Open Virtual Platforms

OVP Processor Modeling Guide

Imperas Software Limited

Imperas Buildings, North Weston,
Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

IIperas

Author: Imperas Software Limited

Version: 7.48.1

Filename: OVP_Processor Modeling Guide.doc
Project: OVP Processor Modeling Guide

Last Saved: | Thursday, 13 January 2022

Keywords:

© 2022 Imperas Software Limited www.OVPworld.org

Page 1 of 321

OVP Processor Modeling Guide

Copyright Notice

Copyright © 2022 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation

The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer

IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

© 2022 Imperas Software Limited.www.OVPworld.org Page 2 of 321

OVP Processor Modeling Guide

Table of Contents

1 PIETACE. ...ttt bt re e 10
I R N[0 - (o] TP URPPUPTPPPRRN 10
1.2 Recommended REAAINGooveiiiiriieeiesee e e 10
1.3 Related Imperas & OVP DOCUMENLSccverieiiriiesieeiesee e esie e sie e 10

2 INEFOTUCTION ...ttt sttt et sne e 11
A R o (T =0 U1 | OSSP 11

3 Imperas SIMUIAtION OVEIVIEWcccoiiiiiiiiiieiieie e 12
3.1 SIMUulation ENVIFONMENTS.......cciiiiiiieiesie e 12
3.2 ProCcesSOr MOGEISc..oiuiiiieii s 12
3.3 SEMINOSING....cciiiiiee et reere e 13
3.4 Cache and Memory Subsystem MOdEIS...........ccooiiiiiiiniiiineee e 13

4 Introduction to Processor Modeling.........cocvoveiveieiieieee e 14
41 PIEIEUISITES ...ttt ettt et sb e sr e 14
4.2 Creating a Processor Outline Modelccooviieiieiiiiecece e 14

4.2.1 Declaring Shared Functions - orLkFunctions.h.........cccccceeiiene.n, 15
422 Defining Processor Structure - or1kStructure.h.........cccoceien, 15
4.2.3 Constructor, Destructor and Ports - oOr LKMain.cCcccceeveneenvnnnnen, 15
4.2.4 JIT Translations - Or LKMOFrPph . C.....c.ccooeveiiiiicc e 18
4.2.5 Support Functions - OrLKUTI IS .C ..cccoooveviiiecece e 18
4.2.6 Processor Information - OrLKINTO . C...c.ooovvevvvviiiiice e, 19
4.2.7 Function Registration - Or1lKATErS.C....ccccovveviiieiicie e, 23
4.3 Implementing a Test Platform using OVPSIMcccccceiveiieiiic e 24
4.4 Creating an Application TESt CASEcceiveriiriiririiieieeee s 26
4.5 Running the Application Test Case with the Processor Model 27

5 Implementing the INStruction DECOTENccoviiiiiiiiiieiere e 28

5.1 The Template Decoder Modelc.ccoveiiiiiiiiiiece e 28
5.1.1 Defining Decoder Types - orlkDecode . h........ccccoviiiiiiniinicninnnnn, 28
5.1.2 Decode Implementation - orlkDecode.C.........cccooevveieiieieccc s, 29
5.1.3 JIT Translations - Or LKMOFPh . C....coovvveiiiiiicc e 34
5.1.4 Instruction Disassembler - orlkDisassemble.cC........cccoooiiiiinnnne 36

5.2 Running the Application Test Case with the Processor Model 37

5.3 More CompleX DECOUEISueiieieiieiie et eiese et sie e sre e sre e e ne e 38

6 Implementing the Instruction Disassembler ... 39

6.1 The Template Disassembler Modelcccocoviieiiiieiiese e 39
6.1.1 Instruction Formats - orlkDisassembleFormats.h.................... 39
6.1.2 Supporting Instruction Formats - orlkDecode.h.........cccccooeiivinnnen, 40
6.1.3 Adding Instruction Formats - or1kDecode.C........cccoovvvvniviiniinennnnne 40
6.1.4 Using Instruction Formats - orlkDisassemble.cC ..., 41

6.2 Running the Application Test Case with the Processor Model 44

6.3 Creating Disassembler POINE TESTSccccviiiieieieicieseresese e 45
6.3.1 Elegant Test Termination using SemMIhoStiNgccccceevveviieiieiiiieieea, 46

6.4 UNCOOKed DiSaSSEMDIYcouiiiiiiiiiiiiiisiieeie e 47

7 Implementing Simple BEhavior ... 50

© 2022 Imperas Software Limited.www.OVPworld.org Page 3 of 321

OVP Processor Modeling Guide

7.1 An Introduction to Code MOrphiNgccccceoeiirieniieiieniee e 50
7.2 The Template Simple Behavioral Model............ccccooovevieieiieciece e 51
7.2.1 Defining GPRs - or LKStructure.h........cccocooiiiiiicic e, 51
7.2.2 Initializing GPRS - OFrLKMaiN.C ..c.ccoveiveiiiiieece e 52
7.2.3 Implementing Binops - OrLKMOrph.C ..o, 52
7.3 Running the Application Test Case with the Processor Model 55
7.4 INSLrUCLION TEMPOTAITES ...eveeeeiiiieiiresieeeesee e eteseeste e e sraesraeste e e e sreesreeneesneenneens 57
8 Processor Flags and Register DUMPINGc.ooveiiiieiie e 59
8.1 The Template FIags MOdelcccooeiiiiiiececee e 59
8.1.1 Adding Flag Registers - orLKStructure.h.........cccceeviiiicinennnn, 59
8.1.2 Using Flags - OrLKMOFpPhR . C....cooveovviiieec e, 60
8.2 Validating Flag Behavior With TEStScccccveiiiiierice e 62
8.3 Model-Specific DUMP FOIMALccoiiiiiie e 65
8.3.1 Defining Status Register - or 1kStructure._.h...........cccocvvvvvvninnenn, 65
8.3.2 Adding Register DUump - Or1KUEIIS . C ..ooooeiviiiiiiie 66
8.3.3 Initializing Status Register - Or LIKMainN.C.........cccovevvvvieiieerncie e 69
8.34 Dump Function Registration - Or LKATErS.C....ccccevveviienieesienn, 70
8.4 Validating Register Dumping with POINt TEStSccccoeririiniiiiereneneseen 71
8.5 DErVEU FIaQSocieii et e 71
9 Implementing Unconditional Jump INSErUCTIONS..........ccoveieieieniiinieiee e 74
9.1 The Template Unconditional Jump Modelcccoeoeiieiiiiciicece e, 74
911 Defining Link Register - orL1kStructure._h..........ccccviivinnnenn. 74
9.1.2 Defining Jump Instruction Types - orlkDecode.hcccoeenennnen, 74
9.1.3 Decoding Jump Instructions - or1kDecode.Ccccoovvverveiesennnnn, 75
9.14 Jump Instruction Formats - orlkDisassembleFormats.h............. 77
9.15 Jump Instruction Disassembly - or1kDisassemble.c.................... 77
9.1.6 Implementing Jump Instructions - orlkMorph.cC......c.ccccoceviviivivennnne. 78
9.2 Validating Unconditional Jumps with POINt TESES.........ccccvvriieierenciinineens 83
10 Implementing Conditional Jump INStrUCLIONS..........cccvveviiiiiieceee e 85
10.1 The Template Conditional Jump Modelccooiiiiiiiiii e 85
10.1.1 Defining Branch Flag - or1kStructure.hccccccoieiiviinieennnne 85
10.1.2 Decoding Instructions - orlkDecode. [ch] ..., 86
10.1.3 Disassembling Conditions - or1kDisassemble.C..........ccocoviennn, 87
10.1.4 Implementing Conditional Jumps - orLkMorph.cC......cccceoviviinennne. 88
10.2 Validating Conditional Jumps with POint TeStS........ccccevvveieeriiieseerr e 90
11 Implementing Memory ACCESS INSTIUCTIONSccuvvieiiriieesie e 94
11.1 The Template Memory Access MOdel...........ccooveieiieiicicciceee e 94
11.1.1 Decoding Loads and Stores - or1kDecode.Ccccocvvveivivieivennenne. 95
11.1.2 Load/Store Disassembly - orlkDisassemble.C.......ccoceviiennne. 96
11.1.3 Implementing Loads and Stores - orLKMorph.C.......c.ccocvcviiiiiiniennn, 97
11.1.4 Load/Store Test Harness - platform/harness.ccccocvvennenne 99
11.2 FiboNaCC EXAMPIE...c..iiiiiiiiiecee e e 101
11.2.1 BaSiC EXAMPIEooeeiiecie et 101
11.2.2 Validating Simulation Performance...........cccccooveviieiesiesieese e seeseenn 102
11.2.3 Demonstrating Jump Hint EffeCtiVeNessccocvviiiiniciiicicncnie 103

© 2022 Imperas Software Limited.www.OVPworld.org Page 4 of 321

OVP Processor Modeling Guide

12 MOdeling EXCEPLIONSoivieiieiiiiiie ittt 105
12,1 BaSIC EXAMPIEoeiiieiieie ettt 105
12.1.1 Adding Exception Registers - or1kStructure.h...........cccoeenee. 108
12.1.2 Declaring Exception Handlers - or LkFunctions.h............ccc....... 108
12.1.3 Defining Exception Types - or1lkExceptionTypes.h................ 109
12.1.4 Implementing Exceptions - or LKEXCeptions.C.........ccccceevevvenenen. 109
12.1.5 Taking Exceptions - or1kUtils.[ch].....ccccoiiiiiiiiiiiiccree, 113
12.1.6 Exception Function Registration - Or LKATErS.C........ccccevcvvveieiennnn, 115
12.1.7 bL.rfeand F.SYS INStrUCLIONS........ccoiieiiiieriec e 116
12.2 Misaligned Load/Store Address Snapping and Value Rotation 119
12.2.1 ARM Model Load/Store Address Snap Callback............cccccevererinnnnnne 121
12.3 MEMONY ADOIS....c.uiiiicieiieie et te et e e sre e e sneesreesaeanaesneas 121
12.4 Misaligned Fetch Address SNappingcccoovvererieieienesc e 123
13 Modeling Mode-Dependent Behavior (Part 1)ccccccveveieeveeiiesec e 125
13.1 The Template Modal MOdel ... 125
13.2 Correcting 1. rFe BehaVior..........cccuevveiiiieciee e 126
13.3 Implementing B oMESPI ..o 128
13.4 Implementing B omEFSPE oo 131
13.5 Root Module Simulation - platform/harness.c.......cccecvvvevveiennn, 131
13.6 Testing lllegal INStruction EXCEPLIONSccvevveieiieiieie e 131
13.7 Testing I .mtspr and I .mFspr Performance............ccoccvvveveieieeicinennn, 134
13.7.1 Increase application/asmtest.Sto Loop Countc.cccveueeneee. 134
13.7.2 Use IndexX REGISIEr F3L......ccciiiiiiiiiiiriesiieeeee e 135

13.8 Passing Register Arguments to Embedded Calls..........ccccccooovevviiiienninnnnn, 135
14 Modeling Mode-Dependent Behavior (Part 2)cccccvevevveiecie s 138
14.1 The Template Fast Modal Model.............coooiiiiin 138
14.2 Remove Temporary Flag - orlkStructure.h.........ccciiiviienivciennn, 139
14.3 Mode-Dependent JIT Functions - orLKMOrph.C.......ccccceeviniiiiieiniiinnn, 139
14.4 Testing Optimized Illegal Instruction EXCEPLiONScccoceevvereeneniinieenennns 141
14.5 Using Multiple Code DICLIONAIIESc.ccvveriereerieiieieesiesiee e esie e e sie e e 142
14.6 Cautionary Notes about Code DICtIONAIIES........ccccceererieriieiieie e 145
14.6.1 VMITESETMOAE IS SIOW...c.ooiiiiieieiicie e 145
14.6.2 Model Code is More Complicated..........cccoeiereriieninieicee e 146

15 Implementing @ TICK TIMETccoviiieiiie e 147
15.1 ORIK TiCK TIMEr OVEIVIEWccuveiiiirieiiiesieeiesiesieeeesreesieeiesseesteeeesreesseeseens 147
15.2 Tick Timer Modeling Considerations............cccccevveieeiiesieese e ese s 148
15.3 The Template Tick Timer Model...........cccoviiriiiiiii 149
15.4 Adding Timer Registers - orlkStructure.h.........ccccoviiiiiicineieenn, 149
15.5 Timer Register Read and Write - orLKMOrph._C......cccocoiiiiiiiiiiie 150
15.6 Adding Timer Exceptions - Or LKEXCEPTIONS . Cccccecvevvviieieciireienin, 150
15.7 Status Register Update - Or LKUTIIS.C..cooveiviiiiieicc e 156
15.8 Fetch/Timer Callback Registration - Or1KATErS.C.....ccccoovvviviviicienn, 157
15.9 Testing Tick Timer EXCEPIONS.coiiiiiiiiieieience e 157
15.10 EXPHCIt ProCESSOr TIMEISuviiveeieiieiieeiesiesteeite e ste et ae e ste e e e naeenne s 160
16 Modeling External INterruptS........coviveiiiiieee s 162

© 2022 Imperas Software Limited.www.OVPworld.org Page 5 of 321

OVP Processor Modeling Guide

16.1 ORIK PIC OVEIVIEWoviiiieiieieiiesie sttt sttt 162
16.2 The Template External Interrupt Modelcccoevviieiiieiiecie e 162
16.3 Defining PIC Registers - orLkStructure.h..........cccoeviiiiiiccneieenn, 162
16.4 Adding PIC Register Read and Write - orLkKMorph.cC.....cccccoovvivivvinnnen, 163
16.5 Adding PIC Exceptions - Or1KEXCEPEIONS . C...ccoovvveriiriiniiiinieieieene 163
16.6 Adding Net Ports - OFIKMaEN . Ccccoeoviiiiiieiecieceece e 166
16.7 Enhancing Register DUMp - OrLKUTIIS.C ..cocvoviiviiiic e 168
16.8 PIC Test Harness - platform/harness.C.....ccccccovviviieieiiesieeie e, 168
16.9 Testing External EXCEPLIONScc.ooiiiriiiiiieiciee e 169
17 Implementing the Debug INterfacec.cooevveie i 172
17.1 The Template Debug Interface Model ..o 172
17.2 Adding Query Functions - OrIKUTE IS . C...ccccvevviveiice e 172
17.2.1 Processor Mode Iterator FUNCLION.........cccveeiienieeie e 172
17.2.2 Processor Current Mode Query FUNCLIONcccceoveiieiiececic e 174
17.2.3 Processor Exception Iterator FUNCHIONcooviiiiiiieniceeieee, 174
17.2.4 Processor Current Exception Query FUNCLIONccccovevveieiieieeieenns 175
17.3 Register Access Functions - orlkRegisSters.C......c.cciiiiiiiiicicnnenn, 176
17.3.1 Register Read Callback FUNCLIONS...........cccoiiiiiiiiiiie e 182
17.3.2 Register Write Callback FUNCLIONScoceiieiieiiiie e 183
17.4 Raw and Callback RegiSter ACCESS........coviiriieiieiieiiere e 183
17.5 Handling Artifact Accesses - Or LKEXCEPEIONS . C......cccovvvrvvveieiennnn 184
17.6 Debug Function Registration - Or LKATErS.C ...ccccevvviiiieiiieieereeie s 185
17.7 Debug Function Test Harness - platform/harness.c...........cccooevereicncnennnn. 185
17.8 Testing the Debugger INterface...........ccoviveieiiieiiieii e 187
17.9 Testing Register Change TraCiNg.......cccovereeiinrieiiesieie s 189
18 Adding an Extended Programmers VIBWcccoouiiimeieienenenesiesieseseeeenee s 191
18.1 An Example Programmers VIBWccccovevviieieeiueeiieseesesiee e sresneseesse e 191
18.2 Adding View Object and Event - orlkStructure.h..........cccoooiinn, 191
18.3 Implementing Programmer’s View - OrLKVEEW.Ccccoovevviieieciinenennn, 192
18.4 Triggering View Events - Or LKEXCEPTIONS . Ccccvevvviveviecieseece e 192
18.5 Testing the Extended Programmers VIEWcccccvevuevivereeiiesieeseesieseesieenens 193
18.5.1 RUNNING IN OVP ..ot 193
18.5.2 Operation in Imperas MP DebUQQEr........cccecveieiiiiieeie e 194
19 Implementing SAVE/RESIOIEoiieiiiie et 197
19.1 Example Save/Restore Implementation...........ccccoeveveiienieeiesiee e 197
19.2 Save/Restore Mode Active - orlkStructure.h.........ciiivienne, 198
19.3 Save/Restore Interface Functions - Or LKMainN . Cccccoovviiiiiiinciennn, 198
19.3.1 Save/Restore Data CONSLrAINTS........c.ccoverueiieiieriesieseeseseeseesee e seeeens 202
19.3.2 MUILICOIE PrOCESSOIS.uiiuieiierieiesie st sttt sttt nneas 203
19.4 Save/Restore Function Registration - Or IKATErS.C....cccccevviiiviiiiinnnn, 203
19.5 Save/Restore Mode Accesses - Or LKEXCEPTIONS.C......cccccveveiveiieenenen, 204
19.6 Save/Restore Test Harness - platform/Zharness.c.......ccccvevcveeenen, 204
19.7 TeSting SAVE/RESIONEccveiieeieeie et sreesae e nneas 206
19.7.1 State File FOrMAL.........ccoviiiiiiiieicce e e 208
20 Implementing INStruction AFDULES..........ooiiiiiiiiee e 210

© 2022 Imperas Software Limited.www.OVPworld.org Page 6 of 321

OVP Processor Modeling Guide

20.1 Instruction Attribute Access —ocl/Zoclia.h.......iiiiiiiiiiiicnnn, 210
20.1.1 Information Available..........ccccoiiiiiiiii 211
20.2 Example Instruction Attributes Implementation.............c.ccoovviiiiiciencicnnn 213
20.3 Baseline Instruction AttrDULEScooviiiiiiieesc e 214
20.4 Test Harness - platform/harnNeSS.Cccciiiiiiii i 215
20.4.1 INSEFUCKION ClaSS...cuiiiiiiiiiiiiiiieieee ettt 217
20.4.2 FEtCN RECOIUS......uiiiiiiieiieie ettt ste e nnees 218
20.4.3 Read and Written REQISLENSccveieieeiieie et 218
20.4.4 Unmatched Read and Written RaNGEScccoverirerinieiieieie e 219
20.45 NEXt PC EXPreSSIONS....c..ciieivieieiiieiteeitesieesieeeestaesteaeessaesaesnesreesresneesneas 219
20.4.6 AJAreSS EXPreSSIONSccuoiuiiuirieiieieitesiesie sttt sbe e 221
20.5 Testing Baseline Instruction Attributesccccccevvevi s 222
20.6 Adding INSLrUCTION CIASSEServiiiieieieiiesie e 231
20.7 Testing Enhanced Instruction AttribUteScccccveveiieiicie e 233
21 Implementing Fixed-Mapped Virtual MemOrYccccoovviiiiininieeere e 235
21.1 Example Memory IMapS.......cccoueiieiieiieieeie et re et 235
21.2 The Template Fixed-Mapped MOdelcccceviiiiiniiiiiec e 236
213 OFLKVIMLLC ..ttt ettt bbbt 236
21.4 VM Function Registration - Or LKATEFS . C...ocovevviiiiiiiieneeeeeeeie s 239
21.4.1 Virtual Memory Test Harness - platform/harness.c................ 240
21.5 Testing Fixed-Mapped Virtual MEMOIYcccccevveveiieieece e 240
22 Implementing a Dynamic-Mapped TLB..........ccoiiiiiiiiieceeeee e 244
22.1 General TLB CONCEPLSccveeieiieiiieiie sttt ettt sae s 244
22.2 The Simple EXample TLBoooiiiiiiieeeee e 244
22.3 The Template Simple TLB Model.........ccccoviiiiiiiiecece e 245
22.4 Defining TLB Structures - orIkStructure.hccocviiiiniiniininnnn, 246
22.5 Implementing Virtual Memory - or IKVM. [Ch]cccooiiiiiiiee, 246
22.6 Adding TLB Update Instruction - or LKMOrph.Ccccoooeviiiiiiiiiiicieen, 249
22.7 Testing the Simple TLB MOdelccccooiiiiiiiieee 250
22.8 TLB Modeling with Multiple Processor MOdesccccovvevviieieeriesiesieenn. 254
22.8.1 Apply Changes in All TLB-Mapped DOmainscccccveervrvnenieinenne. 254
22.8.2 Maintain Multiple Copies of the TLBcccccoveveiieiieieccceeee e 254
22.9 TLB Modeling with ASID-Mapped ENtriescccocevrenenenineneseseeeee, 255
22.9.1 Managing Virtual Address Aliases with Different ASID 256
22.10 Lazy Mapping Of TLB ENLIIES......ccooiiiiiieiieieeeeeee e 256
23 Implementing a TLB LRU Replacement POIICY..........ccceveiieiievciiciecce e 259
23.1 Introduction to LRU Replacement Implementationcccceovvviincnennnnn 259
23.2 The Template LRU Replacement Policy Model............cccccevviiiiiiecenene. 260
23.3 Adding MRU Entry State - or1kStructure_h ..., 260
23.4 Using MRU Entry State - OFIKVM_C ...ccocoviiiiiieiececeec e 261
23.5 Testing the LRU Replacement Policy Modelcccocvevviieieiieiicceeien, 262
24 Implementing QuantumLeap-Compatible Modelsccooeiiiiiiiinie, 265
24.1 Introduction to Multiprocessor SImulation............cccccevveieiivenecieseese e 265
24.2 QuantumbLeap REQUITEMENTSccooviiiriiiie e 265
24.3 Test-and-Set or Atomic Swap INSTFUCTIONSccvvveiieiicie e 266
24.4 Load/Store EXCIUSIVE CONSIIUCES.......ccveiieiiiie e 267

© 2022 Imperas Software Limited.www.OVPworld.org Page 7 of 321

OVP Processor Modeling Guide

24.4.1 Describing the Load Exclusive INStruction............ccoceveveiveniveneseesnenne. 267
24.4.2 Describing the Store Exclusive INStruction............cccccevvvvevivervceesnenne. 267
24.4.3 Handling the Address MONITOL...........cccueiririeeieiie e 268
24.4.4 Load/Store Exclusive with QuUantumLeapccocceevvevveresieeseeriesiennenn 269
24.5 Accessing Shared RegiSter State..........ccoveeiirieiiienieie e 270
24.6 Enabling QuantumLeap in a processor Modelcccevvevveiviieieenecie e 270
25 Function Address SEMINOSTINGccoouiiiriinieiie e 271
AT R 101 (=] (ot o1 o] USSR SRR 271
25.2 The Template Semihosting LIDIarycccocovoieiiiiiniene e 271
25.3 File semihosting/orlkNewlib.C......coiiiiiiiiiee, 272
25.3.1 OR1K Newlib Semihosting vmiosAttr Definitionc.ccoeceenrnen. 273
25.3.2 OR1K Newlib Semihosting Constructor Definition.............c..cccccvevueenee. 277
25.3.3 OR1K Newlib Semihosting Destructor Definition...............cccccocenvrnnnnne 278
25.3.4 Function Address Intercept Example: closelntccccocvvveenen, 278
25.4 Semihosting Function Return - or1kSemiHOST . C......cccooovvvvvieiieiieenen, 282
25.5 File platForm/NarNEeSS . C ...t 283
25.6 Flow of Control for Opaque Address INtercepts........ccuverveierinneerieninneenne 283
25.7 Testing the Semihosting Intercept Librarycccccoovevviieiiienesiie e 283
25.8 Intercepts and MUItICOre PrOCESSOIScc.uuviiierieeiesie e siee e 284
26 Using Intercept Libraries for Instruction Set Enhancementccccccevvevvieenee. 287
26.1 The Template Instruction Set Enhancement Libraryccccccoovviniinninnnn. 287
26.2 File exchange/orlKEXChange.C ..., 287
26.2.1 OR1K Newlib Semihosting vmiosAttr Definitioncccccoeenee. 289
26.2.2 Constructor DefiNItioNcoocviiiiiieiieiere e 290
26.2.3 The Morpher Callback: exchangeMorph..........cccoccooiiiiviiiniiincnen, 294
26.2.4 The Exchange Instruction Morpher Callback: emitExchange.......... 295
26.2.5 The Next Instruction Callback: exchangeNextPCc.cccccevuenen. 297
26.2.6 The Disassembler Callback: exchangeDisass..........ccoocvvviieinnen. 298
26.2.7 The Register Group lterator Callback: exchangelterRegGroup... 299
26.2.8 The Register Iterator Callback: exchangelterRegInfo............... 299
26.3 The Harness File, platform/harness.C......cccocvviviiiiiieiiesieseee e, 299
26.4 Testing the INtercept Library ... 300
26.5 Extension Libraries and Multicore ProCeSSOrScccovvviieiinieerieriesie e 301
26.6 Pre-Morph and Post-Morph Callbacks ... 303
27 Processor CoONfIGUIALION.ccuviieiieieee et 308
27.1 Example of a Configurable ProCeSSOr.........ccciveieriiiieniiie e 308
27.2 The Parameters STIUCLUIEccoiviiiiiiieieeeie e 308
27.3 Parameter Specification - orlkParameters.Cccccoveviiiieiiecieeiieenn, 309
27.3.1 STTUCKUIE SIZE ...ooveiiiieiie ettt bbb 309
27.3.2 SPECIfiCation ODJECESoiiiiiieieiee s 309
27.3.3 USING the Parametersccccveiveiieiieie et 310
27.4 Parameter Function Registration - Or LKATErS.C.....cccooeviviieieiieiieiens 312
27.5 Using a parameterized model...........ccoooiieiiiiiiiiie e 313
27.6 Testing Processor Configuration..........cccccveieviereeriesieesesse e se e 314
28 Making High-Performance Processor Models..........ccooeviiinniiiic e, 317

© 2022 Imperas Software Limited.www.OVPworld.org Page 8 of 321

OVP Processor Modeling Guide

28.1 Processor Model Efficiency ANalySiS.........ccooiiiriiiiinieie e 318
28.1.1 Processor Model Profilingccccvvveiiiieiiiee e 320

© 2022 Imperas Software Limited.www.OVPworld.org Page 9 of 321

OVP Processor Modeling Guide

1 Preface

This document describes how to create processor models for use with OVPsim and
Imperas simulation tools.

1.1 Notation

Code Code extracts

1.2 Recommended Reading

Imperas simulation technology is based on just-in-time (JIT) compiler technology. The
following book provides a good introduction to the concepts involved:

Virtual Machines, by James E. Smith, Ravi Nair
ISBN 1-55860-910-5
Publisher: Morgan Kaufmann/Elsevier

1.3 Related Imperas & OVP Documents

e VVMI Morph Time Function Reference
e VVMI Run Time Function Reference

© 2022 Imperas Software Limited.www.OVPworld.org Page 10 of 321

OVP Processor Modeling Guide

2 Introduction

Imperas simulation technology enables very high performance simulation, debug and
analysis of platforms containing multiple processors and peripheral models. The
technology is designed to be extensible: you can create new models of processors and
other platform components using interfaces and libraries supplied by Imperas. Processor
models developed using this technology can be used both with Imperas simulation
products and the freely-available OVPsim platform simulator.

This document describes how to use the OVP interfaces to create new processor models.

The documentation here is supported by C code samples in the Examples directory of
your Imperas installation, and also to download from the OVPWorld website
(www.ovpworld.org). The compilation makes use of Makefiles, the instructions for
which indicate the use of the command make. On Windows systems, the MinGW
mingw32-make command should be used in its place.

2.1 Prerequisites

Since models for use with Imperas and OVP tools are written in C, an important
prerequisite is that you must be an expert in the C language.

In very rare circumstances it is beneficial to implement some highly-performance-critical
routines directly in assembler. You should ensure you are familiar with the x86
instruction set and assembler usage if required.

GCC Compiler Versions
Linux32 45.2 1686-nptl-linux-gnu (Crosstool-ng)
Linux64 4.4.3 | x86_64-unknown-linux-gnu (Crosstool-ng)
Windows32 | 4.4.7 mingw-w32-bin_i686-mingw
Windows64 | 4.4.7 | mingw-w64-bin_i686-mingw

© 2022 Imperas Software Limited.www.OVPworld.org Page 11 of 321

OVP Processor Modeling Guide

3 Imperas Simulation Overview

Before starting to create models for use with the Imperas simulation environment, you
must understand how the components used in that environment interact. This section
describes this in detail.

3.1 Simulation Environments
There are two simulation environments that can be used with models that you create:

e OVPsim allows processor models created using OVP modeling technology to be
used in C harness or platform files to create executables that execute binaries
compiled for those processor models. It can also simulate behavioral components
(the subject of this guide). OVPsim can also be used in 3" party simulation
environments (for example, SystemC). It can also be used to create a test harness
to help validate processor models under construction, or even to create custom
simulation environments. OVPsim has less functionality than the Imperas
Professional Simulator Products in some areas and has restricted commercial
usage as stipulated in the OVP click-through license agreement.

e Imperas Professional Simulator Products enhance the basic capabilities provided
by OVPsim, particularly in the areas of debugger integration, tool integration and
multiprocessor simulation support (including QuantumLeap parallel simulation).
Contact Imperas for more information.

3.2 Processor Models

The core simulation components are processor models. In order to create a new processor
model, you must implement the following major components by writing C code using the
Imperas Virtual Machine Interface (VMI) API:

e Aninstruction decoder, capable of decoding a single processor instruction. This is
a required component for the disassembler, morpher and debugger interface,
described in section 5.

e Aninstruction disassembler, capable of generating a text representation of an
instruction, described in section 6.

e Aninstruction morpher, capable of describing the behavior of a single instruction,
described in sections 7 - 16.

e A debugger and register interface, which provides functions required for the
model to be debugged using gdb or the Imperas multiprocessor debugger,
described in section 17. This is also a prerequisite for advanced features such as
register change tracing, save/restore and instruction attributes generation.

e A programmer’s view, which allows details of model operation to be made
available to tools such as debuggers in a structured way. This is described in
section 18.

e |f a processor implements virtual memory, then the hardware structures that
support that virtual memory (MMU and TLB, for example) should also form part
of the processor model. This is described in sections 21 - 23.

© 2022 Imperas Software Limited.www.OVPworld.org Page 12 of 321

OVP Processor Modeling Guide

e If processors are to be used with the QuantumLeap parallel simulation algorithm
of the Imperas Professional Simulation products, some changes may be required
(for example, to identify atomic instructions). This is described in section 24.

e Most processor models will need to model members of a family of processors
(family members are referred to as variants). To re-use your code as far as
possible it is often convenient for one processor model to support multiple
variants and configuration options that can be configured from the platform.
Model configuration is covered in section 26.6.

Processor models are compiled into a shared object (.so or .dll) which is then dynamically
loaded by the simulation environment.

3.3 Semihosting

Semihosting allows behavior that would normally occur on a simulated system to be
implemented using features of the host system instead. As a simple example, a real
platform might contain a UART peripheral to receive output. When simulating this
system, it is generally more convenient not to simulate the UART at all but instead to
intercept any write call that a processor makes and redirect the output to the simulator
log instead. Such behavior is specified in a semihosting library for a processor.

Implementation of semihosting libraries is described in section 25.

3.4 Cache and Memory Subsystem Models

Memory subsystem models such as caches can be modeled as loadable shared objects (or
dynamic linked libraries on Windows) and separately instantiated. This makes it very
easy to explore hardware options: what happens to the performance of this application if |
double the size of the L2 cache?

Memory subsystem models can be either full or transparent. A full model implements
memory contents: for example a full cache model would implement both cache tags and
the cache line contents. A transparent model implements some state but not the memory
contents: for example, a transparent cache model would implement the cache tags but not
the line contents, which is useful for performance analysis models that simply count hits
and misses.

Implementation of memory subsystem models is beyond the scope of this document.

© 2022 Imperas Software Limited.www.OVPworld.org Page 13 of 321

OVP Processor Modeling Guide

4 Introduction to Processor Modeling

4.1 Prerequisites

Before starting implementation of a new processor model, we recommend that you do the
following:

1. Identify the particular processor variant to be modeled (when variants exist).

2. Obtain a processor tool chain and understand how to use it for the variant you will
be modeling (if a tool chain is available). Typically, you will find it useful to have
an assembler, linker, object dump utility and C compiler. If you are writing a
model for a completely new processor then it is possible that no supporting tools
may Yyet exist: in this case, you will need to become familiar with the object code
format of the processor and possibly implement a custom object file loader as part
of the modeling project.

3. Obtain a golden reference model if possible. Validating a processor model is
much easier if there is a golden reference against which comparisons can be
made.

4.2 Creating a Processor Outline Model
A minimal processor outline model is available in the directory:

$IMPERAS_HOME/Examples/Models/Processor/1.orlkOutline

This model is for the freely-available OR1K processor (see
http://opencores.org/orlk/Main_Page). At this point, the model implements the bare
minimum functionality to create a shared object usable by the Imperas simulation tools.

Take a copy of the outline model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/1.orlkOutline .

Compile the model using the make utility:

cd 1.orlkOutline
make

Running make compiles the model in the current directory (using Makefile) and links it
with an Imperas stub library (vmiStubs.static.a) to create a shared object loadable by
the Imperas tools (model .so/model .dl1).

The model source code covered here and in following sections refers to Imperas
header files in the directory:

$IMPERAS_HOME/ ImpPublic/include/host/vmi

© 2022 Imperas Software Limited.www.OVPworld.org Page 14 of 321

OVP Processor Modeling Guide

These header files comprise the Imperas Virtual Modeling Interface (VMI) API.

The outline model files are described in the following subsections.

4.2.1 Declaring Shared Functions - orlkFunctions.h

File orikFunctions.h declares prototypes of functions used throughout the processor
model. Functions that must have particular prototypes for use with the Imperas tools
should be defined using macros from file vmiAttrs.h within the VMI header directory;
for example, every processor must have constructor, which is declared as:

VMI_CONSTRUCTOR_FN(oril1kConstructor);

The macro VM1_CONSTRUCTOR_FN is defined in vmiAttrs.h as:

#define VMI_CONSTRUCTOR_FN(_NAME) void _NAME(C \

vmiProcessorP processor, \
Bool simulateExceptions, \
vmiSMPContextP smpContext, \
void *parameterValues \

)

In other words, function orikConstructor is a void function which is passed an
argument processor which is of type vmiProcessorpP, a Boolean argument
simulateExceptions, an argument smpContext oOf type vmiSMPContextP and an
argument parameterValues of type void*. The vmiProcessorP type is an opaque type
pointer representing the current processor state — we will see how this is used later in this
section.

Always use the macros provided in the VMI header files to declare and define your
functions: this protects any code you write from future changes to any of the Imperas
function definitions.

4.2.2 Defining Processor Structure - or1kStructure.h

File or1ksStructure.h defines a structure that will be used to hold the state of a single
ORI1K processor. Because this is a generic model, at this point the structure is empty
except for a pointer describing the bus ports of the processor:

typedef struct orilkS {
vmiBusPortP busPorts; // bus port descriptions
} orilk, *orilkP;

4.2.3 Constructor, Destructor and Ports - orlkMain.c

File orikMain.c implements two functions that must be present in every processor
model: the constructor and destructor. The constructor function is called for each new
instance of a processor. It should initialize the processor state (for example, by setting
registers in the processor structure to a known state). The destructor is called at the end of
simulation for each processor instance. It should perform any required processor-model-
specific shutdown actions.

© 2022 Imperas Software Limited.www.OVPworld.org Page 15 of 321

OVP Processor Modeling Guide

In this example, the constructor and destructor perform no action except to print that they
have been called (using the message API defined in vmiMessage.h), and to allocate and
free the model’s bus interface:

VMI_CONSTRUCTOR_FN(orlkConstructor) {
orlkP orlk = (orlkP)processor;
vmiPrintf(""%s called\n", FUNC_NAME);

// create bus port specifications
newBusPorts(orlk);

}
VMI_DESTRUCTOR_FN(orilkDestructor) {

orlkP orlk = (orlkP)processor;
vmiPrintf(""%s called\n", FUNC_NAME);

// free bus port specifications
freeBusPorts(orik);

It is good practice to give each public model declaration a common, model specific
prefix: this simplifies debugging the model in a simulation where several models of
different types are in use. In this case, we have chosen the prefix orik.

File orikMain.c also implements a bus port specification function for the processor,
which tells the simulator the number of bus ports that the OR1K has and their width. The
OR1K, like many processors, has two bus ports. The first, called INSTRUCTION is a bus
master port used to fetch instructions from memory. The second, called DATA is also a bus
master port, used to read and write data to memory (on many systems, these two ports are
connected to the same physical bus, so share the same address space). Objects
representing these two ports are allocated and stored on the processor instance by
function newBusPorts:

const static vmiBusPort busPorts[] = {
{""INSTRUCTION", vmi_BP_MASTER, vmi_DOM_CODE, {32,322}, 1},
{"'DATA" , vmi_BP_MASTER, vmi_DOM_DATA, {32,32}, 0},

}:
static void newBusPorts(orlkP orilk) {
Uns32 i;
orlk->busPorts = STYPE_CALLOC_N(vmiBusPort, NUM_MEMBERS(busPorts));

for(i=0; i<NUM_MEMBERS(busPorts); i++) {
orlk->busPorts[i] = busPorts[i];
¥

© 2022 Imperas Software Limited.www.OVPworld.org Page 16 of 321

OVP Processor Modeling Guide

The template structure busPorts describes the instruction and data bus ports. The
vmiBusPort type is defined in vmiPorts.h as follows:

typedef enum vmiBusPortTypeE {
vmi_BP_MASTER,
vmi_BP_SLAVE,
vmi_BP_MASTER_SLAVE

} vmiBusPortType;

typedef enum vmiDomainTypeE {

vmi_DOM_CODE, // code domain port
vmi_DOM_DATA, // data domain port
vmi_DOM_OTHER // other domain port

} vmiDomainType;

typedef struct vmiBusPortS {

const char *name;

vmiBusPortType type;

vmiDomainType domainType;

struct {Uns8 min; Uns8 max; Uns8 unset;} addrBits;
Bool mustBeConnected;

// space for documentation
const char *description;
void *descriptionDom;

// domain is non-NULL if port is connected
memDomainP domain;

} vmiBusPort;

The model fills the name, type, domainType, addrBits.min, addrBits.max and
mustBeConnected fields; remaining fields are filled by the simulator as the model is
instantiated. The fields have the following meanings:

1. name: the name of the port;
type: the port type (master or slave);
domainType: the port usage (code, data, or another purpose);
addrBits.min: the minimum width of a bus that can be connected;
addrBits.max: the maximum width of a bus that can be connected:;
mustBeConnected: Whether the port must be connected (if False, it may be left
unconnected).

o abkwn

After the processor constructor has been called, the simulator obtains information about
the model’s bus ports by calling an iterator function here implemented by
orlkGetBusPortSpec Which returns a pointer to a vmiBusPort structure for each
implemented port. Like most VMI iterators, it is called with zero to return the first object,
with the previous object to return the next, and it returns zero when all objects have been
iterated:

VMI_BUS_PORT_SPECS_FN(orilkGetBusPortSpec) {

orlkP orlk = (orlkP)processor;

if(Iprev) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 17 of 321

OVP Processor Modeling Guide

// first port
return orlk->busPorts;

} else {

// port other than the first
Uns32 previndex = (prev-orlk->busPorts);
Uns32 thislndex previndex+1;

return (thislndex<NUM_MEMBERS(busPorts)) ? &orlk->busPorts[thislndex]:0;

}

When simulation ends, the destructor frees the allocated bus port list by calling function
freeBusPorts:

static void freeBusPorts(orlkP orilk) {

if(orlk->busPorts) {
STYPE_FREE(orilk->busPorts);
orlk->busPorts = 0;

}

4.2.4 JIT Translations - or1kMorph.c

File orikMorph.c implements the OR1K morpher function. The morpher function is
responsible for defining how each processor instruction should be implemented; this is
described in detail in section 7. The minimal example simply contains a call to function
vmimtExit, which will cause the processor to terminate on the first instruction
encountered.

4.2.5 Support Functions - orlkUtils.c
File orikutils.c implements two simulation support functions required in every model:
the processor endianness function and the next instruction function.

4.2.5.1 The Endianness Function

This function must return the endianness of the processor when fetching code or
performing a load or store. Currently supported options are MEM_ENDIAN_BIG and
MEM_ENDIAN_LITTLE. This OR1K model is big endian, so the function is defined as:

VMI_ENDIAN_FN(orlkGetEndian) {
return MEM_ENDIAN_BIG;
}

Some models have endianness dependent upon the current processor state. For this
reason, the endianness callback is passed the current processor as an argument so that
its state can be accessed if required.

This function can be called to request both the endianness of instruction fetches and
the endianness of loads and stores: which is required is specified by the second

© 2022 Imperas Software Limited.www.OVPworld.org Page 18 of 321

OVP Processor Modeling Guide

argument to the VM1_ENDIAN_FN, a Boolean called isFetch. This is True for an
instruction fetch and False for a data access.

4.2.5.2 The Next Instruction Function

Given an instruction address, this function must return the next instruction address. This
function is used by the simulator to step through the simulated code when generating
(morphing) equivalent native code.

For processors with variable-length instructions (for example, x86 variants) the next
instruction address function will be required to perform a full or partial instruction decode
in order to determine the next instruction address. On RISC processors, the instruction
size may be constant, so no decode is required. See section 5 for details of implementing
an instruction decoder.

The minimal processor model assumes a constant instruction size of four bytes and is
therefore implemented like this:

VMI_NEXT_PC_FN(orlkNextlnstruction) {
Uns32 nextAddress = (Uns32)(thisPC + 4);
return nextAddress;

The next instruction function must correctly handle instruction wraparound. In the

example above, it would be incorrect to implement the function as:
return thisPC + 4;

(this would not wrap round as required after oxfFFffffc, because the Addr type of
thisPC is 64 bits, not 32).

4.2.6 Processor Information - orlkiInfo.c

File orikInfo.c implements the processor information function, which returns
information about the model in several categories. Specifically, it defines a VLNV
reference for the model (saying where it is located in a library), a VLNV reference for a
default semihost library to use with the model, and information executable ELF codes
and compatible debuggers:

#include "'vmi/vmiAttrs.h"
#include "vmi/vmiModellInfo.h"

#include "orlkFunctions.h"
VMI_PROC_INFO_FN(orl1lkProcinfo) {

static const vmiProcessorinfo info = {
-vinv._vendor “ovpworld.org"

-vinv_library = "processor"
-vinv._name = "orlk™"
.vinv.version = "1.0"

-semihost.vendor "ovpworld.org"

-semihost._library = *"semihosting™
.semihost.name = "orlkNewlib"
.semihost.version = "1.0"

© 2022 Imperas Software Limited.www.OVPworld.org Page 19 of 321

OVP Processor Modeling Guide

.elfCode = 33906,

-endianFixed = True,

.endian = MEM_ENDIAN_BIG,

gdbPath = "$IMPERAS_HOME/lib/$IMPERAS_ARCH/CrossCompiler/or32-

elf/bin/(-)r32—elf—gdb" VMI_EXE_SUFFIX,
-Family = "openCores",
}:

return &info;

}

This example uses a static structure; in a more complex model the member values could
depend on the current mode of the processor and therefore the structure might need to be
dynamically allocated for a particular processor instance. The vmiProcessorInfo
structure type is defined in header file vmiModel Info.h like this:

typedef struct vmiProcessoriInfoS {

// Location of this model
vmiVinvinfo vlinv;

// semihost library used by default with this model.
vmiVinvinfo semihost;

// Path to the gdb used to debug this model.
// Remember to use the VMI_EXE_SUFFIX so this works on Windows
const char *gdbPath;

// Flags (if any) required by this GDB for this processor
const char *gdbFlags;

// Startup commands (if any) sent to this GDB for this processor
// Separate and terminate each command with newline (\n)

// e.g. "command one\ncommand two\n"

const char *gdblnitCommands;

// CPU Helper used by this model
vmiVinvinfo helper;

// Helper used by this model to replace GDB
vmiVinvinfo debugHelper;

// List of extension libraries to be unconditionally loaded
// by this processor model.
vmiVinvinfoListCP mandatoryExtensions;

// If endianFixed is true, this iIs it, otherwise ignore it.
memEndian endian;

// This model supports one endian
Bool endianFixed;

// By default, choose this model to execute a program with the following
// elf code. Only one model in your library should have this set.
Bool defaultModel ;

// When reading executables for this model, the loader should use
// physical addresses, not virtual.

// (This is a legacy feature; unlikely to be required).

Bool loadPhysical;

// True if this model can run in QuantumLeap mode

© 2022 Imperas Software Limited.www.OVPworld.org Page 20 of 321

OVP Processor Modeling Guide

Bool QLQualified;

// True if this model contains instances of different types
Bool AMP;

// standard ELF code used by this processors
Uns32 elfCode;

// Alternative ELF codes used by this processor
const Uns32 *alternativeElfCodes;

// Deprecated field
const char *variant;

// Processor family string
const char *family;

// Processor group strings
const char *groupH;
const char *grouplL;

// If the gdb associated with this processor sets the lower address bits
// to indicate the processor mode, use this field to clear the bits prior
// to setting a breakpoint.

// =0 or 1 if no snap required

// =2 to snap to 2-byte short

// =4 to snap to 4-byte word

// =8 to snap to 8-byte long word

Uns32 debugSnapAddress;

} vmiProcessorinfo;
Some of the important fields in this structure are explained below.

4.2.6.1 Model Location (vinv)
The vinv member specifies where the model will be stored, using the "“Vendor, Library,
Name, Version" (VLNV) notation.

4.2.6.2 Default Semihost Library Location (semihost)
The semihost member specifies the location of the default semihost library (see Chapter
21) to be used with this model, using VLNV notation.

4.2.6.3 List Of Extension Libraries (mandatoryExtensions)

The mandatoryExtensions member specifies the start of a list of extension libraries

used to enhance the instruction set of the model (see Chapter 26). The member can be

nul I or pointer to a vmiVInvinfoList structure which points to a vmiVIinvinfo structure
and (optionally) another in the list. The vmiVinvinfo should contain the VLNV reference
of the library to be loaded.

4.2.6.4 ELF codes (elfCode and alternativeElfCodes)

The elfCode field specifies the primary ELF code that is expected for executables that
can run on this processor. If non-NULL, field alternativeElfCodes specifies a zero-
terminated list of other ELF code that are acceptable. These fields let the simulator check

© 2022 Imperas Software Limited.www.OVPworld.org Page 21 of 321

OVP Processor Modeling Guide

the compatibility of an application program before it is loaded for execution by this
model.

4.2.6.5 Endian fields (endianFixed and endian)

Setting endianFixed to False indicates that the processor can be either endian. This is
not to be confused with the endianness function defined with the vMI_ENDIAN_FN macro,
which returns the current endianness of the processor. If endianFixed is True, the
subsequent member endian specifies that fixed endianness (otherwise it is ignored).

4.2.6.6 gdbPath

This field specifies the path to the debugger to be used with the model. The
VMI_EXI_SUFFIX macro can be used to conditionally add the .exe file suffix required for
an executable on a Windows host.

4.2.6.7 gdbFlags

This field specifies any flags to be supplied on the debugger command line when it is
invoked. If omitted (as in this case) then no special flags are supplied on the debugger
command line.

4.2.6.8 gdblnitCommands

This field specifies any commands to be sent to the debugger after starting the executable,
but before debugging begins. For example if the debugger supports several architectures,
set arch <specific_architecure> can be used to choose one. If more than one
command is required, separate them using the newline “\n” character. If omitted (as in
this case), no special initialization commands are required.

4.2.6.9 helper

This field optionally specifies the VLNV reference of an intercept library that helps the
VAP tools to understand the processor’s ABI.

Please refer to the Imperas_Binary_Intercept_Technology User_Guide.

4.2.6.10 debugHelper
This field optionally specifies the VLNV reference of a library that helps the Imperas
Multiprocessor debugger to understand the processor’s call stack, in the absence of a
suitable gdb debugger.

4.2.6.11 QLQualified
This field specifies that the processor is able to run in parallel mode. See section 24.6.

4.2.6.12 Debugger snap address

Some processors do not use byte addressing; all instructions fall on 2-byte or 4-byte
boundaries. A processor of this kind might use the least significant bits of its address to
indicate special processor modes. If the gdb that is used with this processor requests
breakpoints with the least significant bits set (also indicating the special processor
modes), the simulator will not correctly detect the processor executing at a breakpoint

© 2022 Imperas Software Limited.www.OVPworld.org Page 22 of 321

OVP Processor Modeling Guide

address. The debugsnapAddress field can used to work around this problem; set this field
to force breakpoint addresses from the debugger to the appropriate boundary:

debugSnapAddress meaning

0 (default) or 1 Breakpoint lies on 8-bit boundary
2 Breakpoint lies on 16-bit boundary
4 Breakpoint lies on 32-bit boundary
8 Breakpoint lies on 16-bit boundary
(Other values are illegal)

4.2.7 Function Registration - orl1kAttrs.c

File orikAttrs.c implements the VMI instruction attributes object for the OR1K
processor. This is a C structure of type vmi 1ASAttrs, the type of which is defined in the
VMI header file vmiAttrs.h. The structure encapsulates all required information about
the processor in a form that is usable by the Imperas simulation products.

const vmilASAttr modelAttrs = {
//////77777777/777777777777777777/77/77/77/77/77/77/777777/77/77/7/777/7/7777777777777
// VERSION & SIZE ATTRIBUTES
/////777777777/7777777777/777777/77/7/777/77/77/7777/77777/7/77777/777/7/7/77/7777777777

-versionString = VMI_VERSION,

-modelType = VMI_PROCESSOR_MODEL,
.dictNames = dictNames,
.cpuSize = sizeof(orilk),

L11177777777777777777777777777777/7777//777777///7777///77/7////7//77//7//
// CREATE/DELETE ROUTINES
L11177777777777777777777777777777//7777//777777///7777///7/7/7////7//77//7/7/

.constructorCB = orlkConstructor,
.destructorCB = orlkDestructor,

1/1//1/77777777777/77777/7/////77//7////////////////7//7//////////////////7//7777
// MORPHER CORE ROUTINES
1/1//1//77/7/7//7////7//7///7//7//7//

-morphCB = orilkMorphlnstruction,
L11/7/77777777777777777777777777777/7777777777/7/77777/777//7//////777/7777777
// SIMULATION SUPPORT ROUTINES
L1/1/1/77/777777/777/7/77/////7/77/7777777

-getEndianCB
-nextPCCB

= orlkGetEndian,

= orlkNextlnstruction,

L1177 77777777/7/7777777777777/777777//7/77777/7/777/7//7/7/77/7//7/77/777/7/777777
// PORT ROUTINES

L1117 77777777777777777/777777/7/7777/7/77/7/7//7/7/7//7/7/77/7//7/7/77/7/7//7/7777

-busPortSpecsCB = orilkGetBusPortSpec,
L//1/7777777777777777777777777777/77777/77/7/7777777/7/77777/7/77/7/7/7/7/7/7/777777777

// PROCESSOR INFO ROUTINE
1/1//1//77777777777777777/77///7/7/7////7/////////////7////////////////////7777

© 2022 Imperas Software Limited.www.OVPworld.org Page 23 of 321

OVP Processor Modeling Guide

-procInfoCB = orlkProclinfo,

Note that all fields in the structure are initialized by name. This is done so that source
code changes are not required if new fields are added to the structure in future.

