10.1 bhmSerOpenAuto
	10.2 bhmSerOpen
	10.3 bhmSerReadN
	10.4 bhmSerWriteN
	10.5 bhmSerReadB
	10.6 bhmSerWriteB
	10.7 bhmSerClose
	10.8 bhmSerLastError
	10.9 Record and Replay

	11 Ethernet Device Support
	11.1 bhmEthernetOpenAuto
	11.2 bhmEthernetOpen
	11.3 bhmEthernetReadFrameB
	11.4 bhmEthernetReadFrameN
	11.5 bhmEthernetWriteFrameB
	11.6 bhmEthernetWriteFrameN
	11.7  bhmEthernetInstallCB
	11.8 bhmEthernetClose
	11.9 Modes
	11.10 User Mode  
	11.10.1 User Mode Redirection
	11.10.2 Changing the Network address

	11.11 TAP Mode
	11.11.1 Configuring the host
	11.11.1.1 TAP Setup for Linux Host Platforms 
	11.11.1.2 TAP Setup for Windows Host Platforms 
	11.11.1.3 Common Steps for TAP Setup 

	11.11.2 Example Uses
	11.11.2.1 Manual Target Network Configuration
	11.11.2.2 DHCP Target Network Configuration
	11.11.2.3 Linux Host TAP Networking Configuration
	11.11.2.4  Linux Host TAP Networking Configuration
	11.11.2.5 Windows Host TAP Networking Configuration


	11.12  Packetnet mode

	12 USB Device Support
	12.1 bhmUSBOpen
	12.2 bhmUSBControlTransfer
	12.3 bhmUSBBulkTransfer
	12.4 bhmUSBClose

	 View Object Interface
	12.5 ppmAddViewObject
	12.6 ppmSetViewObjectConstValue
	12.7 ppmSetViewObjectRefValue
	12.8 ppmSetViewObjectValueCallback
	12.9 ppmAddViewAction
	12.10 ppmAddViewEvent
	12.11 ppmNextViewEvent
	12.12 ppmTriggerViewEvent
	12.13 ppmDeleteViewObject

	13 Documentation Interface
	13.1 ppmDocAddSection
	13.2 ppmDocAddText
	13.3 ppmDocAddFields
	13.4 ppmDocAddField
	13.5 ppmDocAddConstField
	13.6 Describing a field
	13.7 ppmDocAddFieldMSLS
	13.8 ppmDocAddConstFieldMSLS