In the case of the minimal processor model, the structure contains:

1. A VMI version string, vM1_VERSION (defined in vmiVersion.h). This is used
when the model is loaded by Imperas simulation products to ensure compatibility.

2. The type of model, vM1_PROCESSOR_MODEL (defined in vmiTypes_.h). This is used
by Imperas simulation products to ensure the correct kind of model is being
loaded.

3. Alist of dictionary names used by the model, dictNames. Dictionaries provide a
mechanism to efficiently model modal processors and are discussed in chapter 14.
Every processor must have at least one dictionary name, specified in a null-
terminated array of constant strings. In the case of the minimal processor model,

the dictionary names are specified as:
static const char *dictNames[] = {“NORMAL”, O0};

so there is a single dictionary called NORMAL in this model.

4. An indication of the size required for the processor structure defined in
orlkStructure.h, sizeof(orilk).

5. References to all the callbacks required to implement the processor model. For
this minimal model, there are references to seven functions — orikConstructor,
orlkDestructor, orlkMorphlnstruction, orlkGetEndian,
orlkNextlInstruction, orlkGetBusPortSpec and orikProcInfo.

4.3 Implementing a Test Platform using OVPsim

Section 4.2 described how an outline processor model was compiled using the make
command. In order to validate and debug the outline model, it is useful to have a test
harness to drive it. The easiest way to create a test harness is using OVPsim.

Within the 1.or1koutline directory, the subdirectory platform contains source files
and a Makefile for the platform required in this case. There are in fact two forms of
platform present:

1. File platform/harness.c

This file implements a test harness using the OP function API. This powerful API should
be used for all future development. This test platform can be compiled to produce an
executable, harness.$IMPERAS_ARCH.exe, by using this command in the orikOutline
directory:

make -C platform

2. File platform/platform.c
This file implements a test harness using the legacy ICM function API. This API is
supported for legacy code only and should not be used for future development. This test

© 2022 Imperas Software Limited.www.OVPworld.org Page 24 of 321

OVP Processor Modeling Guide

platform can be compiled to produce an executable, platform.$IMPERAS_ARCH.exe, by
using this command in the orikoutline directory:

make -C platform BUILD_ICM_LEGACY=1

Most examples described in this document have both an OP and legacy ICM harness
associated with them, so that they may be compared when porting legacy code to the
current OP interface. In this document, only the OP harnesses will be described.

File harness.c has a main function as follows:

int main(int argc, const char **argv) {

// initialize simulation session before calling any other OP functions
opSessionInit(OP_VERSION);

// check arguments

if(IcmdParser(argc, argv)) {
opMessage("'E", "'CLI", ""Command Line parser error');
return 1;

}

// create root module, enabling simulation interruption if Ctrl-C is pressed
optModuleP mr = opRootModuleNew(
o,
MODULE_NAME,
OP_PARAMS (
OP_PARAM_BOOL_SET(OP_FP_STOPONCONTROLC, 1)
)

);

// create a processor instance
const char *modelFile = "model ."IMPERAS_SHRSUF;
optProcessorP processor = opProcessorNew(mr, modelFile, "cpul™, 0, 0);

// create the processor bus
optBusP bus = opBusNew(mr, "bus', 32, 0, 0);

// connect processor instruction and data ports to the common bus
opProcessorBusConnect(processor, bus, "INSTRUCTION™);
opProcessorBusConnect(processor, bus, "DATA™);

// create memory
optMemoryP memory = opMemoryNew(mr, "local', OP_PRIV_RWX, OxFffffffff, 0, 0);

// connect the memory onto the busses
opMemoryBusConnect(memory, bus, "mpl™, 0x00000000, OxFFFfffff);

// run processor, one instruction at a time

while(simulate(processor, 1)) {
// keep going while processor is still running
}

// terminate the simulation session
opSessionTerminate();

return O;

© 2022 Imperas Software Limited.www.OVPworld.org Page 25 of 321

OVP Processor Modeling Guide

This main function does the following:

1. Itinitializes the simulation interface by calling opSessionlinit.

2. It creates a command line parser, allowing some standard arguments to be given
on the command line (for example, the application executable to run, which can
be defined by the —program argument).

3. It creates a new root module instance using function opRootModuleNew. All other
components are specified to be children of this module.

4. It creates a single instance of the processor by calling opProcessorNew. The
object file name of the processor shared object is specified as model .so or
model .d11 in the current directory (depending on whether simulating on a Linux
or Windows host).

5. It creates a new bus using opBusNew, which is connected to both the instruction
and data ports of the processor using opProcessorBusConnect.

6. It creates a memory using opMemoryNew, which is connected to the bus using
opMemoryConnect.

7. It calls a routine simulate to simulate the processor one instruction at a time;

8. Finally, it calls opSessionTerminate to end the simulation.

The function simulate calls the OP routine opProcessorSimulate to simulate for a
number of clocks, as follows:

static Bool simulate(optProcessorP processor, Uns64 clocks) {
optStopReason stopReason = opProcessorSimulate(processor, clocks);
switch(stopReason) {

case OP_SR_SCHED:
// hit the scheduler limit
return True;

case OP_SR_EXIT:
// processor has exited
return False;

case OP_SR_FINISH:
// simulation must end
return False;

default:
opPrintf("'unexpected stopReason %u\n', stopReason);
return False;

4.4 Creating an Application Test Case

A test case must be created using the application tool chain. Because the OR1K processor
is supported by Imperas tools and shipped as an example, there is already an encapsulated
tool chain that you can use to compile test cases for it.

© 2022 Imperas Software Limited.www.OVPworld.org Page 26 of 321

OVP Processor Modeling Guide

Within the orikoutline directory is a sample test case, application/application.c,
which simply prints a message and exits. The application can be compiled by using this
command in the orikoutline directory:

make -C application

The result is an ELF format file for the OR1K called application.OR1K.elf.

4.5 Running the Application Test Case with the
Processor Model

Having compiled the outline processor model, test platform and application, you are now
ready to run a simulation. Do this by running:

platform/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf

in the 1.orikoutl ine directory. You should see the following output:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor
“‘platform/cpul”’

orlkDestructor called

The output from the test case shows debug messages from the processor constructor and
destructor. There is also a warning message about a missing callback in the model
attributes structure (the register information callback, used to identify registers of
particular interest to the simulator, such as the program counter); this can be ignored at
this stage. As yet, the outline model has no functionality so it exits on execution of the
first instruction. The steps you need to perform to make the model execute the application
correctly are covered in the following chapters.

© 2022 Imperas Software Limited.www.OVPworld.org Page 27 of 321

OVP Processor Modeling Guide

5 Implementing the Instruction Decoder

A key component of every processor model is the instruction decoder. The result of the
decoder is used by several other model components, specifically:

1. The morpher, which generates equivalent native code for each simulated
instruction.

2. The disassembler, which creates a text string representation of an instruction.

3. The next address function, which determines the address of the next instruction
after a given address (for processors with variable-size instructions only).

5.1 The Template Decoder Model

A template model for the OR1K processor with a decoder can be found in:

$IMPERAS_HOME/Examples/Models/Processor/2.orlkDecoder

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/2.orlkDecoder .

Compile the model, harness and application using the make command:

cd 2.orlkDecoder
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous outline model, with the changes listed
below.

5.1.1 Defining Decoder Types - orlkDecode.h

File orikDecode . h defines types used by the OR1K decoder and the decode function
itself, as follows:

typedef enum orlklInstructionTypeE {

// arithmetic instructions
OR1K_IT_ADDI,
OR1K_1T_ADDIC,
OR1K_IT_ANDI,

OR1K_IT ORI,

OR1K_IT_XORI,
OR1K_IT_MULI,

// KEEP LAST: for sizing the array
OR1K_IT_LAST

© 2022 Imperas Software Limited.www.OVPworld.org Page 28 of 321

OVP Processor Modeling Guide

} orlklInstructionType;

orlklInstructionType enumerates the instruction types that the decoder will find. The
enumeration will grow to cover many instructions as the model develops. Currently,
some simple binary operations are decoded.

typedef struct orlkInstructionInfoS {

const char *opcode; // opcode name
orlkinstructionType type; // instruction type
Uns32 thisPC; // instruction address
uUns32 instruction; // raw instruction
Uns32 rl; // register 1

uUns32 r2; // register 2

Uns32 C; // constant value

} orilklInstructionlnfo, *orlklnstructionlnfoP;

orlkInstructionlnfo is an intermediate structure that is filled by the decoder with
information about the decoded instruction. At this stage, the following fields are present:
1. opcode: this string field is the instruction mnemonic;

2. type: this is a member of the orilklInstructionType enumeration, described above;
3. thisPC: this holds the address of the decoded instruction;

4. r1and r2: these are register indices extracted from the instruction;

5. c: thisis a constant value extracted from the instruction.

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklnstructionlnfoP info);

orlkDecode is the decoder function entry point. It decodes the OR1K instruction at
address thisPC and fills the passed orlkInstructionlnfo structure with the results.

5.1.2 Decode Implementation - orlkDecode.c
File orikDecode.c implements the OR1K instruction decoder using the decoder utility
API defined in the VMI header file vmi/vmiDecode . h. The decoder APl works as
follows:
1. A new decode table is created using vmidNewDecodeTable.
2. A set of decode entries is added to the table using vmidNewEntryFmtBin. Each
entry added identifies a single instruction type.
3. Instructions are decoded using a call to vmidDecode, passing the decode table and
an instruction, which returns an identifier describing the instruction type found.
Refer to the Imperas VMI Morph Time Function Reference for more detailed information
about the decoder API.

File orikDecode. c first contains the following definitions:

#define WIDTH(W, _ARG) ((_ARG) & ((1<<(_W))-1))

#define OP_D(_I) WIDTH(5, (_1)>>21)
#define OP_ACI) WIDTH(5, C_1)>>16)
#define OP_UL(1) WIDTH(16, (_1)>>0)
#define OP_S1(1) ((Int16)0P_U1(_1))

© 2022 Imperas Software Limited.www.OVPworld.org Page 29 of 321

OVP Processor Modeling Guide

These lines define C macros that extract fields from OR1K instructions, which have a

fixed width of 32 bits. In this example,

macros are defined only for some of the

arithmetic and bitwise instructions of the OR1K: the list will be expanded in subsequent

chapters.

Next, the file declares some structure types which are used to describe decoded

instructions:

typedef enum regSpeckE {

no register
register at bits 25:21
register at bits 20:16

in an instruction

no register
signed constant in bits 15:0
unsigned constant in bits 15:0

// Structure defining characteristics of each opcode type

R_NA, //
R D, //
R_A, //

} regSpec;

//

// Define the location of constant

//

typedef enum constSpecE {
C_NA, //
C_sa, //
C_u1, //

} constSpec;

//

//

typedef struct opAttrsS {
const char *member; //
const char *opcode; //
const char *decode; //
regSpec rl . 8; //
regSpec r2 : 8; //
constSpec ¢ . 8; //

} opAttrs, *opAttrsP;

enumeration member name
opcode name

decode string

register 1 specification
register 2 specification
constant value specification

A structure of this type describes each instruction recognized by the decoder. The
particular bit pattern for the instruction is given by the decode member, described in
detail below. The r1, r2 and ¢ members say how to extract register and constant

descriptions from the instruction.

Next, a static decode table is defined for each recognized instruction, using macros that

initialize members of the table:

#define ATTR_SET ADDI(_NAME, _OPCODE, _DECODE) \

[OR1K_IT_## NAME] = {

member : # NAME,
opcode : _OPCODE,
decode : _DECODE,
ri R D,

r2 R_A,

Cc C s1

}

A

#define ATTR_SET ANDI(_NAME, OPCODE, _DECODE) \

[ORIK_IT ## NAME] = {
member : # NAME,
opcode : _OPCODE,

777

© 2022 Imperas Software Limited.www.OVPworld.org

Page 30 of 321

OVP Processor Modeling Guide

decode : _DECODE, \
ri : RD, \
r2 R_A, \
c c_u1 \

}

const static opAttrs attrsArray[OR1K IT_LAST+1] = {

ATTR_SET_ADDI (ADDI, “addi', "J100111. . .- eaae e eeaaeens ™.
ATTR_SET_ADDI (ADDIC, "addic™, "]101000. . . .- uuceeee e ™.
ATTR_SET_ANDI (ANDI, “andi', "J101001. . . - unce e eeaaee. ™.
ATTR_SET_ANDI (ORI, ™ori™, "]101020. . ..o ™.
ATTR_SET_ADDI (XORI, "XOri', "J101011. . .- ccumce e aaen. ™.
ATTR_SET_ADDI (MULE, “muli™, "]101100. . .. oucoemee e, D)

}:

The last argument to the ATTR_SET_ADDI and ATTR_SET_ANDI macros are patterns in
suitable form for use by the VMI function vmidNewEntryFmtBin:

Bool vmidNewEntryFmtBin(
vmidDecodeTableP table,

const char *name,

Uns32 matchValue,
const char *format,
Int32 priority

D

The arguments to this function are:
1. A decode table into which to add a new decode entry;
2. A name for the new entry;
3. A value to return if the entry matches (typically an enumeration member, in this
example a member of the orikInstructionType enumeration);
4. A format string, which specifies the bit pattern for a matching entry. Characters in
this string may have the following meanings:
a. 0: the corresponding bit in the instruction must be 0;
b. 1:the corresponding bit in the instruction must be 1,
C. | .,/ <space> <tab>: formatting character (ignored);
d. Any other character: the corresponding bit can be either 1 or 0.
5. A priority for the entry. This allows instructions to be defined that are subsets of

others. For example, a processor might have an instruction
move rl, r2

which actually decodes as
ori rl, r2, O

(in other words, the move instruction is just a special case of the ori instruction).
The above situation can be handled by adding two entries to the decode table, one
for ori (with lower priority) and one for move (with higher priority).

As an example, the pattern "]100111. | defined for the
addi instruction specifies that the six most significant bits of an ADDI instruction are
“b100111, and the remaining 26 bits can be any value (indicated by the “.” character in
the format). The vertical bar characters are for formatting only and have no significance
as part of the pattern.

© 2022 Imperas Software Limited.www.OVPworld.org Page 31 of 321

OVP Processor Modeling Guide

The static array is used to create the decode table in function createDecodeTable:
static vmidDecodeTableP createDecodeTable(void) {

vmidDecodeTableP table = vmidNewDecodeTable(32, OR1K_IT_LAST);
orlkinstructionType type;

for(type=0; type<OR1K_IT_LAST; type++) {
const opAttrs *attrs = &attrsArray[type];
vmidNewEntryFmtBin(table, attrs->member, type, attrs->decode, 0);

}

return table;

}

The function creates a new decode table, specifying that the value OR1K_I1T_LAST should
be returned if there is no match for a particular instruction pattern. Then, it iterates over
all members of the attrsArray table, creating a decode entry for each one. This function
is called from ori1kDecode (see below).

Next, there is a function that extracts information from an instruction word for a given
regSpec value:

static Uns32 getReg(Uns32 instruction, regSpec rs) {
Uns32 result = 0;

switch(rs) {
case R_NA:
break;
case R_D:
result
break;
case R_A:
result = OP_A(instruction);
break;
default:
VMI_ABORT(""'unimplemented case'); // LCOV_EXCL_LINE
break;

OP_D(instruction);

}

return result;

}

For example, a regSpec of R_D returns an index extracted from bits 25:21 of this
instruction, i.e. the rd position defined by the OR1K instruction set. Then, there is a
similar function for exacting constants from an instruction:

static Uns32 getConst(Uns32 instruction, constSpec cs) {
Uns32 result = 0;

switch(cs) {
case C_NA:
break;
case C_S1:
result = OP_Si1(instruction);
break;

© 2022 Imperas Software Limited.www.OVPworld.org Page 32 of 321

OVP Processor Modeling Guide

case C_U1l:
result = OP_Ul(instruction);
break;
default:
VMI_ABORT(*"'unimplemented case'™); // LCOV_EXCL_LINE
break;

}

return result;

}

Note that the constSpec member C_S1 returns the sign-extended value extracted from
bits 15:0 of the instruction, and the constSpec member C_U1 returns the zero-extended
value from the same position.

Having the decoder be responsible for instruction field interpretation and sign/zero
extensions means that downstream clients (the disassembler and JIT code morpher) are
abstracted from details of instruction encoding which greatly improves modularity.

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklnstructioninfoP info) {

// get the instruction at the passed address - always 4 bytes on OR1K
vmiProcessorP processor = (vmiProcessorP)orilk;
Uns32 instruction = vmicxtFetch4Byte(processor, thisPC);
// get the OR1K decode table
static vmidDecodeTableP decodeTable;
if(1decodeTable) {

decodeTable = createDecodeTable();

b

// decode the instruction to get the type and attributes
orlklnstructionType type = vmidDecode(decodeTable, instruction);
const opAttrs *attrs = &attrsArray[type];

// Till structure fields
info->opcode attrs->opcode;

info->type type;
info->thisPC thisPC;
info->instruction instruction;

info->r1 getReg(instruction, attrs->rl);
info->r2 getReg(instruction, attrs->r2);
info->c getConst(instruction, attrs->c);

}

Finally, the routine orikDecode implements the decoder entry point. It does the
following:

1. It calls vmicxtFetch4Byte to get the four-byte instruction for the passed

processor at the given address.

It calls createDecodeTable to create the OR1K decode table, if required.

It calls the VMI function vmidDecode to get the instruction type;

4. It fills the passed oriklInstructionlinfo structure with data extracted from the
instruction, given its type.

wmn

© 2022 Imperas Software Limited.www.OVPworld.org Page 33 of 321

OVP Processor Modeling Guide

In this example, the decode table is saved as a static variable, so it will be shared by
all OR1K instances in a multiprocessor simulation. In more complex examples, where
the table contents depend on model parameters, it could instead by saved as a field in
the processor structure, so that each instance would have its own decode table.

5.1.3 JIT Translations - or1kMorph.c

This file implements the OR1K morpher function. The morpher function is responsible
for defining how each processor instruction should be translated. This is described in
detail in section 7; this example prepares the ground as follows:

typedef const struct orlkMorphAttrS *orlkMorphAttrCP;
typedef struct orlkMorphStateS *orlkMorphStateP;

These lines define pointers to a morpher attributes structure, orikMorphAttr, and a
morpher state structure, orlkMorphState, respectively. The morpher attributes structure
gives information required to translate an instruction to native code. At this point, the
only member of the structure is a morpher callback function:

#define OR1K_MORPH_FN(_NAME) void _NAME(orlkMorphStateP state)
typedef OR1K_MORPH_FN((*orlkMorphFn));

typedef struct orlkMorphAttrS {

orlkMorphFn morphCB; // function to translate one instruction
} orlkMorphAttr;

The morpher state structure is a scratchpad for useful information to provide to the
morpher callback function. Currently, it is defined like this:

typedef struct orlkMorphStateS {

orlkinstructioninfo info; // instruction description (from decoder)
orlkMorphAttrCP attrs; // instruction attributes
orlkP orilk; // current processor

} orlkMorphState;

This file currently defines a single morpher callback function, which does nothing:

static OR1K_MORPH_FN(morphNOP) {
// no action for a NOP
ks

In this example, morphNOP is used for each of the arithmetic functions in orikDecode.h.
This implies that each arithmetic function is currently implemented as a NOP:

const orlkMorphAttr orlkMorphTable[OR1K_IT_LAST+1] = {

// handle arithmetic instructions (second argument constant)
[OR1K_IT_ADDI] = {morphCB:morphNOP},
[OR1K_IT_ADDIC] = {morphCB:morphNOP},
[OR1K_IT_ANDI] = {morphCB:morphNOP},
[OR1K_IT_ORI] {morphCB:morphNOP},
[OR1K_IT_XORI] {morphCB:morphNOP},
[OR1K_IT_MULI] = {morphCB:morphNOP},

© 2022 Imperas Software Limited.www.OVPworld.org Page 34 of 321

OVP Processor Modeling Guide

This table associates function morphNOP with each of the instructions decoded by the
decoder.

static void unimplemented(
vmiProcessorP processor,
Uns32 thisPC,
Uns32 instruction

) {

// report that unimplemented instruction was encountered
vmiPrintf(
"CPU "%s® Ox%08x:0x%08x *** undecoded instruction: exiting ***\n",
vmirtProcessorName(processor),
thisPC,
instruction
):

// exit the CPU
vmirtExit(processor);

}

Function unimplemented prints a message when an unimplemented instruction is
encountered and halts the current processor by calling function vmirtexit (defined in
vmiRt.h, the VMI Run Time Function API).

static OR1K_MORPH_FN(emitUnimplemented) {

vmimtArgProcessor();
vmimtArguns32((Uns32)state->info.thisPC);
vmimtArguns32(state->info. instruction);
vmimtCall ((vmiCallFn)unimplemented) ;

}

Function emitUnimplemented is a dispatcher function that that is called for
unimplemented instructions in or1kDecode . c. It creates native code to call the
undecoded function previously defined. Code morphing is explained in detail in chapter
7.

VMI_MORPH_FN(orlkMorphlnstruction) {

orlkP orlk
orlkMorphState state

(orlkP)processor;

{{0}};

// decode instruction
orlkDecode(orlk, thisPC, &state.info);

// get morpher attributes for the decoded instruction and initialize other
// state fields

state.attrs &orlkMorphTable[state. info.type];

state.orilk orlk;

if(state.attrs->morphCB) {
// translate the instruction
state.attrs->morphCB(&state);

} else {
// here if no translation callback specified
emitUnimplemented(&state);

© 2022 Imperas Software Limited.www.OVPworld.org Page 35 of 321

OVP Processor Modeling Guide

Function orikMorphlinstruction is the morpher entry point (referenced in the

vmi IASAttrs structure for this processor model, in or1lkAttrs.h). It defines a local
orlkMorphState structure, initialized to zero. It then calls the decoder interface to
decode an instruction given the current PC, filling the info substructure. It then fills the
supplementary attrs and orik fields of the morpher state structure, based on the
instruction type returned by the decoder. Finally, it calls the appropriate morpher callback
for the instruction, or the unimplemented instruction callback if the decode failed.

Note that the size of the ori1kMorphTable array was defined to be OR1K_IT_LAST+1.
This means that the table contains a final (all zero) entry that is found if instruction
decode fails (returning type OR1K_IT_LAST). This entry has no defined morphCB,
ensuring that the unimplemented instruction callback will be called for undecoded
instructions.

5.1.4 Instruction Disassembler - or1kDisassemble.c

This file implements the OR1K disassembler function. The disassembler function is
responsible for generating a string disassembly of a given instruction. This is described in
detail in section 6; this example does the following:

static const char *disassemblelnfo(

orlkP orlk,
orlklInstructioninfoP info,
vmiDisassAttrs attrs

) {
// static buffer to hold result

static char result[256];

// default disassembly just shows instruction pattern
sprintf(result, "??? instruction:0x%08x", info->instruction);

// return the result
return result;

}
VMI_DISASSEMBLE_FN(orlkDisassemble) {

// static buffer to hold disassembly result
orlkP orlk = (orlkP)processor;
orlklInstructionlnfo info;

// decode instruction
orlkDecode(orlk, thisPC, &info);

// return disassembled instruction
return disassemblelnfo(orlk, &info, attrs);

}

Function orikDisassemble disassembles one instruction. It calls the decoder and then
utility function disassembleInfo, which fills a static string with the required
disassembly, which is then returned. In this example, the disassembler simply echoes the
instruction pattern to the disassembly string; later stages of the model implement a true
disassembler.

© 2022 Imperas Software Limited.www.OVPworld.org Page 36 of 321

OVP Processor Modeling Guide

Note that the disassembler is never called asynchronously or in a re-entrant manner
by the simulator, and there is no requirement for the disassembly string to persist
between calls. This means that it is acceptable to use a static array to hold the result,
as above.

The prototype for orikDisassemble is in file orlkFunctions.h, and is referenced in the
vmi IASAttr structure defined in or1kAttrs.c. The reason for this will be seen when an
application example is run using the new model.

5.2 Running the Application Test Case with the

Processor Model

The platform is identical to the previous example. When you have compiled all
components of the test, run:

platform/harness.$IMPERAS_ARCH.exe —trace \
—-—program application/application.OR1K.elf

in the 2.orikDecoder directory. The standard —trace parameter enables a trace mode
where the model disassembly routine is called just before each instruction is executed,
which is why the disassembler routine was added to the model vmi IASAttr structure You

should see the following output:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor

“‘platform/cpul”’

Info "cpul®, 0x0000000000000100: ??? instruction:0x9c400000
Info "cpul®, 0x0000000000000104: ??7? instruction:0x9c600000
Info "cpul®, 0x0000000000000108: ??? instruction:0x9c800000
Info “cpul®, 0x000000000000010c: ??? instruction:0x9ca00000
Info "cpul®, 0x0000000000000110: ??7? instruction:0x9cc00000
Info “cpul®, 0x0000000000000114: ??? instruction:0x9ce00000
Info "cpul®, 0x0000000000000118: ??7? instruction:0x9d000000
Info “cpul®, 0x000000000000011c: ??? instruction:0x9d200000
Info "cpul®, 0x0000000000000120: ??7? instruction:0x9d400000
Info “cpul®, 0x0000000000000124: ??7? instruction:0x9d600000
Info "cpul®, 0x0000000000000128: ??7? instruction:0x9d800000
Info “cpul®, 0x000000000000012c: ??? instruction:0x9da00000
Info "cpul®, 0x0000000000000130: ??7? instruction:0x9dc00000
Info “cpul®, 0x0000000000000134: ??7? instruction:0x9de00000
Info "cpul®, 0x0000000000000138: ??7? instruction:0x9e000000
Info “"cpul®, 0x000000000000013c: ??7? instruction:0x9e200000
Info "cpul®, 0x0000000000000140: ??? instruction:0x9e400000
Info "cpul®, 0x0000000000000144: ??? instruction:0x9e600000
Info "cpul®, 0x0000000000000148: ??7? instruction:0x9e800000
Info "cpul®, 0x000000000000014c: ??? instruction:0x9ea00000
Info "cpul®, 0x0000000000000150: ??7? instruction:0x9ec00000
Info "cpul®, 0x0000000000000154: ??? instruction:0x9ee00000
Info “"cpul®, 0x0000000000000158: ??7? instruction:0x9f000000
Info "cpul®, 0x000000000000015c: ??? instruction:0x9f200000
Info "cpul®, 0x0000000000000160: ??? instruction:0x9f400000
Info "cpul®, 0x0000000000000164: ??? instruction:0x9f600000
Info "cpul®, 0x0000000000000168: ??? instruction:0x9f800000
Info "cpul®, 0x000000000000016¢c: ??? instruction:0x9fa00000

© 2022 Imperas Software Limited.www.OVPworld.org

Page 37 of 321

OVP Processor Modeling Guide

Info "cpul®, 0x0000000000000170: ??7? instruction:0x9fc00000

Info "cpul®, 0x0000000000000174: ??? instruction:0x9fe00000

Info "cpul®, 0x0000000000000178: ??? instruction:0x1820FfFff

CPU "cpul® 0x00000178:0x1820fFfFff *** undecoded instruction: exiting ***
orlkDestructor called

After the constructor line, there is a line of trace output for every instruction that was
successfully decoded by the decoder in this example. Each trace line gives the instruction
address (starting with 0x100, the start address specified in the ELF file) and the
instruction disassembly, produced using the disassembler we defined. At address 0x178,
the processor encounters the first instruction not recognized by the decoder and is halted.
In the next chapter, we will see how to terminate simulation more elegantly than this.

5.3 More Complex Decoders

The decoder in this OR1K example is quite simple because the OR1K instruction set has
a small number of similar instructions of constant size (32 bits). CISC processors with
variable-length instructions require a more sophisticated decoder. A good approach is to
have multiple decode tables (a level 1 table is used to decode the first byte of the
instruction, on the basis of this alternate level 2 tables are used, and so on). When
decoders are complex, it is often useful to fill a data structure with information about the
decoded instruction to use in later stages (instruction translation and disassembly); see the
MIPS processor models on the ovpworld.com website for good examples.

All instruction fetches performed by a decoder should use vmicxtFetch4Byte, or related
routines defined in vmiCxt.h. A single decode may perform several calls to fetch
routines if required: in the example of the CISC processor, there may be an initial call to
vmicxtFetchl1Byte to fetch the first byte of an instruction, then a possible further call to
vmicxtFetchl1Byte to fetch the next byte, and so on.

© 2022 Imperas Software Limited.www.OVPworld.org Page 38 of 321

OVP Processor Modeling Guide

6 Implementing the Instruction Disassembler

Having implemented an initial decoder framework, the next step is to start implementing
the details of the instruction disassembler.

6.1 The Template Disassembler Model

A template model for the OR1K processor with a decoder and disassembler can be found
in:

$IMPERAS_HOME/Examples/Models/Processor/3.orlkDisassembler

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/3.orlkDisassembler .

Compile the model, harness and application using the make command:

cd 3.orlkDisassembler
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous decoder model, with the changes listed
below.

6.1.1 Instruction Formats - orlkDisassembleFormats.h

The disassembler we are about to write is implemented by a state machine that consumes
a format string which describes how to construct disassembled output arguments. The
format strings are defined in file orikDisassembleFormats.h as follows:

// These are placeholders in disassembly decoder

#define EMIT_R1 “\001*
#define EMIT_R2 “\002"
#define EMIT_XIMM *\003"
// These are placeholders in disassembly format strings
#define EMIT_R1_S "\001"
#define EMIT_R2_S "\002"
#define EMIT_XIMM_S "\003"

// These are disassembly format strings
#define FMT_R1_R2_XIMM EMIT_R1_S ","™ EMIT_R2_S ", EMIT_XIMM_S

The format string uses primitive tokens, EMIT_R1, EMIT_R2 and EMIT_XIMM, with the
following meanings:

© 2022 Imperas Software Limited.www.OVPworld.org Page 39 of 321

OVP Processor Modeling Guide

EMIT_R1: emit description of GPR in r1 position
EMIT_R2: emit description of GPR in r2 position
EMIT_XIMM: emit description of constant c in hexadecimal format.

Primitive tokens are specified using non-printing characters (\001, \002, \003 etc). A full
format string is a concatenation of these tokens with other printable characters. For
example, the format string:

EMIT R1. S ™," EMIT_R2_S ™,"™ EMIT_XIMM_S

Specifies that the disassembly arguments should be of the form r1,r2,0xnnnnnnnn, where
commas are echoed literally.

6.1.2 Supporting Instruction Formats - or1kDecode.h

The orilklInstructionInfoS type now contains a new format field, which is a
disassembly format string as described above:

typedef struct orlklInstructioninfoS {

const char *opcode; // opcode name

const char *format; // disassembly format string
orlkinstructionType type; // instruction type

Uns32 thisPC; // instruction address

uUns32 instruction; // raw instruction

Uns32 rl; // register 1

uUns32 r2; // register 2

Uns32 C; // constant value

} orilklInstructioninfo, *orlklnstructionlnfoP;

6.1.3 Adding Instruction Formats - orlkDecode.c
The opAttr structure also contains a new format field:

typedef struct opAttrsS {

const char *member; // enumeration member name
const char *opcode; // opcode name

const char *format; // format string

const char *decode; // decode string

regSpec rl 8; // register 1 specification
regSpec r2 : 8; // register 2 specification
constSpec ¢ : 8; // constant value specification

} opAttrs, *opAttrsP;

The ATTR_SET_ADDI and ATTR_SET_ANDI macros have been modified to initialize the
new format entry using the FvT_R1_R2_X1mM value specified in
orlkDisassembleFormats.h. For example:

#define ATTR_SET_ADDI(_NAME, _OPCODE, _DECODE) \

[ORIK_IT_## NAME] = { \
member : # NAME, \
opcode : _OPCODE, \
format : FMT_R1 R2 XIMM, \
decode : _DECODE, \
ri R_D, \
r2 R_A, \
c C_s1 \

© 2022 Imperas Software Limited.www.OVPworld.org Page 40 of 321

OVP Processor Modeling Guide

}

Function or1kDecode copies the new format value from the opAttrs to the
orlklinstructionlnfo structure:

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklInstructioninfoP info) {

lines omitted .

// Fill structure fields
info->opcode
info->format

attrs->opcode;
attrs->format;

info->type type;
info->thisPC thisPC;
info->instruction instruction;

info->r1 getReg(instruction, attrs->rl);
info->r2 getReg(instruction, attrs->r2);
info->c getConst(instruction, attrs->c);

}

6.1.4 Using Instruction Formats - orlkDisassemble.c

orlkDisassemble.c now implements a state machine disassembler, driven from the
decoded instruction. The file first contains utility functions that append a single character

and a string to a working buffer:

//

// Append the character to to the result

//

static void putChar(char **result, char ch) {

// get the tail pointer
char *tail = *result;

// do the append
*tail++ = ch;

// add null terminator
*tail = 0;

// update the tail pointer
*result = tail;

}

//
// Append the string to to the result
//

static void putString(char **result, const char *string) {

// get the tail pointer
char *tail = *result;
char ch;

// do the append
while((ch=*string++)) {
*tail++ = ch;

ks
// add null terminator
*tail = 0;

© 2022 Imperas Software Limited.www.OVPworld.org

Page 41 of 321

OVP Processor Modeling Guide

// update the tail pointer
*result = tail;

}

Then there are two functions that will append a number in unsigned and hexadecimal
format, respectively:

static void putU(char **result, Uns32 value) {
char tmp[32];
sprintf(tmp, *“%u™, value);

putString(result, tmp);
}

static void putX(char **result, Uns32 value) {
char tmp[32];
sprintf(tmp, "Ox%x", value);

putString(result, tmp);
¥

And also a function to write a GPR name, derived from an index:

static void putRegister(char **result, Uns32 r) {
putChar(result, "r");
putU(result, r);

Note that this example uses fixed-width types (Uns32 etc). These types are defined in
the include file:

$IMPERAS_HOME/ ImpPublic/include/host/impTypes.h.

Function disassemblelnfo has been modified to call a new function,
disassembleFormat?®;

static const char *disassemblelnfo(

orlkP orilk,
orlkinstructionlnfoP info,
vmiDisassAttrs attrs

) {
// static buffer to hold result

static char result[256];
const char *format = info->format;
char *tail result;

// disassemble using the format for the type

! This disassembler supports uncooked disassembly. The meaning and purpose of this are discussed at the
end of this chapter. For the moment, assume that any reference to Boolean uncooked is False.

© 2022 Imperas Software Limited.www.OVPworld.org Page 42 of 321

OVP Processor Modeling Guide

}

if(format) {
disassembleFormat(orlk, info, &tail, format, attrs==DSA_UNCOOKED) ;
} else {

sprintf(result, "??? instruction:0x%08x", info->instruction);
}

// return the result
return result;

Function disassembleFormat operates in two parts. Firstly, the opcode is printed, using
the putString utility function shown earlier:

static void disassembleFormat(

) {

orlkP orlk,
orlklinstructionlnfoP info,
char **result,
const char *format,
Bool uncooked

char *argStart = (*result)+9;
char ch;

// emit opcode
putString(result, “1.");
putString(result, info->opcode);

Each opcode has a constant prefix 1. followed by an opcode string extracted from the
decode structure. If the instruction has arguments, the opcode is padded to 9 characters
for alignment:

if(*format) {

// pad opcode to start of arguments
if(luncooked) {

putChar(result, * ");

while(*result!=argStart) {
putChar(result, = ");

}

Secondly, there is a loop that consumes the format string:

while((ch=*format++)) {
switch(ch) {

case EMIT_R1:
putUncookedKey(result, * R1"™, uncooked);
putRegister(result, info->rl);
break;

case EMIT_R2:
putUncookedKey(result, "™ R2", uncooked);
putRegister(result, info->r2);
break;

© 2022 Imperas Software Limited.www.OVPworld.org Page 43 of 321

OVP Processor Modeling Guide

case EMIT_XIMM:
putUncookedKey(result, " CX", uncooked);
putX(result, info->c);
break;

default:
if(luncooked) {putChar(result, ch);}
break;

}

If the loop encounters one of the special tokens, it is handled appropriately. For example,
token EMIT_R1 causes the register name passed in the info->r1 field to be emitted.
Otherwise, if a non-token is encountered, it is emitted literally.

6.2 Running the Application Test Case with the
Processor Model
Run:

platform/harness.$IMPERAS_ARCH.exe —trace \
--program application/application.OR1K.elf

in the 3.orikDisassembler directory. You should see the following output:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000000000100: I.addi r2,r0,0x0
Info “"cpul®, 0x0000000000000104: 1.addi r3,r0,0x0
Info "cpul®, 0x0000000000000108: 1.addi r4,r0,0x0
Info “cpul®, 0x000000000000010c: I.addi r5,r0,0x0
Info "cpul®, 0x0000000000000110: I.addi r6,r0,0x0
Info “cpul®, 0x0000000000000114: 1.addi r7,r0,0x0
Info "cpul®, 0x0000000000000118: I.addi r8,r0,0x0
Info “"cpul®, 0x000000000000011c: 1.addi ro,r0,0x0
Info "cpul®, 0x0000000000000120: I.addi r10,r0,0x0
Info “cpul®, 0x0000000000000124: 1.addi rii,r0,0x0
Info "cpul®, 0x0000000000000128: I.addi r12,r0,0x0
Info “cpul®, 0x000000000000012c: 1.addi ri3,r0,0x0
Info "cpul®, 0x0000000000000130: I.addi r1l4,r0,0x0
Info “cpul®, 0x0000000000000134: 1.addi ri5,ro0,0x0
Info “"cpul®, 0x0000000000000138: 1.addi rl6,r0,0x0
Info "cpul”, 0x000000000000013c: I1.addi r17,r0,0x0
Info “"cpul®, 0x0000000000000140: 1.addi ri8,ro0,0x0
Info "cpul®, 0x0000000000000144: 1.addi r19,r0,0x0
Info “"cpul®, 0x0000000000000148: 1.addi r20,r0,0x0
Info "cpul®, 0x000000000000014c: 1.addi r21,r0,0x0
Info “"cpul®, 0x0000000000000150: I.addi r22,r0,0x0
Info "cpul®, 0x0000000000000154: 1.addi r23,r0,0x0
Info “"cpul®, 0x0000000000000158: 1.addi r24,r0,0x0
Info "cpul®, 0x000000000000015c: 1.addi r25,r0,0x0
Info “"cpul®, 0x0000000000000160: 1.addi r26,ro0,0x0
Info "cpul®, 0x0000000000000164: 1.addi r27,r0,0x0
Info “"cpul®, 0x0000000000000168: 1.addi r28,ro0,0x0
Info "cpul®, 0x000000000000016c: 1.addi r29,r0,0x0
Info “cpul®, 0x0000000000000170: 1.addi r30,r0,0x0
Info "cpul®, 0x0000000000000174: I.addi r31,r0,0x0
Info “"cpul®, 0x0000000000000178: ??? instruction:0x1820FfFff
CPU "cpul® 0x00000178:0x1820FfFff *** undecoded instruction: exiting ***

© 2022 Imperas Software Limited.www.OVPworld.org Page 44 of 321

OVP Processor Modeling Guide

This reveals that the first instructions executed in the application are OR1K addi
instructions, which clear the processor GPRs.

6.3 Creating Disassembler Point Tests

When a class of instructions has been added to a decoder (such as the arithmetic
instructions above) it is good practice to fully test the disassembly behavior of the entire
class before implementing any behavior for that instruction class. This is done most
easily by assembler-level tests. File asmtest.S in directory
3.orlkDisassembler/application is an OR1K assembler file that is a good starting
point for a disassembler test:

-global _start

_start: I.addi ri,r2,0
1.addi ri,r2,1
I.addi ri,r2,-1
1.addic ri,r2,1
l.addic ri,r2,-1
1.addic ri,r2,0
l.andi ri,r2,1
I.andi ri,r2,-1
1.andi ri,r2,0
I.ori ri,r2,1
1.ori ri,r2,-1
I.ori ri,r2,0
1.xori ri,r2,1
I.xori ri,r2,-1
1.xori ri,r2,0
I.muli ri,r2,1
I.muli ri,r2,-1
I.muli ri,r2,0

-global exit

exit:
1.add ri,r2,0

Assemble this file using:

cd application
make asmtest.OR1K.elf
cd ..

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
--program application/asmtest.OR1K.elf

The output from this should be as follows:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000001000074: 1.addi rl,r2,0x0

Info “"cpul®, 0x0000000001000078: 1.addi rl,r2,0x1

Info "cpul”, 0x000000000100007c: 1.addi rl,r2,0xFrFrfrfff

Info “"cpul®, 0x0000000001000080: I.addic ri1,r2,0x1

Info "cpul®, 0x0000000001000084: l1.addic rl,r2,0xFFFrffff

© 2022 Imperas Software Limited.www.OVPworld.org Page 45 of 321

OVP Processor Modeling Guide

Info “cpul®, 0x0000000001000088:
Info "cpul®, 0x000000000100008c:
Info “cpul®, 0x0000000001000090:
Info "cpul®, 0x0000000001000094:

.addic rl1,r2,0x0
.andi rl,r2,0x1
.andi rl,r2,0xffff
.andi rl,r2,0x0

Info “"cpul®, 0x0000000001000098: 1.ori rl,r2,0x1
Info "cpul®, 0x000000000100009c: l.ori rl,r2,0xffff
Info “"cpul®, 0x00000000010000a0: 1.ori rl,r2,0x0

.Xori ril,r2,0x1
.Xori rl,r2,0xFrfrrfrfff
.Xori rl,r2,0x0
-muli rl,r2,0x1
-muli rl,r2,0xfFFfFfrfff

Info "cpul®, 0x00000000010000a4:
Info “cpul®, 0x00000000010000a8:
Info "cpul®, 0x00000000010000ac:
Info "cpul®, 0x00000000010000b0:
Info "cpul®, 0x00000000010000b4:
Info “cpul®, 0x00000000010000b8: I._.muli rl,r2,0x0

Info "cpul®, 0x00000000010000bc: 1.addi rl,r2,0x0
Processor “cpul’ terminated at “exit’, address 0x10000bc
orlkDestructor called

It is good practice to make the output from the disassembler conform as closely as
possible to the output generated by existing tools (for example, the OR1K objdump
executable). This simplifies verification because output generated by the disassembler
can be automatically compared against a golden log generated by the existing tool.

6.3.1 Elegant Test Termination using Semihosting
Note that the assembler test terminated more elegantly than the previous run: instead of:

CPU "cpul® 0x00000178:0x0400037b *** undecoded instruction: exiting ***

We saw:

Processor “cpul’ terminated at “exit’, address 0x10000bc

This was possible because the test platform used with this example was modified to use
semihosting, which will be briefly introduced here and covered in detail in chapter 25.

Imperas semihosting allows the default behavior of specified functions or instructions to
be modified using a semihosting shared object library that is loaded by the simulator in
addition to the processor model. In this case, we defined a global label, exit, on the last
instruction of the assembler test. This label can be used in conjunction with a standard
Imperas semihosting shared object library, located at the following location under
$IMPERAS_HOME:

$IMPERAS_VLNV/ovpworld.org/modelSupport/imperasexit/1.0/model . $SHRSUF

NOTE; $IMPERAS_VLNYV is equivalent to $IMPERAS_HOME/lib/$SIMPERAS_ARCH/ImperasLib

What this semihosting library does is terminate simulation immediately after any
instruction labeled exit. To use the semihosting library, platform/harness.c has been
modified as follows to select the imperasExit semihost library from the VLNV library
and load it onto the instantiated processor:

// get semihost library to exit simulation
const char *semihostFile = opVLNVString(

© 2022 Imperas Software Limited.www.OVPworld.org Page 46 of 321

OVP Processor Modeling Guide

0, "ovpworld.org', "modelSupport', "imperasExit’™, "1.0", OP_EXTENSION,
True

):

// attach imperaskExit semihost library to processor
opProcessorExtensionNew(processor, semihostFile, "imperaseExit"”, 0);

You may use the imperasExit semihosting library with any processor model: it is
not specific to the OR1K processor we are creating here.

6.4 Uncooked Disassembly

When implementing a disassembler, it is good practice to implement two different

formats:

1. Normal (cooked) disassembly, as described above. In this mode, the output from the
disassembler will be a string using the standard mnemonics and format for the model
architecture.

2. Uncooked disassembly. In this mode, the output from the disassembler can be any
format that is easy for downstream tools to consume and parse. When instruction sets
are complex, implementing a good uncooked disassembly format can greatly simply
tool construction, if those tools need to decode instructions.

Clients can request that a processor model disassemble an instruction in various ways. In
the VMI interface, use the following function:

typedef enum vmiDisassAttrsE {

DSA NORMAL = 0x00000000, // normal disassembly

DSA_UNCOOKED = 0x00000001, // model-specific uncooked format

DSA_BASE = 0x00000002, // use base model disassembly (not intercept)
DSA_MODEL = 0x80000000, // model-specific mask

} vmiDisassAttrs;

const char *vmirtDisassemble(
vmiProcessorP processor,
Addr simPC,
vmiDisassAttrs attrs

Here, passing attrs of DSA_NORMAL will cause cooked disassembly to be returned, and
attrs of DSA_UNCOOKED will cause uncooked disassembly to be returned?. There is a
very similar function available in the OP interface:

typedef enum optDisassAttrsE {
OP_DSA_NORMAL 0x00000000, ///< normal disassembly
OP_DSA_UNCOOKED 0x00000001, ///< model-specific uncooked format
OP_DSA_BASE 0x00000002, ///< use base model disassembly (nhot
/// intercept)
0x80000000 ///< model-specific mask

OP_DSA_MODEL
} optDisassAttrs;

const char *opProcessorDisassemble (

2 For completeness, DSA_BASE disables any disassembler specified in an intercept library, and the
DSA_MODEL mask is passing model-specific flags to the disassembly callback.

© 2022 Imperas Software Limited.www.OVPworld.org Page 47 of 321

OVP Processor Modeling Guide

optProcessorP processor,
Addr addr,
optDisassAttrs attrs

To see how the disassembler behaves in uncooked mode, modify platform/harness.c
as follows. Firstly, add a call to opRootModulePreSimulate before the first call to
simulate in function main (required because disassembly is only possible in the
simulation phase):

int main(int argc, const char **argv) {

lines omitted .

// connect the memory onto the busses
opMemoryBusConnect(memory, bus, "mpl"™, 0x00000000, OxFFfffffr);

// complete elaboration
opRootModulePreSimulate(mr);

// run processor, one instruction at a time
while(simulate(processor, 1)) {

hs
lines omitted .

}

Then, modify function simulate so that each instruction is disassembled in uncooked
mode before it is executed:
static Bool simulate(optProcessorP processor, Uns64 clocks) {

// validate uncooked disassembly
Uns32 thisPC = opProcessorPC(processor);

opPrintf(
""UNCOOKED 0x%08x: %s\n'',

thisPC,
opProcessorDisassemble(processor, thisPC, OP_DSA_UNCOOKED)

);

optStopReason stopReason = opProcessorSimulate(processor, clocks);

switch(stopReason) {
lines omitted .
}

¥
Rebuild the harness using:

make —C platform clean
make —C platform

And rerun as before:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest_OR1K.elf

© 2022 Imperas Software Limited.www.OVPworld.org Page 48 of 321

OVP Processor Modeling Guide

The output from this should be as follows:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor
"platform/cpul*”

UNCOOKED 0x01000074: 1.addi R1:rl1 R2:r2 CX:0x0

Info "platform/cpul®, 0x0000000001000074(_start): l.addi rl,r2,0x0
UNCOOKED 0x01000078: 1.addi R1:rl R2:r2 CX:0x1

Info "platform/cpul®, 0x0000000001000078(_start+4): I_addi rl,r2,0x1
UNCOOKED 0x0100007c: l.addi R1:rl R2:r2 CX:OxFFFfffff

Info "platform/cpul®, 0x000000000100007c(_start+8): I_addi rl,r2,OxFFrfFrfff
UNCOOKED 0x01000080: l1.addic R1:rl1 R2:r2 CX:0x1

Info "platform/cpul®, 0x0000000001000080(_start+c): l.addic r1,r2,0x1
UNCOOKED 0x01000084: 1.addic R1:rl R2:r2 CX:OxFfFffffff

Info "platform/cpul®, 0x0000000001000084(_start+10): l.addic ri1,r2,0xfFFFFfff
UNCOOKED 0x01000088: 1.addic R1:rl1 R2:r2 CX:0x0

Info "platform/cpul®, 0x0000000001000088(_start+14): l.addic r1,r2,0x0
UNCOOKED 0x0100008c: l.andi R1:rl R2:r2 CX:0x1

Info "platform/cpul®, 0x000000000100008c(_start+18): I.andi rl,r2,0x1
UNCOOKED 0x01000090: I.andi R1:rl R2:r2 CX:Oxffff

Info "platform/cpul®, 0x0000000001000090(start+1lc): l.andi rl,r2,0xffff
UNCOOKED 0x01000094: 1.andi R1:rl R2:r2 CX:0x0

Info "platform/cpul®, 0x0000000001000094(_start+20): I.andi rl,r2,0x0
UNCOOKED 0x01000098: l1.ori R1:rl R2:r2 CX:0x1

Info "platform/cpul®, 0x0000000001000098(_start+24): l.ori rl,r2,0x1
UNCOOKED 0x0100009c: l.ori R1:rl R2:r2 CX:OxFfff

Info "platform/cpul®, 0x000000000100009c(_start+28): l.ori rl,r2,0xfFfFff
UNCOOKED 0x010000a0: l.ori R1:rl R2:r2 CX:0x0

Info "platform/cpul®, 0x00000000010000a0(_start+2c): l.ori rl,r2,0x0
UNCOOKED 0x010000a4: 1.xori R1:rl R2:r2 CX:0x1

Info "platform/cpul®, 0x00000000010000a4(_start+30): I._xori rl,r2,0x1
UNCOOKED 0x010000a8: l1.xori R1l:rl R2:r2 CX:OxFFfffff

Info "platform/cpul®, 0x00000000010000a8(_start+34): l_xori rl,r2,OxFFFFFFff
UNCOOKED 0x010000ac: I.xori R1:rl R2:r2 CX:0x0

Info "platform/cpul®, 0x00000000010000ac(_start+38): l._xori rl,r2,0x0
UNCOOKED 0x010000b0: I.muli R1:rl R2:r2 CX:0x1

Info “platform/cpul®, 0x00000000010000b0(_start+3c): I.muli rl,r2,0x1
UNCOOKED 0x010000b4: 1.muli R1:rl R2:r2 CX:OxFFFfffff

Info “platform/cpul®, 0x00000000010000b4(_start+40): I.muli rl,r2,OxFrFfrffef
UNCOOKED 0x010000b8: I.muli R1:rl R2:r2 CX:0x0

Info “platform/cpul®, 0x00000000010000b8(_start+44): I._.muli rl,r2,0x0
UNCOOKED 0x010000bc: 1.addi R1:rl1 R2:r2 CX:0x0

Info “platform/cpul®, 0x00000000010000bc(exit): 1._.addi rl,r2,0x0
Processor "platform/cpul® terminated at "exit", address 0x10000bc

This clearly shows the uncooked format selected for this model: it consists of the opcode,
followed by a space-separated list of key:value pairs. This format is good because it is
easy to parse and extensible (it is easy to add new key:value pairs if required). Examine
the calls to function putUncookedKey in orlkDisassemble.c to see how this is
implemented.

© 2022 Imperas Software Limited.www.OVPworld.org Page 49 of 321

OVP Processor Modeling Guide

7 Implementing Simple Behavior

When the processor decoder and disassembler are working correctly for a subset of
processor instructions, you can start to implement behavior for those instructions. This
chapter shows how this is done for simple instructions using the Imperas code morphing
technology.

7.1 An Introduction to Code Morphing

Conventional processor models written in an HDL or similar modeling language might be
implemented by a loop that is activated by a clock signal. On each activation of the clock,
the model might fetch the next instruction, decode it, and call specific functions to
perform the instruction (update model registers, read and write memory, and so on). If the
model is cycle-accurate, there may be further complications of modeling pipelines,
branch prediction and so on.

Although models written in this conventional style can be accurate and straightforward in
structure, they are not fast: even a simple instruction accurate model written in C will
probably run no faster than a few million instructions per second. Unfortunately, platform
testing may require the execution of billions of instructions, which makes this style of
model too slow.

Processor models designed for the Imperas tool set instead use just-in-time (JIT) code
morphing technology. This works as follows:

1. As each new processor instruction is encountered during program execution, the
instruction is translated (morphed) into equivalent native machine code. The exact
translations to be made are specified by the processor modeler using the Imperas
Virtual Machine Interface (VMI) API.

2. Contiguous sections of translated processor instructions are gathered into code
blocks, which are held in a dictionary for the processor.

3. If aprocessor performs a jJump to a simulated address that has already been
translated to a code block held in the dictionary, there is no need to perform the
translation again: the simulator simply re-executes the existing code block.

Imperas technology handles the generation of native machine code and the efficient
management of code blocks and dictionaries to give extremely fast simulation.
Depending on the complexity of the processor being simulated, speeds of billions of
simulated instructions per second can be achieved. This is possible because, as simulation
proceeds, run time (execution of translated code blocks) dominates morph time (JIT
compilation).

To support the JIT compiler, you must implement the morpher, which is responsible for
defining how each processor instruction should be executed.

© 2022 Imperas Software Limited.www.OVPworld.org Page 50 of 321

OVP Processor Modeling Guide

7.2 The Template Simple Behavioral Model
A template model for the OR1K processor with a decoder, disassembler and behavior can
be found in:

$IMPERAS_HOME/Examples/Models/Processor/4.or1kBehaviorSimple

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/4.orlkBehaviorSimple .

Compile the model, harness and application using the make command:

cd 4.orlkBehaviorSimple
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous disassembler model, with the changes
listed in following sections.

7.2.1 Defining GPRs - or1kStructure.h

The processor structure defined in file or1kStructure.h is where you define the
registers and other state of the model. For this example, we need to model the 32 OR1K
general-purpose registers. The structure is therefore declared like this:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits

// processor structure
typedef struct orlkS {
Uns32 regs[OR1K_REGS]; // basic registers
vmiBusPortP busPorts; // bus port descriptions
} orilk, *orilkP;

The OR1K general purpose registers are declared as a C array of uns32 values, regs.
As we will see in section 7.2.3, Imperas API routines for generating morphed code need
to know about the register byte offsets of the register fields within the processor structure.

In this case, the C structure offsets are as follows:

Register Byte Offset

regs[0] 0
regs[1] 4
regs[2] 8
... etc ...

© 2022 Imperas Software Limited.www.OVPworld.org Page 51 of 321

OVP Processor Modeling Guide

To simplify calculation of these offsets, orikStructure.h defines the following macros
for use in variable C expressions:

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(_F) VMI_CPU_REG(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[R])
For example:

OR1K_REG(3)

Is used to identify OR1K general purpose register r3 in morpher VMI API calls (see
section 7.2.3 for examples).

7.2.2 Initializing GPRs - orlkMain.c
Now that the OR1K structure has real state implemented, the constructor in file
orlkMain.c should be upgraded to initialize that state.

The constructor is called by the simulator whenever a new instance of the OR1K
processor model is created. It is passed a pointer to the new processor model instance
using a generic parameter called processor of type vmiProcessorP. In order to initialize
the processor, the generic processor pointer should be cast to a specific or1kpP pointer so
that fields in the structure can be set.

By default, the new processor model instance is entirely zeroed out. In this example, we
initialize every general purpose register in the OR1K from r2 to r31 with the pattern
Oxdeadbeef:

VMI_CONSTRUCTOR_FN(orlkConstructor) {

orlkP orlk = (orlkP)processor;
uns32 i;

for(i=2; i1<OR1K_REGS; i++) {
orlk->regs[i] = Oxdeadbeef;
}

// create bus port specifications
newBusPorts(orlk);

}

Register ro is left unmodified (zeroed out) because it is hardwired to zero in the OR1K.
Register r1 is also left zeroed out because this is the stack pointer register, implicitly
initialized to zero.

(Note that the constructor and destructor no longer print that they have been called.)

7.2.3 Implementing Binops - orlkMorph.c
An extra field, binop, has been added to the orikMorphAttr structure:

© 2022 Imperas Software Limited.www.OVPworld.org Page 52 of 321

OVP Processor Modeling Guide

typedef struct orlkMorphAttrS {
orlkMorphFn morphCB; // function to translate one instruction
vmiBinop binop; // if a simple binary operation

} orlkMorphAttr;

This new field will be used to control the precise action of the arithmetic instructions
implemented here. The morpher table, orikMorphTable, has been updated to initialize
the new field as follows:

const orlkMorphAttr orlkMorphTable[OR1K IT_LAST+1] = {

// handle arithmetic instructions (second argument constant)
[OR1K_IT_ADDI] = {morphCB:morphBinopRRC, binop:vmi_ADD },
[OR1K_1T_ADDIC] {morphCB:morphBinopRRC, binop:vmi_ADC },
[OR1K_IT_ANDI] {morphCB:morphBinopRRC, binop:vmi_AND },
[OR1K_IT_ORI] {morphCB:morphBinopRRC, binop:vmi_OR 7},
[OR1IK_IT_XORI] {morphCB:morphBinopRRC, binop:vmi_XOR },
[OR1K_IT_MULIT] = {morphCB:morphBinopRRC, binop:vmi_IMUL},

e

The behavior of each of the instructions we will implement now is described by a
common function, morphBinopRRC:

static OR1K_MORPH_FN(morphBinopRRC) {

vmiBinop op
vmiReg rd
vmiReg ra
uns32 c

state->attrs->binop;
getGPR(state->info.rl);
getGPR(state->info.r2);
state->info.c;

vmimtBinopRRC(OR1K_BITS, op, rd, ra, c, 0);
T

This function uses a routine from the Imperas morph time function API (vmimt.h) to
describe the behavior of the arithmetic instructions we are implementing in this example.
The destination register number (rd), argument register number (ra) and constant value
(c) are extracted from the decoded instruction structure. It is very important to understand
that vmimt-prefixed routines do not themselves perform any arithmetic operation on the
processor registers: instead, they describe the action to be performed. The action
descriptions are used as input to the Imperas JIT compiler to generate native code that,
when executed, performs the required arithmetic operation.

To further clarify this example, we will consider lines from morphBinopRRC in detail. The
first line gets the operation to implement:

vmiBinop op = state->attrs->binop;

The operation op can be any of the operations specified in the vmiBinop enumeration,
declared in file vmiTypes.h:

typedef enum {

// ARITHMETIC OPERATIONS
OCL_BIN_ADD, // d<-a+b
OCL_BIN_ADC, // d<-a+b+C

vmi_ADD
vmi_ADC

© 2022 Imperas Software Limited.www.OVPworld.org Page 53 of 321

OVP Processor Modeling Guide

vmi_SUB
vmi_SBB
vmi_RSBB
vmi_RSUB
vmi__IMUL
vmi_MUL
vmi_IDIV
vmi_DIV
vmi__IREM
vmi_REM
vmi_CMP

vmi_ADDSQ
vmi_ADCSQ
vmi_SUBSQ
vmi_SBBSQ
vmi_RSUBSQ
vmi_RSBBSQ
vmi_ADDUQ
vmi_ADCUQ
vmi_SUBUQ
vmi_SBBUQ
vmi_RSUBUQ
vmi_RSBBUQ

vmi_ADDSH
vmi_SUBSH
vmi_RSUBSH
vmi_ADDUH
vmi_SUBUH
vmi_RSUBUH
vmi_ADDSHR
vmi_SUBSHR
vmi_RSUBSHR
vmi_ADDUHR
vmi_SUBUHR
vmi_RSUBUHR

vmi_OR
vmi_AND
vmi_XOR
vmi_ORN
vmi_ANDN
vmi_XORN
vmi_NOR
vmi_NAND
vmi_XNOR

vmi_ROL
vmi_ROR
vmi_RCL
vmi_RCR
vmi_SHL
vmi_SHR
vmi_SAR

vmi_SHLSQ
vmi_SHLUQ

OCL_BIN_SUB,
OCL_BIN_SBB,
OCL_BIN_RSBB,
OCL_BIN_RSUB,
OCL_BIN_IMUL,
OCL_BIN_MUL,
OCL_BIN_IDIV,
OCL_BIN_DIV,
OCL_BIN_IREM,
OCL_BIN_REM,
OCL_BIN_CMP,

OCL_BIN_ADDSQ,
OCL_BIN_ADCSQ,
OCL_BIN_SUBSQ,
OCL_BIN_SBBSQ,
OCL_BIN_RSUBSQ,
OCL_BIN_RSBBSQ,
OCL_BIN_ADDUQ,
OCL_BIN_ADCUQ,
OCL_BIN_SUBUQ,
OCL_BIN_SBBUQ,
OCL_BIN_RSUBUQ,
OCL_BIN_RSBBUQ,

OCL_BIN_ADDSH,
OCL_BIN_SUBSH,
OCL_BIN_RSUBSH,
OCL_BIN_ADDUH,
OCL_BIN_SUBUH,
OCL_BIN_RSUBUH,
OCL_BIN_ADDSHR,
OCL_BIN_SUBSHR,

OCL_BIN_RSUBSHR,

OCL_BIN_ADDUHR,
OCL_BIN_SUBUHR,

OCL_BIN_RSUBUHR,

OCL_BIN_OR,
OCL_BIN_AND,
OCL_BIN_XOR,
OCL_BIN_ORN,
OCL_BIN_ANDN,
OCL_BIN_XORN,
OCL_BIN_NOR,
OCL_BIN_NAND,
OCL_BIN_XNOR,

OCL_BIN_ROL,
OCL_BIN_ROR,
OCL_BIN_RCL,
OCL_BIN_RCR,
OCL_BIN_SHL,
OCL_BIN_SHR,
OCL_BIN_SAR,

OCL_BIN_SHLSQ,
OCL_BIN_SHLUQ,

/7/

DO O0O000000QQ
AN
11
DO DYOYYOYTTO D
COTCTOTTUTUTY®Y QTT

- b

C
C

(signed)
(unsigned)
(signed)
(unsigned)
(signed)
(unsigned)

SATURATED ARITHMETIC OPERATIONS

<- saturate_signed(a
<- saturate_signed(a
<- saturate_signed(a
<- saturate_signed(a
<- saturate_signed(b
<- saturate_signed(b a

saturate_unsigned(a + b)
<- saturate_unsigned(a +

<- saturate_unsigned(a - b)
<- saturate_unsigned(a - b - C)
<- saturate_unsigned(b - a)
<- saturate_unsigned(b - a - C)

000000000000
N
|

HALVING ARITHMETIC OPERATIONS

000000000000

BITWISE OPERATIONS

<- a

L TTOCT

D RO mmm > QR0 mmm
l
O OTUT

N
|
QOO P

<= ~(a I b)
<- ~(a & b)
<- ~(a ™ b)

000000000
AN
|

SHIFT/ROTATE OPERATIONS

<- ((unsigned)(b - a))
<- round(((signed)(a +
<- round(((signed)(a -
<- round(((signed)(b - a)) 7/ 2)

<- round(((unsigned)(a + b)) /7 2)
<- round(((unsigned)(a - b)) 7/ 2)
<- round(((unsigned)(b - a)) 7/ 2)

<- ((signed)(a + b)) 7 2
<- ((signed)(a - b)) 7 2
<- ((signed)(b - a)) 7/ 2
<- ((unsigned)(a + b)) /
<- ((unsigned)(a - b)) 7/
/
b
b

2)

d <- a << b | a > <bits>-b
d <- a>b | a<< <bits>-b
(d,c) <- (a,c)<<b | (a,c) >> <bits>-b
(d,c) <- (a,c)>>b | (a,c) << <bits>-b

d<-a=<<b

d <- (unsigned)a >> b
d <- (signed)a >> b

SATURATED SHIFT OPERATIONS
// d <- saturate_signed(a << b)
// d <- saturate_unsigned(a << b)

© 2022 Imperas Software Limited.www.OVPworld.org

Page 54 of 321

OVP Processor Modeling Guide

// ROUNDING SHIFT OPERATIONS

vmi_SHRR = OCL_BIN_SHRR, // d <- round((unsigned)a >> b)
vmi_SARR = OCL_BIN_SARR, // d <- round((signed)a >> b)
vmi_BINOP_LAST = OCL_BIN_LAST // KEEP LAST

} vmiBinop;

Next, destination register rd and argument register ra are obtained from the decoded
instruction:

vmiReg rd
vmiReg ra

getGPR(state->info.rl);
getGPR(state->info.r2);

In the OR1K processor, register ro is hardwired to the constant value 0. Any attempt to
write to this register should be discarded: this is indicated to the morph time API
functions by using the special value vM1_NOREG for the register. If the target register is
writable, the macro or1K_REG(rd) from orlkStructure.h is used to specify it, as
described in section 7.2.1. This complexity is encapsulated in function getGPR, defined as
follows:

static vmiReg getGPR(Uns32 r) {
return r ? OR1K_REG(r) : VMI_NOREG;
}

Next, a constant value is extracted from the decoded instruction:

Uns32 c = state->info.c;

Finally, the operation to perform is described by the morph time API function
vmimtBinopRRC:

vmimtBinopRRC(OR1K_BITS, op, rd, ra, c, 0);

Refer to the Imperas VMI Morph Time Reference manual for more detailed
information on all of the morph-time functions available in this API.

7.3 Running the Application Test Case with the
Processor Model
Run the application using this command:

platform/harness.$IMPERAS_ARCH.exe —trace —traceregs \
-—program application/application.OR1K.elf

in the 4_orikBehaviorSimple directory. The new —traceregs parameter, in
combination with —trace, enables trace of register values. You should see the following
output:

© 2022 Imperas Software Limited.www.OVPworld.org Page 55 of 321

OVP Processor Modeling Guide

Warning (PC_NRI) No register information callback given for processor “cpul”

Info "cpul-,

0x0000000000000100:

Info "cpul®™ REGISTERS
(instruction 1):

CPU cpul

0:
16:
32:
48:
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF

128:
Info "cpul®, 0x0000000000000104:

00000000
deadbeef
deadbeef
deadbeef

08daa790

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

Info “cpul® REGISTERS
(instruction 2):

CPU cpul

0:

16:

32:

48:

64:

80:

96:

112:

128:

Info “cpul-,

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
08daa790

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

0x0000000000000108:

Info "cpul®™ REGISTERS
(instruction 3):

CPU cpul

0:
16:
32:
48:
64:
80:
96:

112:
128:

00000000
00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
08daa790

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

. (many lines cut) ..

Info "cpul”,

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

0x0000000000000178: ??7?

CPU "cpul® 0x00000178:0x1820FfFfFf ***
Info "cpul® REGISTERS
(instruction 31):

CPU cpul

- 00000000
- 00000000
- 00000000
- 00000000
= 00000000
- 00000000
- 00000000
- 00000000
- 08daa790

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

1.addi r2,r0,0x0

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

1.addi r3,r0,0x0

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

1.addi r4,r0,0x0

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

instruction:0x1820FfFff
undecoded instruction: exiting ***

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

We now see the processor model executing instructions for the first time. In detail, the
sequence when generating output is:
1. The instruction about to be executed is disassembled;
2. The instruction is executed;
3. The register state of the processor is dumped.

© 2022 Imperas Software Limited.www.OVPworld.org Page 56 of 321

OVP Processor Modeling Guide

Because this ORK1 model has no register value print functionality specified at this
point, the register values printed after each instruction are simply the raw contents of
the OR1K structure. This includes the pointer value, busPorts, at offset 128. Because
this is a pointer, its value will change from run to run. The next chapter describes how
a model-specific register dump callback is written.

The initial instructions of the application zero out registers r2-r31 of the OR1K processor
using 1.addi instructions. As this happens, we see each register value change from
Oxdeadbeef (Set in the processor constructor) to 0x00000000.

7.4 Instruction Temporaries

Some instructions cannot be implemented as a single VMI operation and instead require a
sequence of operations and intermediate temporaries to generate the correct result. For
example, suppose that there is a signed halfword multiply instruction, which works
according to the following pseudo-code:

T1ls, o = sign_extend(R1lis. o)
T23, o = sign_extend(R2:5. ¢):;
R332..0 = Tlzs. 0 * T23_ 0;

In other words, the instruction sign-extends the lower half of the two arguments and then
multiplies those sign-extended values to produce the result. Implementing this instruction
requires the use of two temporaries that are not true processor registers but instead
represent intermediate values that are required only within an instruction.

The way to implement this is to introduce two new pseudo-registers into the processor
structure as follows:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits
#define OR1K_TNUM 2 // number of temporaries

// processor structure

typedef struct orilkS {
Uns32 regs[OR1K_REGS]; // basic registers
Uns32 temp[OR1K_TNUM]; // temporary pseudo-registers
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

The temporaries are specified to the morpher as follows:

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(F) VMI_CPU_REG(orikP, _F)
#define OR1K_REG(R) OR1K_CPU_REG(regs[R1)
#define OR1K_CPU_REG_TEMP(_F) VMI_CPU_TEMP(orlkP, _F)
#define ORIK_TEMP(1) OR1K_CPU_REG_TEMP(temp[_11)

The macro vMI_CPU_TEMP identifies temporaries in exactly the same way that macro
VMI_CPU_REG identifies true registers. Because the morpher knows that these values are
temporaries and not true registers, it can generate more efficient code (the temporary

© 2022 Imperas Software Limited.www.OVPworld.org Page 57 of 321

OVP Processor Modeling Guide

values do not need to be written back to the processor structure at the end of the
instruction).

These temporaries could then be used to implement the signed halfword multiply
instruction as follows:

QmiRég target = (rd==0) ? VMI_NOREG : OR1K REG(rd);

// generate intermediates
vmimtMoveExtendRR(OR1K_BITS, OR1K_TEMP(0), OR1K_BITS/2, OR1K_REG(ra), True);
vmimtMoveExtendRR(OR1K_BITS, OR1K_TEMP(1), OR1K_BITS/2, OR1K REG(rb), True);

// generate result
vmimtBinopRRR(OR1K_BITS, vmi_IMUL, target, OR1K_TEMP(0), OR1K_TEMP(1), 0);

© 2022 Imperas Software Limited.www.OVPworld.org Page 58 of 321

OVP Processor Modeling Guide

8 Processor Flags and Register Dumping

In general, arithmetic operations can both take as input and generate as output flag
values. For example an add-with-carry operation has a carry flag input, and might
generate a carry flag output. This chapter enhances the previous simple behavioral model
to handle flag values for arithmetic instructions, and shows how to implement a model
specific register dump routine to simplify model validation.

8.1 The Template Flags Model

A template model for the OR1K processor implementing instruction flags can be found
in:

$IMPERAS_HOME/Examples/Models/Processor/5.orlkBehaviorFlags

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/5.or1kBehaviorFlags .

Compile the model, harness and application using the make command:

cd 5.orlkBehaviorFlags
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

8.1.1 Adding Flag Registers - or1kStructure.h
For this example, we need to model the 32 OR1K general-purpose registers and three
boolean flags: carry, overflow and branch. The structure is therefore modified like this:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits

// processor structure
typedef struct orilkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool branchFlag; // branch flag

Uns32 regs[OR1K_REGS]; // basic registers
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

© 2022 Imperas Software Limited.www.OVPworld.org Page 59 of 321

OVP Processor Modeling Guide

The C structure byte offsets of the various fields are now as follows:

Register Byte Offset
carryFlag 0
overflowFlag 1
branchFlag 2

regs[0] 4

regs[1] 8

... etc ...

To simplify calculation of these offsets, orikStructure.h now has the following macros
for use in variable C expressions:

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(_F) VMI_CPU_REG(orlkP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_RD)
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)

In constant expression contexts (for example static structure initializers) these variants
should be used instead:

// macros to specify target registers in CONSTANT expressions
#define OR1K_CPU_REG_CONST(_F) VMI_CPU_REG_CONST(orlkP, _F)

#define OR1K_REG_CONST(_R) OR1K_CPU_REG_CONST(regs[_R1)
#define OR1K_CARRY_CONST OR1K_CPU_REG_CONST(carryFlag)
#define OR1K_OVERFLOW_CONST OR1K_CPU_REG_CONST(overflowFlag)

8.1.2 Using Flags - orlkMorph.c

How flags should be handled in an arithmetic operation is indicated by a flags argument
to the VMI morph-time API call describing the operation. This argument is a pointer to a
structure type defined in vmiTypes.h:

typedef enum {

vmi_CF=0, // carry flag
vmi_PF=1, // parity flag
vmi_ZF=2, // zero flag
vmi_SF=3, // sign flag
vmi_OF=4, // overflow flag
vmi_LF=5 // KEEP LAST

} vmiFlag;

typedef enum {
vmi_FN_NONE =0x00, // empty negate mask
vmi_FN_CF_IN =0x01, // negate carry in flag
vmi_FN_CF_0OUT=0x02, // negate carry out flag

vmi_FN_PF =0x04, // negate parity flag
vmi_FN_ZF =0x08, // negate zero flag
vmi_FN_SF =0x10, // negate sign flag
vmi_FN_OF =0x20, // negate overflow flag

} vmiFlagNegate;

typedef struct vmiFlagsS {

© 2022 Imperas Software Limited.www.OVPworld.org Page 60 of 321

OVP Processor Modeling Guide

vmiReg cin; // register specifying carry in
vmiReg fLvmi_LF]; // registers to hold operation results
vmiFlagNegate negate; // bitmask of negated flags

} vmiFlags;

The vmiFlag enumeration lists all the flags that can be generated by an arithmetic
operation: carry, parity, zero, sign and overflow. The vmiFlagNegate enumeration
describes how flags are negated on input to and output from the operation.

The vmiFlags structure contains the following:

1. Afield cin of type vmiReg. This field specifies the register offset in a processor
structure of a flag byte to use for the carry in value.

2. An array of vmiReg values indexed by vmiFlag type. This field specifies the
register offsets in a processor structure of flag bytes into which generated flags
should be written.

3. A bitmask of type vmiFlagNegate specifying how flags should be negated on
input to and output from the operation.

In other words, the vmiFlags structure allows you to specify boolean flag locations
within your processor structure that can provide and accept flag values in arithmetic
operations. These flags should always be declared in the processor structure as type Bool.

The orikMorphAttr structure has now been enhanced to include an extra field of type
vmiFlagsCP:

typedef struct orlkMorphAttrS {

orlkMorphFn morphCB; // function to translate one instruction
vmiBinop binop; // if a simple binary operation
vmiFlagsCP flags; // flags used by the instruction

} orlkMorphAttr;

Function morphBinopRRC now extracts this flags field and uses it in the call to
vmimtBinopRRC:

static OR1K_MORPH_FN(morphBinopRRC) {

vmiBinop op state->attrs->binop;

vmiReg rd = getGPR(state->info.rl);
vmiReg ra = getGPR(state->info.r2);
Uns32 c = state->info.c;

vmiFlagsCP flags = state->attrs->flags;

vmimtBinopRRC(OR1K_BITS, op, rd, ra, c, flags);
}

In the specific example of the OR1K processor, the bitwise logical operations do not use
or affect any processor flags. This is indicated by specifying a null pointer for the flags
argument in the or1kMorphTable initialization:

[OR1K_IT_ANDI]
[OR1K_IT_ORI]
[OR1K_IT_XORI]

{morphCB:morphBinopRRC, binop:vmi_AND, flags:0 3},
{morphCB:morphBinopRRC, binop:vmi_OR, flags:0
{morphCB:morphBinopRRC, binop:vmi_XOR, flags:0

3
}

© 2022 Imperas Software Limited.www.OVPworld.org Page 61 of 321

OVP Processor Modeling Guide

The remaining arithmetic operations can generate carry and overflow flags, and (in the
case of instruction I.adc) take a carry flag as input. Other possible output flags do not
exist on the OR1K. This is indicated using a vmiFlags structure flagsCo:

const vmiFlags flagsCO = {

OR1K_CARRY_CONST, // offset to carry in flag
{
OR1K_CARRY_CONST, // offset to carry out flag
VMI_NOFLAG_CONST, // parity flag not used
VMI_NOFLAG_CONST, // zero flag not used
VMI_NOFLAG_CONST, // sign flag not used
OR1K_OVERFLOW_CONST // offset to overflow flag
}

};
The new FlagsCo structure is used in the orikMorphTable initialization like this:

[OR1K_IT_ADDI] = {morphCB:morphBinopRRC, binop:vmi_ADD, flags:&flagsCO},
[OR1K_IT_ADDIC] = {morphCB:morphBinopRRC, binop:vmi_ADC, flags:&flagsCO},
[OR1K_IT_MULI] = {morphCB:morphBinopRRC, binop:vmi_IMUL, flags:&flagsCO},

In detail, F1agsCO specifies that:

1. Any input carry required by the arithmetic operation should be obtained from the
processor structure at offset OR1K_CARRY_CONST, specified in orikStructure.h.
This corresponds to the carry Boolean field in the structure.

2. Any output carry generated by the arithmetic operation should be written to the
processor structure at offset OR1K_CARRY_CONST.

3. Any output overflow generated by the arithmetic operation should be written to
the processor structure at offset OR1K_OVERFLOW_CONST.

4. Any other output flags generated by the arithmetic operations should be discarded
(indicated by using the special value VM1_NOFLAG_CONST in the appropriate
vmiFlags structure field).

5. The carry flag should not be negated when used as an input and no flags should be
negated on output. Therefore, the negate field of flagscCo is initialized to the
default zero value (vmi_FN_NONE) by omitting it from the structure initializer.

Note what happens in morphBinopRRC when the output register rd is r0. Recall that
r0 is hardwired to zero on the OR1K processor. What should happen to the processor
flags for an instruction where the output register is ro? The result should be discarded
but changes to the flag values preserved. This can be indicated to the VMI morph-
time API by specifying the special value VM1_NOREG as the destination register to
vmimtBinopRRC.

8.2 Validating Flag Behavior with Tests

For even apparently simple instructions like 1.addic, it is clear that there are already a
number of separate cases to be tested. An ideal test plan should cover the following
options in various combinations:

© 2022 Imperas Software Limited.www.OVPworld.org Page 62 of 321

OVP Processor Modeling Guide

NoakwnE

target register rd of ro-r31
target register rd of ro
source register ra of r1-r31
source register ra of ro
validate carry output generated when required
validate overflow output generated when required
validate carry input used when required

File asmtest.S in directory 5.orikBehaviorFlags/application is an example of how this
could be done.

-global _start

_start:

.addi
.addi
.addi
.addi
-muli
-muli
.addi

.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic

.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic

// TEST
ri,r0,0 // rl
r2,r0,1 // r2
r3,r0,-1 // r3

r4,r0,0x800 // r4
r4,r4,0x800 // r4
r4,r4,0x200 // ra
r5,r4,-1 /7 r5

r20,r0,-1
r20,r0,0
r20,r0,1
r20,rl1,-1
r20,r1,0
r20,r1,1
r20,r2,-1
r20,r2,0
r20,r2,1
r20,r3,-1
r20,r3,0
r20,r3,1
r20,r4,-1
r20,r4,0
r20,r4,1
r20,r5,-1
r20,r5,0
r20,r5,1

ro,r0,-1
ro,r0,0
ro,r0,1
ro,rl,-1
ro,r1,0
ro,rl,1
ro,r2,-1
ro,r2,0
ro,r2,1
ro,r3,-1
ro,r3,0
ro,r3,1
ro,r4,-1
ro,r4,0
ro,r4,1
ro,r5,-1
ro,r5,0
ro,r5,1

PROLOGUE

0

1

-1
0x00000800
0x00400000
0x80000000
OX7FFFFfff

© 2022 Imperas Software Limited.www.OVPworld.org

Page 63 of 321

OVP Processor Modeling Guide

-global exit
exit:
1.addi ri,r2,0

Run the application using this command:

platform/harness.$IMPERAS_ARCH.exe —trace -—traceregs \
-—program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul’
Info “"cpul®, 0x0000000001000074: 1.addi rl,r0,0x0
Info "cpul® REGISTERS
CPU cpul (instruction 1):
0: 00000000 00000000 00000000 deadbeef

16: deadbeef deadbeef deadbeef deadbeef

32: deadbeef deadbeef deadbeef deadbeef

48: deadbeef deadbeef deadbeef deadbeef

64: deadbeef deadbeef deadbeef deadbeef

80: deadbeef deadbeef deadbeef deadbeef

96: deadbeef deadbeef deadbeef deadbeef

112: deadbeef deadbeef deadbeef deadbeef

128: deadbeef 08daa790

. (many lines cut) ..

Info “"cpul®, 0x0000000001000118: l1.addic rO0,r5,0x0
Info "cpul®™ REGISTERS
CPU cpul (instruction 42):
0: 00000100 00000000 00000000 00000001
16: FFFFFFFF 80000000 7FFFFFFF deadbeef
32: deadbeef deadbeef deadbeef deadbeef
48: deadbeef deadbeef deadbeef deadbeef
64: deadbeef deadbeef deadbeef deadbeef
80: deadbeef 80000000 deadbeef deadbeef
96: deadbeef deadbeef deadbeef deadbeef
112: deadbeef deadbeef deadbeef deadbeef
128: deadbeef 08daa790
Info “cpul®, 0x000000000100011c: l.addic rO,r5,0x1
Info "cpul®™ REGISTERS
CPU cpul (instruction 43):
0: 00000100 00000000 00000000 00000001
16: FFFFFFFF 80000000 7FFFFFFF deadbeef
32: deadbeef deadbeef deadbeef deadbeef
48: deadbeef deadbeef deadbeef deadbeef
64: deadbeef deadbeef deadbeef deadbeef
80: deadbeef 80000000 deadbeef deadbeef
96: deadbeef deadbeef deadbeef deadbeef
112: deadbeef deadbeef deadbeef deadbeef
128: deadbeef 08daa790
Info "cpul®, 0x0000000001000120: 1.addi rl,r2,0x0
Processor "cpul® terminated at "exit", address 0x1000120
Info "cpul®™ REGISTERS
CPU cpul (instruction 44):
0: 00000000 00000000 00000001 00000001
16: FFFFFFFF 80000000 7FFFFFFF deadbeef
32: deadbeef deadbeef deadbeef deadbeef
48: deadbeef deadbeef deadbeef deadbeef
64: deadbeef deadbeef deadbeef deadbeef
80: deadbeef 80000000 deadbeef deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org Page 64 of 321

OVP Processor Modeling Guide

96: deadbeef deadbeef deadbeef deadbeef
112: deadbeef deadbeef deadbeef deadbeef
128: deadbeef 08daa790

8.3 Model-Specific Dump Format

Comparing the output from the above example with that from the simple behavioral
model (section 7.3), there is a significant difference in format because each register dump
now has 34 words (136 bytes) instead of 33 words (132 bytes). This is because adding the
flags to the processor structure has increased its size. It also isn’t clear what the dump is
showing: which values represent general purpose registers, which represent flags, and
which are supplemental values (for example the busPorts pointer) which do not
represent true processor state at all? To address this problem, we need to add a model-
specific register dump routine. A template model for the OR1K with this routine added
can be found in:

$IMPERAS_HOME/Examples/Models/Processor/6.orlkBehaviorDump

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/6.or1kBehaviorDump .

Compile the model, harness and application using the make command:

cd 6.orlkBehaviorDump
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

8.3.1 Defining Status Register - or1kStructure.h

While implementing the OR1K register dump routine, we will update the processor
model to partially implement the OR1K status register (sr). This is a 32-bit register
which must be added to the processor definition in orikStructure.h as follows:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits

// processor structure
typedef struct orilkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag
Bool branchFlag; // branch flag
Uns32 regs[OR1K_REGS]; // basic registers

© 2022 Imperas Software Limited.www.OVPworld.org Page 65 of 321

OVP Processor Modeling Guide

uUns32 SR;

vmiBusPortP busPorts;

} orik,

The status register bits are conveniently accessed using these macros:

*orlkP;

// status register

// Bit definitions for the SR register

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SPR_SR_CID

SPR_SR_SUMRA

SPR_SR_FO
SPR_SR_EPH
SPR_SR_DSX
SPR_SR_OVE
SPR_SR_OV
SPR_SR_CY
SPR_SR_F
SPR_SR_CE
SPR_SR_LEE
SPR_SR_IME
SPR_SR_DME
SPR_SR_ICE
SPR_SR_DCE
SPR_SR_IEE
SPR_SR_TEE
SPR_SR_SM

0xf0000000
0x00010000
0x00008000
0x00004000
0x00002000
0x00001000
0x00000800
0x00000400
0x00000200
0x00000100
0x00000080
0x00000040
0x00000020
0x00000010
0x00000008
0x00000004
0x00000002
0x00000001

// bus port descriptions

Context ID

Supervisor SPR read access

Fixed one

Exception Prefix High
Delay Slot Exception
Overflow flag Exception
Overflow flag

Carry flag

Condition Flag

CID Enable

Little Endian Enable
Instruction MMU Enable

Data MMU Enable

Instruction Cache Enable
Data Cache Enable

Interrupt Exception Enable
Tick timer Exception Enable
Supervisor Mode

8.3.2 Adding Register Dump - orlkUtils.c
This file implements the OR1K register dump function using the vM1_DEBUG_FN macro,
defined in vmiDbg.h. The function is as follows:

VMI_DEBUG_FN(orlkDumpRegisters) {

orlkP orlk = (orlkP)processor;
uUns32 i = 0;
vmiPrintf(”

\n");

// print general-purpose registers

whi le (i<OR1K_REGS) {

}

// newline if required before derived registers

vmiPrintf(" R%-2u: %08x",

i++;

if(1(&3)) {

vmiPrintf('\n");

} else {

}

vmiPrintf(”

if(i&3) {

}

vmiPrintf('\n");

// flags
vmiPrintf(
" BF:%u CF:%u OF:%u ',

");

i, orlk->regs[i]);

© 2022 Imperas Software Limited.www.OVPworld.org

Page 66 of 321

OVP Processor Modeling Guide

orlk->branchFlag,
orlk->carryFlag,
orlk->overflowFlag

);

// program counter
vmiPrintf("" PC : %08x ', (Uns32)vmirtGetPC(processor));

// status register
vmiPrintf("" SR : %08x ", orlkGetSR(orlk));

vmiPrintfC\p--------------- - ——— ——
\n\n"");
}

The register dump function is passed a single vmiProcessorP argument, indicating the
processor for which to dump registers. The first step is to cast this to an or1kpP type:

orlkP orlk = (orlkP)processor;

Next, the function prints out the values of the OR1K general purpose registers, naming
them ro, r1, r2 and so on. All output is generated using the VMI routine vmiPrintf,
defined in vmiMessage . h:

while(i<OR1K_REGS) {
vmiPrintf("" R%-2u: %08x', i, orlk->regs[i]);
i++;
if(1(i&l3)) {
vmiPrintf(''\n"");

} else {
vmiPrintf(" *);
}

}

Next, the function prints the current settings of the branch, carry and overflow flags:

// flags

vmiPrintf(
" BF:%u CF:%u OF:%u ™
orlk->branchFlag,
orlk->carryFlag,
orlk->overflowFlag

)

8.3.2.1 Printing the Program Counter (PC)

The OR1K processor has a program counter register, PC, which we would like to print in
the dump routine. Until this point, we have not modeled the processor program counter at
all; how should it be done?

One solution would be to introduce an extra pc field into the processor structure, which
we could update at the start of every instruction using a morph-time operation. For
example:

// processor structure
typedef struct orilkS {

© 2022 Imperas Software Limited.www.OVPworld.org Page 67 of 321

OVP Processor Modeling Guide

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool branchFlag; // branch flag

Uns32 regs[OR1K_REGS]; // basic registers

Uns32 SR; // status register

Uns32 PC; // program counter
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;
#define OR1K_PC OR1K_REG(PC)

VMI_MORPH_FN(orl1lkMorphlnstruction) {
vmimtMoveRC(OR1K_BITS, OR1K PC, (Uns32)thisPC);
orlkDecode((ori1kP)processor, thisPC, OR1K_MORPH, 0);

}

However, this is unnecessarily inefficient: we have already seen from the instruction trace
in previous examples that the simulator always knows the address of the current
instruction. Instead of maintaining the program counter value in the model, it would be
much better just to ask the simulator for the current program counter value when we need
it. A routine to give exactly what is required is available in the VMI run-time interface
(defined in file vmiRt_h):

//

// Return the current program counter for a processor
//

Addr vmirtGetPC(vmiProcessorP processor);

The OR1K register dump function uses this as follows:

vmiPrintf(*" PC : %08x ', (Uns32)vmirtGetPC(processor));

This highlights a very important point: when writing a processor model, do not
explicitly model register values that are infrequently referenced and can easily be
created on demand. This is always the case for the program counter and very often
the case for processor status registers. Failure to do this will result in processor
models which are much slower than they need to be.

8.3.2.2 Printing the Status Register (sr)

As a second example of creating register values on demand, the OR1K also contains a
status register, sr. This register encodes the values of the three OR1K flags (carry,
overflow and branch) in addition to other status information (whether the processor is in
supervisor mode, for example). The OR1K register dump function prints the current
value of the status register like this:

vmiPrintf(*" SR - %08x ', orlkGetSR(or1lk));

The routine or1kGetsSR is implemented in orikUtils.c like this:

© 2022 Imperas Software Limited.www.OVPworld.org Page 68 of 321

OVP Processor Modeling Guide

Uns32 orlkGetSR(orlkP orlk) {
FillSR(orlk);
return orlk->SR;

}

The routine i 1 1SR updates the current value of the sr register field in the processor
structure so that it includes the three boolean flags:

#define SET BIT(R, C, M \

ifCO { \
(R =CR | (M; \
} else { \
R = (R & ~(M); \

inline static void fillSR(orlkP orilk) {
SET_BIT(or1k->SR, orlk->branchFlag, SPR_SR_F);
SET_BIT(orlk->SR, orlk->carryFlag, SPR_SR_CY);
SET_BIT(or1k->SR, orlk->overflowFlag, SPR_SR_0OV);
¥

In other words, when the model requires the current value of the OR1K status register sr,
it should call the routine orikGetSR, which assembles the value by combining some bits
stored in the processor structure SR field with the current values of the three flag registers.
This is much more efficient than regenerating the full value of sr after each instruction
that could possibly modify flag values.

For completeness, orikuUtils.c also implements a public function to set the sr register,
orlkSetSR. This isn’t used in this example, but will be required in the full model.

#define GET BIT(R, M) \
CRH &) 7?21 :0)

void orlkSetSR(orlkP orlk, Uns32 value) {

// it is never possible to clear the fixed-one (FO) bit
value |= SPR_SR_FO;

// set the SR
orlk->SR = value;

orlk->branchFlag GET_BIT(value, SPR_SR_F);
orlk->carryFlag GET_BIT(value, SPR_SR CY);

// set the current branch flag, carry flag and overflow flag from the SR
orlk->overflowFlag = GET_BIT(value, SPR_SR_0V);

}

The function or1kSetSR extracts the flag bits from the new value of the status register sr
and copies them into the flag fields in the processor model structure so that consistency is
maintained.

8.3.3 Initializing Status Register - orlkMain.c
The constructor has been changed to initialize the new status register sr:

© 2022 Imperas Software Limited.www.OVPworld.org Page 69 of 321

OVP Processor Modeling Guide

VMI_CONSTRUCTOR_FN(orlkConstructor) {

}

orlkP orlk = (orlkP)processor;
uns32 i;

// initialize general purpose registers

for(i=2; i<OR1K_REGS; i++) {
orlk->regs[i] = Oxdeadbeef;

}

// initialize status register SR
orlk->SR = SPR_SR_FO | SPR_SR_SM;

// create bus port specifications
newBusPorts(orlk);

8.3.4 Dump Function Registration - or1kAttrs.c
The register dump routine has been added to the vmi 1ASAttr structure for the OR1K:

const vmilASAttr modelAttrs = {

1/1//1/7777777/77/77/777/77/7/////7////////////////////7////7////////////////7777
// VERSION & SIZE ATTRIBUTES
1/1/7/7777777777777/7777/77///////////////7///////7//////7//////////////7//7777

-versionString = VMI_VERSION,
-modelType = VMI_PROCESSOR_MODEL,
.dictNames = dictNames,

.cpuSize = sizeof(orilk),

L11177777777777777777777777777777/77777///7777////7777///77/77////7/7///77/
// CREATE/DELETE ROUTINES
L11171777777777777777777777777777/777777//7777////7777///7777////7/7///77/

orlkConstructor,
orlkDestructor,

.constructorCB =
.destructorCB =
L1117 7777777777/777777/7777/7/7/7777/7/77/7/7//7/77/7//7/7/77/7///7/77/77/77/777/7
// MORPHER CORE ROUTINES

L1117 7777777777/7/7777/7777/7/7/7777/7/77/7/7/77/77/7/7/7/7/77/7//7/7/77/7//77/777

-morphCB = orilkMorphlnstruction,
/1/1/177777777777777777777777777/77/77/77/7/77//77/77////7/7//77/7//777/7777777

// SIMULATION SUPPORT ROUTINES
L111717777777777777777777777777777/7777///77777///7777///77/77////7//77//7//

.getEndianCB = orlkGetEndian,
.nextPCCB = orlkNextlnstruction,
.disCB = orlkDisassemble,

L111777777777777777777777777777777/7777//777777///7777///7/7/7////7//7//7/7/
// REGISTER ACCESS SUPPORT ROUTINES (DEBUGGER & SEMIHOSTING)
L111717777777777777777777777777777/7777///77777///7777///77/77////7//77//7//

-debugCB = orilkDumpRegisters,

L11177777777777777777777777777777777777//77777////7777///77/77////7/7///7/77
// PORT ROUTINES

© 2022 Imperas Software Limited.www.OVPworld.org

Page 70 of 321

OVP Processor Modeling Guide

1/1//1/7777777777777/7777/77////7//////////////////7//7//////////////////7//7777

-busPortSpecsCB = orilkGetBusPortSpec,

1/1//1/77777777/777777777/77///7/7/7////7///////7//////////////////////////7777
INFO ROUTINE
1/1//1/7/77777777/77/77777/7/////77//////////////7////7////////////////////7//7777

// PROCESSOR

-procInfoCB = orlkProclInfo

};
8.4

Run the platform using the assembler executable file:

Validating Register Dumping with Point Tests

platform/harness.$IMPERAS_ARCH.exe —trace —traceregs \
-—program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”

Info "cpul®, 0x0000000001000074:
Info "cpul® REGISTERS

: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef

RO
R4 :
R8
R12:
R16:
R20:
R24:
R28:

BF:0 CF:0 OF:0

Info "cpul”, 0x0000000001000078:
"cpul® REGISTERS

- 00000000
: deadbeefF
: deadbeef

Info

R12:
R16:
R20:
R24:
R28:

BF:0 CF:0 OF:O

- 00000000

deadbeef

: deadbeefF

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

- 00000000
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: 01000078

= 00000000
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: 0100007c

1.addi rl,r0,0x0
R2 : deadbeef R3
R6 : deadbeef R7
R10: deadbeef R11
R14: deadbeef R15
R18: deadbeef R19
R22: deadbeef R23
R26: deadbeef R27:
R30: deadbeef R31:
SR : 00008001

1.addi r2,r0,0x1
R2 : 00000001 R3
R6 : deadbeef R7
R10: deadbeef R11
R14: deadbeef R15
R18: deadbeef R19
R22: deadbeef R23
R26: deadbeef R27
R30: deadbeef R31
SR : 00008001

deadbeef
deadbeef

: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef

Now the trace output is much easier to understand because registers are printed with

meaningful names.

8.5

Derived Flags

We have seen that the VMI API allows any of the sign, carry, overflow, zero or parity
flags to be generated by an operation. It is often required to derive more complex flags
from these: for example, it may be required to implement an unsigned below-or-equal

© 2022 Imperas Software Limited.www.OVPworld.org

Page 71 of 321

OVP Processor Modeling Guide

condition flag, which is true if either the carry flag is set or the zero flag is set. The best
approach is as follows:

1. generate the sign, carry, overflow, zero or parity flags as required as true
processor registers;

2. use binary operations with width 8 to generate the derived flag using the basic
flags as arguments as described below.

As an example, suppose that the OR1K model has been modified to implement sign and
zero flags and a new temporary flag as follows:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits

// processor structure
typedef struct orilkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool zeroFlag; // carry flag

Bool signFlag; // overflow flag

Bool branchFlag; // branch flag

Bool tempFlag; // temporary flag

Uns32 regs[OR1K_REGS]; // basic registers
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

and that new accessor macros for these flags have been added:

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(_F) VMI_CPU_REG(orlkP, _F)
#define OR1K_CPU_TEMP(_F) VMI_CPU_TEMP(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_R])
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)
#define OR1K_ZERO OR1K_CPU_REG(zeroFlag)
#define OR1K_SIGN OR1K_CPU_REG(signFlag)
#define OR1K_TF OR1K_CPU_TEMP(tempFlag)

Given these changes, use the following sequences to generate a derived flag in tempFlag:

Unsigned below-or-equal (CF==1) || (ZF==1):
vmimtBinopRRR(8, vmi_OR, OR1K_TF, OR1K_CARRY, OR1K_ZERO, 0);

Signed less-than (SF1=0F):
vmimtBinopRRR(8, vmi_XOR, OR1K_TF, OR1K_SIGN, OR1K_OVERFLOW, 0);

Signed less-than-or-equal ((zF==1) || (SF!=0F)):
vmimtBinopRRR(8, vmi_XOR, OR1K_TF, OR1K_SIGN, OR1K_OVERFLOW, 0);
vmimtBinopRR(8, vmi_OR, OR1K TF, OR1K_ZERO, 0);

© 2022 Imperas Software Limited.www.OVPworld.org Page 72 of 321

OVP Processor Modeling Guide

Complement of any flag:
vmimtBinopRRC(8, vmi_XOR, OR1K _TF, <flag_reg>, 1, 0);

Note that the recommended way to complement a flag is to exclusive-or it with 1.

© 2022 Imperas Software Limited.www.OVPworld.org Page 73 of 321

OVP Processor Modeling Guide

9 Implementing Unconditional Jump Instructions

Up to this point, the OR1K examples have executed straight line code only. We will now
implement unconditional jump instructions to allow simple non-linear programs to be
run.

9.1 The Template Unconditional Jump Model

A template model for the OR1K processor implementing unconditional jump instructions
can be found in:

$IMPERAS_HOME/Examples/Models/Processor/7.or1kBehaviorUncondJump

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/7 .orlkBehaviorUncondJump .

Compile the model, harness and application using the make command:

cd 7.orlkBehaviorUncondJump
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

9.1.1 Defining Link Register - or1kStructure.h
The OR1K has a link register, r9, which is set to required return address in a jump-and-
link (call) instruction:

#define OR1K_LINK 9 // link register index (R9)
#define OR1K_LINKREG OR1K_REG(OR1K_LINK)

9.1.2 Defining Jump Instruction Types - or1lkDecode.h
The OR1K unconditional jump instructions have been added to the
orlklInstructionType enumeration:

typedef enum orlklnstructionTypeE {

// arithmetic instructions
OR1K_ IT_ADDI,
OR1K_IT_ADDIC,
OR1K_IT_ANDI,

OR1K_IT ORI,

OR1K_IT_XORI,

OR1K IT_MULI,

© 2022 Imperas Software Limited.www.OVPworld.org Page 74 of 321

OVP Processor Modeling Guide

// branch instructions
OR1K_IT_J,

OR1K_IT_JR,
OR1K_IT_JAL,
OR1K_IT_JALR,

// KEEP LAST: for sizing the array
OR1K_IT_LAST

} orlklInstructionType;

9.1.3 Decoding Jump Instructions - or1lkDecode.c

New macros have been added for extraction of a register index defined in bits 15:11 of an
instruction and a signed offset from bits 25:0 of an instruction (the signed offset is
multiplied by 4):

#define OP_B(_I) WIDTH(S, (C_1)>>11)
#define OP_T(_I) (((Int32) (WIDTH(26, (_1)>>0)<<6))>>4)

The enumerations describing register and constant types have been enhanced:

typedef enum regSpeckE {

R_NA, // no register
R D, // register at bits 25:21
R_A, // register at bits 20:16
R B, // register at bits 15:11
} regSpec;
//
// Define the location of constant in an instruction
//
typedef enum constSpecE {
C_NA, // no register
C s1, // signed constant in bits 15:0
c u1, // unsigned constant in bits 15:0
CT, // signed target offset in bits 25:0

} congtSpec;

The OR1K unconditional jump instructions have been added to the attrsArray table in a
similar manner as for previous instructions:

const static opAttrs attrsArray[OR1K_IT_LAST+1] = {

// handle arithmetic instructions (second argument constant)

ATTR_SET_ADDI (ADDI, ™addi™, "™J100111.... ... @ i aiaanan-- 1',
ATTR_SET_ADDI (ADDIC, "addic™, "J101000.o eia e e ',
ATTR_SET_ANDI (ANDI, ™Mandi™, "J101001.... @ @ iiooeoiaana-- 1',
ATTR_SET_ANDI (ORI, ori", 1101010, - - e ',
ATTR_SET_ADDI (XORI, "xori™, "™]J101011.. @ i 1',
ATTR_SET_ADDI (MULI, "muli™, "J1012100. @i e I'D,
// handle branch instructions

ATTR_SET_BF Q, "y, "JO00000. - - e 1',
ATTR_SET_JR R, yre, MJ010001 . i I'D,
ATTR_SET_BF (JAL, “jal", MJO0000L . - .o 1',
ATTR_SET_JR (JALR, "jalr™, "™]010010. i I'D,

© 2022 Imperas Software Limited.www.OVPworld.org Page 75 of 321

OVP Processor Modeling Guide

The new macros ATTR_SET_BF and ATTR_SET_JR describe jump instructions that take a
relative offset and register argument, respectively:

#define ATTR_SET_BF(_NAME, _OPCODE, _DECODE) \
[ORIK_IT_## NAME] = {
member : # NAME,
opcode : _OPCODE,
format : FMT_TARGET,
decode : _DECODE,
© - CT

O

}

#define ATTR_SET_JR(_NAME, _OPCODE, _DECODE) \
[ORIK_IT ## NAME] = {
member : # NAME,
opcode : _OPCODE,
format : FMT_R1,
decode : _DECODE,
rl : R B

A d

}

Function getReg has a new case to handle a register in the rb position in an instruction:

static Uns32 getReg(Uns32 instruction, regSpec rs) {
Uns32 result = 0;

switch(rs) {

case R_NA:
break;

case R_D:
result = OP_D(instruction);
break;

case R_A:
result
break;

case R_B:
result = OP_B(instruction);
break;

default:
VMI_ABORT ("'unimplemented case'); // LCOV_EXCL_LINE
break;

OP_A(iinstruction);

return result;

}

And function getConst now handles a constant target address (note that the offset from
the instruction is added to the current PC to get the result in this case):

static Uns32 getConst(Uns32 instruction, constSpec cs, Uns32 thisPC) {
Uns32 result = 0;

switch(cs) {
case C_NA:
break;
case C_S1:

© 2022 Imperas Software Limited.www.OVPworld.org Page 76 of 321

OVP Processor Modeling Guide

result = OP_Si(instruction);
break;
case C_U1l:
result = OP_Ul(instruction);
break;
case C_T:
// PC-relative address
result = thisPC + OP_T(instruction);
break;
default:
VMI_ABORT(*"'unimplemented case'™); // LCOV_EXCL_LINE
break;

}

return result;

}

9.1.4 Jump Instruction Formats - orlkDisassembleFormats.h
A new token has been added for a target address, and new formats for instructions with a
single register argument and an address argument:

//

// These are placeholders in disassembly decoder

//

#define EMIT_R1 “\001"

#define EMIT_R2 “\002*

#define EMIT_XIMM “\003"

#define EMIT_TARGET “\004*

//

// These are placeholders in disassembly format strings
//

#define EMIT_R1_S "\001"

#define EMIT_R2_S "\002"

#define EMIT_XIMM_S "\003"

#define EMIT_TARGET_S "\004"

//

// These are disassembly format strings

//

#define FMT_TARGET EMIT_TARGET_S

#define FMT_R1 EMIT_R1_S

#define FMT_R1_R2_XIMM EMIT_R1_S ", EMIT_R2_S "," EMIT_XIMM_S

9.1.5 Jump Instruction Disassembly - or1kDisassemble.c
A new function putTarget has been added to print a target address:

static void putTarget(char **result, Uns32 value) {
char tmp[32];
sprintf(tmp, 0x%08x', value);

putString(result, tmp);
}

And function disassembleFormat has been enhanced to handle the new target address
token:

© 2022 Imperas Software Limited.www.OVPworld.org Page 77 of 321

OVP Processor Modeling Guide

static void disassembleFormat(

orlkP

orlk,

orlklInstructioninfoP info,

char

const char

Bool

**result,
*format,
uncooked

) {

lines omitted .

// generate arguments in appropriate format
while((ch=*format++)) {

switch(ch) {

case EMIT_R1:
putUncookedKey(result, * R1"™, uncooked);
putRegister(result, info->rl);
break;

case EMIT_R2:
putUncookedKey(result, * R2"™, uncooked);
putRegister(result, info->r2);
break;

case EMIT_XIMM:
putUncookedKey(result, " CX", uncooked);
putX(result, info->c);
break;

case EMIT_TARGET:
putUncookedKey(result, " T", uncooked);
putTarget(result, info->c);
break;

default:

if(luncooked) {putChar(result, ch);}
break;

}

9.1.6 Implementing Jump Instructions - orlkMorph.c
This file has been upgraded to implement morph callback functions for the jump
instructions, as described below.

The main morpher entry point function, orikMorphlinstruction, has been modified to
indicate whether the current instruction is in a delay slot:

typedef struct orlkMorphStateS {

orlkinstructioninfo info; // instruction description (from decoder)
orlkMorphAttrCP attrs; // instruction attributes

orlkP orlk; // current processor

Bool inDelaySlot; // true if iInstruction is in delay slot

} orlkMorphState;
VMI_MORPH_FN(orlkMorphlnstruction) {

orlkP orlk = (orlkP)processor;

© 2022 Imperas Software Limited.www.OVPworld.org Page 78 of 321

OVP Processor Modeling Guide

orlkMorphState state = {{0}};

// decode instruction
orlkDecode(orlk, thisPC, &state.info);

// get morpher attributes for the decoded instruction and initialize other
// state fields
state.attrs
state.orlk

state. inDelaySlot

&orlkMorphTable[state. info.type];
orlk;
inDelaySlot;

if(state.attrs->morphCB) {
// translate the instruction
state.attrs->morphCB(&state);

} else {

// here if no translation callback specified
emitUnimplemented(&state);

}

When performing just-in-time compilation using the model morph callback, the simulator
always knows whether the current instruction is a delay slot instruction. It provides this
information to the model morpher entry point function as an argument, inDelaySlot, of
the call to the vM1_MORPH_FN of the model.

There are new entries in the orlkMorphTable array for the unconditional jumps:

const orlkMorphAttr orlkMorphTable[OR1K IT_LAST+1] = {

// handle arithmetic instructions (second argument constant)

[OR1K_IT_ADDI] = {morphCB:morphBinopRRC, binop:vmi_ADD, flags:&flagsCO},
[OR1K_1T_ADDIC] {morphCB:morphBinopRRC, binop:vmi_ADC, flags:&flagsC0},
[OR1K_IT_ANDI] {morphCB:morphBinopRRC, binop:vmi_AND, flags:0 1.
[OR1K_IT_ORI] {morphCB:morphBinopRRC, binop:vmi_OR, flags:0 1.
[OR1K_IT_XORI] {morphCB:morphBinopRRC, binop:vmi_XOR, flags:0 ,
[ORIK_I1T_MULI] {morphCB:morphBinopRRC, binop:vmi_IMUL, flags:&fFlagsCO},

// handle branch instructions

[OR1K_IT_J] = {morphCB:morphJdump, link: False},
[OR1K_IT_JR] = {morphCB:morphJumpReg, link: False},
[OR1K_I1T_JAL] = {morphCB:morphJdump, link: True },
[OR1IK_IT_JALR] = {morphCB:morphJumpReg, link: True %},

};

A new link field in the orikMorphAttr structure indicates whether this is a jump-and-
link instruction. It is True for 1.jr and 1. jalr instructions:

typedef struct orlkMorphStateS {

orlkinstructioninfo info; // instruction description (from decoder)
orlkMorphAttrCP attrs; // instruction attributes

orlkP orilk; // current processor

Bool inDelaySlot; // true if instruction is in delay slot

} orlkMorphState;

9.1.6.1 Direct Unconditional Jump Instructions (I.j and 1. jal)
The OR1K supports two direct unconditional jump instructions that we will implement
now. Instruction I_j is a simple jump to a target address. Instruction 1.jal is a jump-

© 2022 Imperas Software Limited.www.OVPworld.org Page 79 of 321

OVP Processor Modeling Guide

and-link instruction: there is a jump to a target address and a return address is saved in the
link register (r9). Both these instructions are implemented with a single function:
morphJump:

static OR1K_MORPH_FN(morphJdump) {

Uns32 toAddress = state->info.c;

uUns32 nextAddress = state->info.thisPC + 8;

Bool inDelaySlot = state->inDelaySlot;

Bool link = state->attrs->link;

vmiReg linkReg = link ? OR1K_LINKREG : VMI_NOREG;

vmiJumpHint hint;

// select an appropriate jump hint

if(link) {

hint = vmi_JH CALL;
} else {

hint = vmi_JH_NONE;
}

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpDelaySlot(
1, // slotOps
nextAddress, // 1inkPC
toAddress, // toAddress
l1inkReg, // linkReg
hint, // hint
0 // slotCB
);
s

}

Whether the required instruction is a jump or a jump-and-link is specified by the Iink
field of the or1kMorphAttr structure described previously. For these direct jumps, the
jump target is calculated from the current instruction address plus a signed offset encoded
in a field in the instruction, but this complexity is implemented in the decoder: the
morpher callback is presented with a value indicating the full target address:

Uns32 toAddress = state->info.c;
The main work of doJump is in these lines:

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpDelaySlot(
1, // slotOps
nextAddress, // 1inkPC
toAddress, // toAddress
linkReg, // linkReg
hint, // hint
0 // slotCB
);
s

© 2022 Imperas Software Limited.www.OVPworld.org Page 80 of 321

OVP Processor Modeling Guide

If the current instruction is a delay slot instruction, both 1_j and 1.jal have no effect. It
is therefore important that we know whether the current instruction is a delay slot so that
appropriate action can be taken.

The morph-time function vmimtUncondJumpDelaySlot is used to describe the jump to

the simulator. This function has six arguments:

1. slotOps is the number of instructions in the delay slot of this jump instruction.
These OR1K instructions have one delay slot instruction. A value of 0 for
slotOps specifies a jump with no delay slot instructions.

2. linkpPcC is used only if the jump is a jump-and-link, in which case it specifies the
address that should be placed in the link register. For the OR1K, this is the
address of the instruction after the delay slot instruction, i.e. thisPC+8.
toAddress is the jump target address.

4. linkReg is used to specify the link register for the jump, if this is a jump-and-link.
If there is no link register (this is a simple jump), the value vMI1_NOREG should be
passed.

5. hintisused to help the simulator understand what kind of jump this is. In this
chapter, we will see three values used:

w

a. vmi_JH_ CALL: the jump is a call to a function;
b. wvmi_JH_RETURN: the jJump is a return from a function;
C. vmi_JH_NONE: the jJump is neither a call nor a return.

Jump hints do not affect the behavior of a simulation but do improve performance
(the example in later section 11.2.3 demonstrates this).

In this function, the instruction 1. jal has a call hint of vmi_JH_CALL, and
instruction 1 _j has a call hint of vmi_JH_NONE.

6. slotCB, if non-NULL, specifies a post-delay-slot callback function, taking the
current processor as its only argument. The function is called just before the
delayed branch is taken. If the branch is not taken for any reason (for example, if
there is a simulated exception in the delay slot instruction), then the callback is
not called.

The post-delay-slot callback is typically used to update processor state that should
only be changed if the branch is taken. For example, if the instruction implements
a switch to kernel mode then the state change reflecting this should typically be
done in the post-delay-slot callback.

9.1.6.2 Indirect unconditional Jump Instructions (I.jrand 1. jalr)

The OR1K also has two indirect conditional jump instructions. Instruction 1.jr is a jump
to a target address specified in a register. Instruction I.jalr is a jump-and-link
instruction: there is a jump to a target address specified in a register, and a return address
is saved in the link register (r9). Both these instructions are implemented with a single
function: morphJumpReg:

static OR1K_MORPH_FN(morphJdumpReg) {

Uns32 ri = state->info.rl;
vmiReg toReg = getGPR(rl);
uUns32 nextAddress = state->info.thisPC + 8;

© 2022 Imperas Software Limited.www.OVPworld.org Page 81 of 321

OVP Processor Modeling Guide

Bool inDelaySlot = state->inDelaySlot;
Bool link = state->attrs->link;
vmiReg 1inkReg = link ? OR1K_LINKREG : VMI_NOREG;

vmiJumpHint hint;

// select an appropriate jump hint
if(link) {
hint = vmi_JH_CALL;
} else if(r1==0R1K_LINK) {
hint = vmi_JH_RETURN;
} else {
hint = vmi_JH_NONE;
}

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpRegDelaySlot(
1, // slotOps
nextAddress, // 1inkPC
toReg, // toReg
linkReg, // linkReg
hint, // hint
0 // slotCB
)
}

}

Whether the required instruction is a jump or a jump-and-link is again specified by the

1ink field of the or1kMorphAttr structure described previously. For these indirect
jumps, the jump target address is in a register encoded within the instruction:

rl
toReg

Uns32
vmiReg

state->info.rl;
getGPR(rl);

The main work of doJumpReg is in these lines:

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpRegDelaySlot(
1, // slotOps
nextAddress, // linkPC
toReg, // toReg
l1inkReg, // linkReg
hint, // hint
0 // slotCB

Dk
}

Just as for direct jumps, indirect jumps have no effect in the delay slot of another jump.

The morph-time function vmimtUncondJumpRegDe laySlot is used to describe the jump
to the simulator. This function has six arguments; all except the third argument are
exactly the same as for vmimtUncondJumpDelaySlot (described in section 9.1.6.1). The
third argument is used to specify the register containing the jump target address.

© 2022 Imperas Software Limited.www.OVPworld.org Page 82 of 321

OVP Processor Modeling Guide

The jump hint to use with the indirect jump is determined as follows:

// select an appropriate jump hint
if(link) {

hint = vmi_JH_CALL;

} else if(r1==0R1K_LINK) {
hint = vmi_JH RETURN;

} else {
b

hint = vmi_JH NONE;

In other words, the jJump hint indicates the type of the jump using the following rules:
if the this is a jump-and-link, then assume the jump is a function call;
otherwise, if this is an indirect jump using the OR1K link register (r9), then

1.
2.

3.

9.2

assume the jump is a function return;

otherwise, assume the jump is neither a call nor a return.

Validating Unconditional Jumps with Point Tests
Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”

Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info

“cpul-,
“cpul®,
“cpul-,
“cpul®,
“cpul-,
“cpul®,
“cpul-,
“cpul®,
“cpul-,
“cpul®,
“cpul-,
“cpul”,
“cpul®,
“cpul”,
“cpul®,
“cpul®,
“cpul®,
“cpul®,
“cpul®,
“cpul®,

0x0000000001000074:
0x0000000001000078:
0x000000000100007c:
0x0000000001000080:
0x0000000001000090:
0x0000000001000094:
0x000000000100009c:
0x00000000010000a0:
0x00000000010000a4 :
0x00000000010000b8:
0x00000000010000bc:
0x00000000010000c0:
0x00000000010000a8:
0x00000000010000ac:
0x00000000010000b0:
0x0000000001000084:
0x0000000001000088:
0x00000000010000ac:
0x00000000010000b0:
0x000000000100008c:

1.addi
1.addi
1_jal
1.addi
1.]
1.addi
1.addi
1_jal
1.addi
1.addi
1_jr
1.addi
1.addi
1_jr
1.addi
1_jalr
1.addi
1_jr
1.addi
-addi

rl,r0,0x0
r2,r0,0x0
0x01000090
ri,rl,0x1
0x0100009c
ri,rl,0x1
r8,r9,0x0
0x010000b8
rl,rl,0x1
r10,r9,0x4
r9
ri,rl,0x1
r9,r8,0x0
ro
rl,rl,0x1
rl1o
rl,rl,0x1
ro
rl,rl,0x1
ril,rl1,0x0

Processor "cpul® terminated at "exit", address 0x100008c

- 00000000 R1 : 00000007
: deadbeef R5 : deadbeef
- 01000084 R9 : 0100008c
: deadbeefF R13: deadbeef
: deadbeef R17: deadbeef
: deadbeefF R21: deadbeef
: deadbeef R25: deadbeef
: deadbeefF R29: deadbeef

CF:0 OF:0 PC :- 01000090

R2 : 00000000 R3 :
R6 : deadbeef R7 :
R10: 010000ac R11:
R14: deadbeef R15:
R18: deadbeef R19:
R22: deadbeef R23:
R26: deadbeef R27:
R30: deadbeef R31:

SR - 00008001

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org

Page 83 of 321

OVP Processor Modeling Guide

The file platform/harness.c has been slightly modified from the previous example: at
the end of the simulation, there is a call to opProcessorRegbDump to display the final

processo

r register state.

The test case application/asmtest.S is as follows:

-global
_start:

-global

exit:

funcl:

forward:

L11117777777777777777777777777777/7777///7777////7777///77/7////7//7//7/7/
// MAIN ROUTINE
L11177777777777777777777777777777/7777///7777////7777////7/7////7//7////7/

_start

1_addi rl,r0,0 // rl = 0 (counts taken jumps)

1.addi r2,r0,0 // r2 = 0 (counts untaken jumps)

1_jal funcl // call funcl

1._addi rl,rl,1 // increment rl1 (delay slot instruction)
1_jalr r10 // call indirect using rl10 (i.e. r10_addr)
1._addi rli,rl,1 // increment rl1 (delay slot instruction)

L1177 7777777777/7777/7/7777/7/7/77777/7/777/7/7/777/7/7/777/77//7/77777/7/7/77777
// EXIT FROM POINT TEST

L1117 7777777777/777777/7777/7/777777/7/77777/7/777/77/7/77777//7/777/77/7/777777
exit

I.addi ri,r2,0
L1117 7777777777/77777777777/7/7/7777/7//77/7/7/7/7/77//7//77/77/7//7/7/77//7/7/77/77/7

// FUNCTION funcl
L1117/ 7777777777/777/77/777/77/7/7/77/7/77/777//7/7/7/77/7/77/7/77/77/7/7/77/77

r10_addr:

func2:

1.} forward // jump forward in this function

1_addi rli,rl,1 // increment rl1 (delay slot instruction)
1._addi r2,r2,1 // ** not executed **

1._addi r8,r9,0 // save return address in r8

1_jal func2 // call func2

1.addi rl,rl,1 // increment rl1 (delay slot instruction)
1.addi ro,r8,0 // restore return address from r8

1_jr ro // return from function

1._addi rli,rl,1 // increment rl1 (delay slot instruction)
I.addi r2,r2,1 // ** not executed **

L1117 /777777777777777777/777777/777/777777/777/77///7/77/7//7//77//77//7/7/77
// FUNCTION func2
L1117 17777777777/777777/777777/777/777/77/777/77///7/77/7//7////7//77//7/7/77

I.addi r1o,r9,4 // save return address+4 in rl0

1_jr ro // return from function

1._addi ri,rl,1 // increment rl1 (delay slot instruction)
1._addi r2,r2,1 // ** not executed **

The test case has been designed to execute each of the jump instructions at least once. To
exercise the 1. jalr instruction, func2 stores the address of label r10_addr in register
r10 to provide an appropriate target for the subsequent 1. jalr.

© 2022 Imperas Software Limited.www.OVPworld.org Page 84 of 321

OVP Processor Modeling Guide

10 Implementing Conditional Jump Instructions

In this chapter, we will implement comparison operations and conditional jumps for the
OR1K. On this processor, conditional jumps are performed using two sets of instructions:
1. two registers (or a register and a constant) are compared using an instruction with
the 1_s¥ prefix (for example, 1.sfeq compares two registers for equality). An
internal branch flag is set based on the comparison result.
2. instructions I.bf and I.bnf¥ then conditionally branch if the flag is true or false,
respectively.

10.1 The Template Conditional Jump Model

A template model for the OR1K processor implementing conditional jump instructions
can be found in:

$IMPERAS_HOME/Examples/Models/Processor/8.or1kBehaviorCondJump

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/8.orlkBehaviorCondJump .

Compile the model, harness and application using the make command:

cd 8.orlkBehaviorCondJump
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

Decoder, disassembler and morpher files have been updated in this example to
implement register-register arithmetic/bitwise and I .nop instructions (previously,
only register-constant arithmetic/bitwise instructions were implemented). These
instructions require no significant new knowledge or techniques and are not directly
relevant to this chapter, so no further detail has been given here.

10.1.1 Defining Branch Flag - or1kStructure.h

The OR1K branch flag is set by the comparison operations and used by the conditional
branch instructions. The flag is represented by a boolean field in the oriks structure,
accessed by the OR1K_BRANCH macro:

#define OR1K_BRANCH OR1K_CPU_REG(branchFlag)

© 2022 Imperas Software Limited.www.OVPworld.org Page 85 of 321

OVP Processor Modeling Guide

10.1.2 Decoding Instructions - orlkDecode. [ch]
The OR1K branch and comparison instructions have been added to the attrsArray table
in a very similar manner as for previous instructions.

The comparison operation decode differs from previous instructions: the decode for
OR1K_IT_SF and OR1K_IT_SFI instructions match 16 distinct instruction types with a
different cmPoP field, but only 10 of these comparison operations are valid. Therefore, to
decode a comparison operation, both the decode pattern and an opcode validity test are
applied. The comparison condition is extracted from the instruction by function
getCondition:

orlkCondition getCondition(Uns32 instruction, Bool isCond) {
orlkCondition result = OR1K_COND_NA;
if(isCond) {

const static orlkCondition map[16] = {
OR1K_COND_EQ, // 0x0: a == b
OR1K_COND_NE, // O0x1: a = b
OR1K_COND_GTU, // Ox2: b (unsigned)
OR1K_COND_GEU, // 0x3: b (unsigned)
OR1K_COND_LTU, // Ox4: b (unsigned)
OR1K_COND_LEU, // 0Ox5: <= b (unsigned)
OR1K_COND_BAD, // 0x6: invalid
OR1K_COND_BAD, // Ox7: invalid
OR1K_COND_BAD, // 0x8: invalid
OR1K_COND_BAD, // 0x9: invalid
OR1K_COND_GTS, // Oxa: a > b (signed)
OR1K_COND_GES, // Oxb: a >= b (signed)
OR1K_COND_LTS, // Oxc: a < b (signed)
OR1K_COND_LES, // Oxd: a <= b (signed)
OR1K_COND_BAD, // Oxe: invalid
OR1K_COND_BAD // Oxf: invalid

RSO GR Y
A}{V

}:

result = map[OP_CMPOP(instruction)];
}

return result;

}:

Function orikDecode validates the condition and sets the instruction type to
OR1K_IT_LAST if it is bad (indicating that decode failed):

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklnstructioninfoP info) {
lines omitted .

info->cond
info->iSuffix

getCondition(instruction, attrs->isCond);
attrs->iSuffix;

// detect invalid condition and indicate that decode failed if found
if(info->cond==0R1K_COND_BAD) {

info->type = OR1K_IT_LAST;
3

© 2022 Imperas Software Limited.www.OVPworld.org Page 86 of 321

OVP Processor Modeling Guide

10.1.3 Disassembling Conditions - orlkDisassemble.c

This file has been upgraded to implement disassembly callback functions for the
comparison and branch instructions. There is a new function putCondition which adds a
condition description to the disassembly string:

static void putCondition(char **result, orlkCondition cond) {

static const char *map[] = {
[OR1K_COND_NA] e

[OR1IK_COND_EQ] = "eq",
[OR1K_COND_NE] = "ne",
[OR1K_COND_GTU] = "gtu",
[OR1K_COND_GEU] = "geu",
[OR1IK_COND_LTU] = "ltu",
[OR1K_COND_LEU] = "leu",
[OR1K_COND_GTS] = "gts",
[OR1K_COND_GES] = "ges",
[OR1IK_COND_LTS] = "lts",
[OR1K_COND_LES] = "les",

[OR1K_COND_BAD] = "'???",
e

putString(result, map[cond]);
b

The condition string is actually embedded within the opcode instead of being a parameter
to it, and may be followed by an i character (for example, I.sfnei). This is handled as
follows:

//

// Emit "i" suffix if required

//

static void putlSuffix(char **result, Bool iSuffix) {

iT(iSuffix) {
putChar(result, "i");

}

}

static void disassembleFormat(
orlkpP orlk,
orlkinstructionlnfoP info,
char **result,
const char *format,
Bool uncooked

) {
char *argStart = (*result)+9;
char ch;
// emit opcode
putString(result, "I1.");
putString(result, info->opcode);
putCondition(result, info->cond);
putlSuffix(result, info->iSuffix);

lines omitted .
b

© 2022 Imperas Software Limited.www.OVPworld.org Page 87 of 321

OVP Processor Modeling Guide

10.1.4 Implementing Conditional Jumps - or1kMorph.c
This file has been upgraded to implement morph callback functions for the comparison
and branch instructions, as described below.

10.1.4.1 Conditional Branch Instructions (I .b¥and I .bnf)
The two branch instructions are implemented with a single function: morphBranch:

static OR1K_MORPH_FN(morphBranch) {

state->info.c;
state->attrs->jumplfTrue;
state->inDelaySlot;

Uns32 toAddress
Bool jumplfTrue
Bool inDelaySlot

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtCondJumpDelaySlot(
1, // slotOps
OR1K_BRANCH, // TlagReg
JumplfTrue, // jumplfTrue
0, // 1inkPC
toAddress, // toAddress
VMI_NOREG, // linkReg
vmi_JH_NONE, // hint
0 // slotCB
)
}

}

Whether the branch should be taken when the flag is set or cleared is specified by the new
JumpIFTrue field in the orlkMorphAttr structure:

typedef struct orlkMorphAttrS {

orlkMorphFn morphCB; // function to translate one instruction
vmiBinop binop; // if a simple binary operation

vmiFlagsCP flags; // flags used by the instruction

Bool JumplfTrue; // whether to branch if condition flag is True
Bool link; // whether to set link register

} orlkMorphAttr;
const orlkMorphAttr orlkMorphTable[OR1K_IT_LAST+1] = {
lines omitted .

// handle branch instructions
[OR1K_1T_BF] = {morphCB:morphBranch, jumplfTrue:True },
[OR1K_1T_BNF] = {morphCB:morphBranch, jumplfTrue:False},

lines omitted .

}:
The main work of morphBranch is in these lines:

if(inDelaySlot) {
// jump in the delay slot does nothing
} else {
vmimtCondJumpDelaySlot(
1, // slotOps

© 2022 Imperas Software Limited.www.OVPworld.org Page 88 of 321

OVP Processor Modeling Guide

}

OR1K_BRANCH, // flagReg
JumplfTrue, // jumplfTrue
0, // 1inkPC
toAddress, // toAddress
VMI_NOREG, // linkReg
vmi_JH_NONE, // hint

0 // slotCB

If the current instruction is a delay slot instruction, both 1.bf and I .bnf have no effect.
Otherwise, the morph-time function vmimtCondJumpDelaySlot is used to describe the
jump to the simulator. This function has eight arguments:

1.
2.

3.

slotOps is the number of instructions in the delay slot of this jump instruction.
flagReg specifies a register in the processor model that is used to determine
whether the branch is taken. Here, we use the OR1K branch flag.

JumpI¥True indicates how the branch register is used. If jump1¥True is non-zero,
the jJump will be taken if the branch register is non zero. Otherwise, the jump will
be taken if the branch register is zero.

1inkPC is used only if the jump is a jump-and-link, in which case it specifies the
address that should be placed in the link register. This does not apply for OR1K
conditional branches.

toAddress is the jump target address.

1inkReg is used to specify the link register for the jump, if this is a jump-and-link.
If there is no link register (as in this case), the value vMI_NOREG should be passed.
hint is used to help the simulator understand what kind of jump this is — see
chapter 9 for more details.

slotCB, if non-NULL, specifies a post-delay-slot callback function, taking the
current processor as its only argument. The function is called just before the
delayed branch is taken. If the branch is not taken, then the callback is not called.
The post-delay-slot callback is typically used to update processor state that should
only be changed if the branch is taken. For example, if the instruction implements
a switch to kernel mode then the state change reflecting this should typically be
done in the post-delay-slot callback.

10.1.4.2 Comparison Instructions
The comparison instructions are implemented with morphCompareRR (for register-register
comparisons) and morphCompareRC (for register-constant comparisons):

static OR1K_MORPH_FN(morphCompareRC) {

vmiReg ra
uUns32 (o}
vmiCondition cond

getGPR(state->info.rl);
state->info.c;
mapCondition(state->info.cond);

vmimtCompareRC(OR1K_BITS, cond, ra, c, OR1K_BRANCH);

}

static OR1K_MORPH_FN(morphCompareRR) {

vmiReg ra
vmiReg rb

getGPR(state->info.rl);
getGPR(state->info.r2);

© 2022 Imperas Software Limited.www.OVPworld.org Page 89 of 321

OVP Processor Modeling Guide

vmiCondition cond = mapCondition(state->info.cond);

vmimtCompareRR(OR1K_BITS, cond, ra, rb, OR1K_BRANCH);
}

The equivalent vmiCondition for an orlkCondition is produced by function
mapCondition:

static vmiCondition mapCondition(orlkCondition cond) {

static const vmiCondition map[] = {

[OR1K_COND_EQ] = vmi_COND_Z, // 0x0: a == b
[OR1K_COND_NE] = vmi_COND_NZ, // Ox1: a !'= b
[OR1K_COND_GTU] = vmi_COND_NBE, // Ox2: a > b (unsigned)
[OR1K_COND_GEU] = vmi_COND_NB, // 0x3: a >= b (unsigned)
[OR1K_COND_LTU] = vmi_COND_B, // 0x4: a < b (unsigned)
[OR1K_COND_LEU] = vmi_COND_BE, // Ox5: a <= b (unsigned)
[OR1K_COND_GTS] = vmi_COND_NLE, // Oxa: a > b (signed)
[OR1K_COND_GES] = vmi_COND_NL, // Oxb: a >= b (signed)
[OR1K_COND_LTS] = vmi_COND_L, // Oxc: a < b (signed)
[OR1K_COND_LES] = vmi_COND_LE, // Oxd: a <= b (signed)
[OR1K_COND_BAD] = -1, // invalid condition

};

return map[cond];

}

Function morphCompareRR uses the morph-time function vmimtCompareRC to describe
the jump to the simulator. This function has five arguments:
1. bits s the bit width of the registers to be compared. All OR1K registers are
OR1K_BITS bits wide (32 in this model).
2. cond describes the comparison that should be made. The members of the
vmiCondition enumeration are specified in vmiTypes.h.
ra specifies the first register argument of the comparison
c specifies the second constant argument of the comparison
5. flag specifies the Uns8 register that should be written with 1 if the condition is
true and 0 if it is false. In this model, the OR1K_BRANCH register is written.

> w

Function morphCompareRR is similar, except that it uses the morph-time function
vmimtCompareRR to describe the jump to the simulator. This function takes identical
arguments to vmimtCompareRC except that argument 4 is a vmiReg register description
instead of a constant.

10.2 Validating Conditional Jumps with Point Tests

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”

© 2022 Imperas Software Limited.www.OVPworld.org Page 90 of 321

OVP Processor Modeling Guide

Info “"cpul®, 0x0000000001000074:
Info "cpul”, 0x0000000001000078:
Info “"cpul®, 0x000000000100007c:
Info "cpul”, 0x0000000001000080:
Info “"cpul®, 0x0000000001000108:
Info "cpul”, 0x000000000100010c:
Info "cpul®, 0x0000000001000110:
Info "cpul®, 0x0000000001000114:
Info “cpul®, 0x0000000001000118: 1.bf 0x01000124
Info "cpul®, 0x000000000100011c: I.xor r29,r29,r31

1.addi rl,r0,0x3
1
1
1
1
1
1
1
1
1
Info “"cpul®, 0x0000000001000120: 1.xor r29,r29,r31
1
1
1
1
1
1
1
1
1
1

.addi r2,r0,0x2
-jal 0x01000108
-nop 0x0

.addi r29,ro0,0x0
.addi r30,r0,0x1
.addi r31,r0,0x1
-sfeq ri,r2

Info "cpul®, 0x0000000001000124: 1.bnf 0x01000130
Info “"cpul®, 0x0000000001000128: 1.xor r30,r30,r31
Info "cpul®, 0x0000000001000130: I.add r31,r31,r31
Info “"cpul®, 0x0000000001000134: 1.sfne ri,r2

Info "cpul®, 0x0000000001000138: 1.bf 0x01000144
Info “"cpul®, 0x000000000100013c: 1.xor r29,r29,r31
Info "cpul®, 0x0000000001000144: 1.bnf 0x01000150
Info “"cpul®, 0x0000000001000148: 1.xor r30,r30,r31
Info "cpul®, 0x000000000100014c: I.xor r30,r30,r31
Info "cpul®, 0x0000000001000150: 1.add r31,r31,r31
. . . etc . . .

Info "cpul”, 0x0000000001000234:
Info "cpul®, 0x0000000001000238:
Info "cpul”, 0x000000000100023c:
Info "cpul®, 0x0000000001000240: 1.xor r29,r29,r31
Info "cpul®, 0x0000000001000244: 1.bnf 0x01000250

l.sfles ri,r2
1
1
1
1
Info “"cpul®, 0x0000000001000248: 1._xor r30,r30,r31
1
1
1
1
1

.bf 0x01000244
.Xor r29,r29,r31

Info "cpul®, 0x0000000001000250: 1.add r31,r31,r31

Info “"cpul®, 0x0000000001000254: 1_jr r9

Info "cpul®, 0x0000000001000258: 1.nop 0x0

Info “"cpul®, 0x00000000010000fc: 1.addi rl4,r29,0x0

Info "cpul”, 0x0000000001000100: I.addi r15,r30,0x0

Info “"cpul®, 0x0000000001000104: 1.nop 0x0

Processor "cpul® terminated at "exit", address 0x1000104

RO : 00000000 R1 : fFFfFfffd R2 : fFfffffc R3 : 000000ce
R4 : 00000330 R5 : 000002a9 R6 : 00000157 R7 : 00000332
R8 : 000000cc R9 : 010000fc R10: 00000332 R11: 000000cc
R12: 000002a9 R13: 00000157 R14: 000000ce R15: 00000330
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: 000000ce R30: 00000330 R31: 00000400
BF:0 CF:0 OF:0 PC : 01000108 SR : 00008001

The test case application/asmtest.S is as follows:

L1111 1777777777777717777/777777///7777////7777////777////777//////777//77/

// MAIN ROUTINE

L1111 17777717777777177777777777///7777////7777///7777/////77//////77//77
-global _start

_start:
// testl: rl1=3, r2=2
I.addi ri,r0,3 // r1=3
1.addi r2,r0,2 // r2=2
1_jal test // call test
1_nop // (delay slot instruction)
1.addi r3,r29,0 // move bf taken mask to r3
1.addi r4,r30,0 // move bnf taken mask to r4

© 2022 Imperas Software Limited.www.OVPworld.org Page 91 of 321

OVP Processor Modeling Guide

-global
exit:

test:

sfeqF:

stegNF:

sflesF:

sTlesNF:

. etc .
// test6: ri1=-3, r2=-4
1.addi rli,r0,-3 // r1=-3
1.addi r2,r0,-4 // r2=-4
1_jal test // call test
1._nop // (delay slot instruction)
I.addi rl4,r29,0 // move bf taken mask to ri4
1.addi ri5,r30,0 // move bnf taken mask to ri5

L1177 7777777777/7777/7/7777/7/7777/7/7/7/77/7/77/777/77/7/777/77//7/77/777/7/777777
// EXIT FROM POINT TEST

L1177 77777777/7/7777/7/7777/7/7777/7/7/77777/7/777/7//7/777/77//7/77/7/7/7/777777
exit

1._nop
L1/1/1/77777777777777777777777777777/77777/77777777777///7777/77//77//7777/7777777

// FUNCTION test
L11117777777777777777777777777777/7777///77777///7777///77/7////7//77//7//7/

1_addi r29,r0,0 // clear output mask r29 (bf taken)
1.addi r30,r0,1 // clear output mask r30 (bnf taken)
1.addi r31,ro0,1 // initialize bitmask
// test for sfeq
1.sfeq rl,r2 // rl==r2?
1_bf sfeqF // go if true
1.xor r29,r29,r31 // add mask (delay slot instruction)
1.xor r29,r29,r31 // remove mask
1.bnf steqNF // go if false
1_xor r30,r30,r31 // add mask (delay slot instruction)
1._xor r30,r30,r31 // remove mask
1.add r31,r31,r31 // shift mask

. etc .
// test for sfles
1._sfles ri,r2 // rl<=r2? (signed)
1.bf sfleskF // go if true
1._xor r29,r29,r31 // add mask (delay slot instruction)
1.xor r29,r29,r31 // remove mask
1.bnf sFlesNF // go if false
1_xor r30,r30,r31 // add mask (delay slot instruction)
1._xor r30,r30,r31 // remove mask
1.add r31,r31,r31 // shift mask
1_jr ro // return, results in r29 and r30
1_nop // (delay slot instruction)

The test case has been design to exercise all register-register comparison instructions,
with a variety of input operands, and build up masks indicating how the comparison
results are treated by both the 1.bf and I.bnf instructions. For example, this is an
instruction sequence that is executed when function test is called for the first time, when
ri=3 and r2=2:

Info
Info
Info
Info

"cpul®, 0x0000000001000114:
"cpul®, 0x0000000001000118:
"cpul®, 0x000000000100011c:
"cpul®, 0x0000000001000120:

-sfeq
-bFf
-Xor
-Xor

ri,r2
0x01000124
r29,r29,r31
r29,r29,r31

// test for equality
// branch if equal

// (delay slot insn)

// *** pranch NOT taken

© 2022 Imperas Software Limited.www.OVPworld.org

Page 92 of 321

OVP Processor Modeling Guide

Info “"cpul®, 0x0000000001000124: 1._.bnf 0x01000130 // branch if not equal
Info "cpul®, 0x0000000001000128: 1.xor r30,r30,r31 // (delay slot insn)
Info “"cpul®, 0x0000000001000130: 1.add r31,r31,r31 // *** branch TAKEN

In this example, the delay slot instruction is executed whether the branch is taken or
not. It is also possible to describe branches that annul the delay slot instruction if the
branch is not taken — refer to these routines in the Imperas VMI Morph Time
Reference manual for more information:

vmimtCondJumpDelaySlotAnnul
vmimtCondJumpRegDelaySlotAnnul
vmimtSkiplfAnnul

© 2022 Imperas Software Limited.www.OVPworld.org Page 93 of 321

OVP Processor Modeling Guide

11 Implementing Memory Access Instructions

In this chapter, we will implement memory load and store instructions for the OR1K. The
processor supports six load instructions:

1. 1.1wz: load 4 bytes; zero extend to 32 bits;
- lws: load 4 bytes, sign extend to 32 bits (same as 1. 1wz on 32-bit core);
-Ihz: load 2 bytes, zero extend to 32 bits;
- Ihs: load 2 bytes, sign extend to 32 bits;
. 1.1bz: load 1 byte, zero extend to 32 bits;

6. 1.1bs: load 1 byte, sign extend to 32 bhits.
There are three store instructions:

1. 1.sw: store 4 bytes;

2. 1.sh: store 2 bytes;

3. 1.sb: store 1 byte.
Accesses longer than one byte must be aligned with memory, otherwise the access
generates an alignment exception — chapter 12 shows how this requirement can be
modeled efficiently.

2. 1
3.1
4. 1
S5 1

11.1 The Template Memory Access Model

A template model for the OR1K processor implementing memory access instructions can
be found in:

$IMPERAS_HOME/Examples/Models/Processor/9.orlkBehaviorLoadStore

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/9.orlkBehaviorLoadStore.

Compile the model, harness and application using the make command:

cd 9.orlkBehaviorLoadStore
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

Decoder, disassembler and morpher files have been updated in this example to
implement shift/rotate and 1.movhi instructions. The shift/rotate instructions are very
similar to the arithmetic/bitwise instructions discussed previously. Instruction
I.movhi implements a form of constant load to the high part of a register, common
on RISC processors. These instructions require no significant new knowledge or

© 2022 Imperas Software Limited.www.OVPworld.org Page 94 of 321

OVP Processor Modeling Guide

techniques and are not directly relevant to this chapter, so no further detail has been
given here.

11.1.1 Decoding Loads and Stores - or1kDecode.c
The opAttrs type now contains fields giving the number of bytes for a load or store and
(for a load) whether zero or sign extension is required:

typedef enum orlkExtendE {

OR1K_EXTEND_NA, // no extension
OR1K_EXTEND_S, // sign extension
OR1K_EXTEND_Z, // zero extension

} orilkExtend;

typedef struct opAttrsS {

const char *member; // enumeration member name

const char *opcode; // opcode name

const char *format; // format string

const char *decode; // decode string

regSpec ri : 8; // register 1 specification
regSpec r2 . 8; // register 2 specification
regSpec r3 : 8; // register 3 specification
constSpec cC : 8; // constant value specification
Uns32 bytes : 8; // load/store size specification
orlkExtend extend : 8; // load sign extension

Bool isCond : 1; // is instruction conditional?
Bool iSuffix - 1; // does opcode require "i" suffix?

} opAttrs, *opAttrsP;

The variants of load and store instruction are specified using the ATTR_SET_LWZz and
ATTR_SET_SW macros, respectively:

#define ATTR_SET_LWZ(_NAME, _OPCODE, _DECODE, BYTES, _EXT) \

[ORIK_IT_## NAME] = { \
member : # NAME, \
opcode : _OPCODE, \
format : FMT_R1 OFFSET_R2, \
decode : _DECODE, \
ri : RD, \
r2 : RA, \
(¢ - C.Ss1, \
bytes : _BYTES, \
extend : OR1K_EXTEND_## EXT \

3
#define ATTR_SET_SW(_NAME, _OPCODE, DECODE, _BYTES) \

[ORIK_IT_## NAME] = { \
member : # NAME, \
opcode : _OPCODE, \
format : FMT_OFFSET R1 R2, \
decode : _DECODE, \
ri I RA, \
r2 : R.B, \
Cc : C.S2, \
bytes : _BYTES \

}

const static opAttrs attrsArray[OR1K IT_LAST+1] = {

© 2022 Imperas Software Limited.www.OVPworld.org Page 95 of 321

OVP Processor Modeling Guide

. lines omitted .

// handle load instructions

ATTR_SET_Lwz (Lwz, 1, M]100001. . .o 1", 4, 2),
ATTR_SET_LWZ (LWS, "1, "]100010. - oo 1", 4, S),
ATTR_SET_LwWz (LBZ, 1, M]100011 . e 1", 1, 2),
ATTR_SET_LWZ (LBS, "1, "]100100. - - e 1", 1, S),
ATTR_SET_LWZ (LHZ, "1, M]100101 . - e 1", 2, 2),
ATTR_SET_LWZ (LHS, 1, 1100110, e 1", 2, 9),
// handle store instructions

ATTR_SET_SW sw, "'s", Ml110101 . . i 1", 4),
ATTR_SET_SW (SB, s, M1110110. e 1", 1,
ATTR_SET_SW (SH, "s", B 0 0 I 5 1", 2),

. lines omitted .

};

The OR1K has six load instructions, which load 1, 2 and 4 byte values either with or
without sign extension. Similarly, there are three store instructions that store 1, 2 and 4
byte values. In the decode table, these are specified using opcodes “1’” and ““s”,
respectively; the full opcode is constructed in the disassembler taking into account the
bytes and extend values specified by the decoder (see the next subsection).

The orlklInstructionlnfo structure also has new bytes and extend fields, which get
initialized from the instruction attributes in function or1kDecode:

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklInstructioninfoP info) {
- lines omitted .

info->bytes
info->extend

attrs->bytes;
attrs->extend;

. lines omitted .

}

11.1.2 Load/Store Disassembly - orlkDisassemble.c
New function putBytes writes an opcode character b, h and w (indicating load store size):

static void putBytes(char **result, Uns32 bytes) {

static const char map[] = {

[1] = b,
[2] = "h-.
[4] = "w"

}:

if(map[bytes]) {
putChar(result, map[bytes]);

}

Similarly, new function putExtend writes an opcode character s or z (indicating sign or
zero extension):

© 2022 Imperas Software Limited.www.OVPworld.org Page 96 of 321

OVP Processor Modeling Guide

static void putExtend(char **result, orlkExtend extend) {

static const char map[] = {
[OR1K_EXTEND_S] = "s*",
[OR1K_EXTEND_Z] = "z°",

e

if(map[extend]) {
putChar(result, map[extend]);
}

}

These functions are used to modify the generated opcode as follows:

static void disassembleFormat(
orlkP orlk,
orlklinstructionlnfoP info,
char **result,
const char *format,
Bool uncooked

) {
char *argStart = (*result)+9;
char ch;

// emit opcode

putString(result, "I1.");
putString(result, info->opcode);
putCondition(result, info->cond);
putlSuffix(result, info->iSuffix);
putBytes(result, info->bytes);
putExtend(result, info->extend);

lines omitted .

instruction disassembly will be incorrect.

By generating the decoded output from the instruction attributes in this way, model
robustness is improved: any error in size or extension decode will be evident because

11.1.3 Implementing Loads and Stores - or1kMorph.c
This file has been upgraded as described below.

11.1.3.1 Load Instructions

The six load instructions are implemented with a single function: morphLoad:

static OR1K_MORPH_FN(morphLoad) {

vmiReg rd = getGPR(state->info.rl);
vmiReg ra = getGPR(state->info.r2);
Int32 offset = state->info.c;
Uns32 bytes = state->info.bytes;
Bool signExtend = (state->info.extend==0R1K_EXTEND_S);
memEndian endian = getEndian();
vmimtLoadRRO(
OR1K_BITS, // destBits

© 2022 Imperas Software Limited.www.OVPworld.org

Page 97 of 321

OVP Processor Modeling Guide

bytes*8, // memBits
offset, // offset

rd, // rd

ra, // ra

endian, // endian
signExtend, // signExtend

MEM_CONSTRAINT_ALIGNED // constraint

}

The size of the load in bytes and whether sign extension is required are extracted from the
decoded instruction attributes:

Int32 offset
Uns32 bytes

state->info.c;
state->info.bytes;

Each load is specified by a call to the function vmimtLoadRRO from the Imperas Morph
Time Function API. This takes eight arguments, as follows:

1. destBits: the size in bits of the destination register for the load;

2. memBits: the size in bits of the value in memory;

3. offset: a constant offset to be added to the address register ra to give the full
memory address;

4. rd: the destination register for the load (if rd is VMI_NOREG, the load is performed
but the fetched value discarded);

5. ra: aregister holding the address from which to load (or vM1_NOREG if the load is
from an address specified by offset only);

6. endian: the endianness of the load. This can be either MEM_ENDIAN_BIG or
MEM_ENDIAN_LITTLE.

7. signExtend: whether the memory value should be assign extended if smaller than
the register — if False, then the value is zero extended.

8. constraint: what constraints should be placed on the memory access. In this
case, the value MEM_CONSTRAINT_ALIGNED is used to specify that the memory
access must be aligned to the data size, and any unaligned access will either cause
simulation to terminate or a simulated exception to be taken: this is described in
chapter 12.

For the OR1K processor, the address from which to load is calculated by adding address
register ra to the constant value ¢ from the instruction.

The endianness of the load is specified by function getEndian. This model supports big-
endian only:

static memEndian getEndian(void) {
return MEM_ENDIAN_BIG;
}

11.1.3.2 Store Instructions
The three store instructions are implemented with a single function: morphStore:

static OR1K_MORPH_FN(morphStore) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 98 of 321

OVP Processor Modeling Guide

vmiReg ra = getGPR(state->info.rl);
vmiReg rb = getGPR(state->info.r2);
Int32 offset = state->info.c;
Uns32 bytes = state->info.bytes;
memEndian endian = getEndian();
vmimtStoreRRO(

bytes*8, // bits

offset, // offset

ra, // ra

rb, // rb

endian, // endian

);
}

MEM_CONSTRAINT_ALIGNED // constraint

The size of the store in bytes is extracted from the decoded instruction attributes in a
similar way as for function morphLoad.

A store of any register except ro0 is specified using vmimtStoreRRO from the Imperas
Morph Time Function API. This takes six arguments, as follows:

1.
2.

3.

11.1.4

bits: the size in bits of the destination register to be stored;

offset: a constant offset to be added to the address register ra to give the full
memory address;

ra: a register holding the address to which to store (or vMI_NOREG if the store is to
an address specified by offset only);

rb: the register to be stored;

endian: the endianness of the store. This can be either MEM_ENDIAN_BIG Or
MEM_ENDIAN_LITTLE.

constraint: what constraints should be placed on the memory access. In this
case, the value MEM_CONSTRAINT_ALIGNED is used to specify that the memory
access must be aligned to the data size, and any unaligned access will either cause
simulation to terminate or a simulated exception to be taken: this is described in
chapter 12.

Load/Store Test Harness - platform/harness.c

The test platform for this example, platform/harness.c, has been changed as follows:

//

// Main simulation routine

//

int main(int argc, const char **argv) {

// initialize simulation session before calling any other OP functions
opSessionInit(OP_VERSION);

// check arguments
if(IcmdParser(argc, argv)) {

}

opMessage(*'E", "CLI', "Command Line parser error™);
return 1;

// create root module, enabling simulation interruption if Ctrl-C is pressed

© 2022 Imperas Software Limited.www.OVPworld.org Page 99 of 321

OVP Processor Modeling Guide

optModuleP mr = opRootModuleNew(
0,
MODULE_NAME,
OP_PARAMS (
OP_PARAM_BOOL_SET(OP_FP_STOPONCONTROLC, 1)
)

Dk

// create a processor instance
const char *modelFile = "model."IMPERAS_SHRSUF;
optProcessorP processor = opProcessorNew(mr, modelFile, *cpul™, 0, 0);

// get semihost library to exit simulation
const char *semihostFile = opVLNVString(

0,

"ovpworld.org",

"*modelSupport™,

"imperaskExit’,

"1.0",

OP_EXTENSION,

True

Dk

// attach imperaskxit semihost library to processor
opProcessorExtensionNew(processor, semihostFile, "imperasexit'”, 0);

// create the processor bus
optBusP bus = opBusNew(mr, "bus', 32, 0, 0);

// connect processor instruction and data ports to the common bus
opProcessorBusConnect(processor, bus, "INSTRUCTION™);
opProcessorBusConnect(processor, bus, "DATA™);

// create memory
optMemoryP memory = opMemoryNew(mr, "local', OP_PRIV_RWX, OxfFFFffff, 0, 0);

// connect the memory onto the busses
opMemoryBusConnect(memory, bus, "mpl™, 0x00000000, OxFFFfffff);

// run processor, one instruction at a time
while(simulate(processor, -1)) {

// keep going while processor is still running
}

// dump the final register contents
opProcessorRegDump(processor) ;

// report the total number of instructions executed
opPrintf(
"processor has executed " FMT_64u " instructions\n",
opProcessor I Count(processor)

);

// terminate the simulation session
opSessionTerminate();

return O;

}

The significant change is in the call to function simulate:

while(simulate(processor, -1)) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 100 of 321

OVP Processor Modeling Guide

Previously, each call to simulate requested a single instruction to be executed. In this
example, we use the value -1 instead, which indicates that the simulator can execute an
unlimited number of instructions before returning®. In this case, this means that the call
will only return when the program has completed.

11.2 Fibonacci Example

To demonstrate the load and store functions, we will use an assembler program that
calculates Fibonacci numbers* using a naive recursive algorithm (normally, instruction
point tests should be created and tested first, or course). Once the basic example is
working, we will use it to demonstrate simulator performance and the effect of jump hints
(first encountered in chapter 9).

11.2.1 Basic Example
Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”
Processor "cpul® terminated at "exit", address 0x1000080
RO : 00000000 R1 : 00000262 R2 : 00000179 R3 : deadbeef
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 01000080 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: deadbeef R31: 00000000
BF:1 CF:1 OF:0 PC : 01000084 SR : 00008601

processor has executed 22687 instructions

The test case application/asmtest.S is as follows:

////17777777777777777777777/777/777/7777/77/77/7/777/777777/77/77777/7/77/7/7/7777777777

// MAIN ROUTINE

/////7/7/777/77/77/7//7/77/77/7/7/7/7777/7/7/7/7/7/7/7//7/7/7/77/7/7///7/7/7/7/7/7//7//7//7//7/77/7777
.global _start

_start:
1.addi r31,r0,0 // initialize stack pointer to O
1_jal fib // calculate fib(15)
1.addi rl,r0,15 // r1l = 15 (delay slot)

® To be precise, the second argument to opProcessorSimulate (and simulate) is an Uns64, so a value of -1
(sign-extended to 64 bits) in fact specifies that 2%-1 instructions should be executed — a very large number,
but not quite unlimited.
* Fibonacci numbers are defined as follows:

1. forN<=1: fib(N) = N;

2. forN>1: fib(N) = fib(N-1) + fib(N-2)

© 2022 Imperas Software Limited.www.OVPworld.org Page 101 of 321

OVP Processor Modeling Guide

/1/1/17777777777777777777777777777/777//7/7/77/7/777/7///77//7/7/7//7/7/77777777777

// EXIT FROM POINT TEST

/1/1/17777777777777777777777777777/777/7/7/77/7/777////7/7/777/77/77/7/7777777777
-global exit

exit:
1_nop
L1111 777777777777777/777777/777777//77777///77777////77/////77/7////7777//
// FUNCTION fib - calculate Fibonacci number of N, passed in rl.
// result is returned in rl, r2 is destroyed
L1111 7777777777777777777777/7777777/77777////7777///777/7////777/7///7777/
fib: 1_sflesi ri,1 // rl1<=1? (signed)
1.bf done // done if so, result is rl
1._nop // (delay slot)
1.addi r31,r31,-12 // create stack frame
1.sw 0(r31),r9 // save link register
1._sw 4(r31),rl // save input rl
1_jal fib // calculate fib(N-1)
1_addi rl,rl,-1 // rl = N-1 (delay slot)
1.sw 8(r31),r1 // save Tib(N-1)
11wz rl,4(r3l) // restore initial N
1_jal fib // calculate fib(N-2)
1.addi rl,rl,-2 // r1l = N-2 (delay slot)
11wz r2,8(r31) // restore Fib(N-1)
1_add rl,rl,r2 // r1l = Fib(N-2) + Fib(N-1)
1_lwz r9,0(r31) // restore link register
1.addi r31,r31,12 // destroy stack frame
done: 1_jr ro // return, result in rl
1._nop // (delay slot instruction)

The testcase calculates the value of fib(15), returning the value in register r1 (0x262, or
610 decimal). Register r2 is used as an intermediate and is destroyed; register r31 is used
as a stack pointer. Because this is a naive recursive implementation, each call to fib
creates up to two further recursive calls, and the current link register value (r9) and input
value (r1) need to be preserved in a stack frame at each level using the load and store
instructions we have just implemented.

11.2.2 Validating Simulation Performance

This Fibonacci implementation rapidly becomes computationally complex. Even when
calculating a relatively small Fibonacci number, such as fib(15), 22,687 instructions are
performed. We can therefore use the example to test the basic simulation speed of the
processor model.

Modify lines 25 and 26 of the test case application/asmtest.S as follows:

1_jal fib // calculate fib(40)
1.addi rl,r0,40 // rl = 40 (delay slot)

Regenerate the assembler test case and run it like this:

© 2022 Imperas Software Limited.www.OVPworld.org Page 102 of 321

OVP Processor Modeling Guide

make -C application
time platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The output from this (after a few seconds) should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”
Processor "cpul® terminated at "exit", address 0x1000080

RO : 00000000 R1 : 06197ecb R2 : 03c50ea2 R3 : deadbeef
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 01000080 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: deadbeef R31: 00000000
BF:1 CF:1 OF:0 PC : 01000084 SR : 00008601

processor has executed 3808343229 instructions

The program has calculated fib(40) as 0x6197ecb (102,334,155 decimal) using
3,808,343,229 simulated instructions. On a 2.8GHz Intel Core2 processor, time shows
this takes about 7 seconds, giving a simulation speed for this example of about 544
simulated MIPS.

11.2.3 Demonstrating Jump Hint Effectiveness

Chapter 9 showed how jump hints should be used to tell the simulator what kind of jump
is being performed (a call, a return or a simple jump that is neither a call nor a return).
Now we have a test case that executes many calls and returns, we can demonstrate how
effective these jump hints are when correctly applied. To do this, we will temporarily
remove the jump hints from the processor model and then rerun fib(40) to see the
effect.

Modify functions morphJump and morphJumpReg in file orikMorph.c to remove the
jump hints like this:

static OR1K_MORPH_FN(morphJdump) {

Uns32 toAddress = state->info.c;

uUns32 nextAddress = state->info.thisPC + 8;

Bool inDelaySlot = state->inDelaySlot;

Bool link = state->attrs->link;

vmiReg linkReg = link ? OR1K_LINKREG : VMI_NOREG;

vmiJumpHint hint;

// provide no jump hint!
hint = vmi_JH_NONE;

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpDelaySlot(
1, // slotOps

© 2022 Imperas Software Limited.www.OVPworld.org Page 103 of 321

OVP Processor Modeling Guide

nextAddress, // linkPC
toAddress, // toAddress
l1inkReg, // linkReg
hint, // hint

0 // slotCB

}
static OR1K_MORPH_FN(morphJdumpReg) {

uns32 ri = state->info.rl;

vmiReg toReg = getGPR(rl1);

Uns32 nextAddress = state->info.thisPC + 8;

Bool inDelaySlot = state->inDelaySlot;

Bool link = state->attrs->link;

vmiReg l1inkReg = link ? OR1K_LINKREG : VMI_NOREG;

vmiJumpHint hint;

// provide no jump hint!
hint = vmi_JH_NONE;

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpRegDelaySlot(
1, // slotOps
nextAddress, // linkPC
toReg, // toReg
l1inkReg, // linkReg
hint, // hint
0 // slotCB
)
}

}
Rebuild the processor model and rerun fib(40) as follows:

make
time platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The program output is identical to before (jump hints do not affect behavior), but
simulation speed is slower: on a 2.8 GHz Intel Core2 processor, time shows this takes
about 9 seconds, giving a simulation speed for this example of about 423 simulated
MIPS, 120 simulated MIPS slower than previously.

When creating a new processor model, use a Fibonacci test case to validate that jump
hints are working correctly. If performance is unchanged (or slower!) with jump hints
present then they are not being used correctly.

© 2022 Imperas Software Limited.www.OVPworld.org Page 104 of 321

OVP Processor Modeling Guide

12 Modeling Exceptions

In chapter 11, we implemented load and store instructions and noted that on the OR1K
processor all loads and stores should be aligned to the load/store size. In this chapter, we
will model the processor exception behavior that happens when an unaligned load or
store is encountered.

This chapter also shows how to write exception handlers for arithmetic exceptions such
as a divide by zero.

12.1

Basic Example

Firstly, we will examine the simulator behavior when no special action is taken to handle
exceptions. Directory 10.or1kBehaviorExceptions/application contains the
following example in file asmtest.S:

.org 0x200

1///1/7///7//7//7/
// ALIGNMENT EXCEPTION HANDLER (AT 0x200)
L11177777777777777777777777777777/7777///7777////7777////7/7////7//7//7/7/

1.addi r30,r30,1 // increment count of alignment exceptions
1.addi ri,rl,1 // increment store address
1._rfe // return from exception

-org 0x10000

-global
_start:

loop:

-global
exit:

L111717777777777777777777777777777/7777///7777////7777///77//77////7//7//7/7/
// APPLICATION CODE (AT 0x10000)
L111717777777777777777777777777777/7777///77777///7777////7/7////7/7//7//

_start

1_ori r30,r0,0 // r30 = 0 (counts alignment exceptions)
1 _movhi ri,0x8000 // r1 = 0x80000000

I .movhi r2,0x1234 // r2 = 0x12340000

1._ori r2,r2,0x5678 // r2 = 0x12345678

1._ori r3,r0,0 // r3 = 0 (loop count)

1.sb o(rl),r2 // do one-byte store

1.sh o(r1),r2 // do two-byte store

1.sw o(rl),r2 // do four-byte store

1._addi r3,r3,1 // increment loop count

1._sfeqi r3,10 // r3==107?

1.bnf loop // go if not

1.addi rl,rl,1 // increment store address (delay slot)
1.div r30,r30,r0 // divide by zero

exit

1.nop

This example uses rl to hold a write pointer, initially at address 0x80000000. It then
executes a loop ten times, trying to do one-byte, two-byte and four-byte writes to the
pointer. Each time round the loop the pointer r1 is incremented. Finally, it performs an
arithmetic divide-by-zero.

© 2022 Imperas Software Limited.www.OVPworld.org Page 105 of 321

OVP Processor Modeling Guide

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/10.orlkBehaviorExceptions .

Compile the model, harness and application using the make command:

cd 10.orlkBehaviorExceptions

make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest_OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information

callback given for processor “cpul’

Info "cpul®, 0x0000000000010000: I.ori r30,r0,0x0
Info “"cpul®, 0x0000000000010004: I._.movhi r1,0x8000
Info "cpul®, 0x0000000000010008: I.movhi r2,0x1234
Info “"cpul®, 0x000000000001000c: 1.ori r2,r2,0x5678
Info "cpul®, 0x0000000000010010: l.ori r3,r0,0x0
Info “cpul®, 0x0000000000010014: 1.sb 0x0(rl),r2
Info "cpul®, 0x0000000000010018: I.sh 0x0(rl),r2
Info “cpul®, 0x000000000001001c: I.sw 0x0(rl),r2
Info "cpul®, 0x0000000000010020: I.addi r3,r3,0x1
Info “cpul®, 0x0000000000010024: 1.sfeqi r3,0xa

Info "cpul®, 0x0000000000010028: 1.bnf 0x00010014
Info “cpul®, 0x000000000001002c: 1.addi rl,rl,0x1
Info "cpul®, 0x0000000000010014: I.sb 0x0(rl),r2
Info “cpul®, 0x0000000000010018: 1.sh 0x0(rl),r2
Processor Exception (PC_PRX) Processor "cpul® 0x10018: I.sh 0ox0(rl),r2

Processor Exception (PC_WAX) Misaligned 2-byte write to 0x80000001

: 12345678 R3 : 00000001
: deadbeef R7 : deadbeef

- 00000000 R1 : 80000001
: deadbeef R5 : deadbeef
: deadbeefF R9 : deadbeef
: deadbeef R13: deadbeef
: deadbeefF R17: deadbeef
: deadbeef R21: deadbeef
: deadbeefF R25: deadbeef
: deadbeef R29: deadbeef
: 00010018 SR : 00008001

CF:0 OF:0

processor has executed 14 instructions

: deadbeefF R11: deadbeef
: deadbeef R15: deadbeef
: deadbeef R19: deadbeef
: deadbeef R23: deadbeef
: deadbeefF R27: deadbeef
- 00000000 R31: deadbeef
: deadbeef EPC: deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org

Page 106 of 321

OVP Processor Modeling Guide

The test case runs successfully until an attempt is made to perform a 2-byte store at a 1-
byte-aligned address. Then the processor terminates with a Processor Exception error,
which is signaled to the platform by returning the value oOP_SR_WR_ALIGN from
opProcessorSimulate. File platform/harness.c in directory
10.or1kBehaviorExceptions has been updated like this to handle the possible
exception case:

static Bool simulate(optProcessorP processor, Uns64 clocks) {
optStopReason stopReason = opProcessorSimulate(processor, clocks);
switch(stopReason) {

case OP_SR_SCHED:
// hit the scheduler limit
return True;

case OP_SR_EXIT:
// processor has exited
return False;

case OP_SR_FINISH:
// simulation must end
return False;

case OP_SR_RD_PRIV:

case OP_SR_WR_PRIV:

case OP_SR_RD_ALIGN:

case OP_SR_WR_ALIGN:

case OP_SR_ARITH:
// unhandled processor exception: simulation must end
return False;

default:
opPrintf("'unexpected stopReason %u\n', stopReason);
return False;

Note that the only action taken in the model to enforce alignment checking was to
pass True to the checkAl ign parameter to each of the load/store morph-time
functions: the simulator did the rest automatically.

It is possible instead to envisage using vmimt calls to explicitly construct an
alignment check (for example, the address to which to store could be created in a
temporary register using vmimtBinopRRC, the low-order bits of the temporary register
value could be extracted using vmimtBinopRRC with a vmiBinop of vmi_AND and a
constant value 3, this could be checked for zero and the simulation terminated by
vmimtFinish if not zero). This is not however a good approach: the simulator’s built
in checks are much more efficient than any model code that tries to do the same thing.
Always use simulator alignment checking capabilities in preference to coding your
own.

© 2022 Imperas Software Limited.www.OVPworld.org Page 107 of 321

OVP Processor Modeling Guide

A real processor does not of course “exit” when an exception is encountered: it typically
enters a privileged mode and jumps to an exception vector instead. The model files in
directory 10.ori1kBehaviorExceptions have been enhanced to support this as follows.

12.1.1 Adding Exception Registers - orlkStructure.h
To support exceptions, the OR1K has three new registers we need to model now:
1. esr (exception status register): this saves the value of the sr register on exception
entry;
2. epc (exception program counter register): this saves the current program counter
on exception entry.
3. eear (exception effective address register): for an exception caused by an invalid
memory operation, this records the address that caused the exception.

These have been added to the processor structure:

typedef struct orlkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool branchFlag; // branch flag

Uns32 regs[OR1K_REGS]; // basic registers

Uns32 SR; // status register

Uns32 ESR; // exception status register

Uns32 EPC; // exception program counter register
Uns32 EEAR; // exception effective address register
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

There are also new macros to access the registers when morphing code:

#define OR1K_ESR OR1K_CPU_REG(ESR)
#define OR1K_EPC OR1K_CPU_REG(EPC)
#define OR1K_EEAR OR1K_CPU_REG(EEAR)

Initialization routines (in orikMain.c) and register dump routines (in orikUtils.c)
have also been modified to handle the new registers.

12.1.2 Declaring Exception Handlers - or1kFunctions.h
Prototypes for model routines that are called when the simulator detects a memory
exception have been added:

VMI_RD_PRIV_EXCEPT_FN(orl1kRdPrivExceptionCB);
VMI_WR_PRIV_EXCEPT_FN(orl1kWrPrivExceptionCB);
VMI_RD_ALIGN_EXCEPT_FN(orlkRdAlignExceptionCB);
VMI_WR_ALIGN_EXCEPT_FN(orlkWrAlignExceptionCB);

© 2022 Imperas Software Limited.www.OVPworld.org Page 108 of 321

OVP Processor Modeling Guide

The memory access handlers are called for load/store privilege exceptions and load/store
alignment exceptions. In this example, we are only interested in alignment exceptions but
privilege exceptions will be implemented as well for completeness.

VMI_ARITH_EXCEPT_FN(orlkArithExceptionCB);

This handler is called when the simulator detects an arithmetic exception at run time (for
example, a divide by zero).

12.1.3 Defining Exception Types - or1kExceptionTypes.h
This is a new file giving information about the exceptions on the OR1K. There is an
enumeration of the possible exception types:

typedef enum orlkExceptionE {

OR1K_EXCPT_RST, // reset

OR1K_EXCPT_BUS, // alignment
OR1K_EXCPT_DPF, // data privilege
OR1K_EXCPT_IPF, // instruction privilege
OR1K_EXCPT_TTI, // tick timer
OR1K_EXCPT_ILL, // illegal instruction
OR1K_EXCPT_EXI, // external interrupt
OR1K_EXCPT_SYS, // system call
OR1K_EXCPT_LAST // KEEP LAST: for sizing

} orlkException;

Vector addresses for each exception are also defined:

#define RST_ADDRESS 0x100 // reset exception vector

#define BUS_ADDRESS 0x200 // alignment exception vector

#define DPF_ADDRESS 0x300 // data privilege exception vector
#define IPF_ADDRESS 0x400 // instruction privilege exception vector
#define TTI_ADDRESS 0x500 // tick timer exception vector

#define ILL_ADDRESS 0x700 // illegal instruction exception vector
#define EXI_ADDRESS 0x800 // external interrupt exception vector
#define SYS_ADDRESS 0xcO0 // sys exception vector

12.1.4 Implementing Exceptions - orlIkExceptions.c

This file implements the exception handler callbacks, which are called at run time when a
potential simulated exception occurs. The purpose of the callbacks is to put the processor
into the state that it would enter if the same exception was encountered on the real
hardware: typically, this means entering a privileged mode, saving some exception
context state and jumping to an exception vector address. This is exactly what we will
implement now for the OR1K.

It is possible for multiple exception conditions to be encountered in a single simulated
instruction: for example, a store may be attempted to an address that is both
misaligned and read-only. To handle this situation, the memory exception handlers
work as follows:

1. The alignment handler is called first. This returns an unsigned result indicating
whether the privilege exception handler should be called subsequently;

© 2022 Imperas Software Limited.www.OVPworld.org Page 109 of 321

OVP Processor Modeling Guide

2. If the alignment handler returns non-zero, and there is also a privilege exception
condition, then the privilege exception handler will be called. If the alignment handler
returns zero, the privilege exception handler will not be called.

A non-zero result from the alignment handler may also indicate that the load/store
address requires snapping, or that the value to load or store requires rotation. This is
discussed in detail later in this section.

The memory exception handler callbacks for the OR1K are as follows:

VMI_RD_PRIV_EXCEPT_FN(orl1kRdPrivExceptionCB) {
i F(MEM_AA_IS_TRUE_ACCESS(attrs)) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K _EXCPT_DPF, 0);

}

VMI_WR_PRIV_EXCEPT_FN(orlkWrPrivExceptionCB) {
iT(MEM_AA_IS_TRUE_ACCESS(attrs)) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_DPF, 0);

}

VMI_RD_ALIGN_EXCEPT_FN(orl1kRdAlignExceptionCB) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_BUS, 0);
return O;

}

VMI_WR_ALIGN_EXCEPT_FN(orlkWrAlignExceptionCB) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_BUS, 0);
return O;

}

In this case, both alignment handlers return zero, which means that alignment exceptions
have priority over privilege exceptions (in other words, a store to an address that is both
misaligned and read-only will cause an alignment exception only). Each exception is
implemented by a call to or1kTakeException (implemented in orlkUtils.c), passing
the appropriate exception type (OR1K_EXCPT_DPF for privilege exceptions,
OR1K_EXCPT_BUS for alignment exceptions) and a zero offset (explained in the
description of or1kTakeException). The faulting address is saved in the eear register in
the processor structure.

The read and write privilege handlers are both passed an argument, attrs, of type
memAccessAttrs, defined in vmiTypes.h as follows:

typedef enum memAccessAttrsE {
MEM_AA_FALSE = 0x0, // this is an artifact access

© 2022 Imperas Software Limited.www.OVPworld.org Page 110 of 321

OVP Processor Modeling Guide

MEM_AA_TRUE
MEM_AA_FETCH
} memAccessAttrs;

0Ox1, // this is a true processor access
0x2, // this access is a fetch

The memAccessAttrs type tells the processor model what kind of access is being
performed. There are four possible values:

1. MEM_AA_TRUE: this indicates that the exception handler is being called because of
a true processor read or write, and that the model should take any action needed to
model the exception.

2. MEM_AA_FALSE: this indicates that this access is not a true processor read or write,
but is instead some kind of artifact access. For example, it might be an access
being made by the simulator itself, or by an attached debugger reading memory.
In this case, the processor model should not update its state to reflect an
exception, but might need to take some other action to make the memory readable
or writable. As an example, the OVP ARM processor model implements a TLB
model that maps memory pages on demand based on the contents of a page table
stored in memory, and these mappings need to be made even for an artifact access
(so that a debugger can query virtual memory address locations even if that virtual
address is not currently mapped, for example).

3. MEM_AA_TRUE|MEM_AA_FETCH: this indicates that the exception handler is being
called because of a true processor fetch. Processor state should be updated to
model the exception.

4. MEM_AA_FALSE|MEM_AA_FETCH: this indicates that the exception handler is being
called because of an artifact fetch (usually caused by the JIT code generation
engine). In this case, the processor model should not update its state to reflect an
exception, but might need to take some other action to make the memory readable
or writable.

For the OR1K, the read and write exception handlers both validate that the access is a
non-artifact access before updating any processor state:

VMI_RD_PRIV_EXCEPT_FN(orl1kRdPrivExceptionCB) {
iT(MEM_AA_IS_TRUE_ACCESS(attrs)) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_DPF, 0);

}

VMI_WR_PRIV_EXCEPT_FN(orl1kWrPrivExceptionCB) {
iT(MEM_AA_IS_TRUE_ACCESS(attrs)) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlik, OR1K_EXCPT_DPF, 0);

}

This OR1K model does not implement any structure such as a demand-mapped TLB, so
no action is taken for artifact accesses.

File orikExceptions.c also implements an arithmetic exception handler:

© 2022 Imperas Software Limited.www.OVPworld.org Page 111 of 321

OVP Processor Modeling Guide

VMI_ARITH_EXCEPT_FN(orlkArithExceptionCB) {
orlkP orlk = (orlkP)processor;
switch(exceptionType) {

// integer divide-by-zero and overflow should not generate exceptions
// but instead set the carry flag
case VMI_INTEGER_DIVIDE_BY_ZERO:
case VMI_INTEGER_OVERFLOW:
orlk->carryFlag = 1;
return VMI_INTEGER_ABORT;

// not expecting any other arithmetic exception types
default:
return VMI_INTEGER_UNHANDLED;

}

When an integer divide or overflow is encountered, the OR1K does not jump to an
exception vector: instead, it indicates the error by setting the processor carry flag. Other
processor types that jump to exception vectors can be simulated in a similar manner to the
memory exception handlers (i.e. save the current program counter and other state, and
then jump to an exception vector — see the discussion of or1lkTakeException in section
12.1.5).

The return value from the arithmetic exception callback is an enumerated value defined in
vmiTypes.h:

typedef enum vmilntegerExceptionResultE {

VMI_INTEGER_UNHANDLED, // not handled
VMI_INTEGER_ABORT, // handled, abort current instruction
VMI_INTEGER_CONTINUE, // handled, continue current instruction

} vmiIntegerExceptionResult;

A return value of VMI_INTEGER_UNHANDLED indicates that the numeric exception was not
expected by this model and simulation should terminate.

A return value of VMI_INTEGER_ABORT indicates that the handler accepted the exception,
and simulation should abort the remainder of this simulated instruction and resume
execution with the next simulated instruction (or at an exception vector address, if
vmirtSetPC or vmi rtSetPCException are used in the handler: see section 12.1.5).

A return value of VMI_INTEGER_CONTINUE indicates that the handler accepted the
exception, and simulation should resume at the next native instruction address after the
offending instruction.

When writing code that could cause simulated exceptions, or which makes an
embedded call that could update the current program counter using vmi rtSetPC or
vmi rtSetPCException, always remember that the part of the instruction after the
embedded call or simulated exception will not be executed if the program counter has

© 2022 Imperas Software Limited.www.OVPworld.org Page 112 of 321

OVP Processor Modeling Guide

been modified by vmirtSetPC or vmirtSetPCException, or if there is an arithmetic
exception for which the handler returns vM1_INTEGER_ABORT. Care must be taken to
leave the processor model in a consistent state in this case.

As a contrived example, suppose that a processor is being modeled that has a single
instruction that implements a pair of loads into registers from different addresses:

0x0020000: ri=(ral), r2=(ra2)

The obvious way to implement this would be with two vmimtLoadRRO calls, for
example:

vmimtLoadRRO(
32, 32, 0, CPU_REG(rl), CPU_REG(ral), endian, False,
MEM_CONSTRAINT_ALIGNED

):

vmimtLoadRRO(
32, 32, 0, CPU_REG(r2), CPU_REG(ra2), endian, False,
MEM_CONSTRAINT_ALIGNED

):

However, suppose that there is a memory access violation on the access using ra2
(but not ra1) that caused control to be transferred to a simulated exception handler. In
this case, the processor would be left in a state with the instruction half-executed,
because the load to r1 would already have been done.

To get correct model behavior in this case, the first load should save its result in a
temporary, which is written to the target register only if the second load succeeds:

vmimtLoadRRO(
32, 32, 0, CPU_TEMP1, CPU_REG(ral), endian, False,
MEM_CONSTRAINT_ALIGNED

)

vmimtLoadRRO(
32, 32, 0, CPU_REG(r2), CPU_REG(ra2), endian, False,
MEM_CONSTRAINT_ALIGNED

):
vmimtMoveRR(32, CPU_REG(rl), CPU_TEMP1);

12.1.5 Taking Exceptions - orlkUtils.[ch]
The new routine orilkTakeException is implemented as:

void orlkTakeException(orlkP orilk, orlkException exception, Uns32 pcOffset) {

Uns8 simD;
Uns32 simPC = (Uns32)vmirtGetPCDS((vmiProcessorP)orlk, &simD);

orlkEnterSupervisorMode(orlk);
orlk->EPC = simPC + pcOffset;

// set sr[DSX] for exception in a delay slot
if(simD) {
orlk->SR |= SPR_SR_DSX;

© 2022 Imperas Software Limited.www.OVPworld.org Page 113 of 321

OVP Processor Modeling Guide

}

// jump to the vector
vmirtSetPCException((vmiProcessorP)orlk, exceptions[exception].code);

}

Because this routine is called at run time (as opposed to morph time) it uses functions
form the Imperas Run Time Function API to update the processor model state. In detail, it
works as follows:

Uns8 simD;
Uns32 simPC = (Uns32)vmirtGetPCDS((vmiProcessorP)orlk, &simD);

The function vmi rtGetPCDS returns the currently-executing instruction address with any
delay-slot byte offset. For non-delay-slot instructions, simPC will be set to the current
instruction address and simD set to zero. For delay-slot instructions, simPC will be set to
the address of the preceding jump or branch instruction and simbD will be the byte offset
of the current instruction from the preceding jump or branch. Since all OR1K
instructions are four bytes long, simd will therefore be 4 for a delay-slot instruction.

orlkEnterSupervisorMode(orilk);

This is a routine that puts the simulated processor into supervisor mode, described below.

orlk->EPC = simPC + pcOffset;

This line saves the current program counter in register epc (or the jump/branch
instruction address for delay slot instructions). A call-specific offset is added to the value
saved (this value is zero for the memory exceptions).

if(simD) {
orlk->SR |= SPR_SR_DSX;
b

These lines set a special bit in the status register sr if the exception occurred in a delay
slot instruction. Recovery from delay slot instruction exceptions requires special
processing in application exception handlers, so they need some way to find out whether
the original exception was in a delay slot instruction or not.

vmirtSetPCException((vmiProcessorP)orlk, exceptions[exception].code);

This line uses vmirtSetPCException to force the processor to jump to the exception
vector address associated with the exception type. A table maps exception types to vector
addresses:

#define ORL1K_EXCEPTION_INFO(D, DESC) [OR1K_EXCPT ## D] = { \
\

name :#D,
code : _D## ADDRESS, \
description : _DESC \

}

static const vmiExceptionlnfo exceptions[OR1K_EXCPT_LAST] = {

© 2022 Imperas Software Limited.www.OVPworld.org Page 114 of 321

OVP Processor Modeling Guide

OR1K_EXCEPTION_INFO(RST, "Reset"),
OR1K_EXCEPTION_INFO(BUS, "Bus error'),
OR1K_EXCEPTION_INFO(DPF, "Data privilege™),
OR1K_EXCEPTION_INFO(IPF, "Instruction privilege™),
OR1K_EXCEPTION_INFO(TTI, "Tick timer™),
OR1K_EXCEPTION_INFOCILL, *"Illegal instruction'™),
OR1K_EXCEPTION_INFO(EXI, "External interrupt™),
OR1K_EXCEPTION_INFO(SYS, "System call™),

};

The exceptions are described using an array of vmiExceptionlnfo type structures
(defined in vmiTypes.h). This structure type will be required when adding debugger
integration support routines to the model (see chapter 17).

The new routine or1kEnterSupervisorMode Saves sr in esr, updates sr to mask out
various exceptions that must be disabled in supervisor mode, and indicates that we are in
supervisor mode by setting the SM bit in sr, like this:

void orlkEnterSupervisorMode(orlkP orlk) {

const Uns32 clearBits = (

SPR_SR_IEE | // interrupt enable
SPR_SR_TEE | // tick timer enable
SPR_SR_DME | // data MMU enable
SPR_SR_IME | // instruction MMU enable
SPR_SR_OVE // overflow exception enable

);

// save the current status register in esr
orlk->ESR = orilkGetSR(or1k);

// mask out the “"clear® bits and mask in supervisor mode
orlk->SR = (orlk->ESR & ~clearBits) | SPR_SR_SM;

}

Note that orikGetsSR is used to get the value of the sr register. This routine ensures that
the flag bits are present in the returned value.

12.1.6 Exception Function Registration - or1kAttrs.c
File orikAttrs.c has been updated to include references to the five new exception
handler callbacks in the modelAttrs structure:

const vmilASAttr modelAttrs = {
. skipped lines .

L11177777777777777777777777777777//7777//777777///7777///7/7/7////7//77//7/7/
// EXCEPTION ROUTINES
L11171777777777777777777777777777//7777//777777///7777///7/7/7////7//77////7/

-rdPrivExceptCB
-wrPrivExceptCB
-rdAlignExceptCB
-wrAlignExceptCB
-arithExceptCB

orlkRdPrivExceptionCB,
orlkWrPrivExceptionCB,
orlkRdAl ignExceptionCB,
orlkWrAlignExceptionCB,
orlkArithExceptionCB,

. skipped lines .

© 2022 Imperas Software Limited.www.OVPworld.org Page 115 of 321

OVP Processor Modeling Guide

e

12.1.7 L.rfe and I .sys Instructions

The model has been enhanced to implement the I . rfe instruction. This OR1K instruction
performs a return from an exception handler: it copies register esr to register sr and
performs an unconditional jump to the address stored in epc. Decode and disassembly for
this instruction are very similar to previous instructions so no further details will be given
here. The functionality of the I . rfe instruction is implemented in or1kMorph.c like this:

static OR1K_MORPH_FN(morphRFE) {

// set sr from esr (must call orlkSetSR to do this)
vmimtArgProcessor();

vmimtArgReg(OR1K_BITS, OR1K_ESR);

vmimtCall ((vmiCalIFn)orlkSetSR) ;

// return to exception program counter
vmimtUncondJumpReg(0, OR1K_EPC, VMI_NOREG, vmi_JH_RETURNINT);

}

The first part of morphRFE constructs an embedded call to function orikSetSR, passing
the current processor as the first argument and the value of register esr from the
processor model structure as the second argument. The effect of this is to assign the
current value of esr to register sr. Remember that whenever sr is set, we must use
orlkSetsSR to do it because assigning to this register implicitly sets the flag fields we
maintain separately in the model.

The second part of morphRFE uses vmimtUncondJumpReg to perform a jump to the
address in the epc register. Note that the 1. rfe instruction is not followed by a delay slot
instruction. As this instruction implements a return from an exception handler, a new
jump hint type is used - vmi_JH_RETURNINT.

In general, it is possible to emit code to call any function from morphed code by using
a sequence of vmimtArg-prefixed functions followed by a call to vmimtCall. This
means that for many instructions there is an important implementation choice to be
made: is it best to implement the instruction directly using vmimtBinopRRR,
vmimtBinopRRC etc, or is it best to use vmimtCall to call a C function to do the work
instead?

In general, the rule is that if the behavior of the instruction requires more than a few
vmimt-prefixed calls to implement, or is difficult to encode using vmimt operations,
then use vmimtCall and a C function to implement the instruction behavior.

One important exception is that, wherever possible, jumps should be implemented
using vmimt jump primitives instead of using vmi rtSetPC, which is significantly
slower. Note that a single instruction can be implemented using a mixture or vmimt
primitive operations and vmirtcCall calls, as in this example.

© 2022 Imperas Software Limited.www.OVPworld.org Page 116 of 321

OVP Processor Modeling Guide

The 1.sys instruction is also now implemented (though not required for this example).
This instruction enters supervisor mode and jumps to an exception vector at address
0xc00, saving the next instruction address in epc. It is implemented in or1kMorph.c as:

static ORLK_MORPH_FN(morphSYS) {

vmimtArgProcessor();

vmimtArguns32(OR1K_EXCPT_SYS);

vmimtArguns32(4);

vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;

}

Note that the value 4 is passed as the third argument to or1kTakeException to ensure
that the saved address in epc is the next instruction address.

The call to orikTakeException in morphSYS is implemented using a more generic
embedded call function, vmimtCal 1Attrs. This function is similar to vmimtCal I
except that it takes an additional argument of type vmiCal IAttrs which gives the JIT
compiler further information about the purpose and nature of the call:

typedef enum vmiCallAttrsk {
VMCA _NA = 0x0, // no attributes
VMCA_PURE 0x1, // this call is to a pure function
VMCA_EXCEPTION 0x2, // this call causes a simulated exception
VMCA_NO_INVALIDATE = 0x4, // this call cannot invalidate this block
VMCA_FP_RESTORE 0x8, // restore floating point state before call
VMCA_FLT32_RESULT 0x10, // function result is of type FIt32
VMCA_FLT64 RESULT 0x20, // function result is of type FIt64

} vmiCallAttrs;

The value VMCA_EXCEPTION indicates that this call is to an exception entry routine and
that therefore the current code block should be terminated after this instruction
(because the next simulated instruction is never executed sequentially). It also
indicates that the called function might cause a processor mode switch (processor
modes are discussed in chapter 14). Refer to the Imperas VMI Morph Time Function
Reference for more detailed information about when to use vmimtCal 1Attrs.

If the test case already contained code to implement simulated exceptions, why did the
original run at the start of this chapter exit from opProcessorSimulate with an
unhandled processor exception? The reason is that whether or not simulated exceptions
should be enabled is specified by a model flag in the platform (most application code
should not generate exceptions in the normal case, and it is usually desired that any
exception is an error that should stop simulation).

To enable simulated exception modeling, modify the processor instantiation in
10.ori1kBehaviorExceptions/platform/harness.c as follows:

© 2022 Imperas Software Limited.www.OVPworld.org Page 117 of 321

OVP Processor Modeling Guide

const char *modelFile = "model ."IMPERAS_SHRSUF;
optProcessorP processor = opProcessorNew(
mr, modelFile, "cpul™, O,
OP_PARAMS(®
OP_PARAM_BOOL_SET(OP_FP_SIMULATEEXCEPTIONS, 1)
)

):
Then rebuild the platform and resimulate:

make -C platform
platform/harness.$IMPERAS_ARCH.exe —-trace --program
application/asmtest.OR1K.elf

The output from this should now be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000000010000: l1.ori r30,r0,0x0

Info “cpul®, 0x0000000000010004: I.movhi r1,0x8000

Info "cpul®, 0x0000000000010008: I.movhi r2,0x1234

Info “cpul®, 0x000000000001000c: 1.ori r2,r2,0x5678

Info "cpul®, 0x0000000000010010: l1.ori r3,r0,0x0
Info “cpul®, 0x0000000000010014: 1.sb 0x0(rl),r2
Info "cpul®, 0x0000000000010018: I.sh ox0(r1),r2
Info "cpul®, 0x000000000001001c: I.sw 0x0(rl),r2

Info “cpul®, 0x0000000000010020:
Info "cpul®, 0x0000000000010024:
Info “cpul®, 0x0000000000010028:
Info "cpul®, 0x000000000001002c:
Info “cpul®, 0x0000000000010014:
Info "cpul®, 0x0000000000010018:
Info “cpul®, 0x0000000000000200:
Info "cpul®, 0x0000000000000204:

.addi r3,r3,0x1
.sfeqi r3,0xa

.bnf 0x00010014
.addi rl,rl,0x1
-sb 0x0(rl),r2
.sh 0x0(rl),r2
.addi r30,r30,0x1
.addi rl,rl,0x1

Info “"cpul®, 0x0000000000000208: 1.rfe
Info "cpul®, 0x0000000000010018: I.sh ox0(r1),r2
Info “"cpul®, 0x000000000001001c: I.sw 0x0(rl),r2

Info "cpul”, 0x0000000000000200:
Info “cpul®, 0x0000000000000204:
Info "cpul®, 0x0000000000000208:
Info “cpul®, 0x000000000001001c:
Info "cpul®, 0x0000000000000200:
Info “cpul®, 0x0000000000000204:
Info "cpul®, 0x0000000000000208:
Info “cpul®, 0x000000000001001c:
Info "cpul®, 0x0000000000010020:
Info “"cpul®, 0x0000000000010024:

.addi r30,r30,0x1
.addi rl,rl,0x1
.rfe

-sw 0x0(rl),r2
.addi r30,r30,0x1
.addi rl,rl,0x1
.rfe

-sw 0x0(rl),r2
.addi r3,r3,0x1
.sfeqi r3,0xa

> This shows how processor instantiations can be parameterized. In general, such parameters can be
specified in two ways:

1. Using the op_PARAMS list (as here); or
2. Using command line parser overrides.

As an example, instead of modifying the instantiation, we could have specified the additional command
line argument --override platform/cpul/simulateexceptions=T instead.

If the parameter should always be applied, use the first method. If it is only sometimes required, use the
second.

© 2022 Imperas Software Limited.www.OVPworld.org Page 118 of 321

OVP Processor Modeling Guide

- . . etc . . .

Info "cpul®, 0x0000000000010020: I.addi r3,r3,0x1
Info “"cpul®, 0x0000000000010024: 1.sfeqi r3,0xa

Info "cpul®, 0x0000000000010028: 1.bnf 0x00010014
Info “"cpul®, 0x000000000001002c: 1.addi rl,rl,0x1
Info "cpul®, 0x000000000001002c: I1.div r30,r30,r0
Info "cpul®, 0x0000000000010030: I._nop 0x0
Processor "cpul® terminated at "exit", address 0x10034

RO : 00000000 R1 : 80000025 R2 : 12345678 R3 : 0000000a
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : deadbeef R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 0000001b R31: deadbeef
PC : 00010034 SR : 00008201 ESR: 00008001 EPC: 0001001c
BF:1 CF:1 OF:0

processor has executed 185 instructions

Now, instead of terminating after 14 instructions, the processor jumps to the exception
handler at address 0x200 instead (execution within the exception handler is highlighted in
bold in the trace above for clarity). The exception handler increments the address in ri
and returns using 1. rfe, which re-executes the faulting instruction (obviously, in a real
application the exception handler would do something more sensible than this, but the
example is sufficient for demonstration purposes). As a side effect, the exception handler
also increments r30 so that on termination we have a count of the number of times it was
called (Ox1b, i.e. 27 times).

The divide-by-zero in the penultimate instruction now does not cause the simulation to
exit, but instead sets the carry flag.

12.2 Misaligned Load/Store Address Snapping and
Value Rotation

On some processors, loads and stores to misaligned addresses do not cause exceptions but
are instead snapped to the correct alignment for the data size (so two-byte load addresses
are rounded down to a two-byte boundary, four-byte load addresses to a four-byte
boundary, and so on). In addition, some processors (e.g. old ARM processors) rotate
values read from misaligned addresses, with the rotate amount based on the misaligned
byte offset.

One way to implement address snapping would be to copy each load/store address to a
temporary, mask it to the appropriate size using vmimtBinopRC with a vmiBinop of
vmi_AND, and then use this resulting address as an argument to the load/store operation.
Unfortunately, this approach adds significant run-time overhead to each memory access.
Implementing value rotation is even more complex.

© 2022 Imperas Software Limited.www.OVPworld.org Page 119 of 321

OVP Processor Modeling Guide

A Dbetter solution is possible using read and write address snap handlers defined in the
processor model. These are defined using a macro in vmiAttrs.h:

#define VMI_RD_WR_SNAP_FN(_NAME) Uns32 _NAME(\

vmiProcessorP processor, \
memDomainP domain, \
Addr address, \
Uns32 bytes \

)
typedef VMI_RD_WR_SNAP_FN((*vmiRdWrSnapFn));

The read and write handlers are specified using the rdSnapCB and wrSnapCB fields in the
processor attributes structure, respectively:

vmiRdWrSnapFn rdSnapCB; // read alignment snap function
vmiRdWrSnapFn wrSnapCB; // write alignment snap function

The return value from each handler is an integer which indicates what address snapping
or value rotation is required. The return value is constructed using macro MEM_SNAP in
vmiTypes.h:

#define MEM_SNAP(_SNAP, _ROTATE) (((Uns8)(_SNAP)) | ((_ROTATE)<<8))

In this macro, _SNAP specifies an address rounding granularity in bytes (typically 1, 2, 4
or 8), and _ROTATE specifies a value rotation in bits. As an example:

MEM_SNAP(4, 24)

indicates that a read/write address should be snapped to 4-byte alignment. In addition, a
value being written should be rotated left by 24 bits before it is written, and a value being
read should be rotated left by 24 bits before being assigned to a processor register.

In detail, the read and write snap handlers are used by the simulator as follows:

1. If an access is made to a misaligned address, any defined address snap handler is
called first. If the handler is defined and returns non-zero, then the read or written
value is modified using the granularity and rotation specified by the result.

2. Otherwise (if there is no address snap handler, or the address snap handler returns
zero) any defined align exception handler is called for a misaligned address
access. This should either return 0 (if the read or write should be terminated,
possibly because an exception is taken) or 1 (if the read or write should proceed,
possibly with a modified value)®.

3. If the read/write address has insufficient privileges, and either the address was
aligned, or the snap handler or align exception handler returns non-zero, then the
privilege exception handler is called.

® In fact, the align exception handler returns a granularity/rotate value in the same format as for the snap
handler. A return value of 1 therefore indicates 1-byte alignment with zero rotation.

© 2022 Imperas Software Limited.www.OVPworld.org Page 120 of 321

OVP Processor Modeling Guide

12.2.1 ARM Model Load/Store Address Snap Callback
This is the read snap address callback from the OVP ARM processor model:

VMI_RD_WR_SNAP_FN(armRdSnapCB) {

armP arm = (armP)processor;
armUnalignedAction ua;

iF(ALIGN_ENABLED(arm) || ((ua=getUnalignedAction(arm))==ARM_UA DABORT)) {

// take exception
return O;

} else if((ua==ARM_UA_ROTATE) && arm->configlnfo.rotateUnaligned) {

// read snaps address and loads rotated value
Uns32 rotate = addressé&(bytes-1);

if(getEndian(arm)==MEM_ENDIAN_LITTLE) {
rotate = bytes - rotate;
}

return MEM_SNAP(bytes, rotate*8);
} else {

// read snaps address
return MEM_SNAP(bytes, 0);

}

This callback does three things:

1. If the current instruction should cause an alignment exception, it returns 0 (so that
the read alignment exception handler will be called);

2. Otherwise, if this is an ARM variant in which unaligned reads cause rotation of
the read value, it calculates the required rotation based on the address are returns a
result aligned to the item byte size with that rotation;

3. Otherwise, it returns a result with an aligned address but no rotation.

12.3 Memory Aborts

In addition to alignment and privilege exceptions, there is one other type of exception that
can be handled in a processor model: a memory abort. Memory aborts are generated by
the memory subsystem, typically when there is no implemented memory at a particular
address. Read and write abort handlers are specified using the rdAbortExceptCB and
wrAbortExceptCB fields in the processor attributes structure, respectively:

vmiRdAbortExceptFn rdSnapCB; // read abort exception
vmiRdAbortExceptFn wrSnapCB; // write abort exception

The read and write abort handlers are called in one of two circumstances:
1. When a read or write privilege exception handler indicates the access should be
retried, but the simulator determines that there is no accessible memory at the
faulting address.

© 2022 Imperas Software Limited.www.OVPworld.org Page 121 of 321

OVP Processor Modeling Guide

2. When an externally-implemented memory model indicates that a memory access
has not succeeded (for example, by calling opProcessorReadAbort or
opProcessor\WriteAbort).

In the first case, read and write privilege exception handlers can indicate that a read or
write should be retried on completion using a by-ref argument, action, which should be
set to the value VM1_LOAD_STORE_CONTINE. As an example, here is the read privilege
exception handler from the OVP ARM model:

VMI_RD_PRIV_EXCEPT_FN(armRdPrivExceptionCB) {
armP arm = (armP)processor;

if(larmvMMiss(arm, domain, MEM_PRIV_R, address, bytes, attrs)) {
*action = VMI_LOAD_ STORE_CONTINUE;
b

}

The function armvMMi ss attempts to map the faulting address using either a TLB or MPU
entry, returning True if the address could not be mapped (indicating a miss). If there is no
miss, the function uses the action argument to indicate that the load should be retried.

The read abort handler in the OVP ARM maodel triggers an external memory abort:

VMI_RD_ABORT_EXCEPT_FN(armRdAbortExceptionCB) {
armP arm = (armP)processor;
armExternalMemoryAbort(arm, address, isFetch ? MEM_PRIV_X : MEM_PRIV_R);

}

The full load/store exception escalation process, including address snapping, alignment,
privilege and abort handlers, is shown in the following figure.

© 2022 Imperas Software Limited.www.OVPworld.org Page 122 of 321

OVP Processor Modeling Guide

address
call snap
?
snap handler? handler N
Y
y
align handler? call align snap address,
: handler N save rotate
Y
terminate terminate
simulation load/store
. > .| [load/store using
privilege ok? >3 »| address & rotate
: - call privilege
priv handler? handler
terminate terminate
simulation load/store
abort handler? call abort
handler
y
terminate terminate
simulation load/store
*continue if (*action==VMI_LOAD_STORE_CONTINUE)

Figure 1: Load/Store Address Snapping and Exception Flow

12.4 Misaligned Fetch Address Snapping

Some processors snap misaligned fetch addresses to even boundaries. For example, the
ARC 600/700 series processors snap all fetch addresses to a 2-byte aligned boundary.

© 2022 Imperas Software Limited.www.OVPworld.org Page 123 of 321

OVP Processor Modeling Guide

There is a specific callback, fetchSnapCB, in the vmi 1ASAttr structure for fetch address
snapping. The address snapping callback should be defined using the macro
VMI_FETCH_SNAP_FN, defined in vmiAttrs.h as:

#define VMI_FETCH_SNAP_FN(_NAME) Addr _NAME(\
vmiProcessorP processor, \
Addr thisPC \

)

typedef VMI_FETCH_SNAP_FN((*vmiFetchSnapFn));

The address snapping callback takes a processor and an address argument and should

return that address, appropriately snapped. For example, to snap addresses to a 2-byte
boundary:

VMI_FETCH_SNAP_FN(orlkFetchSnap) {
return thisPC & ~1;
T

The vmi 1ASAttr structure should reference the fetch address snapping callback:

const vmilASAttr modelAttrs = {
. Tields omitted .
L1/1177/7777///7/77777/7//7//7777777777
// NMORPHER CORE ROUTINES
L1/1/177/7777/77//7//7777777777

-morphCB
-FetchSnapCB

orlkMorphlnstruction,
orlkFetchSnap,

. Fields omitted .

© 2022 Imperas Software Limited.www.OVPworld.org Page 124 of 321

OVP Processor Modeling Guide

13 Modeling Mode-Dependent Behavior (Part 1)

Up to now, all processor instructions have been modeled in a mode-independent way: the
actions performed by each instruction have been independent of the current processor
state. In real processors, there are usually instructions for which this is not the case. For
example, some instructions may be intended for use only in a kernel or supervisor mode,
and any attempt to use those instructions in user mode will generate a privileged
instruction exception. For the OR1K, one such instruction has already been encountered:
1. rfe, which should in fact only allow a return from exception in supervisor mode (S0
the implementation in chapter 12 was incorrect as it takes no account of this).

In this chapter, we will correct the functionality of I . rfe so that it takes account of the
processor mode and also implement two mode modal instructions, 1 .mfspr and I.mtspr.
Chapter 14 shows how modal instructions can be modeled differently to give higher
performance.

13.1 The Template Modal Model

A template model for the OR1K processor implementing modal instructions can be found
in:

$IMPERAS_HOME/Examples/Models/Processor/11.orl1kBehaviorSPR

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/11.orlkBehaviorSPR .

Compile the model, harness and application using the make command:

cd 11.orlkBehaviorSPR
make OPT=1

Note that the processor model has been built with compiler optimizations enabled
(opT=1) for this example, to get the fastest possible model. This is because we will
use the model for performance testing at the end of this chapter.

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

© 2022 Imperas Software Limited.www.OVPworld.org Page 125 of 321

OVP Processor Modeling Guide

13.2 Correcting I.rfe Behavior

The 1. rfe instruction should return from an exception only in the case that the processor
is in supervisor mode. In user mode, the processor should take an illegal instruction
exception (at vector address 0x700). To implement this behavior, function morphRFE in
orlkMorph.c has been updated as follows:

static OR1K_MORPH_FN(morphRFE) {
vmiLabelP inUserMode = vmimtNewLabel();

// test the SPR_SR_SM bit in OR1K_SR, setting OR1K_TEMPFLAG
vmimtBinopRRC(OR1K_BITS, vmi_AND, VMI_NOREG, OR1K_SR, SPR_SR_SM, &FlagsTZ):

// go to label inUserMode if tempFlag set (SPR_SR_SM bit is zero)
vmimtCondJumpLabel (OR1K_TEMPFLAG, True, inUserMode);

L11117777777777777777777777777777/777777//77777///777/7/////77///////7////777
// HERE IN SUPERVISOR MODE
L11117777777777777777777777777777/7777777/77777///777//////7/7///////7////777

// set sr from esr (must call orlkSetSR to do this)
vmimtArgProcessor();

vmimtArgReg(OR1K_BITS, OR1K_ESR);

vmimtCall ((vmiCalIFn)orlkSetSR) ;

// return to exception program counter
vmimtUncondJumpReg(0, OR1K_EPC, VMI_NOREG, vmi_JH_RETURNINT);

L111777777777777777777777777777777777777//77777///777//////7////////7////7777
// HERE IN USER MODE
L1117777777777777777777777777777777777777//77777////777//////7////////7////7777

// insert the label targeted by vmimtCondJumpLabel above
vmimtInsertLabel (inUserMode);

// take illegal instruction exception

vmimtArgProcessor();

vmimtArguns32(OR1K_EXCPT_ILL);

vmimtArguns32(0);

vmimtCal lAttrs((vmiCallFn)orlkTakeException, VMCA_EXCEPTION);

}

This function uses an intra-instruction jump to execute one of two morphed-code
subsequences depending on the setting of the SPR_SR_SM bit in the SR register. In detail, it
works as follows:

vmiLabelP inUserMode = vmimtNewLabel();

This allocates a label that is used as a target of an intra-instruction jump.

// test the SPR_SR_SM bit in OR1K_SR, setting OR1K_TEMPFLAG
vmimtBinopRRC(OR1K_BITS, vmi_AND, VMI_NOREG, OR1K_SR, SPR_SR_SM, &FlagsTZ):

This morphs code to perform a bitwise-and of the SR register (identified using OR1K_SR)
and the constant SPR_SR_SM (defined in orikStructure.h). Because argument 3 of

© 2022 Imperas Software Limited.www.OVPworld.org Page 126 of 321

OVP Processor Modeling Guide

vmimtBinopRRC is VMI_NOREG, the result is discarded. The last (Flags) argument of
vmimtBinopRRC is passed this vmiFlags structure:

const vmiFlags flagsTzZ = {

VMI_NOFLAG_CONST, // carry in flag not used
{
VMI_NOFLAG_CONST, // carry out flag not used
VMI_NOFLAG_CONST, // parity flag not used
OR1K_TEMPFLAG_CONST, // offset to zero flag
VMI_NOFLAG_CONST, // sign flag not used
VMI_NOFLAG_CONST // overflow flag not used
}

}:

The vmiFlags structure specifies that all flags generated by the bitwise-and should be
discarded, except for the zero flag, which should be stored in a new temporary flag
register in the OR1K processor structure (in orlkStructure.h):

typedef struct orlkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool branchFlag; // branch flag

Bool tempFlag; // temporary flag

Uns32 regs[OR1K_REGS]; // basic registers

Uns32 SR; // status register

Uns32 ESR; // exception status register

Uns32 EPC; // exception program counter register
Uns32 EEAR; // exception effective address register
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(_F) VMI_CPU_REG(or1kP, _F)
#define OR1K_CPU_TEMP(_F) VMI_CPU_TEMP(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_R1)
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)
#define OR1K_BRANCH OR1K_CPU_REG(branchFlag)
#define OR1K_TEMPFLAG OR1K_CPU_TEMP(tempFlag)
#define OR1K_LINKREG OR1K_REG(OR1K_LINK)
#define OR1K_SR OR1K_CPU_REG(SR)

#define OR1K_ESR OR1K_CPU_REG(ESR)
#define OR1K_EPC OR1K_CPU_REG(EPC)
#define OR1K_EEAR OR1K_CPU_REG(EEAR)

// macros to specify target registers in CONSTANT expressions
#define OR1K_CPU_REG_CONST(_F) VMI_CPU_REG_CONST(orlkP, _F)
#define OR1K_CPU_TEMP_CONST(_F) VMI_CPU_TEMP_CONST(orlkP, _F)

#define OR1K_REG_CONST(_R) OR1K_CPU_REG_CONST(regs[_R1)
#define OR1K_CARRY_CONST OR1K_CPU_REG_CONST(carryFlag)
#define OR1K_OVERFLOW_CONST OR1K_CPU_REG_CONST(overflowFlag)
#define OR1K_TEMPFLAG_CONST OR1K_CPU_TEMP_CONST(tempFlag)

© 2022 Imperas Software Limited.www.OVPworld.org Page 127 of 321

OVP Processor Modeling Guide

Note that the new tempFlag field does not represent a true processor register: it is simply
a temporary required for modeling purposes. The flag is special because its value is used
as a temporary within one instruction and need not be saved when the instruction
completes: for such temporaries, the JIT compiler is able to generate more efficient code.
To identify a temporary, use the vMiI_CPU_TEMP and VMI_CPU_TEMP_CONST macros as in
the above example.

For best performance, always ensure that all instruction-local temporaries are
correctly identified with the vM1_CPU_TEMP and VMI_CPU_TEMP_CONST macros.

Having generated code that sets the value of the new tempFlag field if the processor is
not in supervisor mode, doRFE then emits code to perform an intra-instruction jump if the
flag is set:

// go to label inUserMode if tempFlag set (SPR_SR_SM bit is zero)
vmimtCondJumpLabel (OR1K_TEMPFLAG, True, inUserMode);

Next, code is generated to perform a return from exception in supervisor mode, just as in
the previous example:

// set sr from esr (must call orlkSetSR to do this)
vmimtArgProcessor();

vmimtArgReg(OR1K_BITS, OR1K_ESR);

vmimtCall ((vmiCallFn)or1kSetSR);

// return to exception program counter
vmimtUncondJumpReg(0, OR1K_EPC, VMI_NOREG, vmi_JH_ RETURNINT);

Now the label is inserted at the location where user mode code starts:

// insert the label targeted by vmimtCondJumpLabel above
vmimtlnsertLabel (inUserMode) ;

And in user mode, I.rfe should cause an illegal instruction exception, implemented by a
run-time call to orikTakeException (in orlkUtils.c):

// take illegal instruction exception

vmimtArgProcessor();

vmimtArguns32(OR1K_EXCPT_ILL);

vmimtArguns32(0);

vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;

As for the I.sys instruction, function vmimtCal IAttrs is used to indicate that this call is
an exception which terminates the current code block.

The example at the end of this section shows the new code in action.

13.3 Implementing I .mtspr

The I.mtspr instruction implements a move to special purpose register. It allows a value
in an OR1K general purpose register (ro, ri etc) to be written to a special purpose

© 2022 Imperas Software Limited.www.OVPworld.org Page 128 of 321

OVP Processor Modeling Guide

register (e.g. sr, epc, esr, and many other special purpose registers that are currently
unimplemented). The target special purpose register is identified by a unique index
number: for example, register sr has index 0x11, register epc has index 0x20 and register
esr has index 0x40.

The index number of the special purpose register is calculated by adding an index register
ra and a constant index k. This means that if the index register is anything other than ro,
the special purpose register to update must be identified at run time (since there is no way
to know the future value of ra when morphing code). However, if ra is ro (which is
always zero) we know at morph time the SPR index (k) and therefore more efficient code
can be created, as we will see below.

I.mtspr has been added to the decoder and disassembler in a similar way as for previous
instructions. In orikMorph.c, the instruction is implemented by function morphMTSPR:

static ORLK_MORPH_FN(morphMTSPR) {

vmiReg ra = getGPR(state->info.rl);
vmiReg rb = getGPR(state->info.r2);
Uns32 k = state->info.c;

iF(VWMI_ISNOREG(ra)) {
// faster variant when ra is rO
morphMTSPR_ra_0(rb, Kk);

} else {

// slower variant when ra is not rO
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, ra);
vmimtArgReg(OR1K_BITS, rb);
vmimtArguns32(k);

vmimtCall ((vmiCallFn)vmic_MTSPR);

}

In the case that ra (the index register) is ro, it calls morphMTSPR_ra_0 to emit code that
targets a specific special purpose register. Otherwise a run-time call is created to function,
vmic_MTSPR, which handles writing any special purpose register, like this:

static void vmic_MTSPR(or1lkP orlk, Uns32 ra, Uns32 rb, Uns32 k) {
Uns32 sprNum = ra | k;
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmic_MTSPR_SYS_SR(or1k, rb);
break;

case SPR_OFF(SPR_SYS,SYS_EPC):
vmic_MTSPR_SYS_EPC(orilk, rb);
break;

case SPR_OFF(SPR_SYS,SYS EEAR):
vmic_MTSPR_SYS EEAR(orlk, rb);
break;

© 2022 Imperas Software Limited.www.OVPworld.org Page 129 of 321

OVP Processor Modeling Guide

case SPR_OFF(SPR_SYS,SYS ESR):
vmic_MTSPR_SYS _ESR(orlk, rb);
break;

default:
ignoreMTSPR(orlk, sprNum);
break;

To avoid confusion between functions that should be called at morph time and those
which are only applicable at run time, it can be helpful to use function prefixes: for
example, use the prefix vmic_ for a function that can only be called at run time.

The function constructs the special purpose register index and uses a case statement to
determine the register to update. It then calls a specific update function for that register.
As an example, the specific function to modify the sr register is:

static void vmic_MTSPR_SYS SR(or1kP orlk, Uns32 value) {
iF(VIN_SUPERVISOR_MODE(ori1k)) {
orlkTakeException(orlk, OR1K_EXCPT_ILL, 0);

} else {
orlkSetSR(orlk, value);
}

}

This function calls or1kTakeException if the processor is in user mode, which will
cause the processor to take an illegal instruction exception. In supervisor mode, it calls
orlkSetSR (from orikutils.c) to update the value of supervisor register sr.

In section 13.2, 1.rfe was implemented using an intra-instruction conditional jump.
It could just as well (and more clearly) have been implemented by a call to a run time
function that performed the supervisor mode check, as above.

When the index register is ro, code to implement the assignment of the special purpose
register is created by morph time function morphMTSPR_ra_o0:

static void morphMTSPR_ra O(vmiReg rb, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)vmic_MTSPR_SYS_SR);
break;

case SPR_OFF(SPR_SYS,SYS EPC):
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)vmic_MTSPR_SYS EPC);
break;

case SPR_OFF(SPR_SYS,SYS_EEAR):
vmimtArgProcessor();

© 2022 Imperas Software Limited.www.OVPworld.org Page 130 of 321

OVP Processor Modeling Guide

vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)vmic_MTSPR_SYS EEAR);
break;

case SPR_OFF(SPR_SYS,SYS_ESR):
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)vmic_MTSPR_SYS_ESR);
break;

default:
vmimtArgProcessor();
vmimtArguns32(sprNum) ;
vmimtCal I ((vmiCallFn)ignoreMTSPR) ;
break;

}

Note that morphMTSPR_ra_0 determines the register to be written at morph time, and
emits code that targets the specific register. vmic_MTSPR has to perform the equivalent
check at run time, which will be slower. We will see this in the examples that follow.

13.4 Implementing I.mfspr

The 1.mFspr instruction implements a move from special purpose register. It allows a
value in an OR1K special purpose register to be assigned to a general purpose register. It
is implemented in an analogous way to I .mfspr by function morphMFSPR in
orlkMorph.c.

13.5 Root Module Simulation - platform/harness.c
A new OP function is used to run simulation in this example:

// run platform
opRootModuleSimulate(mr);

This function simulates all processors in the root module until completion using a built-in
scheduling algorithm.

13.6 Testing lllegal Instruction Exceptions

Directory 11.or1kBehaviorSPR/application contains the following example in file
asmtest.S:

.org 0x700
1/1//1/77777777777/777/777/77/77/77/7/7/7//7///7//7///7///7/7//7////7////7///////7/7/7/77/7777
// 1LLEGAL INSTRUCTION EXCEPTION HANDLER (AT 0x700)
1/1//1//7777777777777777/77/7/7/77/77/7//7/7/7///7/7//7////7//7//7//7////7//////7/7/7/7/777777

1.addi r30,r30,1 // increment count of illegal instructions
1_sw -4(r31),r1 // save value in rl

1_mfspr rl,r0,0x20 // get epc in rl

1_addi rl,rl,4 // move epc past faulting instruction

1 _mtspr ro,rl,0x20 // set epc from ri

1_lwz rl,-4(r31) // restore original rl

1.rfe // return from exception

© 2022 Imperas Software Limited.www.OVPworld.org Page 131 of 321

OVP Processor Modeling Guide

-org 0x10000

-global
_start:

loopl:

-global
exit:

incEPC:

L11177777777777777777777777777777/7777///7777////7777////7/7////7//7//7/7/
// APPLICATION CODE (AT 0x10000)
L11177777777777777777777777777777/7777///7777////7777///77/7////7//77//7/7/

_start
1_ori r30,r0,0 // r30 = 0 (counts illegal instructions)
1._ori r31,r0,0 // r31 = 0 (stack pointer)

1_mtspr ro,r0,0x20 // clear epc

1///1/////7/7///7//7/
// SUPERVISOR MODE LOOP TEST
1///1/7/7/7/7////////7///7//7/

1._ori rl,r0,2 // r1l = 2 (loop count)
1.mfspr r2,r0,0x20 // get epc in r2
1.addi r2,r2,1 // increment r2

1 _mtspr ro,r2,0x20 // set epc from r2
I.addi ri,rl,-1 // decrement ril
1._sfeqi ri1,0 // r1==07?

1.bnf loopl // go if not

1_nop // (delay slot)

11//1/777777777777/7/77/7/77////7//7///7///////////////////////////////7//7777
// SUPERVISOR MODE FUNCTION CALL TEST
1/1//1/777777777777/777/7/77///7/7//7///7///////////////////////////////7//77/77

1_jal incEPC // IncEPC (in supervisor mode)
1_nop // (delay slot)
1 _mtspr ro,r0,0x11 // clear supervisor mode

L111717777777777777777777777777777/7777///7777////7777///77//77////7//7//7/7/
// USER MODE FUNCTION CALL TEST
L111777777777777777777777777777777/7777///7777////7777///77/7////7//7//7/7/

1_jal inckEPC // IncEPC (in user mode)

1._nop // (delay slot)

1.rfe // *ILLEGAL* return from exception
exit

1._nop

1///1/7///7/7/////7///7///7//7/
// FUNCTION CALLED IN BOTH USER AND SUPERVISOR MODE
1/1//1//7///777/7////7////7//7//

1_mfspr r2,r0,0x20 // get epc in r2
1.addi r2,r2,1 // increment r2

1 _mtspr ro,r2,0x20 // set epc from r2
1_jr ro // return

1.nop // (delay slot)

This example begins execution at _start in supervisor mode. It then goes twice round
loop1l, incrementing the value of register epc (SPR index 0x20) each time. These
instructions are legal because the processor is in supervisor mode.

After the second loop iteration, the processor calls function incepPc, which also
increments register epc.

It then clears supervisor mode with the instruction:

© 2022 Imperas Software Limited.www.OVPworld.org Page 132 of 321

OVP Processor Modeling Guide

1 _mtspr ro,r0,0x11 // clear supervisor mode

Then, in user mode, the processor attempts to execute I . rfe. This fails, because it is now
in user mode, and the handler at address 0x700 is executed. The handler updates the
saved epc to skip the faulting instruction and returns (of course, a real handler would do
something more useful than this). Finally, it calls incEPC again. The attempts to read and
write epc in this function also fail, calling the handler.

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe -—trace \
-—program application/asmtest.OR1K.elf

The output from this should be as follows (execution in the illegal instruction exception
handler is highlighted in bold):

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000000010000: I1.ori r30,r0,0x0

Info “cpul®, 0x0000000000010004: 1.ori r31,r0,0x0

Info "cpul®, 0x0000000000010008: I.mtspr r0,r0,32

Info “cpul®, 0x000000000001000c: 1.ori rl,r0,0x2

Info "cpul®, 0x0000000000010010: I.mfspr r2,r0,32

Info “cpul®, 0x0000000000010014: 1.addi r2,r2,0x1

Info "cpul®, 0x0000000000010018: I.mtspr r0,r2,32

Info “cpul®, 0x000000000001001c: I1.addi rl,rl,OxFFFrrfff
Info "cpul®, 0x0000000000010020: I.sfeqi r1,0x0

Info "cpul®, 0x0000000000010024: 1.bnf 0x00010010

Info "cpul®, 0x0000000000010028: 1.nop 0x0

Info "cpul”, 0x0000000000010010: I.mfspr r2,r0,32

Info “"cpul®, 0x0000000000010014: 1.addi r2,r2,0x1

Info "cpul®, 0x0000000000010018: I.mtspr r0,r2,32

Info “"cpul®, 0x000000000001001c: I1.addi rl,rl,OxfFFErfrfff
Info "cpul®, 0x0000000000010020: l.sfeqi ri1,0x0

Info "cpul®, 0x0000000000010024: 1.bnf 0x00010010

Info “cpul®, 0x0000000000010028: 1I.nop 0x0
Info "cpul®, 0x000000000001002c: I.jal 0x00010048
Info “cpul®, 0x0000000000010030: I.nop 0x0

Info "cpul®, 0x0000000000010048:
Info "cpul”, 0x000000000001004c:
Info “"cpul®, 0x0000000000010050:
Info "cpul”, 0x0000000000010054:
Info “cpul®, 0x0000000000010058:
Info "cpul®, 0x0000000000010034:
Info “cpul®, 0x0000000000010038:
Info "cpul®, 0x000000000001003c:
Info “cpul®, 0x0000000000010048:
Info "cpul®, 0x0000000000000700:
Info “cpul®, 0x0000000000000704:
Info "cpul®, 0x0000000000000708:
Info “cpul®, 0x000000000000070c:
Info "cpul®, 0x0000000000000710:
Info “cpul®, 0x0000000000000714:
Info "cpul®, 0x0000000000000718:
Info “cpul®, 0x000000000001004c:
Info “"cpul®, 0x0000000000010050:
Info "cpul®, 0x0000000000000700:
Info “"cpul®, 0x0000000000000704:

-mfspr r2,r0,32

-addi r2,r2,0x1

-mtspr r0,r2,32

gr r9

-nop 0x0

-mtspr r0,r0,17

-jal 0x00010048

-nop 0x0

-mfspr r2,r0,32

.addi r30,r30,0x1

-sw OxFFfFffffc(r3l),rl
-mfspr r1,r0,32

.addi rl,rl,0x4

-mtspr r0,r1,32

-lwz r1,0xFFFffffc(r3l)
.rfe

.addi r2,r2,0x1

-mtspr r0,r2,32

-addi r30,r30,0x1

-sw OxFFFfFfffc(r3l),rl

© 2022 Imperas Software Limited.www.OVPworld.org Page 133 of 321

OVP Processor Modeling Guide

Info “cpul®, 0x0000000000000708:
Info "cpul®, 0x000000000000070c:
Info “cpul®, 0x0000000000000710:
Info "cpul®, 0x0000000000000714:
Info “cpul®, 0x0000000000000718:
Info "cpul®, 0x0000000000010054: 1.jr r9

Info "cpul®, 0x0000000000010058: 1._nop 0x0

I.mfspr r1,r0,32
|
|
|
|
|
|
Info "cpul®, 0x0000000000010040: I.rfe
|
|
|
|
|
|
|

.addi rl,rl,0x4

-mtspr r0,rl1,32

-lwz rl,OxFFFffrffc(r3l)
.rfe

Info “cpul®, 0x0000000000000700: I.addi r30,r30,0x1
Info "cpul®, 0x0000000000000704: 1.sw OxFFfffffc(r3l),rl
Info “cpul®, 0x0000000000000708: I.mfspr r1,r0,32
Info "cpul®, 0x000000000000070c: 1.addi rl,rl,0x4
Info “cpul®, 0x0000000000000710: I.mtspr rO,r1,32
Info "cpul®, 0x0000000000000714: 1.lwz rl,0xfFFFfffc(r3l)
Info “"cpul®, 0x0000000000000718: 1.rfe
Info "cpul®, 0x0000000000010044: 1.nop 0x0
Processor "cpul® terminated at "exit", address 0x10044
RO : 00000000 R1 : 00000000 R2 : 00000004 R3 : deadbeef
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 00010040 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 00000003 R31: 00000000
PC : 00010048 SR : 00008000 ESR: 00008000 EPC: 00010044
BF:0 CF:0 OF:0

processor has executed 56 instructions

13.7 Testing I.mtspr and I .mfspr Performance
When implementing 1.mtspr and I .mfspr, we optimized the case where the index
register is ro to improve performance. We can test the effect of this as follows.

13.7.1 Increase application/asmtest.S to Loop Count
Modify line 44 of application/asmtest.S to greatly increase the number of iterations
of loop1 as follows:

1 _movhi r1,0x1000 // r1l = 0x10000000 (loop count)

This will cause the loop to be executed over 268 million times, which should take long
enough to get meaningful performance numbers.

Then rebuild the test case and rerun (without tracing enabled):

make -C application
time platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The output from this should be:

Warning (PC_NRI) No register information callback given for processor “cpul”
Processor "cpul® terminated at "exit", address 0x10040

RO - 00000000 R1 - 00000000 R2 - 10000002 R3 : deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org Page 134 of 321

OVP Processor Modeling Guide

R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 00010040 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 00000003 R31: 00000000
PC : 00010048 SR : 00008000 ESR: 00008000 EPC: 00010044
BF:0 CF:0 OF:0

processor has executed 1879048234 instructions

On a 3.5GHz Intel i7-4770K processor, time shows this takes about 1.87 seconds to
execute 1,879,048,234 OR1K instructions, giving a simulation speed for this example of
about 1,000 simulated MIPS.

13.7.2 Use Index Register r31

Now modify the inner loop in application/asmtest.S to use r31 as the index register
instead of ro (r31 happens to hold the value zero in this test case, but isn’t hard wired to
zero like ro):

1 _mfspr r2,r31,0x20 // get epc in r2
1.addi r2,r2,1 // increment r2
1_mtspr r31,r2,0x20 // set epc from r2
1.addi ri,rl,-1 // decrement rl
1._sfeqi ri1,0 // r1==07?

1_bnf loopl // go if not

1.nop // (delay slot)

This will cause the identification of the special purpose register to update to be deferred
to run time, using calls to vmic_MTSPR and vmic_MTSPR, instead of calling the specific
register SPR register access routines directly (e.g. vmic_MTSPR_SYS_SR).

Then rebuild the test case and rerun (again, without tracing enabled):

make —C application
time platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

Output is identical to before, but the run time is now 4.0 seconds, giving a simulation
speed for this example of about 470 simulated MIPS. Although the change we made
caused only a small amount of extra C code to be executed at run time (an extra function
call and case statement) simulation performance is 530 MIPS slower than before.

It is very important when creating a high-performance processor model to do as much
work as possible at morph time and as little as possible at run time. The difference in
simulation speed can be dramatic.

13.8 Passing Register Arguments to Embedded Calls

The implementation of I.mtspr and 1.mfspr in this chapter made extensive use of
embedded calls, defined by morph-time calls to vmimtCall and vmimtCal 1Attrs. When

© 2022 Imperas Software Limited.www.OVPworld.org Page 135 of 321

OVP Processor Modeling Guide

creating such functions there is often an implementation choice: when passing a GPR
argument or assigning a GPR result, should the value of the register be used, or its index?

Recall that the embedded call to get the value of the sr register (when the SPR index is
known at morph-time) was implemented like this:

static void morphMFSPR_ra_O(vmiReg rd, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmimtArgProcessor();
vmimtCalIResult((vmiCallFn)vmic_MFSPR_SYS SR, OR1K BITS, rd);
break;

. lines omitted .

}

And that the implementation of vmic_MFSPR_SYS_SR was like this:

static Uns32 vmic_MFSPR_SYS_SR(orlkP orilk) {
iF(VIN_SUPERVISOR_MODE(orik)) {
orlkTakeException(orlk, OR1K EXCPT_ILL, 0);
return O;

} else {
return orlkGetSR(orlk);
by

}

In other words, we chose to return the value of register SR from the embedded function
and do the final result assignment by means of the vmimtCal IResul t target. We could
instead have structured the code to pass the index of the result register like this:

static void morphMFSPR_ra 0(Uns32 rd, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmimtArgProcessor();
vmimtArguns32(rd) ;
vmimtCall ((vmiCallFn)vmic_MFSPR_SYS_SR);
break;

. lines omitted .

}

And perform the update of the result register in vmic_MFSPR_SYS_SR, like this:

static void vmic_MFSPR_SYS SR(or1kP orlk, Uns32 rd) {
iF(TIN_SUPERVISOR_MODE(orl1k)) {
orlkTakeException(orlk, OR1K_EXCPT_ILL, 0);
return O;
} else if(rd) {
orlk->regs[rd] = orlkGetSR(orilk);
}

© 2022 Imperas Software Limited.www.OVPworld.org Page 136 of 321

OVP Processor Modeling Guide

}

As a general rule, it is much better not to use index-based code like this, for several
reasons:

1. The JIT code generator can create better code if it is aware of the arguments and
results of each embedded call (especially if calls are defined to be pure, i.e. to
have VMCA_PURE call attributes — pure functions return a result dependent only on
their arguments).

2. The code is often simpler. In the above example, the callback function had to take
special action to ensure that ro is never updated (since this register is hard-wired
to zero). This happens automatically in the vmimtCal IResult-based version.

3. When the model is enhanced to support instruction attributes (see a later chapter),
much more information is automatically available.

© 2022 Imperas Software Limited.www.OVPworld.org Page 137 of 321

OVP Processor Modeling Guide

14 Modeling Mode-Dependent Behavior (Part 2)

In chapter 12.4, we saw how to model mode-dependent processor instructions with an
example running at up to 1,000 simulated MIPS. This chapter shows how to get even
faster performance on the same test case.

One significant problem with the implementation of the I.rfe, I .mtspr and I.mfspr
instructions in chapter 12.4 is that they are coded to implement both kernel and user
mode, and they select which behavior to perform at run time. The timing experiments at
the end of the last chapter showed that it is possible to get dramatically faster
performance if work can be moved from run time to morph time. Is it somehow possible
to perform the supervisor-mode check at morph time to improve performance of these
instructions?

Recall that the instruction morpher callback function defined using the VM1_MORPH_FN
macro is passed the current processor as one of its arguments, which is then saved in the
orlkMorphState structure:

VMI_MORPH_FN(orlkMorphilnstruction) {

orlkP orlk
orlkMorphState state

(or1lkP)processor;

{{0}}:

// decode instruction
orlkDecode(orlk, thisPC, &state.info);

// get morpher attributes for the decoded instruction and initialize other
// state fields

state.attrs = &orlkMorphTable[state. info.type];

state.orilk = orilk;

state.inDelaySlot = inDelaySlot;

. lines omitted . . .

}

We know that we can determine whether an orlk is in supervisor mode using the
IN_SUPERVISOR_MODE macro. Therefore, we can tell when morphing code whether user
or supervisor mode code must be generated, which is exactly what we require. We will
now see how this can be used to generate a faster model.

14.1 The Template Fast Modal Model

A template fast model for the OR1K processor implementing modal instructions can be
found in:

$IMPERAS_HOME/Examples/Models/Processor/12.orl1kBehaviorModeDict

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/12.orlkBehaviorModeDict .

© 2022 Imperas Software Limited.www.OVPworld.org Page 138 of 321

OVP Processor Modeling Guide

Compile the model, harness and application using the make command:

cd 12.orlkBehaviorModeDict
make OPT=1

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

14.2 Remove Temporary Flag - orikStructure.h

The temporary flag tempFlag introduced in the previous chapter is no longer required
and has been deleted.

14.3 Mode-Dependent JIT Functions - orlkMorph.c

Function morphRFE has been recoded to optimize for the current processor supervisor
mode as follows:

static OR1K_MORPH_FN(morphRFE) {
i T(IN_SUPERVISOR_MODE(state->orlk)) {

// set sr from esr (must call orlkSetSR to do this)
vmimtArgProcessor();

vmimtArgReg(OR1K_BITS, OR1K _ESR);

vmimtCall ((vmiCallFn)orlkSetSR) ;

// return to exception program counter
vmimtUncondJumpReg(0, OR1K_EPC, VMI_NOREG, vmi_JH_ RETURNINT);

} else {

// take illegal instruction exception

vmimtArgProcessor();

vmimtArguns32(OR1K_EXCPT_ILL);

vmimtArguns32(0);

vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;

}

What this does is as follows:

1. If the processor is currently in supervisor mode, it emits code to update register sr
from register esr and return to the address in register epc, exactly as in the
previous example.

2. Otherwise (the processor is in user mode), it emits code to jump to the illegal
instruction exception vector.

© 2022 Imperas Software Limited.www.OVPworld.org Page 139 of 321

OVP Processor Modeling Guide

Functions morphMTSPR and morphMFSPR have also been changed in an analogous way.
Here is the new implementation of morphMTSPR:

static OR1K_MORPH_FN(morphMTSPR) {

orlkP orlk = state->orlk;

vmiReg ra = getGPR(state->info.rl);
vmiReg rb = getGPR(state->info.r2);
Uns32 k = state->info.c;

iT(VMI_ISNOREG(ra)) {

// faster variant when ra is rO - select either supervisor mode or user
// mode function, based on current mode setting in sr
if(IN_SUPERVISOR_MODE(ori1k)) {

morphMTSPR_ra_0_SM(orilk, rb, k);
} else {

morphMTSPR_ra_0_UM(orlk, rb, k);
}

} else {

// slower variant when ra is not rO
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, ra);
vmimtArgReg(OR1K_BITS, rb);
vmimtArguns32(k);

// select either supervisor mode or user mode callback, based on
// current mode setting in sr
iF(IN_SUPERVISOR_MODE(ori1k)) {

vmimtCall ((vmiCallFn)vmic_MTSPR_SM);

} else {
vmimtCal I ((vmiCallFn)vmic_MTSPR_UM);
}

}

So user and supervisor mode behaviors are implemented separately. Here is the
supervisor-mode function used when the SPR register to which to assign is known at
morph time:

static void morphMTSPR_ra_0O_SM(orlkP orilk, vmiReg rb, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)orlkSetSR) ;
break;

case SPR_OFF(SPR_SYS,SYS_EPC):
vmimtMoveRR(OR1K_BITS, OR1K_EPC, rb);
break;

case SPR_OFF(SPR_SYS,SYS EEAR):
vmimtMoveRR(OR1K_BITS, OR1K_EEAR, rb);
break;

© 2022 Imperas Software Limited.www.OVPworld.org Page 140 of 321

OVP Processor Modeling Guide

case SPR_OFF(SPR_SYS,SYS ESR):
vmimtMoveRR(OR1K_BITS, OR1K_ESR, rb);
break;

default:
morphMTSPR_ra_0_Default(sprNum);
break;

}

The morph-time function vmimtMoveRR is used here to specify a direct register-to-register
assignment in three cases (no embedded call is required). The user-mode function simply
calls the exception handler as follows:

static void morphMTSPR_ra 0_UM(orlkP orlk, vmiReg rb, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
case SPR_OFF(SPR_SYS,SYS_EPC):
case SPR_OFF(SPR_SYS,SYS EEAR):
case SPR_OFF(SPR_SYS,SYS_ESR):
vmimtArgProcessor();
vmimtArguns32(OR1K_EXCPT_ILL);
vmimtArguns32(0);
vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;
break;

default:
morphMTSPR_ra_0_Default(sprNum);
break;

}

14.4 Testing Optimized lllegal Instruction Exceptions
Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest.OR1K.elf

The output from this should be as follows (execution in the illegal instruction exception
handler is highlighted in bold):

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000000010000: I1.ori r30,r0,0x0

Info “cpul®, 0x0000000000010004: 1.ori r31,r0,0x0

Info "cpul®, 0x0000000000010008: I.mtspr r0,r0,32

Info “cpul®, 0x000000000001000c: 1.ori rl,r0,0x2

Info “"cpul®, 0x0000000000010010: I.mfspr r2,r0,32

Info "cpul”, 0x0000000000010014: 1.addi r2,r2,0x1

Info "cpul®, 0x0000000000010018: I.mtspr r0,r2,32

Info "cpul”, 0x000000000001001c: I1.addi rl,rl,OxFFFFrfef
Info “"cpul®, 0x0000000000010020: I.sfeqi r1,0x0

Info "cpul®, 0x0000000000010024: 1.bnf 0x00010010

Info "cpul®, 0x0000000000010028: 1._nop 0x0

Info "cpul”, 0x0000000000010010: I.mfspr r2,r0,32

Info “"cpul®, 0x0000000000010014: 1.addi r2,r2,0x1

Info "cpul”, 0x0000000000010018: I.mtspr r0,r2,32

© 2022 Imperas Software Limited.www.OVPworld.org Page 141 of 321

OVP Processor Modeling Guide

Info "cpul®, 0x000000000001001c:
Info "cpul®, 0x0000000000010020:
Info "cpul®, 0x0000000000010024:
Info "cpul®, 0x0000000000010028:
Info “"cpul®, 0x000000000001002c:
Info "cpul®, 0x0000000000010030:
Info “"cpul®, 0x0000000000010048:
Info "cpul®, 0x000000000001004c:
Info “cpul®, 0x0000000000010050:
Info "cpul®, 0x0000000000010054:
Info “cpul®, 0x0000000000010058:
Info "cpul®, 0x0000000000010034: I.mtspr rO0,r0,17

Info “cpul®, 0x0000000000010038: 1_jal 0x00010048

1.addi rl,rl,OxFFFFFfff
|
|
|
|
|
|
|
|
|
|
|
|
Info "cpul®, 0x000000000001003c: I.nop 0x0
|
|
|
|
|
|
|
|
|
|
|
|
|

.sfeqi ri1,0x0
-bnf 0x00010010
-nop 0x0

-jal 0x00010048
-nop 0x0

-mfspr r2,r0,32
.addi r2,r2,0x1
-mtspr r0,r2,32
gr ro

-nop 0x0

Info “cpul®, 0x0000000000010048: I.mfspr r2,r0,32

Info "cpul®, 0x000000000001004c: 1.addi r2,r2,0x1

Info “cpul®, 0x0000000000010050: I.mtspr rO0,r2,32

Info "cpul®, 0x0000000000010054: 1.jr r9

Info “"cpul®, 0x0000000000010058: 1.nop 0x0

Info "cpul®, 0x0000000000010040: I.rfe

Info "cpul®, 0x0000000000000700: 1.addi r30,r30,0x1

Info “"cpul®, 0x0000000000000704: 1.sw OxFFffFfffc(r3l),rl
Info "cpul”, 0x0000000000000708: I.mfspr rl1,r0,32

Info “"cpul®, 0x000000000000070c: 1.addi rl,rl,0x4

Info "cpul”, 0x0000000000000710: Il.mtspr rO0,rl1,32

Info “"cpul®, 0x0000000000000714: 1.1wz r1,0xfFFFFfFffc(r3l)
Info "cpul®, 0x0000000000000718: I1.rfe

Info “"cpul®, 0x0000000000010044: 1._nop 0x0

Processor "cpul® terminated at "exit", address 0x10044

RO : 00000000 R1 : 00000000 R2 : 00000004 R3 : deadbeef
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 00010040 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 00000001 R31: 00000000
PC : 00010048 SR : 00008000 ESR: 00008000 EPC: 00010044
BF:0 CF:0 OF:0

processor has executed 42 instructions

Comparing with the log output from chapter 12.4, it is obvious that something went
wrong: only 42 instructions have been executed instead of 56, and the exception vector
was executed only once instead of three times. The problem is that the application
function incEPC at address 0x00010048 is called both in supervisor and user mode.
When it is called first, the processor is in supervisor mode: at this point, a fragment of
translated native code is created for the function body and saved in the processor code
dictionary. On the second call (in user mode) the same fragment is re-executed. This is
wrong because the code fragment was specific to supervisor mode.

14.5 Using Multiple Code Dictionaries

One way to solve the problem we have seen in this example is to use two code
dictionaries: one for supervisor mode code fragments and one for user mode code

© 2022 Imperas Software Limited.www.OVPworld.org Page 142 of 321

OVP Processor Modeling Guide

fragments. To specify that we need multiple dictionaries, the list of dictionary names in
orlkAttrs.c has been changed to:

static const char *dictNames[] = {"SUPERVISOR", "USER", O0};

This definition says that we want this processor to have two dictionaries, the first (index
0) called SUPERVISOR and the second (index 1) called USER”.

When a processor starts executing it initially uses the first dictionary in this list (in this
case SUPERVISOR). However, the current dictionary can be switched at any time using the
VMI Run Time API function vmi rtSetMode:

void vmirtSetMode(vmiProcessorP processor, Uns32 mode);

The mode argument in this prototype is the zero-based offset into the dictNames list of
the new dictionary. So to switch to the supervisor mode dictionary, we would use:

vmirtSetMode((vmiProcessorP)orlk, 0);

And to switch to the user mode dictionary, we would use:

vmirtSetMode((vmiProcessorP)orlk, 1);

To use the new supervisor and user mode dictionaries, or1kUtils.c has been updated as
follows:

static void setSRSwitchMode(orlkP orilk, Uns32 value) {

Uns32 oldSM
Uns32 newSM

orlk->SR & SPR_SR_SM;
value & SPR_SR_SM;

// set the SR field
orlk->SR = value;

// switch mode if required
if(MODAL && (oldSM !'= newSM)) {

orlkMode newMode = newSM ? OR1K MODE_SUPERVISOR : OR1K MODE USER;
vmirtSetMode((vmiProcessorP)orlk, newMode);

bs
void orlkSetSR(orlkP orlk, Uns32 value) {

// it is never possible to clear the fixed-one (FO) bit
value |= SPR_SR_FO;

// set the SR
setSRSwitchMode(orlk, value);

// set the current branch flag, carry flag and overflow flag from the SR
orlk->branchFlag = GET_BIT(value, SPR_SR F);

" The processor model can have as many dictionaries as required (as long as there is at least one). The
number of dictionaries is the number of strings in this zero-terminated array.

© 2022 Imperas Software Limited.www.OVPworld.org Page 143 of 321

OVP Processor Modeling Guide

GET_BIT(value, SPR_SR CY);
GET_BIT(value, SPR_SR OV);

orlk->carryFlag
orlk->overflowFlag

}

void orlkEnterSupervisorMode(orlkP orlk) {

const Uns32 clearBits = (

SPR_SR_IEE | // interrupt enable
SPR_SR_TEE | // tick timer enable
SPR_SR_DME | // data MMU enable
SPR_SR_IME | // instruction MMU enable
SPR_SR_OVE // overflow exception enable

);

// save the current status register in esr
orlk->ESR = orilkGetSR(or1lk);

// mask out the "clear® bits and mask in supervisor mode
setSRSwitchMode(orlk, (orlk->ESR & ~clearBits) | SPR_SR_SM);

}

The existing functions orikSetSR and or1kEnterSupervisorMode have been modified
so that they no longer update the SR field directly, but instead call a new function
setSRSwitchMode. This new function determines whether the Sm (supervisor mode) bit in
the sr register has changed,; if it has, it calls vmi rtSetMode to switch code dictionaries.
The index numbers for each mode are specified in orikStructure.h as:

typedef enum orlkModeE {
OR1K_MODE_SUPERVISOR,
OR1K_MODE_USER,
OR1K_MODE_LAST

} orlkMode;

To use the new modal code, we need to recompile the processor model with MODAL
defined:

make clean
make OPT=1 MODAL=1

And then rerun the example:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest.OR1K.elf

The output from this should now be correct: 56 instructions executed and three calls to
the exception handler.

Now that the model is functionally correct, we should determine what effect the changes
have had on its performance. To do this, redo exactly the steps described in section 13.7.
On a 3.5GHz Intel i7-4770K processor the results are as follows:

1. Using ro for the index register: 1,879,048,234 instructions in 0.57 seconds (3,300
simulated MIPS);

© 2022 Imperas Software Limited.www.OVPworld.org Page 144 of 321

OVP Processor Modeling Guide

2. Using r31 for the index register: 1,879,048,234 instructions in 4.3 seconds (437
simulated MIPS).

The first example (where the SPR is known at morph time) is vastly quicker — over three
billion simulated instructions per second! Performance is similar for the second example -
437 simulated MIPS, as compared to 470 previously.

14.6 Cautionary Notes about Code Dictionaries

Although the use of multiple code dictionaries has significantly improved performance in
these examples, this technique is not a panacea and should be used with discretion. This
section describes the issues related to code dictionaries in more detail.

14.6.1 vmirtSetMode is Slow

Although we vastly accelerated 1 .mtspr and I .mfspr, that acceleration has a cost: we
have added a call to vmi rtSetMode, which slows down any instruction that causes a
mode switch (i.e. which updates register sr). This can be seen using a small OR1K test
case as follows:

.org 0xc00
L1/1/17777777777777777777777777777/777//7/7/7/7/7/777/7/7/7/7/7/7/77/////77777777777
// SYS VECTOR (AT 0xc00)
L1/1/177777777777777777777777777777/777/7/7/77/7/77////7/7/7/7/7/7/7///7/77777777777
1_rfe // return from exception (SWITCHES MODE)

-org 0x10000
L1/1/17777777777777777777777777777/77//7/77/77/7/77/7///7/7//7/77///7/77777777777
// APPLICATION CODE (AT 0x10000)
/1/1/17777777777777777777777777777/777/7/7/7/77/777/7///7/7/7/7/7/7/////77/777777777
-global _start

_start:

1_mtspr ro,r0,0x11 // clear supervisor mode

1 _movhi r1,0x0100 // r1l = 0x01000000 (loop count)
loopl:

1._sys 0 // call sys (SWITCHES MODE)

1.addi ri,rl,-1 // decrement ril

1._sfeqi ri1,0 // r1==07?

1_bnf loopl // go if not

1._nop // (delay slot)

-global exit
exit:
1_nop

This example performs a tight loop of six instructions of which two cause a mode switch.

On a 3.5GHz Intel i7-4770K processor, this executes 100,663,299 simulated instructions
in 1.58 seconds using the current model (a simulated speed of only 64 MIPS). On the
processor model used in chapter 12.4, the run time is 1.22 seconds (a simulated speed of
83 MIPS).

Whether performance is better with multiple dictionaries therefore depends on the
frequency of mode switching instructions compared with the frequency of instructions

© 2022 Imperas Software Limited.www.OVPworld.org Page 145 of 321

OVP Processor Modeling Guide

that can be optimized when there are multiple dictionaries: in some cases, application
code may actually run slower when multiple dictionaries are used.

14.6.2 Model Code is More Complicated

The model needs to be carefully designed to ensure that dictionary code is always
consistent with the simulated processor state. This is generally fairly easy as long as any
code that could affect the mode is channeled through a single routine (setSRSwitchMode
in this case). It is easy to get difficult-to-find bugs in poorly-structured models where
calls to vmirtSetMode are not carefully controlled. As a general rule, there should only
be one call to vmirtSetMode in a model, and this should be right next to code that
updates the processor model register that affects the mode.

© 2022 Imperas Software Limited.www.OVPworld.org Page 146 of 321

OVP Processor Modeling Guide

15 Implementing a Tick Timer

We have already seen in chapter 12 how synchronous exceptions (for example, alignment
exceptions) can be efficiently modeled. We will now see how to model asynchronous
exceptions, or interrupts. The VMI modeling API allows generic external exception
behavior to be specified, as we will see in chapter 16. Additionally, it allows tick timer
exceptions to be modeled very efficiently: the subject of this chapter.

15.1 ORI1K Tick Timer Overview

The OR1K tick timer is controlled by two processor registers, the tick timer mode register
(TTMR) and the tick timer count register (TTCR). These two SPR registers may be read and
written using the I.mfspr and 1.mtspr instructions we have seen previously (TTMR has
SPR index 0x5000, TTCR has SPR index 0x5100).

The TTCR register is a 32-bit register that is incremented on each cycle when enabled by
the TTMR register, as described below.

The TTMR register is subdivided into fields as follows:

Bit 31:30 29 28 27:0
Identifier M IE IP TP
R/W R/W R/W R R/W

The fields have the following meanings:

TP Time Period

0x0000000: shortest comparison time period

OxFFFFFFF. longest comparison time period
IP Interrupt Pending

0: tick timer interrupt is not pending

1: tick timer interrupt is pending

(1P can be cleared by writing 0 with I .mtspr, but may not be set)
IE Interrupt Enable

0: tick timer does not generate interrupt

1: tick timer generates interrupt when TTMR[TP] matches TTCR[27:0]
M Mode

00: timer is disabled

01: timer is restarted when TTMR[TP] matches TTCR[27:0]

10: timer stops when TTMR[TP] matches TTCR[27:0]

11: timer does not stop when TTMR[TP] matches TTCR[27:0]

(if the timer is stopped in mode 10, writing to TTCR restarts it).

In our model, both TTCR and TTMR will be set to zero at reset, so the tick timer will
initially be disabled.

© 2022 Imperas Software Limited.www.OVPworld.org Page 147 of 321

OVP Processor Modeling Guide

15.2 Tick Timer Modeling Considerations

In true hardware, tick timers usually count processor cycles. In architectural models that
are not cycle accurate, a common approximation is instead to count processor
instructions. We will make this approximation in this OR1K model.

The tick timer could be modeled directly using the VMI API. At the start of every
instruction, we could, for example, emit a call to a function that does the following:
1. Determine whether the counter is enabled by TTMR[M].
2. If so, increment TTCR and compare TTCR[27:0] against TTMR[TP].
3. If TTCR[27:0] and TTMR[TP] match, update state to stop the counter (if TTMR[M]
is 10) and set TTMRL1P] (if TTMRLIE] is set).
4. If TTMRLIP]Jand SRLTEE] are set, make a call to the exception vector at 0x500.

This would work perfectly well, but would be very slow. A much more efficient model
can be made by using a combination of three routines from the VMI Run Time Function
API:

Uns64 vmirtGetlCount(vmiProcessorP processor);

vmirtGetlCount returns a 64-bit count giving the total number of instructions that the
processor has executed since simulation started.

void vmirtSetlCountlnterrupt(vmiProcessorP processor, Uns64 iDelta);

vmirtSetlCountinterrupt causes a model callback function to be executed after
iDelta more processor instructions have been simulated. The callback function is used to
indicate whether the counter expiry alters the processor’s behavior (whether an exception
handler should be called, for example).

void vmirtClearlICountinterrupt(vmiProcessorP processor);

vmirtClearlICountinterrupt disables any instruction count interrupt previously
enables using vmirtSetlCountinterrupt.

A much more efficient model can be built using these functions as follows:

1. When TTCR or TTMR are written, determine the implied timer expiry count —in
other words, after what count would the timer expire given the current SPR
settings?

2. Use vmirtSetlCountinterrupt to schedule a model callback after that count, or
vmirtClearICountInterrupt to deschedule the callback if required.

3. When the callback is activated, schedule a call to the tick timer exception vector if
the exception is enabled.

4. Do not model the TTCR register directly by incrementing it each instruction.
Instead, derive the value if TTCR when requested using the processor instruction
count returned by vmirtGetlCount (in a similar manner as previously used for
the status register SR).

© 2022 Imperas Software Limited.www.OVPworld.org Page 148 of 321

OVP Processor Modeling Guide

Following sections describe the OR1K tick timer modeled using this approach.

15.3 The Template Tick Timer Model

A template model for the OR1K processor implementing a tick timer can be found in:

$IMPERAS_HOME/Examples/Models/Processor/13.orlkBehaviorTickTimer

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/13.orlkBehaviorTickTimer .

Compile the model, harness and application using the make command:

cd 13.orlkBehaviorTickTimer
make OPT=1

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

15.4 Adding Timer Registers - orikStructure.h
The OR1K processor structure has been updated as follows:

typedef struct orilkS {

Bool carryFlag; // carry flag
Bool overflowFlag; // overflow flag
Bool branchFlag; // branch flag
Uns32 regs[OR1K_REGS]; // basic registers
Uns32 SR; // status register
Uns32 ESR; // exception status register
Uns32 EPC; // exception program counter
Uns32 EEAR; // exception effective address register
Uns32 TTCR; // tick timer count register
Uns32 TTCRSetCount; // cycle count when TTCR set
Bool timerRunning; // whether the timer is running
union { // tick timer mode register
Uns32 TTMR;
struct {
Uns32 TTMR_TP: 28; // timeout count
Uns32 TTMR_IP: 1; // interrupt pending
Uns32 TTMR_1E: 1; // interrupt enable
Uns32 TTMR_M : 2; // timer mode

};
}:

© 2022 Imperas Software Limited.www.OVPworld.org Page 149 of 321

OVP Processor Modeling Guide

vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

We have added fields TTCR and TTMR that will be used to model the tick timer SPR
registers. There are also two fields TTCRSetCount and timerRunning which do not
correspond to processor registers but which are modeling artifacts: TTCRSetCount
records the processor instruction count when TTCR is written (required to derive the value
of TTCR in later instructions); timerRunning is a boolean that indicates whether or not
TTCR should be incremented each instruction.

15.5 Timer Register Read and Write - orikMorph.c

This file has been modified to enhance I..mtspr and 1.mfspr to allow reading and
writing of TTCR and TTMR registers. TTCR is accessed by calling two new functions,
orlkGetTTCR and or1kSetTTCR, implemented in orlkExceptions.c as described
below. TTMR is written by orikSetTTMR, also implemented in orlkExceptions.c.

15.6 Adding Timer Exceptions - orlkExceptions.c
This file implements most of the new functionality to implement tick timer exceptions.
The changes are as below.

typedef enum TTMRmodeE {
TTMR_DISABLED 0, // TTCR does not run

TTMR_RESTART = 1, // TITCR counts up until TTMR_TP, then restarts at O
TTMR_ONCE =2, // TICR counts up until TTMR_TP, then stops
TTMR_FREE =3 // TICR counts up, overflowing at max

} TTMRmode;

This enumeration gives names for the four timer modes.

inline static Uns32 getThislCount(orlkP orlk) {
return (Uns32)vmirtGetlCount((vmiProcessorP)orilk);
}

inline static Uns32 getTTCR(orl1lkP orlk) {
if(orlk->timerRunning) {
return orlk->TTCR - orlk->TTCRSetCount + getThislCount(orilk);

} else {
return orlk->TTCR;
}

}

getTTCR is an internal routine that returns the current effective value of the TTCR register.
If the timer is running, TTCR is derived as follows:

1. Get the TTCR value recorded with the model.

2. Subtract the processor instruction count when TTCR was written.

3. Add the current processor instruction count.
If the timer is not running, the current TTCR value stored in the model is used.

static void setTTCR(orlkP orlk, Uns32 TTCR) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 150 of 321

OVP Processor Modeling Guide

// update fields dependent on TTCR
orlk->TTCR = TTCR;
orlk->TTCRSetCount = getThislCount(orlk);

// if the timer is running, calculate the cycle delay to any interrupt
// (28 bits maximum) and schedule timer interrupt
if(orlk->timerRunning) {
Uns32 iCount = (orlk->TTMR_TP-TTCR-1) & OxXFFFffff;
vmirtSetlCountinterrupt((vmiProcessorP)orlk, iCount);

} else {

vmirtClearlCountinterrupt((vmiProcessorP)orlk);
}
}

setTTCR is an internal routine that is called when the TTCR register value is updated. It
first saves the new TTCR value in the processor model and saves the current processor
instruction count in TTCRSetCount (this is required so that the correct implied value of
TTCR can be derived later). Next, if the timer is running, it calculates the implied timeout
to counter expiry: the delta to the expiry instruction is the difference between TTMR_TP
and TTCR[27:0] (masked to 28 bits), so it calls vmirtSetlICountlinterrupt to schedule
a model callback after this number of instructions. If the timer is not running, it calls
vmirtClearlCountInterrupt to deschedule the callback.

Uns32 orlkGetTTCR(orlkP orilk) {
return getTTCR(or1k);
}

void orlkSetTTCR(orlkP orilk, Uns32 TTCR) {

// restart the timer if mode is TTMR_ONCE

if(orlk->TTMR_M==TTMR_ONCE) {
orlk->timerRunning = True;

ks

setTTCR(orlk, TTCR);
}

These two routines implement the public interface to read and write the TTCR register.
Note that writing TTCR when the timer mode is TTMR_ONCE causes the timer to be
restarted if it is stopped.

void orlkSetTTMR(orlkP orlk, Uns32 TTMR) {
Uns32 TTCR = getTTCR(or1k);

// update TTMR, recording old and new values of TTMR_IP
Bool oldIP orlk->TTMR_IP;

orlk->TTMR TTMR;

Bool newlP orlk->TTMR_IP;

// TTMR_IP must not be set by I._mtspr!
if(loldIP && newlP) {

orlk->TTMR_IP = O;
}

// start the timer if mode is TTMR_RESTART or TTMR_FREE
// (for TTMR_ONCE, timer is restarted by write to TTCR)

© 2022 Imperas Software Limited.www.OVPworld.org Page 151 of 321

OVP Processor Modeling Guide

if((orlk->TTMR_M==TTMR_RESTART) || (orlk->TTMR_M==TTMR_FREE)) {
orlk->timerRunning = True;
}

setTTCR(orlk, TTCR);
}

orlkSetTTMR implements the public interface to write TTMR. It first gets the current
derived value of TTCR. It then sets the TTMR field in the processor structure, ensuring that
the TTMR_IP bit does not change from 0 to 1 (I.mtspr cannot be used to set the interrupt
pending bit, only to clear it). If the new mode is either TTMR_RESTART or TTMR_FREE, the
timer is then restarted by setting timerRunning. Finally, setTTCR is called to reset the
implied TTCR to the original value.

TTCR must be read using getTTCR and restored using setTTCR around the body of this
routine for two reasons:

1. The way in which the derived value of TTCR is generated depends on the current
setting of timerRunning. If setTTCR is not called, the next call to getTTCR will
return a bogus value.

2. setTTCR is responsible for scheduling the instruction count callback, using
vmirtSetlCountinterrupt. If setTTCR isn’t called, the instruction count
callback will occur at the wrong time because changes to TTMR that affect the
timeout (for example, and update of TTMR[TP]) won’t be taken into account.

VMI_ICOUNT_FN(orlklICountPendingCB) {
orlkP orlk = (orlkP)processor;
switch(orlk->TTMR_M) {

case TTMR_RESTART:
// restart the timer from 0 on the NEXT instruction
setTTCR(orlk, -1);
break;

case TTMR_FREE:
// schedule the next interrupt event
setTTCR(orlk, getTTCR(or1lk));
break;

case TTMR_ONCE:
// stop the timer on the NEXT instruction count

orlk->TTCR = (getTTCR(orlk)+1) & OXFFFffff;
orlk->timerRunning = False;
break;

case TTMR_DISABLED:
// how did we get here?
VMI_ABORT("timer interrupt, but timer was disabled™);
break;

}

// if interrupt generation is enabled, set TTMR_IP
if(orlk->TTMR_IE) {

orlk->TTMR_IP = 1;
}

© 2022 Imperas Software Limited.www.OVPworld.org Page 152 of 321

OVP Processor Modeling Guide

// handle exception if required
if(takeTEE(ori1k)) {

vmirtDoSynchronousinterrupt(processor);
}

}

Function orikliCountPendingCB is the callback that is called when the instruction count
timeout specified by vmirtSetiCountinterrupt has elapsed. The function prototype is
specified in the VMI header file vmiTypes.h as follows:

#define VMI_ICOUNT_FN(_NAME) void _NAME(C \
vmiProcessorP processor,
vmiModelTimerP timer,
Uns64 iCount,
void *userData

e

)

The arguments to this function are as follows:

1. The processor on which the timer has expired,;

2. Anargument timer of type vmiMode I TimerP. This is an opaque type representing
the implicit processor timer which is managed by the functions
vmirtSetlCountinterrupt and vmirtClearlCountinterrupt;

3. Anargument iCount, giving the current processor instruction count when the
callback is activated,

4. A userData argument, which is always NULL for the implicit processor timer.

The function should update the processor state to reflect any changes caused by the timer
expiry (for example, setting a pending-timer-interrupt bit). If necessary, it should signal
that the processor needs to stop what it is doing and handle an exception by calling

vmi rtbDoSynchronousInterrupt, as described below.

Based on the current timer mode setting when the timer expires, the processor state is
updated in one of several ways:

case TTMR_RESTART:
// restart the timer from O on the NEXT instruction
setTTCR(orlk, -1);
break;

If the mode is TTMR_RESTART, the timer needs to restart from 0 at the next instruction. To
do this, the callback sets TTCR to -1 now; when the timer is incremented before the next
instruction is executed, it will have the value 0.

case TTMR_FREE:
// schedule the next interrupt event
setTTCR(orlk, getTTCR(or1lk));
break;

With the timer free-running (mode is TTMR_FREE), TTCR is reset to its current value. This
idiom ensures that another timeout is scheduled after 0x10000000 instructions.

case TTMR_ONCE:

© 2022 Imperas Software Limited.www.OVPworld.org Page 153 of 321

OVP Processor Modeling Guide

// stop the timer on the NEXT instruction count
orlk->TTCR (getTTCR(orl1lk)+1) & OxXFFFffff;
orlk->timerRunning False;

break;

With the timer in mode TTMR_ONCE, TTCR should be set to the value that it should hold
from the next instruction onwards. Because the callback is invoked before execution of
the faulting instruction, we need to increment the current value of TTCR.

Whether the timer expiry should cause a processor state change is determined by calling
takeTEE, which is defined earlier in orlkExceptions.c as follows:

inline static Uns32 isTEEPending(orlkP orilk) {
return (orlk->TTMR_IP && orlk->TTMR_IE);
}

inline static Bool isTEEEnabled(orlkP orlk) {
return (orlk->SR & SPR_SR TEE);
}

inline static Uns32 takeTEE(orlkP orlk) {
return iISTEEPending(orilk) && isTEEEnabled(orik);
}

In other words, state change is required if TTMR[1P] and SR[TEE] are both set (the timer
interrupt is both pending and enabled.

The instruction count timeout callback function oriklICountPendingCB must not itself
try to handle the interrupt (for example, by calling orikTakeException, which we
first saw in chapter 12). Instead, it must call vmirtDoSynchronousInterrupt to indicate
that a timer exception is pending. The timer interrupt must be handled by the instruction
fetch exception handler function, specified by the vMI_IFETCH_FN macro in vmiAttrs.h:

#define VMI_IFETCH_FN(_NAME) vmiFetchAction _NAME(\

vmiProcessorP processor, \
memDomainP domain, \
Addr address, \
Bool complete, \
Bool annulled \

)

Argument domain specifies the memory domain in which the fetch is being performed.
The value of the domain can be used to control mode-specific fetch features (for example,
how TLB mappings are performed). Argument annul 1ed specifies whether the fetch is
being made for an annulled delay slot instruction. Annulled instructions are sometimes
treated differently (for example, they sometimes do not cause TLB misses). These two
arguments are required to model some advanced features, but are not discussed further
here.

Type vmiFetchAction is defined in vmiTypes.h as follows:

typedef enum vmiFetchActionE {
VMI1_FETCH_NONE =0,

© 2022 Imperas Software Limited.www.OVPworld.org Page 154 of 321

OVP Processor Modeling Guide

VMI_FETCH_EXCEPTION_COMPLETE
VMI_FETCH_EXCEPTION_PENDING
} vmiFetchAction;

iy
2

The instruction fetch exception handler is called in two phases. In the first phase
(indicated by complete argument False), the function should determine whether there is
a pending exception on the processor that should prevent execution at the passed address
and instead cause control to be transferred to an exception handler. If there is such an
exception pending, the function should return vM1_FETCH_EXCEPTION_PENDING; otherwise,
it should return vmi_rFETCH_NONE. In this phase, the instruction fetch handler should not
update the processor state.

If the instruction fetch exception handler returns vmi1_FETCH_EXCEPTION_PENDING, then it
will subsequently be called again in a second phase (indicated by complete argument
True). At this point, it should make any changes to the processor state required to handle
the pending exception and return vMI_FETCH_EXCEPTION_COMPLETE to indicate that
exception state has been updated.

Typically, the instruction fetch handler is required to handle a variety of exceptions: tick
timer exceptions (as in this example), other external interrupts or synchronous exceptions
such as invalid execute permission or alignment. In other words, the instruction count
timeout callback is specific to timer exceptions, whereas the instruction fetch handler
covers all possible fetch exceptions.

The initial implementation of the instruction fetch handler is as follows:

VMI_IFETCH_FN(orlklFetchExceptionCB) {
orlkP orkl = (orlkP)processor;
if(takeTEE(ori1k)) {

// tick timer interrupt must be taken
if(complete) {
orlkTakeException(orlk, OR1K _EXCPT_TTI, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;
} else {
return VMI_FETCH_EXCEPTION_PENDING;
¥

} else if(address & 3) {

// handle misaligned fetch exception
if(complete) {
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_BUS, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;

} else {
return VMI_FETCH_EXCEPTION_PENDING;
}

} else if(lvmirtlsExecutable(processor, address)) {

// handle execute privilege exception
if(complete) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 155 of 321

OVP Processor Modeling Guide

orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K _EXCPT_IPF, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;

} else {
return VMI_FETCH_EXCEPTION_PENDING;

} else {

// no fetch exception
return VMI_FETCH_NONE;

}

For a tick timer exception, the fetch exception handler causes control to be transferred
immediately to the exception vector at TT1_ADDRESS without further execution of the
instruction at the current address.

We have also implemented the instruction fetch alignment exception, which transfers
control immediately to the exception vector at BUS_ADDRESS unless the fetch address is
aligned to a 4-byte boundary, and the execute privilege exception, which transfers control
immediately to the exception vector at 1PF_ADDRESS if the fetch address does not have
execute privileges®.

There is often also a requirement to transfer control to an exception handler vector after
the completion of the current instruction. For example, the tick timer interrupt in the
ORI1K is enabled by a mask bit in the status register, SR[TEE]. What happens if
TTMR[1P] is set and SRLTEE] is changed from O to 1 by execution of an I.mtspr
instruction? In this case, the 1.mtspr instruction should complete and the tick timer
exception should occur before the next instruction is executed. To allow this behavior,
there is one other useful public function defined in orikExceptions.c:

void orlklInterruptNext(orlkP orilk) {
if(takeTEE(ori1k)) {
vmirtDoSynchronousinterrupt((vmiProcessorP)orik);
by

}

vmirtDoSynchronousInterrupt causes the fetch exception handler to be invoked just
before the next processor instruction is executed.

15.7 Status Register Update - orikUtils.c

Function orikSetSR has been modified as follows to handle the case described in the
previous section where TTMR[1P] is set and SR[TEE] is changed from 0 to 1:

void orlkSetSR(orlkP orlk, Uns32 value) {

// i1t is never possible to clear the fixed-one (FO) bit
value |= SPR_SR_FO;

// set the SR

¥ See section 18 for an example that exercises the execute privilege exception handler

© 2022 Imperas Software Limited.www.OVPworld.org Page 156 of 321

OVP Processor Modeling Guide

setSRSwitchMode(orlk, value);

// set the current branch flag, carry flag and overflow flag from the SR
orlk->branchFlag GET_BIT(value, SPR_SR F);

orlk->carryFlag GET_BIT(value, SPR_SR_CY);

orlk->overflowFlag GET_BIT(value, SPR_SR 0V);

// ensure any pending interrupt is taken before the next instruction
if(value & SPR_SR_TEE) {

orlkinterruptNext(orlk);
}

}

Function ori1kDumpRegisters has also been updated to write the TTCR and TTMR register
values.

15.8 Fetch/Timer Callback Registration - orlkAttrs.c

The vmi 1ASAttr structure for the processor model has been modified to add both the
instruction count timeout callback and the instruction fetch handler, as follows:

const vmilASAttr modelAttrs = {
. etc .

L11177777777777777777777777777777/7777///7777////7777///7/7/7////7//77//7//
// EXCEPTION ROUTINES
L111777777777777777777777777777777/7777/7777777///7777///77/7////7//7//7/7/

-rdPrivExceptCB
-wrPrivExceptCB
-rdAlignExceptCB
-wrAlignExceptCB

orlkRdPrivExceptionCB,
orlkWrPrivExceptionCB,
orlkRdAlignExceptionCB,
orlkWrAlignExceptionCB,

. ifetchExceptCB orlklFetchExceptionCB,
-arithExceptCB orlkArithExceptionCB,
. icountExceptCB orlklCountPendingCB,

. etc .

};

15.9 Testing Tick Timer Exceptions

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —-trace -—traceregs —traceshowicount \
-—program application/asmtest_OR1K.elf

The new —traceshowicount argument enables printing of an instruction count at the
start of reach trace line. The output from this should be as follows (much irrelevant
output has been cut for conciseness):

Warning (PC_NRI) No register information callback given for processor “cpul”
Info 1: "cpul®, 0x0000000000010000: I.ori r30,r0,0x0

Info "cpul®™ REGISTERS

RO : 00000000 R1 : 00000000 R2 : deadbeef R3 : deadbeef

R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef

R8 : deadbeef R9 : deadbeef R10: deadbeef R11: deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org Page 157 of 321

OVP Processor Modeling Guide

: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
: deadbeefF R17: deadbeef R18: deadbeef R19: deadbeef
: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
: deadbeefF R25: deadbeef R26: deadbeef R27: deadbeef
: deadbeef R29: deadbeef R30: 00000000 R31: deadbeef
: 00010004 SR : 00008001 ESR: deadbeef EPC: deadbeef
- 00000000 TMR: 00000000 BF:0 CF:0 OF:0

8: "cpul®, 0x0000000000000c00: I.mtspr r0,r1,20480
- 00000000 TMR: a0000008 BF:0 CF:0 OF:0

9: "cpul®, 0x0000000000000c04: I.rfe
- 00000000 TMR: a0000008 BF:0 CF:0 OF:0

10: “cpul®, 0x000000000001001c: I.mtspr rO0,r0,20736
- 00000000 TMR: a0000008 BF:0 CF:0 OF:0

11: "cpul®, 0x0000000000010020: I.ori rl,r0,0x8
- 00000001 TMR: a0000008 BF:0 CF:0 OF:0

12: "cpul®, 0x0000000000010024: 1.addi rl,rl,OxFFFFffff
- 00000002 TMR: a0000008 BF:0 CF:1 OF:0

13: "cpul®, 0x0000000000010028: I.sfeqi ri1,0x0
- 00000003 TMR: a0000008 BF:0 CF:1 OF:0

14: “cpul®, 0x000000000001002c: I.bnf 0x00010024
- 00000004 TMR: a0000008 BF:0 CF:1 OF:0

15: "cpul®, 0x0000000000010030: I._nop 0x0
- 00000005 TMR: a0000008 BF:0 CF:1 OF:0

16: "cpul®, 0x0000000000010024: 1.addi rl,rl,OxfFFErfrfff
- 00000006 TMR: a0000008 BF:0 CF:1 OF:0

17: "cpul®, 0x0000000000010028: I1.sfeqi ri1,0x0
- 00000007 TMR: a0000008 BF:0 CF:1 OF:0

18: "cpul®, 0x000000000001002c: *** FETCH EXCEPTION ***
- 00000008 TMR: b0O000008 BF:0 CF:1 OF:0

19: "cpul®, 0x0000000000000500: I.addi r30,r30,0x1
"cpul® REGISTERS
- 00000000 R1 : 00000006 R2 : deadbeef R3 : deadbeef
: deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
: deadbeefF R9 : deadbeef R10: deadbeef R11: deadbeef
: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
: deadbeefF R17: deadbeef R18: deadbeef R19: deadbeef
: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
: deadbeefF R25: deadbeef R26: deadbeef R27: deadbeef
: deadbeef R29: deadbeef R30: 00000001 R31: 00000000
- 00000504 SR : 00008001 ESR: 00008407 EPC: 0001002c
- 00000008 TMR: b0O000008 BF:0 CF:0 OF:0

etc

The source code for this example is as follows:

.org 0x500
/1/1/17777777777777777777777/7777777/777/7/7/7/7//77////7/7/7/7/77/7//7/7/77777777777
// TICK TIMER EXCEPTION HANDLER (AT 0x500)
/1/1/17777777777777777777777777777777777/7/77//77/7///7/7//7/7/7/7//77/7/7777777777

1.addi r30,r30,1 // increment count of timer exceptions
1.sw -4(r31),rl // save value in rl

1_sw -8(r31),r2 // save value in r2

1_mfspr rl,r0,0x5000 // get ttmr in rl

I .movhi r2,0xefff // r2 hi = ~TTMR_IP mask

1.ori r2,r2,0xfrff // rl 1o = ~TTMR_IP mask

© 2022 Imperas Software Limited.www.OVPworld.org Page 158 of 321

OVP Processor Modeling Guide

I.and ri,rl,r2 // clear TTMR_IP

1 _mtspr ro,rl,0x5000 // set ttmr from rl

1_lwz rl,-4(r31) // restore original rl

11wz r2,-8(r31) // restore original r2

1._sfeqi r30,3 // r30==37?

1.bf noReset // go if so

1_nop // (delay slot)

1 _mtspr r0,r0,0x5100 // clear ttcr (restarts counter)
noReset:l.rfe // return from exception
.org 0xc00

L1177 7777777777/7777/7/7777/7/7777/7/7/7/77/7/77/777/77/7/777/77//7/77/777/7/777777
// SYSCALL VECTOR (AT 0xc00)

L1177 77777777/7/7777/7/7777/7/7777/7/7/77777/7/777/7//7/777/77//7/77/7/7/7/777777
1_mtspr ro,rl1,0x5000 // set ttmr from ril

1.rfe // return from exception

-.org 0x10000
L1/1/1/77777777777777777777777777777/77777/77777777777///7777/77//77//7777/7777777
// APPLICATION CODE (AT 0x10000)
L1/1/17777777777777777777777777777/77//7/77/77/7/77/7///7/7//7/77///7/77777777777
-global _start

_start:
1_ori r30,r0,0 // r30 = 0 (counts timer exceptions)
1.ori r31,r0,0 // r31 = 0 (stack pointer)
1.ori ri,r0,7 // rl1 =7 (SR_IEE | SR_TEE | SR_SM)
1 _mtspr rO,rl1,0x11 // set sr from r1 (enables interrupts)
1 ._movhi ril,0xa000 // M=ONCE, IE=True
l.ori ri,rl,8 // TP=8 (count to match)
1.sys 0
1 _mtspr r0,r0,0x5100 // clear ttcr (starts counter)

1///1/7///777/////7///7//7//7//
// TEST INTERRUPT WITH MODE ONCE
1///1/7/7777///////7//7//7/

1._ori rl,r0,8 // r1l = 8 (loop count)
loopl:

1._addi rli,rl,-1 // decrement rl

1._sfeqi ri1,0 // r1==07?

1.bnf loopl // go if not

1._nop // (delay slot)

-global exit
exit:
1.nop

Execution starts at label _start. At instruction 8, the TTMR register is set with
TTMR[M]=ONCE, TTMR[1E]=1 and TTMR[TP]=8. The counter does not start at this point
because in mode ONCE it is activated only on a write to TTCR. At instruction 10, TTCR is
written with 0, which starts the timer counting. At instruction 18, the timer expires
generating the FETCH EXCEPTION message; instead of executing the instruction at address
0x1002c, control is transferred to the exception handler.

The exception handler counts the number of exceptions. If fewer than 3 have occurred, it
resets TTCR, which restarts the counter. In the full test case log, there are therefore three
tick timer exceptions in total.

© 2022 Imperas Software Limited.www.OVPworld.org Page 159 of 321

OVP Processor Modeling Guide

15.10 Explicit Processor Timers

This example uses the implicit processor timer, managed by functions
vmirtSetlCountinterrupt and vmirtClearlCountlinterrupt. It is also possible to
create any number of additional explicit processor timers using functions described
below. Each timer runs independently of the others.

Function vmirtCreateModelTimer creates a new timer for a processor. It is defined in
vmiRt.h as follows:

vmiModelTimerP vmirtCreateModelTimer(
vmiProcessorP processor,
vmi ICountFn icountCB,
uUns32 scale,
void *userData

);

The argument processor is the processor to which the timer is to be attached. Argument
icountCB is the timer expiry callback function. Argument scale is a scale factor by
which the timer runs slower than the processor with which it is associated: for example, a
scale value of 3 implies that the timer will appear to increment every three processor
instructions. Argument userData is passed as the userData argument of the expiry
function when it is called. The function returns an opaque type vmiMode I TimerP which
can be used to update the timer later; typically, this value will be saved in a field in the
processor structure.

A previously-created timer can be cleared and deleted by vmirtDeleteModelTimer:

void vmirtDeleteModelTimer(vmiModelTimerP modelTimer);

The delay after which a timer will expire can be modified using vmi rtSetModelTimer:

void vmirtSetModelTimer(vmiModelTimerP modelTimer, Uns64 iDelta);

This function sets the passed timer in exactly the same way that
vmirtSetlCountInterrupt sets the implicit timer. An explicit timer can be cleared
using vmirtClearModelTimer:

void vmirtClearModelTimer(vmiModelTimerP modelTimer);

This function clears the passed timer in exactly the same way that
vmirtClearlICountinterrupt clears the implicit timer.

There are also three functions enabling the timer state to be queried. Function
vmirtlsModelTimerEnabled returns a Boolean indicating if the timer is enabled (i.e.
whether it has been activated using vmirtSetModel Timer):

Bool vmirtlsModelTimerEnabled(vmiModelTimerP modelTimer);

© 2022 Imperas Software Limited.www.OVPworld.org Page 160 of 321

OVP Processor Modeling Guide

Function vmirtGetMode I TimerCurrentCount returns the current timer value, either in
terms of instructions or ticks (instructions scaled by the scale value when the timer was
created):

Uns64 vmirtGetModelTimerCurrentCount(vmiModelTimerP modelTimer);

Function vmi rtGetMode I TimerExpi ryCount returns the timer value at which the timer is
scheduled to expire, either in terms of instructions or ticks (instructions scaled by the
scale value when the timer was created):

Uns64 vmirtGetModel TimerExpiryCount(vmiModelTimerP modelTimer);

A basic model timer created using vmi rtCreateModel Timer counts the exact number of
instructions executed by a processor. In a quantized multiprocessor simulation, this might
give the impression that time is running backwards, in the following scenario:

= CPU A reads a timer value towards the end of a quantum and uses it to calculate
the current time.

= CPU A reaches the quantum end. CPU B starts simulating the same quantum.

= CPU B reads a timer value towards the beginning of a quantum and uses it to
calculate the current time.

In this case, the time calculated by CPU A will appear to be later that that calculated by
CPU B, even though it was obtained earlier. This is simply an artifact of multiprocessor
quantized simulation, but this can cause problems for applications that rely upon a
monotonically increasing view of time to work correctly. If the overall view of simulation
time must increase monotonically, use function vmirtCreateMonotonicModelTimer to
create the timer instead. It is defined in vmiRt_h as follows:

vmiModelTimerP vmirtCreateMonotonicModelTimer(
vmiProcessorP processor,
vmi ICountFn icountCB,
uUns32 scale,
void *userData

);

Monotonic timers are exactly like normal timers, except that the implied time seen when
reading the timer is guaranteed to increase monotonically for all monotonic timers in the
platform. See the VMI Run Time Function Reference manual for more information about
the algorithm used.

© 2022 Imperas Software Limited.www.OVPworld.org Page 161 of 321

OVP Processor Modeling Guide

16 Modeling External Interrupts

The previous chapter showed how to model tick timer exceptions. The OR1K also
supports generic external interrupts and a reset signal which we will model now.

16.1 ORI1K PIC Overview

The OR1K programmable interrupt controller (PIC) is controlled by two processor
registers, the PIC mask register (PI1CMR) and the PIC status register (P1CSR). These two
SPR registers may be read and written using the 1.mFspr and I .mtspr instructions we
have seen previously (PI1CMR has SPR index 0x4800, PICSR has SPR index 0x4802).

The PICMR register is used to mask or unmask up to 32 programmable interrupt sources.

The PICSR register is used by external interrupt sources to signal up to 32 interrupts. The
ORI1K is defined to allow either level-triggered or edge-triggered interrupts, or a mixture
of both. In this implementation, we will support only level-triggered interrupts (so the
external device will be responsible for all changes to bits in the PICSR register).

16.2 The Template External Interrupt Model

A template model for the OR1K processor implementing external interrupts can be found
in:

$IMPERAS_HOME/Examples/Models/Processor/14._orlkBehaviorExternal Interrupt

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/14 ._orlkBehaviorExternallnterrupt .

Compile the model, harness and application using the make command:

cd 14._orilkBehaviorExternal Interrupt
make OPT=1

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

16.3 Defining PIC Registers - orikStructure.h

The OR1K processor structure has been updated to add fields for the PICMR and PICSR
registers, and also macros to access the registers in code morphing routines. There is also
a new member netPorts of type vmiNetPortP which holds an array of net port

© 2022 Imperas Software Limited.www.OVPworld.org Page 162 of 321

OVP Processor Modeling Guide

descriptors for the processor. To allow modeling of edge-triggered reset, there are two
new Boolean fields: resetlInput, which holds the state of the result input net, and reset,
which indicates whether the processor should perform a reset on the next instruction.

16.4 Adding PIC Register Read and Write - orikMorph.c

This file has been modified to enhance I.mtspr and 1.mfspr to allow reading and
writing of PICSR and PICMR registers. PICSR can be read but not written (only external
devices can modify this register). PICMR is written by calling ori1kSetPICMR,
implemented in orlkExceptions.c.

16.5 Adding PIC Exceptions - orlkExceptions.c

This file implements most of the new functionality to implement external interrupts and
reset. The changes are as below.

The existing routines orikliFetchExceptionCB and orlkInterruptNext have been
modified to react to external interrupts and reset in addition to timer interrupts.
orlklIFetchExceptionCB implements external interrupts as higher priority than timer
interrupts, and a processor reset as highest priority of all:

VMI_IFETCH_FN(orlklFetchExceptionCB) {
orlkP orkl = (orlkP)processor;
if(orlk->reset) {

// reset pending - update registers to complete exception if required
if(complete) {
orlk->reset = False;
orlkTakeException(orlk, OR1K _EXCPT_RST, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;
} else {
return VMI_FETCH_EXCEPTION_PENDING;
}

} else if(takelEE(orlk)) {

// external interrupt must be taken
if(complete) {
orlkTakeException(orlk, OR1K_EXCPT_EXI, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;
} else {
return VMI_FETCH_EXCEPTION_PENDING;
}

} else if(takeTEE(orlk)) {

// tick timer interrupt must be taken
if(complete) {
orlkTakeException(orlk, OR1K _EXCPT_TTI, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;

} else {
return VMI_FETCH_EXCEPTION_PENDING;
}

} else if(address & 3) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 163 of 321

OVP Processor Modeling Guide

// handle misaligned fetch exception
if(complete) {
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_BUS, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;

} else {
return VMI_FETCH_EXCEPTION_PENDING;
}

} else if(lvmirtlsExecutable(processor, address)) {
// handle execute privilege exception
if(complete) {

orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_IPF, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;

} else {
return VMI_FETCH_EXCEPTION_PENDING;
bs

} else {

return VMI_FETCH_NONE;
}
void orlklInterruptNext(orlkP orilk) {

if(orkl->reset || takelEE(orlk) || takeTEE(orilk)) {
vmirtDoSynchronousinterrupt((vmiProcessorP)orik);
}

}

Function takelEE is implemented as:

inline static Uns32 islEEPending(orlkP orilk) {
return (orlk->PICMR & orlk->PICSR);
}

inline static Bool islEEEnabled(orlkP orlk) {
return (orlk->SR & SPR_SR_IEE);
}

inline static Uns32 takelEE(orlkP orlk) {
return islEEPending(orilk) && islEEEnabled(orik);
}

Function or1kSetPICMR is called whenever register PICMR is written by instruction

I .mtspr. Writing the programmable interrupt controller mask register could enable an
interrupt that was previously disabled — function orikInterruptNext is used to schedule
an interrupt before the next instruction in this case:

void orlkSetPICMR(orlkP orlk, Uns32 PICMR) {
orlk->PICMR = PICMR;

// take any pending interrupt before the next instruction
orlkinterruptNext(orlk);

© 2022 Imperas Software Limited.www.OVPworld.org Page 164 of 321

OVP Processor Modeling Guide

In order to allow interrupts to be raised externally to the model, it is necessary to register
net change functions that are activated on external events. Each net change function
should be defined using the VM1_NET_CHANGE_FN macro from vmiTypes.h:

#define VMI_NET_CHANGE_FN(_NAME) void _NAME(\

vmiProcessorP processor, \
void *userData, \
Uns64 newValue \

)

The net change function is passed three arguments:
1. The processor that is being interrupted;
2. A processor-specific data pointer;
3. A new value for the net, the meaning of which is processor-specific®.

For the OR1K model, a single net change function is currently used for external
interrupts, defined as follows:

VMI_NET_CHANGE_FN(orilkExternalInterrupt) {

orlkP orik
Uns32 deviceld

(orlkP)processor;
(UnsPS)userData;

if(newalue) {
orlk->PICSR |= deviceld;

} else {
orlk->PICSR &= ~deviceld;
s

// take any pending interrupt before the next instruction
orlkinterruptNext(orlk);

}

For this model, the processor specific userbata pointer is used to hold a bit mask
representing the interrupting device, and newvalue is a boolean indicating whether that
mask has been enabled or disabled. The new mask value is calculated and applied to the
processor PICSR register. Finally, function orlkiInterruptNext is called to interrupt the
processor on the next instruction if required. Note that these external interrupts are level-
sensitive; There is also a new net change function for the edge-sensitive reset signal,
defined as follows:

VMI_NET_CHANGE_FN(orlkExternalReset) {

orlkP orik
Bool oldReset

(orlkP)processor;
orlk->resetlnput;

// save new value of reset signal
orlk->resetlnput = (newValue!=0);

if(loldReset && orlk->resetlnput) {

° Note that from VMI version 7.29.0, the type of a net value has changed from Uns32 to Uns64, effectively
widening the maximum width of a net.

© 2022 Imperas Software Limited.www.OVPworld.org Page 165 of 321

OVP Processor Modeling Guide

// reset signal raised: halt processor
vmirtHalt(processor);

} else if(oldReset && lorlk->resetlinput) {

// reset signal lowered: restart processor
vmirtRestartNext(processor);

// indicate that processor reset is required
orlk->reset = True;

// take any pending interrupt before the next instruction
orlkinterruptNext(orlk);

}

In this function, the newvalue parameter is 1 if reset is being asserted and 0 if it is being
deasserted. The reset procedure is as follows:
1. When the reset is asserted, the processor halts, and remains halted while the reset
remains applied. Halting is implemented by calling function vmirtHalt.
2. Then, when the reset is deasserted, the processor is restarted by calling
vmirtRestartNext, and the Boolean reset on the processor structure is set to
True. Finally, orikiInterruptNext is called, which will cause function
orlklFetchExceptionCB to be executed at the start of the next instruction. In the
fetch exception handler, the reset field is used to trigger a reset exception if
required and then cleared to False.

Prototypes for functions or1kExternal Interrupt and orikExternalReset have been
added to file orikExceptions.h, for use in file orikvain.c.

16.6 Adding Net Ports - orikMain.c
To notify the simulator of the existence of net ports, the model must provide an iterator
function which returns the first or subsequent net port specifications, or 0 at the end of the
list (in a similar manner to the existing bus ports). The function must be registered in the
model attributes table using the busPortSpecsCB member:
typedef struct vmilASAttrS {
. members omitted ...
vmiBusPortSpecsFn busPortSpecsCB; // callback for next bus port

. members omitted ...

} vmilASAttr;

It should be defined using this macro from vmiPorts.h:

#define VMI_NET_PORT_SPECS_FN(_NAME) vmiNetPortP _NAME (\
vmiProcessorP processor, \
vmiNetPortP prev \

© 2022 Imperas Software Limited.www.OVPworld.org Page 166 of 321

OVP Processor Modeling Guide

Note that the iterator is also supplied with the processor pointer, so can adjust its behavior
according to the configuration of the current module instance.

Each specification includes:

= Net port name.

= Net port type (input, output or inout).

= A callback function and user-data field (for an input).

= The address offset of a handle (used for output).

= Optional description.
There are also fields used by the simulator in order to make connections to the net port.
The net port specification structure is defined in vmiPorts.h as follows:

typedef struct vmiNetPortS {

const char *name;
vmiNetPortType type;
void *userData;

// callback for input or 1/0 net change
vmiNetChangeFn netChangeCB;

Uns32 *handle;

// space for documentation
const char *description;
void *descriptionDom;

// domain is non-NULL if port is connected
memDomainP domain;

} vmiNetPort;

A template of the implemented net ports is defined in or1kMain.c like this:

const static vmiNetPort netPorts[] = {
{"reset”, vmi_NP_INPUT, (void*)0, orlkExternalReset }.
{"intr0”, vmi_NP_INPUT, (void*)1l, orilkExternallnterrupt},
{"intrl”, vmi_NP_INPUT, (void*)2, orlkExternallnterrupt},
{"intr2", vmi_NP_INPUT, (void*)4, orlkExternallnterrupt},
{"intr3", vmi_NP_INPUT, (void*)8, orlkExternallnterrupt}

};

New functions have been added to allocate and free the net port lists, in a similar fashion
to the existing bus ports:

static void newNetPorts(orlkP orlk) {
Uns32 i;
orlk->netPorts = STYPE_CALLOC_N(vmiNetPort, NUM_MEMBERS(netPorts));

for(i=0; §I<NUM_MEMBERS(netPorts); i++) {
orlk->netPorts[i] = netPorts[i];
}

© 2022 Imperas Software Limited.www.OVPworld.org Page 167 of 321

OVP Processor Modeling Guide

static void freeNetPorts(orlkP orilk) {
if(orlk->netPorts) {

STYPE_FREE(orlk->netPorts);
orlk->netPorts = 0O;

}

These new functions are called in the processor constructor and destructor, respectively.
Finally, there is the net port iterator definition, which returns each allocated net port
descriptor in turn:
VMI_NET_PORT_SPECS_FN(orilkGetNetPortSpec) {

orlkP orlk = (orlkP)processor;

if(lprev) {

// first port
return orlk->netPorts;

} else {
// port other than the first

Uns32 previndex = (prev-orlk->netPorts);
Uns32 thislndex previndex+1;

return (thislndex<NUM_MEMBERS(netPorts))?&orlk->netPorts[thislndex]:0;

}

16.7 Enhancing Register Dump - orlkUtils.c
Function or1kDumpRegisters now also writes the new PICMR and PICSR registers.

16.8 PIC Test Harness - platform/harness.c

To stimulate the external interrupt signals, platform/harness.c, has been changed as
follows. Net objects have been created in the platform and connected to the intro, intri
and reset input ports:

optNetP iIntrONet opNetNew(mr, "intrONet'”, 0, 0);
optNetP intriNet = opNetNew(mr, "intriNet', 0, 0);
optNetP resetNet opNetNew(mr, "resetNet'”, 0, 0);
opObjectNetConnect(processor, intrONet, "intr0");
opObjectNetConnect(processor, intriNet, "intrl™);

opObjectNetConnect(processor, resetNet, '"'reset");

The simulation is controlled by this sequence:

// run processor for 9 instructions
simulate(processor, 9);

// raise reset for five instructions
opNetWrite(resetNet, 1);
simulate(processor, 5);
opNetWrite(resetNet, 0);

© 2022 Imperas Software Limited.www.OVPworld.org Page 168 of 321

OVP Processor Modeling Guide

// run processor for 9 instructions
simulate(processor, 9);

// raise intrO for one instruction
opNetWrite(intrONet, 1);
simulate(processor, 1);
opNetWrite(intrONet, 0);

// run processor for 9 instructions
simulate(processor, 9);

// raise intrl for one instruction
opNetWrite(intrlNet, 1);
simulate(processor, 1);
opNetWrite(intrlNet, 0);

// run processor until done (ho instruction limit)
while(simulate(processor, -1)) {

// keep going while processor is still running
}

The processor is first run for nine instructions. Then, reset is raised (by opNetWrite)
and the processor run for five more instructions before reset is lowered. We then run for
nine more instructions before raising intro for a single instruction. After running for
nine more instructions, intr1 is raised for a single instruction. After that, the simulation
is run to completion.

16.9 Testing External Exceptions
Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe -—trace —traceshowicount \
-—program application/asmtest_OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor
"platform/cpul*”

Info 1: "platform/cpul®, 0x0000000000010000: I.ori r30,ro0,0x0

Info 2: "platform/cpul®, 0x0000000000010004: I.addi rl,r0,OxFFFFfrfff
Info 3: "platform/cpul®, 0x0000000000010008: I.mtspr r0,r1,18432

Info 4: "platform/cpul®, 0x000000000001000c: I1.ori rl,r0,0x6

Info 5: "platform/cpul®, 0x0000000000010010: I.mtspr rO,rl,17

Info 6: "platform/cpul®, 0x0000000000010014: lI.ori rl,r0,0x4

Info 7: "platform/cpul®, 0x0000000000010018: I.addi rl,rl,OxFFFrrfff
Info 8: "platform/cpul®, 0x000000000001001c: I.sfeqi r1,0x0

Info 9: "platform/cpul®, 0x0000000000010020: I.bnf 0x00010018

Info 15: "platform/cpul®, 0x0000000000010024: *** FETCH EXCEPTION ***
Info 16: “platform/cpul®, 0x0000000000000100: j 0x00010000

Info 17: "platform/cpul®, 0x0000000000000104: I.addi r30,r30,0x1

Info 18: “platform/cpul®, 0x0000000000010000: I.ori r30,r0,0x0

Info 19: "platform/cpul®, 0x0000000000010004: I.addi rl,r0,OxFFFFFfff
Info 20: “platform/cpul®, 0x0000000000010008: I.mtspr r0,r1,18432

Info 21: "platform/cpul®, 0x000000000001000c: 1.ori rl,r0,0x6
Info 22: "platform/cpul®, 0x0000000000010010: I.mtspr r0,rl1l,17
Info 23: "platform/cpul®, 0x0000000000010014: 1.ori rl,r0,0x4

Info 24: "platform/cpul®, 0x0000000000010018: *** FETCH EXCEPTION ***
Info 25: "platform/cpul®, 0x0000000000000800: I.addi r30,r30,0x1
Info 26: "platform/cpul®, 0x0000000000000804: I.rfe

© 2022 Imperas Software Limited.www.OVPworld.org Page 169 of 321

OVP Processor Modeling Guide

Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info

R28:
PC :
TCR:

27: “platform/cpul®, 0x0000000000010018: I.addi rl,rl,OxFFffrfrfff
28: "platform/cpul®, 0x000000000001001c: 0I.sfeqi r1,0x0
29: “platform/cpul®, 0x0000000000010020: I.bnf 0x00010018
30: "platform/cpul®, 0x0000000000010024: I.nop 0x0
31: “platform/cpul®, 0x0000000000010018: I.addi rl,rl,OxFFffrfrfff
32: "platform/cpul®, 0x000000000001001c: 0I.sfeqi ri1,0x0
33: “platform/cpul®, 0x0000000000010020: I.bnf 0x00010018
34: "platform/cpul®, 0x0000000000010024: *** FETCH EXCEPTION ***
35: “platform/cpul®, 0x0000000000000800: I.addi r30,r30,0x1
36: "platform/cpul®, 0x0000000000000804: I.rfe
37: “platform/cpul®, 0x0000000000010020: I.bnf 0x00010018
38: "platform/cpul®, 0x0000000000010024: 1.nop 0x0
39: “platform/cpul®, 0x0000000000010018: I.addi rl,rl,OxFrffrrfff
40: "platform/cpul®, 0x000000000001001c: I.sfeqi r1,0x0
41: “platform/cpul®, 0x0000000000010020: I.bnf 0x00010018
42: "platform/cpul®™, 0x0000000000010024: 1._.nop 0x0
43: "platform/cpul®, 0x0000000000010018: 1.addi rl,rl,OxFFffrrfff
44: “platform/cpul®, 0x000000000001001c: I.sfeqi r1,0x0
45: T"platform/cpul®, 0x0000000000010020: 1I.bnf 0x00010018
46: "platform/cpul®, 0x0000000000010024: 1._.nop 0x0
47: "platform/cpul”, 0x0000000000010028: 1.nop 0x0
Processor "platform/cpul® terminated at “"exit", address 0x10028
= 00000000 R1 : 00000000 R2 : deadbeef R3 : deadbeef
: deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
: deadbeefF R9 : deadbeef R10: deadbeef R11: deadbeef
: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
: deadbeefF R17: deadbeef R18: deadbeef R19: deadbeef
: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
: deadbeefF R25: deadbeef R26: deadbeef R27: deadbeef
deadbeef R29: deadbeef R30: 00000002 R31: deadbeef
0001002c SR : 00008606 ESR: 00008406 EPC: 00010020
00000000 TMR: 00000000 PSR: 00000000 PVR: FFFFFFFF
CF:1 OF:0

BF:1

processor has executed 42 instructions

The source code for this example is as follows:

.org 0x100

1/1//1///7/777/7/////////7///7//7//
// RESET HANDLER (AT 0x100)
1///1/////7/7////////7///7//7/

1.} _start // jump to start address
1.addi r30,r30,1 // increment count of external exceptions
.org 0x800

L1117 7777777777/7777777777777/777777/7/77/7/7/777/77/7/7/7777//7/77/777/7/77777/7
// EXTERNAL INTERRUPT HANDLER (AT 0x800)

L1117 7777777777/77777777777/7/7/77777/7/777/7/7/777/77//7/7/77/7/7/7/77/7/77/7/77777/7
1.addi r30,r30,1 // increment count of external exceptions
1.rfe // return from exception

.org 0x10000

L111717777777777777777777777777777/7777///7777////7777///77/7////7//77//7/7/
// APPLICATION CODE (AT 0x10000)
L11177777777777777777777777777777//7777///7777////7777///77/7////7//77//7/7/

-global _start

© 2022 Imperas Software Limited.www.OVPworld.org

Page 170 of 321

OVP Processor Modeling Guide

_start:
1.ori r30,r0,0 // r30 = 0 (counts timer exceptions)
1.addi ri,r0,-1 // rl = -1
1 _mtspr ro,rl,0x4800 // set picmr from rl (enables interrupts)
l.ori rl1,r0,6 // rl = SR_IEE|SR_TEE, user mode
1 _mtspr ro,rl,0x11 // set sr from r1 (enables interrupts)
1._ori rl,r0,4 // r1l = 4 (loop count)
loopl:
1._addi ri,rl,-1 // decrement ril
1._sfeqi ri1,0 // r1==07?
1.bnf loopl // go if not
1._nop // (delay slot)

-global exit
exit:
1._nop

Execution starts at label _start. The application enables external interrupts and starts
executing a simple loop, 1oopl. When the reset signal is applied after nine instructions,
the processor halts for five instructions, before resuming at the restart address (in
supervisor mode):

Info 9: "platform/cpul®, 0x0000000000010020: I.bnf 0x00010018
Info 15: “platform/cpul®, 0x0000000000010024: *** FETCH EXCEPTION ***
Info 16: "platform/cpul®, 0x0000000000000100: 1I.j 0x00010000

The external interrupt exception handler at 0x800 counts the number of external
interrupts in r30. The count is cleared to zero on a reset.

Note that external interrupts interrupt the flow of execution at instructions 24 and 34.

© 2022 Imperas Software Limited.www.OVPworld.org Page 171 of 321

OVP Processor Modeling Guide

17 Implementing the Debug Interface

This section describes the implementation of a debug interface for the OR1K processor.
This has several purposes:

1. It enables debuggers that support the gdb remote serial protocol (RSP) to be

connected to the processor model;

2. It enables query functions in the Imperas OP interface (for example
opProcessorRegNext and opProcessorRegByName), which can in turn be used
to implement custom debugger integrations or advanced test harnesses that are
able to query and modify processor state.

It enables use of enhanced trace functionality based on changed registers.
It is a prerequisite for advanced model features such as save/restore and
instruction attribute support.

o

17.1 The Template Debug Interface Model

A template model for the OR1K processor implementing a debugger interface can be
found in:

$IMPERAS_HOME/Examples/Models/Processor/15.or1kDebugSupport

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/15.orlkDebugSupport .

Compile the model, harness and application using the make command:

cd 15.orlkDebugSupport
make OPT=1

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

17.2 Adding Query Functions - orikUtils.c

File or1kUtils.c has been modified to implement processor mode and exception query
callbacks. For each, there are two functions:

1. An iterator that lists each mode or exception type supported by the processor;

2. A function that returns the currently active mode or exception.

17.2.1 Processor Mode Iterator Function
The processor mode iterator is defined using the vM1_MODE_INFO_FN macro, defined in
vmiDbg.h as follows:

© 2022 Imperas Software Limited.www.OVPworld.org Page 172 of 321

OVP Processor Modeling Guide

#define VMI_MODE_INFO_FN(_NAME) vmiModelnfoCP _NAME(\
vmiProcessorP processor, \
vmiModeInfoCP prev \

)
typedef VMI_MODE_INFO_FN((*vmiModelnfoFn));

When called with a NULL value of prev, the function should return a description of the
first mode supported by the processor. When called with a non-NULL value of prev, the
function should return a description of the next mode supported by the processor. When
all modes have been returned, the function should return NULL. Each mode is described
by returning a pointer to an object of type vmiMode Info:

typedef struct vmiModelnfoS {

const char *name; // exception name
Uns32 code; // model-specific mode code
const char *description; // description string

} vmiModelnfo;

The name field gives a test name for the mode. The code field is model-specific, and
typically will correspond to an enumeration in the model. The description field
provides extra information about the mode (typically used in documentation). For the
ORI1K, the mode iterator function is defined like this:

VMI_MODE_ INFO_FN(or1kModelnfo) {
vmiModelnfoCP end = modes+OR1K_MODE_LAST;

// on the first call, start with the first member of the table

if(lprev) {
prev = modes-1;
T

// get the next member
vmiModelInfoCP this = prev+l;

// return the next member, or NULL if at the end of the list
return (this==end) ? 0 : this;
}

A prototype of this function has been added to orikFunctions.h.

This function refers to a constant static list of modes in orikUtils.c:

#define ORL1K_MODE_INFO(D) [OR1K_MODE_## D] = {name:# D, code:OR1K_MODE_## D}

static const vmiModelnfo modes[OR1K_MODE_LAST] = {
OR1K_MODE_ INFO(SUPERVISOR),
OR1K_MODE_ INFO(USER)

}:

The modes array defines two modes, SUPERVISOR (with code OR1K_MODE_SUPERV ISOR)
and USER (with code OR1K_MODE_USER). Entry OR1K_MODE_LAST in the enumeration does
not define a real mode but is instead used as a terminator for sizing of the modes array.

© 2022 Imperas Software Limited.www.OVPworld.org Page 173 of 321

OVP Processor Modeling Guide

17.2.2 Processor Current Mode Query Function
The processor current mode query function is defined using the vM1_GET_MODE_FN
macro, defined in vmiDbg.h as follows:

#define VMI_GET_MODE_FN(_NAME) vmiModelnfoCP _NAME(vmiProcessorP processor)
typedef VMI_GET_MODE_FN((*vmiGetModeFn));

This function should return a vmiMode InfoCP description for the current mode. In the
OR1K mode, the function is implemented like this:

VMI_GET_MODE_FN(orlkGetMode) {

orilkP orlk
Uns32 SM
orlkMode newMode

(orlkP)processor;
orlk->SR & SPR_SR_SM;
SM ? OR1K_MODE_SUPERVISOR : OR1K_MODE_USER;

return modes+newMode;

}

So depending on the current value of the SM bit in the status register, an appropriate entry
from the modes table is selected.

A prototype of this function has been added to orikFunctions.h.

17.2.3 Processor Exception Iterator Function
The processor exception iterator is defined using the vMI_EXCEPTION_INFO_FN macro,
defined in vmiDbg.h as follows:

#define VMI_EXCEPTION_INFO_FN(_NAME) vmiExceptionlnfoCP _NAME(\
vmiProcessorP processor, \
vmiExceptionInfoCP prev \

)
typedef VMI_EXCEPTION_INFO_FN((*vmiExceptioninfoFn));

The works in an analogous fashion to the mode iterator, described previously. Each
exception is described by returning a pointer to an object of type vmiExceptioninfo:

typedef struct vmiExceptionlnfoS {

const char *name; // exception name
Uns32 code; // model-specific exception code
const char *description; // description string

} vmiExceptioninfo;

Once again, the description contains a string description of the exception, a model-
specific code and an optional description. For the OR1K, the exception iterator function
is defined like this:

VMI_EXCEPTION_INFO_FN(orlkExceptionlnfo) {
vmiExceptionlnfoCP end = exceptions+OR1K_EXCPT_LAST;

// on the first call, start with the first member of the table

© 2022 Imperas Software Limited.www.OVPworld.org Page 174 of 321

OVP Processor Modeling Guide

if(lprev) {
prev = exceptions-1;
}

// get the next member
vmiExceptionlnfoCP this = prev+l;

// return the next member, or NULL if at the end of the list
return (this==end) ? 0 : this;
T

This function works in exactly the same way as the mode iterator, returning members of
the exceptions array, previously described in section 12.1.5. A prototype of this
function has been added to orikFunctions.h.

17.2.4 Processor Current Exception Query Function
The processor current exception query function is defined using the
VMI_GET_EXCEPTION_FN macro, defined in vmiDbg.h as follows:

#define VMI_GET_EXCEPTION_FN(_NAME) vmiExceptionlnfoCP _NAME(\
vmiProcessorP processor \

)
typedef VMI_GET_EXCEPTION_FN((*vmiGetExceptionFn));

This function should return a vmiExceptionlInfoCP description for the current exception.
In the OR1K mode, the function is implemented like this:

VMI_GET_EXCEPTION_FN(orlkGetException) {
orlkP orlk = (orlkP)processor;
return &exceptions[orlk->exception];

}

A prototype of this function has been added to orikFunctions.h.

To implement this function, a new pseudo-register called exception has been added to
the OR1K structure:

#include "orlkExceptionTypes.h"

// processor structure
typedef struct orilkS {

. Fields omitted .

Uns32 SR; // status register

Uns32 ESR; // exception status register

Uns32 EPC; // exception program counter register
Uns32 EEAR; // exception effective address register
Uns32 PICMR; // PIC mask register

Uns32 PICSR; // PIC status register

Uns32 TTCR; // tick timer count register

Uns32 TTCRSetCount; // cycle count when TTCR set

Bool timerRunning; // whether the timer is running

Bool reset; // whether the processor is being reset
Bool resetlnput; // external value of reset signal

Bool artifactAccess; // whether artifact register update

© 2022 Imperas Software Limited.www.OVPworld.org Page 175 of 321

OVP Processor Modeling Guide

orlkException exception; // current exception
. Fields omitted .

} orik, *orilkP;

Finally, function orikTakeException has been modified to update the new pseudo-
register when an exception occurs:

void orlkTakeException(orlkP orlk, orlkException exception, Uns32 pcOffset) {

Uns8 simD;
Uns32 simPC = (Uns32)vmirtGetPCDS((vmiProcessorP)orlk, &simD);

orlkEnterSupervisorMode(orilk);
orlk->EPC = simPC + pcOffset;

// set sr[DSX] for exception in a delay slot
if(simD) {

orlk->SR |= SPR_SR_DSX;
3

// jump to the vector
orlk->exception = exception;
vmirtSetPCException((vmiProcessorP)orlk, exceptions[exception].code);

}

17.3 Register Access Functions - orlkRegisters.c

In order to implement a register interface, functions need to be added to allow the
debugger to read, write and query registers in the processor model. This is done be
specifying an array of vmiRegInfo structures, one for each register in the processor that
should be accessible externally. The definition of this structure is as follows (in file
vmiDbg.h):

typedef struct vmiReglnfoS {

const char *name; // register identification name

const char *description; // description string

vmiRegGroupCP group; // group for this register

Uns32 gdblndex; // gdb ordinal index number
vmiRegUsage usage : 3; // any special usage for this register
vmiRegAccess access 2; // allowed access

Bool noSaveRestore 1; // does not participate In save/restore
Bool noTraceChange 1; // does not participate in tracing
Bool instrAttrignore : 1; // ignore for instruction attributes
Bool isAlias : 1; // register an alias of another?

Bool extension 1; // defined in an extension library?
uUns32 unused : 22; // unused fTields

Uns32 bits; // size of register in bits
vmiRegReadFn readCB; // read callback function
vmiRegWriteFn writeCB; // write callback function

vmiReg raw; // raw register value (if no callback)
void *userData; // model-specific data pointer
vmiosContextP interceptContext; // intercept library context

} vmiReglinfo;

The fields in the structure are as follows:
1. name: the name to use to refer to the register.

© 2022 Imperas Software Limited.www.OVPworld.org Page 176 of 321

OVP Processor Modeling Guide

P w

10.

11.

12.
13.
14.

15.

16.

17.

description: this is an optional constant description string (generally used in
documentation).

group: this is a pointer to a register group description (see below).

gdbindex: this should be an index number unique to the registers in the processor
model. If you intend to use a gdb debugger, the number should match the index
expected by gdb: you will need to examine the gdb processor-specific source code
for your processor to find the value to enter here. Otherwise, choose any indexing
strategy that makes sense for the processor model. For example, it is often a good
strategy to subdivide the range of indices so that high-order bits are used to
specify register class (e.g. GPR or system register).

usage: any special usage for the register should be given using this field, which is
a member of the vmiRegUsage enumeration in vmiDbg. h. Special usages are the
program counter (vmi_REG_PC), stack pointer (vmi_REG_SP) , frame pointer
(vmi_REG_FP) and link register (vmi_REG_LR).

access: this defines the register accessibility, a member of the vmiRegAccess
enumeration in vmiDbg.h. Valid values are vmi_RA_NONE (no access), vmi_RA_R
(read-only), vmi_RA_W (write-only) and vmi_RA_RW (read/write).

noSaveRestore: this Boolean value should be set to True if the register should not
be automatically saved and restored. Processor save and restore is discussed later
in this manual.

noTraceChange: this Boolean value should be set to True if value changes for this
register should not be shown when tracing of changed values is enabled
(discussed later in this chapter).

instAttrignore: this Boolean value should be set to True if usage of this register
should not be reported by the instruction attributes API. The instruction attributes
API is discussed later in this manual.

isAlias: this Boolean value should be set to True if this register shares a
gdblIndex value with another register and the other register should be accessed by
preference when registers are iterated by index (for example, when using
opProcessorRegBy Index).

extension: this Boolean value should be set to True if this register is implemented
by a processor extension library (see section 26). This is informative only and
does not affect model behavior.

bits: this is the size of the register in bits.

readCB: this is a read callback function that returns the current value of the
register, if non-NULL.

writeCB: this is a write callback function that is used to set the current value of the
register, if non-NULL.

raw: for a plain register that requires no special behavior for read or write, set
readCB and/or writeCB to NULL and use this vmiReg field to specify the register
location in the processor structure instead.

userData: this is a pointer to model-specific data that can be used if required in
read and write callback functions.

interceptContext: this field is used internally by the simulator when iterating
intercept library registers (see chapter 26); It should always be NULL when
registers are defined.

© 2022 Imperas Software Limited.www.OVPworld.org Page 177 of 321

OVP Processor Modeling Guide

The core data structure in orlkRegisters.c is an null-terminated array of these
structures with one entry for each OR1K register that is made visible externally:

static const vmiReglnfo registers[] = {

// registers visible in gdb

OR1K_REG_INFO("'RO", 0, vmi_REG_NONE, OR1K_BITS, OR1K_RAW _REG R (regs[O],
OR1K_GROUP(GPR)) o "constant zero'),

OR1K_REG_INFO("R1", 1, vmi_REG_SP, OR1K_BITS, OR1K_RAW_REG_RW(regs[1],
OR1K_GROUP(GPR)) . 0),

OR1K_REG_INFO("'R2", 2, vmi_REG_FP, OR1K_BITS, OR1K_RAW_REG_RW(regs[2],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO("'R3", 3, wvmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[3].
OR1K_GROUP(GPR)) . 0),

OR1K_REG_INFO("'R4", 4, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[4],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO("R5", 5, wvmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[5].
OR1K_GROUP(GPR)) . 0),

OR1K_REG_INFO("'R6", 6, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[6],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO('R7", 7, wvmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[7]1.
OR1K_GROUP(GPR)) . 0),

OR1K_REG_INFO(''R8", 8, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[8],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO('R9", 9, wvmi_REG_LR, OR1K _BITS, OR1K_RAW_REG_RW(regs[9].
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO(*'R10", 10, wvmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[10],

OR1K_GROUP(GPR)) 5 0),
OR1K_REG_INFO("'R11", 11, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[11],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO(''R12", 12, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[12],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO('R13", 13, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[13],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO(''R14"™, 14, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[14],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO('R15", 15, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[15],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO(''R16", 16, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[16],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO("'R17", 17, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[17],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO(''R18", 18, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[18],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO('R19", 19, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[19],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO(''R20", 20, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[20],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO("'R21", 21, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[21],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO('R22", 22, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[22],
OR1K_GROUP(GPR)) 0),

OR1K_REG_INFO(''R23", 23, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[23],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO(''R24", 24, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[24],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO(''R25", 25, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[25],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO(''R26", 26, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[26].,
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO(''R27", 27, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[27],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO(''R28", 28, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[28],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO(''R29", 29, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[29],
OR1K_GROUP(GPR)) , 0),

OR1K_REG_INFO(''R30", 30, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[30],
OR1K_GROUP(GPR)) 0),

© 2022 Imperas Software Limited.www.OVPworld.org Page 178 of 321

OVP Processor Modeling Guide

OR1K_REG_INFO(''R31", 31, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(regs[31],
OR1K_GROUP(GPR)) 5 0),
OR1K_REG_INFO('*PC", 64, vmi_REG_PC, OR1K_BITS, OR1K_CB_REG_RW (PC,

OR1K_GROUP(SYSTEM)), 0),

OR1K_REG_INFO("'SR™, 65, vmi_REG_NONE, OR1K_BITS, OR1K_CB REG_RW (SR,
OR1K_GROUP(SYSTEM)), “status register™),

OR1K_REG_INFO(EPCR™, 66, wvmi_REG NONE, OR1K BITS, OR1K_RAW_REG_RW(EPC,
OR1K_GROUP(SYSTEM)), "exception PC™),

OR1K_REG_INFO("EEAR", 67, wvmi_REG_NONE, OR1K BITS, OR1K RAW_REG_RW(EEAR,
OR1K_GROUP(SYSTEM)), "exception effective address "),

// registers not visible in gdb
OR1K_REG_INFO("ESR", 100, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(ESR,

OR1K_GROUP(SYSTEM)), "'exception status register™),

OR1K_REG_INFO(""PICMR™, 101, vmi_REG_NONE, OR1K_BITS, OR1K_CB_REG_W (PICMR,
OR1K_GROUP(SYSTEM)), "PIC mask register"),

OR1K_REG_INFO("PICSR™"™, 102, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(PICSR,
OR1K_GROUP(SYSTEM)), "PIC status register™),

OR1K_REG_INFO("TTCR"™, 103, vmi_REG_NONE, OR1K_BITS, OR1K_CB_REG_RW (TTCR,
OR1K_GROUP(SYSTEM)), "tick timer count register™),

OR1K_REG_INFO("TTMR™, 104, vmi_REG_NONE, OR1K_BITS, OR1K_CB_REG_W (TTMR,
OR1K_GROUP(SYSTEM)), "tick timer mode register™),

OR1K_REG_INFO("*EXCPT", 200, vmi_REG_NONE, OR1K_BITS, OR1K_RAW_REG_RW(exception,
OR1K_GROUP(INTEGRATION)), "current exception™),

{0},
¥

The table contains two kinds of registers: those visible to gdb and those that are not. In
the latter category, there are the architectural ESR, PICMR, PICSR, TTCR and TTMR registers
and an artifact register, EXCPT, which is the new exception pseudo-register that records
any active exception. Which group a particular register is in is determined by macro
IS_GDB_HIDDEN_REG, which is True if the register is invisible to gdb:

#define OR1K_GDB_HIDDEN_INDEX 100
#define 1S_GDB_HIDDEN_REG(1) ((_1)>=OR1K_GDB_HIDDEN_INDEX)

Each register is assigned to a register group using the group field in the vmiRegInfo
structure. Groups have no simulation purpose, but can be used by debuggers to gather
registers into sets for display purposes. Each group is defined as follows:

typedef struct vmiRegGroupS {
const char *name; // register group name
vmiosContextP interceptContext; // intercept library context
} vmiRegGroup;

When defining a group, models should assign a value to the name field, but ensure the
interceptContext field is NULL (this is used internally by the simulator when iterating
registers defined in intercept libraries — see chapter 26).

In the OR1K, there are three groups, GPR, SYSTEM and INTEGRATION, defined in
orlkRegisters.c like this:

typedef enum orlkRegGroupldE {

OR1K_RG_GPR, // GPR group

OR1K_RG_SYSTEM, // System register group
OR1K_RG_INTEGRATION, // System register group
OR1K_RG_LAST // KEEP LAST: for sizing

} orlkRegGroupld;

© 2022 Imperas Software Limited.www.OVPworld.org Page 179 of 321

OVP Processor Modeling Guide

static const vmiRegGroup groups[OR1K RG_LAST+1] = {

[OR1K_RG_GPR] = {name: "GPR" 3},
[OR1K_RG_SYSTEM] = {name: "System" 3.
[OR1K_RG_INTEGRATION] = {name: "Integration_Support}

}:

A register group iterator is defined which returns all the register groups implemented by
the model:

VMI_REG_GROUP_FN(or1kRegGroup) {

if(lprev) {
return groups;

} else if((prev+l)->name) {
return prev+l;

} else {

return O;
hs
T

Given an argument of type vmiRegGroupCP (i.e. a pointer to a member of the groups
array) this function should return the next register group description in the array, or NULL
if there are no more register group descriptions. If called with a NULL argument, it should
return the first register group description in the array.

There is a macro used to select the appropriate group for a register in the table of register
descriptions:

#define OR1K_GROUP(_G) &groups[OR1K_RG_## G]

The contents of the register description array are made available to the simulator by
implementing a register structure iterator function using the vM1_REG_INFO_FN macro,
defined in vmiDbg.h as follows:

#define VMI_REG_INFO_FN(_NAME) vmiRegInfoCP _NAME(\
vmiProcessorP processor, \
vmiRegInfoCP prev, \
vmiRegInfoType gdbFrame \

)
typedef VMI_REG_INFO_FN((*vmiReglnfoFn));

Given an argument of type vmiRegInfoCP (i.e. a pointer to a member of the registers
array) this function should return the next register description in the array, or NULL if
there are no more register descriptions. If called with a NULL argument, it should return
the first register description in the array. The iterator is used both to access registers in
RSP/gdb contexts and to provide more general register access; the exact access required
is indicated by the gdbFrame argument, of type vmiRegInfoType, defined as follows:

typedef enum vmiRegInfoTypeE {

VMIRIT_NORMAL, // normal register request (not RSP)
VMIRIT_GPACKET, // RSP "g" packet register request
VMIRIT_PPACKET // RSP "p* packet register request

} vmiReglInfoType;

© 2022 Imperas Software Limited.www.OVPworld.org Page 180 of 321

OVP Processor Modeling Guide

When the gdbFrame argument has value VMIRIT_NORMAL, this indicates that a general
register access is being requested. Normally, the register structure iterator should return
the full set of implemented registers in this case.

When the gdbFrame argument has value VMIRIT_GPACKET, this indicates that a register
access is being requested for a register in an RSP g packet. The registers returned in this
case must comply with the fixed frame format expected by the gdb.

When the gdbFrame argument has value VMIRIT_PPACKET, this indicates that a register
access is being requested for a register in an RSP p packet. The registers returned in this
case are normally the same as for the g packet, but may include extra registers as well.

The OR1K register structure iterator has this definition:

VMI_REG_INFO_FN(orlkRegInfo) {
return getNextRegister((orlkP)processor, prev, gdbFrame);
¥

A prototype of this function has been added to orikFunctions.h. Function
getNextRegister is defined as follows:

static vmiRegInfoCP getNextRegister(orlkP orlk, vmiReglnfoCP reg, Bool gdbFrame)
{

do {
if(lreg) {
reg = registers;
} else if((reg+l)->name) {
reg = reg+l;
} else {
reg = O;

}
} while(reg && 'isRegSupported(orlk, reg, gdbFrame));

return reg;

}

The function returns each member of registers in turn, skipping those that are defined to
be unsupported by isRegSupported:

static Bool isRegSupported(orlkP orlk, vmiReglnfoCP reg, Bool gdbFrame) {
if(gdbFrame && 1S_GDB_HIDDEN_REG(reg->gdblndex)) {
// if this is a GDB frame request then registers that should be hidden
// from GDB should be ignored
return False;

} else {

// other registers are always supported
return True;

© 2022 Imperas Software Limited.www.OVPworld.org Page 181 of 321

OVP Processor Modeling Guide

In this case, isRegSupported hides registers that should not be visible when this is a gdb
request, implying that registers reported to gdb are always a subset of the full register list.
A more general implementation would be to return entirely distinct sets of registers in
normal mode and p/g packet modes: there is no requirement for gdb registers to be a
subset of true registers, or even for the index numbers to match. Note that in this case, no
distinction is made between g and p packet requests: as a consequence, only registers
visible in the g packet will be accessible using a p packet request.

17.3.1 Register Read Callback Functions
Register read callback functions are defined using the vM1_REG_READ_FN macro, defined
in vmiDbg. h:

#define VMI_REG_READ_FN(_NAME) Bool _NAME(\

vmiProcessorP processor, \
vmiRegInfoCP reg, \
void *buffer \

)

Given a processor and a vmiReg InfoCP structure representing a processor register, the
function should fill the passed buffer with the current value of the register in the passed
processor. As an example, there is a special register read callback function for the
program counter register that uses vmi rtGetPC as follows:

static VMI_REG_READ_FN(readPC) {
orlkP orlk = (orlkP)processor;
OR1K_ARTIFACT_ACCESS(orlk, *(Uns32*)buffer = (Uns32)vmirtGetPC(processor));
return True;

}

The macro OR1K_ARTIFACT_ACCESS is defined like this:

#define OR1K_ARTIFACT_ACCESS(_OR1K, B) \
(_OR1K)->artifactAccess = True; \
B; \

E_ORlK)—>artifactAccess = False

This definition ensures that the expression passed as the second argument is evaluated
while a new processor Boolean, artifactAccess, is set to True. This is important
because sometimes register reads or writes should behave differently when executed
externally (through a debugger, for example) than when executed by the processor: see
section 17.5 for an example.

Similarly, registers SR and TTCR are handled specially:

static VMI_REG_READ_FN(readSR) {
orlkP orlk = (orlkP)processor;
OR1K_ARTIFACT_ACCESS(orlk, *(Uns32*)buffer = orlkGetSR(orlk));
return True;

}
static VMI_REG_READ_FN(readTTCR) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 182 of 321

OVP Processor Modeling Guide

orlkP orlk = (orlkP)processor;
OR1K_ARTIFACT_ACCESS(orlk, *(Uns32*)buffer = orlkGetTTCR(orlk));
return True;

}

17.3.2 Register Write Callback Functions
Register write callback functions are defined using the vM1_REG_WRITE_FN macro,
defined in vmiDbg.h:

#define VMI_REG_WRITE_FN(_NAME) Bool _NAME(\

vmiProcessorP processor, \
vmiRegInfoCP reg, \
const void *buffer \

)

Given a processor and a vmiReg InfoCP structure representing a processor register, the
function should set the current value of the register in the passed processor from the
buffer. As an example, there is a special register write callback function for the program
counter register that uses vmirtSetPC as follows:

static VMI_REG_WRITE_FN(writePC) {
orlkP orlk = (orlkP)processor;
OR1K_ARTIFACT_ACCESS(orlk, vmirtSetPC(processor, *(Uns32*)buffer));
return True;

}

Once again, the macro OR1K_ARTIFACT_ACCESS is used to ensure that new processor
Boolean artifactAccess is set to True in the context of the write.

17.4 Raw and Callback Register Access

For registers whose values are held directly in the processor structure and which have no
special behavior on access, there is no need to define read or write callback functions:
instead, it is possible to define that these registers are accessible in their raw state. In this
case, all this is required is to specify a vmiReg for the register in the raw field of the
register description.

File orikRegisters.c contains a helper macro used in the register table to specify a
read/write register that can be accessed raw for both read and write:

#define OR1K_RAW REG_RW(_ R, _G) \

access : vmi_RA_RW, \
raw : OR1K_CPU_REG(_R), \
group S ¢

This macro is used to define access to registers R1 to R31.

Another macro defines read-only registers that can be accessed raw:

#define OR1K_RAW_REG_R(_R, _G) \

access > vmi_RA R, \
raw > OR1K_CPU_REG(_R), \
group S ¢

© 2022 Imperas Software Limited.www.OVPworld.org Page 183 of 321

OVP Processor Modeling Guide

This macro is used to define access to registers RO, EPC and EEAR.

Some read/write registers must be accessed using callbacks for both read and write (for
example, PC). For such registers, macro OR1K_CB_REG_RW is used:

#define OR1K_CB_REG_RW(_ R, _G) \

access > vmi_RA RW, \
readCB I read## R, \
writeCB : write## R, \
group : G

Note that this uses the ## preprocessor directive to manufacture read and write callback
names, given the register name. For example, the callback function names for register PC
are therefore readPC and writePC, described previously.

Finally, there are some registers that can be accessed raw when read but required a
callback when written. For such registers, macro OR1K_CB_REG_W is used:

#define OR1K_CB_REG W(R, _G) \

access : vmi_RA_RW, \
raw : OR1K_CPU_REG(_R), \
writeCB : write## R, \
group S ¢

These register declarations specify both the raw field and the writeCB field, but not the
readCB field.

17.5 Handling Artifact Accesses - orlkExceptions.c

Previously, we mentioned that a new Boolean, artifactAccess, has been added to the
processor structure, and that this new field is set to True when a register is being read or
written using the register interface. The new field is required to ensure correct behavior
when the TTMR register is written: if this register is written by the processor executing an
I .mtspr instruction, the 1P bit cannot be set to 1. However, if the register is written by
an artifact access through the register interface (for example, by the debugger or during
processor state restore) it must be possible to set the 1P bit to 1. These cases are
distinguished in or1kSetTTMR using the new artifactAccess field, as follows:

void orlkSetTTMR(orl1lkP orilk, Uns32 TTMR) {
Uns32 TTCR = getTTCR(or1lk);

// update TTMR, recording old and new values of TTMR_IP
Bool oldIP = orlk->TTMR_IP;

orlk->TTMR TTMR;

Bool newlP orlk->TTMR_IP;

// TTMR_IP must not be set by I._mtspr!

if(1oldIP && newlP && 'orlk->artifactAccess) {
orlk->TTMR_IP = O;

}

© 2022 Imperas Software Limited.www.OVPworld.org Page 184 of 321

OVP Processor Modeling Guide

// start the timer if mode is TTMR_RESTART or TTMR_FREE

// (for TTMR_ONCE, timer is restarted by write to TTCR)

if((orlk->TTMR_M==TTMR_RESTART) || (orlk->TTMR_M==TTMR_FREE)) {
orlk->timerRunning = True;

}

setTTCR(orlk, TTCR);
}
17.6 Debug Function Registration - orlkAttrs.c
The modelAttrs structure in orlkAttrs.c has been changed to include references to all
the debug interface functions, as follows:
const vmilASAttr modelAttrs = {
lines omitted .
II11171777/77/77777/777

// DEBUGGER INTEGRATION SUPPORT ROUTINES
L1117777777777777777777777777777/77777//777777///7777///77/7////7//77//7//

.regGroupCB = orlkRegGroup,
-regInfoCB = orlkReglnfo,
.exceptioninfoCB = orlkExceptioninfo,
.modelInfoCB = orlkModelnfo,
-getExceptionCB = orlkGetException,
-getModeCB = orlkGetMode,
-debugCB = orlkDumpRegisters,

lines omitted .

}:

17.7 Debug Function Test Harness - platform/harness.c

The test harness for this example, platform/harness.c, has been changed to include
code to test the register, exception and mode query functions, as follows:

queryRegisters(processor);
queryExceptions(processor);
queryModes(processor);

Function queryRegisters iterates over each register in each register group, printing their
names:

static void queryRegisters(optProcessorP processor) {
opPrintf(""%s REGISTERS\n", opObjectHierName(processor));
optRegGroupP group = O;
while((group=opProcessorRegGroupNext(processor, group))) {
opPrintf(** GROUP %s\n', opRegGroupName(group));
optRegP reg = O;

while((reg=opRegGroupRegNext(processor, group, reg))) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 185 of 321

OVP Processor Modeling Guide

opPrintf (" REGISTER %s\n", opRegName(reg));

3
opPrintf(*"\n"");

Function queryExceptions uses the exception iterator and current exception query
functions:

static void queryExceptions(optProcessorP processor) {
const char *name = opObjectHierName(processor);
if(1opProcessorExceptionNext(processor, 0)) {
opPrintf(""%s HAS NO EXCEPTION INFORMATION\N'", name);
} else {
opPrintf(*"%s EXCEPTIONS\n", name);
optExceptionP info = 0;
while((info=opProcessorExceptionNext(processor, info))) {
opPrintf(
" %s (code %u)\n',

opExceptionName(info),
opExceptionCode(info)

):
}
if((info=opProcessorExceptionCurrent(processor))) {
opPrintf(
“current: %s (code %u)\n",
opExceptionName(info),
opExceptionCode(info)
)
b

}

opPrintf(''\n");
ks

Function queryModes uses the mode iterator and current mode query functions:

static void queryModes(optProcessorP processor) {
const char *name = opObjectHierName(processor);
if(1opProcessorModeNext(processor, 0)) {
opPrintf(""%s HAS NO MODE INFORMATION\Nn'", name);
} else {
opPrintf(*'%s MODES\n', name);
optModeP info = 0;

while((info=opProcessorModeNext(processor, info))) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 186 of 321

OVP Processor Modeling Guide

opPrintf(

%s (code %u)\n',
opModeName(info),
opModeCode (info)

)
¥
if((info=opProcessorModeCurrent(processor))) {
opPrintf(
"current: %s (code %u)\n",
opModeName(info),
opModeCode(info)
):
bs

}

opPrintf(**\n"");
T

17.8 Testing the Debugger Interface

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —-gdbconsole \
-—program application/asmtest.OR1K.elf

The new —gdbconsole argument causes the simulator to launch a gdb in a console
window and attach it to the platform when it starts to execute’®. The output will start
with:

Info (GDBT_PORT) Host: <hostname>, Port: <portnum>
Info (GDBT_WAIT) Waiting for remote debugger to connect...

Then, the query functions defined in the harness will be called, producing the following
output:

platform/cpul REGISTERS
GROUP GPR
REGISTER RO
REGISTER R1
REGISTER R2
REGISTER R3
REGISTER R4
REGISTER R5
REGISTER R6
REGISTER R7
REGISTER R8
REGISTER R9
REGISTER R10
REGISTER R11
REGISTER R12
REGISTER R13
REGISTER R14
REGISTER R15
REGISTER R16

19 The details of which gdb to start and how to start it are given by the vmiProcessor Info structure
returned by the vmiProcessorInfoFn callback for the processor: see section 4.2.6 for more details.

© 2022 Imperas Software Limited.www.OVPworld.org Page 187 of 321

OVP Processor Modeling Guide

REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

GROUP Syst
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
em
PC
SR
EPCR
EEAR
ESR
PICMR
PICSR
TTCR
TTMR

GROUP Integration_Support

REGISTER

platform/cpul EXCEPTIONS

RST (code
BUS (code
DPF (code
IPF (code
TT1 (code
ILL (code
EXI1 (code
SYS (code

current: RST (code 256)

platform/cpul MODES
SUPERVISOR (code 0)

USER (code

EXCPT

256)
512)
768)
1024)
1280)
1792)
2048)
3072)

1

current: SUPERVISOR (code 0)

The output first lists all of the registers in the processor model (by group), then the
exceptions, then the modes. At this point, the debugger should connect, printing this

message:

Info (GDBT_CONNECTED) Client connected

We can carry out normal debugging commands supported by gdb in the console window.

For example, try this sequence (typed commands are shown in bold):

(gdb) b Fib

Breakpoint 1 at 0x10

(gdb) cont
Continuing.

Breakpoint 1, 0x00000010 in fib

(gdb) disass $pc $pc+12

© 2022 Imperas Software Limited.www.OVPworld.org

Page 188 of 321

OVP Processor Modeling Guide

Dump of assembler code from 0x10 to Oxlc:
0x10 <fib>: I.sflesi r1,0x1

0x14 <fib+4>: 1_.bf OxF

0x18 <fib+8>: 1.nop Ox0

End of assembler dump.

(gdb) info registers

RO R1 R2 R3 R4 R5 R6 R7
00000000 0000000f deadbeef deadbeef deadbeef deadbeef deadbeef deadbeef
R8 R9 R10 R11 R12 R13 R14 R15
deadbeef 0000000c deadbeef deadbeef deadbeef deadbeef deadbeef deadbeef
R16 R17 R18 R19 R20 R21 R22 R23
deadbeef deadbeef deadbeef deadbeef deadbeef deadbeef deadbeef deadbeef
R24 R25 R26 R27 R28 R29 R30 R31
deadbeef deadbeef deadbeef deadbeef deadbeef deadbeef deadbeef 00000000
PC SR EPCR
00000010 00008001 deadbeef

(gdb) quit
The program is running. Exit anyway? (y or n) y

When you quit from the debugger, simulation will terminate.

17.9 Testing Register Change Tracing

Previously, to show register values during trace we have used the command line
arguments —trace and —traceregisters. When the debug register interface is
implemented, an alternative trace format is possible: register change tracing.

To view the effect of register change tracing, run the platform as follows:

platform/harness.$IMPERAS_ARCH.exe —trace --tracechange \
-—program application/asmtest_OR1K.elf

You should see the following output:

platform/cpul REGISTERS
- - - lines omitted .
platform/cpul EXCEPTIONS
- - - lines omitted .
platform/cpul MODES
lines omitted .

Info "platform/cpul®, 0x0000000000000000(_start): I.addi r31,r0,0x0

Info R31 deadbeef -> 00000000

Info "platform/cpul®, 0x0000000000000004(_start+4): 1_jal 0x00000010
Info R9 deadbeef -> 0000000c

Info "platform/cpul®, 0x0000000000000008(_start+8): I.addi rl,r0,0xF

Info R1 00000000 -> 0000000F

Info "platform/cpul®, 0x0000000000000010(fib): I.sflesi ri1,0x1

Info "platform/cpul®, 0x0000000000000014(fib+4): I1.bf 0x00000050

Info "platform/cpul®, 0x0000000000000018(fib+8): I.nop 0x0

Info "platform/cpul®, 0x000000000000001c(fib+c): I.addi r31,r31,0xfFrffff4
Info R31 00000000 -> FFFFFFf4

Info "platform/cpul®, 0x0000000000000020(Ffib+10): I.sw 0x0(r31),r9

Info "platform/cpul®, 0x0000000000000024(fib+14): 1.sw 0x4(r31),rl

Info "platform/cpul®, 0x0000000000000028(fib+18): I.jal 0x00000010

Info R9 0000000c -> 00000030

Info "platform/cpul®, 0x000000000000002c(fib+1c): 1.addi rl,rl,OxFFFfrrfff
Info R1 0000000Ff -> 0000000e

Info SR 00008001 -> 00008401

© 2022 Imperas Software Limited.www.OVPworld.org Page 189 of 321

OVP Processor Modeling Guide

Info
Info
Info
Info
Info
Info
Info
Info
Info
Info

lines omitted .

"platform/cpul®, 0x0000000000000044(fib+34): I1.add rl,rl,r2
R1 000000e9 -> 00000262
"platform/cpul®, 0x0000000000000048(fib+38): 1.lwz r9,0x0(r31)
R9 00000040 -> 0000000c
"platform/cpul®, 0x000000000000004c(fib+3c): I.addi r31,r31,0xc
R31 FFFFFFf4 -> 00000000
SR 00008201 -> 00008601
"platform/cpul®, 0x0000000000000050(done): I.jr r9
"platform/cpul®, 0x0000000000000054(done+4): 1.nop 0x0
"platform/cpul®, 0x000000000000000c(exit): 1._.nop 0x0

Processor "platform/cpul® terminated at "exit", address Oxc
processor has executed 22687 instructions

Note that in this trace format, any register that has changed value is shown after the
instruction line that caused the change. Trace change works by reading the value of every
readable register defined by the model™* after each instruction completes, and comparing
with the previous value, printing the old and new values on a change. The format has
several advantages over the model-specific register trace enabled by —traceregisters:

1. The mode is automatically available once the debug register interface is implemented.
2. Both old and new register values are shown, so it is easy to see what changed.
3. The output is generally much more concise.

1 Except registers defined with noTraceChange=True, which are ignored.

© 2022 Imperas Software Limited.www.OVPworld.org Page 190 of 321

OVP Processor Modeling Guide

18 Adding an Extended Programmers View

This section provides details of extending a programmers view on the processor model
from the standard view provided by the debug interface. The extended programmer’s
view is supported by the Imperas Professional Tools such as the MP Debugger and
interception plugins; it is not supported by OVPsim.

The extended programmers view is implemented using functions from the VMI Run
Time API.

18.1 An Example Programmers View
A model for the OR1K processor with additional programmer’s view can be found in:

$IMPERAS_HOME/Examples/Models/Processor/16.orl1kProgrammersView

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/16.orlkProgrammersView .

Compile the model, harness and application using the make command:

cd 16.orlkProgrammersView
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous example, with the changes listed in
following sections.

18.2 Adding View Object and Event - orikStructure.h

The orlk structure has new fields, viewObject and addrExEvent, used to hold the
created object parent and an address exception event respectively:

typedef struct orlkS {
. lines omitted . . .

vmiViewObjectP exObject; // view object for address exception info
vmiViewEventP addrExEvent; // event generated on an address exception

} orilk, *orilkP;

© 2022 Imperas Software Limited.www.OVPworld.org Page 191 of 321

OVP Processor Modeling Guide

18.3 Implementing Programmer’s View - orlkView.c

This is a new file in which the extended programmers view is defined for the processor.
In this example we have added a new event and some associated objects.

The event addrExEvent is triggered if an address exception occurs.
The view of the address exception has been created as an individual object with other
objects associated with it. An object allows events and other objects to be grouped.

void orlkCreateView(orlkP orilk) {

// get the base processor view object
vmiProcessorP processor = (vmiProcessorP)orlk;
vmiViewObjectP processorObject = vmirtGetProcessorViewObject(processor);

// add new view object
orlk->exObject = vmirtAddViewObject(
processorObject, "addressException', "Address exception™

DE

// Create an event to be generated on an address exception
orlk->addrExEvent = vmirtAddViewEvent(
orlk->exObject, "address', "Address exception event trigger"

);

// Create an object to access the EEAR
vmiViewObjectP eearObject = vmirtAddViewObject(orlk->exObject, 'eear™, ''");
vmirtSetViewObjectRefValue(eearObject, VMI_VVT_UNS32, &orlk->EEAR);

// Create an object to access the EPC
vmiViewObjectP epcObject = vmirtAddViewObject(orlk->exObject, *epc', "');
vmirtSetViewObjectRefValue(epcObject, VMI_VVT_UNS32, &orlk->EPC);

// Create an object to access the ESR
vmiViewObjectP esrObject = vmirtAddViewObject(orlk->exObject, *esr™, "');
vmirtSetViewObjectRefValue(esrObject, VMI_VVT_UNS32, &orlk->ESR);

}

18.4 Triggering View Events - orlkExceptions.c
The address exception is generated in the exception functions.

//

// Read privilege exception handler callback function
//

VMI_RD_PRIV_EXCEPT_FN(orl1kRdPrivExceptionCB) {

iT(MEM_AA_1S_TRUE_ACCESS(attrs)) {
orlkP orlk = (orlkP)processor;

orlk->EEAR (Uns32)address;
orlkTakeException(orlk, DPF_ADDRESS);

if(orlk->addrExEvent) {
vmirtTriggerViewEvent(orlk->addrExEvent);
}

© 2022 Imperas Software Limited.www.OVPworld.org Page 192 of 321

OVP Processor Modeling Guide

//

// Write privilege exception handler callback function
//

VMI_WR_PRIV_EXCEPT_FN(orlkWrPrivExceptionCB) {
if(MEM_AA_1S_TRUE_ACCESS(attrs)) {
orlkP orilk (orlkP)processor;

orlk->EEAR (Uns32)address;
orlkTakeException(orlk, DPF_ADDRESS);

if(orlk->addrExEvent) {
vmirtTriggerViewEvent(orlk->addrExEvent);
}

}

//

// Read alignment exception handler callback function
//

VMI_RD_ALIGN_EXCEPT_FN(orlkRdAlignExceptionCB) {

orlkP orilk (orlkP)processor;
orlk->EEAR (Uns32)address;
orlkTakeException(orlk, BUS_ADDRESS);

if(orlk->addrExEvent) {
vmirtTriggerViewEvent(orlk->addrExEvent);
by

return 0O;

}

//

// Write alignment exception handler callback function
//

VMI_WR_ALIGN_EXCEPT_FN(orlkWrAlignExceptionCB) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, BUS_ADDRESS);
if(orlk->addrExEvent) {
vmirtTriggerViewEvent(orlk->addrExEvent);
}

return O;

}

18.5 Testing the Extended Programmers View
The extended programmers view is only accessible from the Imperas Professional Tools.

18.5.1 Running in OVP
Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest.OR1K.elf

The output from this should be as follows:

© 2022 Imperas Software Limited.www.OVPworld.org Page 193 of 321

OVP Processor Modeling Guide

lines omitted .

Info "cpul”, 0x0000000000010000:
Info “"cpul®, 0x0000000000010004:
Info "cpul”, 0x0000000000010008:
Info “"cpul®, 0x000000000001000c:

.ori r30,r0,0x0
-.movhi r1,0x8000
.movhi r2,0x1234
.ori r2,r2,0x5678

Info "cpul®, 0x0000000000010010: l.ori r3,r0,0x0
Info “cpul®, 0x0000000000010014: 1.sb 0x0(rl),r2
Info "cpul®, 0x0000000000010018: I.sh ox0(rl),r2
Info “cpul®, 0x000000000001001c: I.sw 0x0(rl),r2

Info "cpul®, 0x0000000000010020:
Info “cpul®, 0x0000000000010024:
Info "cpul®, 0x0000000000010028:
Info “cpul®, 0x000000000001002c:
Info "cpul®, 0x0000000000010014:
Info “cpul®, 0x0000000000010018:
Info "cpul®, 0x0000000000000200:
Info “cpul®, 0x0000000000000204:
Info "cpul®, 0x0000000000000208:

.addi r3,r3,0x1
.sfeqi r3,0xa

-bnf 0x00010014
.addi rl,rl,0x1
-sb ox0(rl),r2
-sh 0x0(rl),r2
.addi r30,r30,0x1
.addi rl,rl,0x1
.rfe

lines omitted .

Info “"cpul®, 0x000000000001001c: I.sw 0x0(rl),r2
Info "cpul®, 0x0000000000010020: 1.addi r3,r3,0x1
Info “"cpul®, 0x0000000000010024: 1.sfeqi r3,0xa
Info "cpul®, 0x0000000000010028: 1.bnf 0x00010014
Info "cpul®, 0x000000000001002c: 1.addi rl,rl,0x1
Info "cpul”, 0x0000000000010030: I.div r30,r30,r0
Info "cpul®, 0x0000000000010034: 1._nop 0x0
Processor "cpul® terminated at "exit", address 0x10034
RO : 00000000 R1 : 80000025 R2 : 12345678 R3 : 0000000a
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : deadbeef R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 0000001b R31: deadbeef
PC : 00010038 SR : 00008601 ESR: 00008001 EPC: 0001001c
TCR: 00000000 TMR: 00000000 PSR: 00000000 PMR: 00000000
BF:1 CF:1 OF:0

processor has executed 185 instructions

18.5.2 Operation in Imperas MP Debugger
The same platform can be executed with the Imperas professional simulator for
debugging with the Imperas MP Debugger

IMPERAS_RUNT IME=CpuManager \
platform/harness.$IMPERAS_ARCH.exe --trace --idebug \
—-—program application/asmtest.OR1K.elf \

The debugger allows access to the extended programmers view using the view command.

© 2022 Imperas Software Limited.www.OVPworld.org Page 194 of 321

OVP Processor Modeling Guide

The platform is created as a shared object to load into the Imperas MP Debugger as part
of the normal platform build process

make -C platform

If the same platform is executed with the address exception event point enabled the
debugger will stop execution and allow the values of the defined objects to be accessed.
The output from this should be as follows.

Before starting simulation view the defined objects

idebug (cpul) > view

platform
Events:
begin: Start of simulation event
finish: Finish of simulation event
cpul: processor
Events:
modeswitch: Mode switch event
exception: Exception event
type = orlk
id = 0 (0x00000000)
addressException: Address exception
Events:
address: Address exception event trigger
eear: = 3735928559 (Oxdeadbeef)
epc: 3735928559 (Oxdeadbeef)
esr: 3735928559 (Oxdeadbeef)

The new view object, addressException, is visible, containing an event and views of
the eear, epc and esr registers. Note that the processor also contains automatically-
created modeswitch and exception events. The modeswitch event is triggered when the
processor switches mode using vmi rtSetMode. The exception event is triggered when
the processor updates its execution address using vmi rtSetPCException.

Set an event point for the address exception event

idebug (cpul) > event address
Created eventpoint 1 on /platform/cpul/exception/address

Run the simulation

idebug (cpul) > continue

Info “"cpul®, 0x0000000000010000:
Info "cpul®, 0x0000000000010004:
Info “cpul®, 0x0000000000010008:
Info "cpul®, 0x000000000001000c:

.ori r30,ro0,0x0
-.movhi ri1,0x8000
.movhi r2,0x1234
.ori r2,r2,0x5678

Info “cpul®, 0x0000000000010010: 1.ori r3,r0,0x0
Info "cpul®, 0x0000000000010014: I.sb 0ox0(rl),r2
Info “cpul®, 0x0000000000010018: 1.sh 0x0(rl),r2
Info "cpul®, 0x000000000001001c: I.sw 0x0(rl),r2

Info “cpul®, 0x0000000000010020: 1.addi r3,r3,0x1

© 2022 Imperas Software Limited.www.OVPworld.org Page 195 of 321

OVP Processor Modeling Guide

Info “"cpul®, 0x0000000000010024:
Info "cpul”, 0x0000000000010028:
Info “"cpul®, 0x000000000001002c:
Info "cpul”, 0x0000000000010014:
Info "cpul®, 0x0000000000010018:

.sfeqi r3,0xa

.bnf 0x00010014
.addi rl,rl,0x1
.sh 0x0(rl),r2
-sh 0x0(rl),r2

Simulation stops on the event point i.e. an address exception

Eventpoint 1 for /platform/cpul/exception/address triggered
0x00000200 in ?? O

Examining the view provides all the information defined in the model. In this case it is
simply the register values associated with an address exception.

idebug (cpul) > view

platform
Events:
begin: Start of simulation event
finish: Finish of simulation event
cpul: processor
Events:
modeswitch: Mode switch event
exception: Exception event
type = orlk
id = 0 (0x00000000)
exception: Address exception
Events:
address: Address exception event trigger
eear: = 2147483649 (0x80000001)
epc: 65560 (0x00010018)
esr: 32769 (0x00008001)

idebug (cpul) >

© 2022 Imperas Software Limited.www.OVPworld.org Page 196 of 321

OVP Processor Modeling Guide

19 Implementing Save/Restore

This section describes how to add save/restore support to the processor model. Note that
save/restore is available only with Imperas Professional Tools; it is not supported by
OVPsim.

When a processor has save/restore support implemented, it is possible to run simulations
that restart from a previously-saved state, instead of having to restart a simulation from
the beginning every time. There are various functions available in the OP interface for
this:

1. opProcessorStateSaveFile/opProcessorStateRestoreFile: these two functions
save and restore the state of a single processor using a file in a standard text format.
They are typically used when the processor model is being used as part of a larger
system that itself implements save/restore on other platform components.

2. opProcessorStateSave/opProcessorStateRestore: these two functions save and
restore the state of a single processor using user-defined callbacks to implement the
save/restore process. They are typically used when the processor model is being used
as part of a larger system that itself implements save/restore on other platform
components, and which has its own database format which must be supported.

3. opRootModuleStateSaveFile/opRootModuleStateRestoreFi le: these two
functions save and restore the state of an entire platform using a file in a standard text
format. Saved information will include the state of all processors, memories and
peripherals in the simulation, plus any other module-specific data defined in module
save/restore callbacks. They are typically used when the entire simulation is
implemented using OVP components.

4. opRootModuleStateSave/opRootModuleStateRestore: these two functions save
and restore the state of an entire platform using user-defined callbacks to implement
the save/restore process. Saved information will include the state of all processors,
memories and peripherals in the simulation, plus any other module-specific data
defined in module save/restore callbacks. They are typically used when the entire
simulation is implemented using OVP components, but a custom save/restore format
must be supported.

19.1 Example Save/Restore Implementation
A model for the OR1K processor with save/restore can be found in:

$IMPERAS_HOME/Examples/Models/Processor/17.orlkSaveRestore
Take a copy of the template model:
cp —r $IMPERAS_HOME/Examples/Models/Processor/17 .orlkSaveRestore .

Compile the model, harness and application using the make command:

cd 17.orlkSaveRestore
make

© 2022 Imperas Software Limited.www.OVPworld.org Page 197 of 321

OVP Processor Modeling Guide

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous example, with the changes listed in
following sections.

19.2 Save/Restore Mode Active - orlkStructure.h

The orlk structure has a new field, inSaveRestore, used to indicate whether save/restore
is currently active:

typedef struct orilkS {
lines omitted .
Bool inSaveRestore; // whether save/restore in progress
lines omitted .

} orik, *orilkP;

19.3 Save/Restore Interface Functions - orikMain.c

The interface to save/restore is implemented by two functions in orikMain.c. Function
orlkSaveStateCB is responsible for saving processor state. It is implemented like this:

VMI_SAVE_STATE_FN(orlkSaveStateCB) {
orlkP orlk = (orlkP)processor;
switch(phase) {

case SRT_BEGIN:
// start of save/restore process
orlk->inSaveRestore = True;
break;

case SRT_BEGIN_CORE:
// start of individual core
break;

case SRT_END_CORE:
// end of individual core: save fields not covered by debug register
// interface
VMIRT_SAVE_FIELD(cxt, orlk, TTCRSetCount);
VMIRT_SAVE_FIELD(cxt, orlk, timerRunning);
VMIRT_SAVE_FIELD(cxt, orlk, resetlnput);
VMIRT_SAVE_FIELD(cxt, orlk, reset);
break;

case SRT_END:
// end of save/restore process
orlk->inSaveRestore = False;
break;

© 2022 Imperas Software Limited.www.OVPworld.org Page 198 of 321

OVP Processor Modeling Guide

default:
// not reached
VMI_ABORT(""'unimplemented case'); // LCOV_EXCL_LINE
break;

}

The state save function is defined using the VMI1_SAVE_STATE_FN macro:

#define VMI_SAVE_STATE_FN(_NAME) void _NAME(\

vmiProcessorP processor, \
vmiSaveContextP cxt, \
vmiSaveRestorePhase phase, \
Uns32 srVersion \

)
typedef VMI_SAVE_STATE_FN((*vmiSaveStateFn));

The cxt argument is an opaque type pointer to an object that implements primitive save
operations (see below). The phase argument indicates one of four phases, as follows:

typedef enum vmiSaveRestorePhaseE {
SRT_BEGIN, // start save/restore for a processor (or SMP container)
SRT_BEGIN_CORE, // start save/restore for a single SMP core
SRT_END_CORE, // end save/restore for a single SMP core
SRT_END, // end save/restore for a processor (or SMP container)

} vmiSaveRestorePhase;

When performing state save, the function is used in the following way:

1. Aninitial call is made, passing the processor, a context argument of type
vmiSaveContextP, a phase argument of SRT_BEGIN, and a model-specific version.
The model can use this phase to perform any model-specific preparation before
starting the save.

2. A second call is made with the same arguments, except that the phase is
SRT_BEGIN_CORE. The model can use this phase to perform any model-specific state
save before standard state save occurs.

3. Standard information is then saved automatically. This includes:

a. The processor program counter (and whether it is executing in a delay slot);

b. The processor halted/executing state;

c. The processor instruction count, and any associated state (for example,
deration factor);

d. Any processor registers accessible for read/write through the register interface
that have not been specifically excluded using noSaveRestore in the register
definition;

e. The processor interrupt timer state (i.e. timer state set using
vmirtSetlCountinterrupt).

4. A third call is made with the same arguments, except that the phase is SRT_END_CORE.
The model can use this phase to perform any model-specific state save after standard
state save occurs.

© 2022 Imperas Software Limited.www.OVPworld.org Page 199 of 321

OVP Processor Modeling Guide

5. Afinal call is made with the same arguments, except that the phase is SRT_END. The
model can use this phase to perform any model-specific state finalization after save
completes.

In the OR1K model, the callback phases are used as follows:

1. In phase SRT_BEGIN, a Boolean inSaveRestore is set to True to indicate that
save/restore is in progress;

2. Inphase SRT_END_CORE, some processor state not covered by the standard algorithm
is saved (see below);

3. Inphase SRT_END, inSaveRestore is set to False to indicate that save/restore is no
longer active.

Most processor state held in read/write registers is saved or restored automatically and
therefore does not need to be specifically handled in the save/restore callbacks. Action is
required only to save/restore processor state that is not held in read/write registers. For
example, in the OR1K model, there are three such state items:

1. The instruction count at which the TTCR register was last written, (TTCRSetCount);

2. The Boolean indicating whether the processor timer is currently running
(timerRunning);

3. The Boolean indicating whether a reset should be triggered at the start of the next
instruction (reset) and the latched value of the reset input (resetlinput).

These four pieces of state are saved using the VMIRT_SAVE_FIELD macro:

VMIRT_SAVE_FIELD(cxt, orlk, TTCRSetCount);
VMIRT_SAVE_FIELD(cxt, orlk, timerRunning);
VMIRT_SAVE_FIELD(cxt, orlk, resetlnput);
VMIRT_SAVE_FIELD(cxt, orlk, reset);

This macro expands to the following calls to the VMI run time function vmi rtSave:

vmirtSave(cxt, “TTCRSetCount”, &orlk->TTCRSetCount, sizeof(orlk->TTCRSetCount));
vmirtSave(cxt, “timerRunning”, &orlk->timerRunning, sizeof(orlk->timerRunning));
vmirtSave(cxt, “resetlnput”, &orlk->TTCRSetCount, sizeof(orlk->resetlnput));
vmirtSave(cxt, “reset”, &orlk->TTCRSetCount, sizeof(orlk->reset));

The function vmi rtSave saves the value of the indicated structure field in the given
context. The saved value is preceded by a key name (for example, “TTCRSetCount™)
which enables sanity checking during later restore.

The set of explicitly-saved data for this processor is quite small; in more complex
processors, it is likely to be larger. Specifically, it is usually necessary to explicitly save
and restore the following:

© 2022 Imperas Software Limited.www.OVPworld.org Page 200 of 321

OVP Processor Modeling Guide

1. The value of model timers other than the default timer (for example, timers created
using vmirtCreateModelTimer). To save and restore these, use functions
vmirtSaveModelTimer and vmirtRestoreModelTimer.

2. The current set of virtual memory mappings, if those mappings cannot be derived
from register values (e.g. a TLB).

3. The latched values of any processor inputs, and any values derived from them (e.g.
reset and resetlnput in the current example).

4. The contents of any model-local memories created using vmi rtNewDomain and
vmirtMapMemory (for example, TCM memories). To save and restore these, use
functions vmirtSaveDomain and vmi rtRestoreDomain.

Function orlkRestoreStateCB is responsible for restoring processor state. It is
implemented like this:

VMI_RESTORE_STATE_FN(orlkRestoreStateCB) {
orlkP orlk = (orlkP)processor;
switch(phase) {

case SRT_BEGIN:
// start of save/restore process
orlk->inSaveRestore = True;
break;

case SRT_BEGIN_CORE:
// start of individual core
break;

case SRT_END_CORE:
// end of individual core: save fields not covered by debug register
// interface
VMIRT_RESTORE_FIELD(cxt, orlk, TTCRSetCount);
VMIRT_RESTORE_FIELD(cxt, orlk, timerRunning);
VMIRT_RESTORE_FIELD(cxt, orlk, resetlnput);
VMIRT_RESTORE_FIELD(cxt, orlk, reset);
// take any pending interrupt before the next instruction
orlkinterruptNext(orlk);
break;

case SRT_END:
// end of save/restore process
orlk->inSaveRestore = False;
break;

default:
// not reached
VMI_ABORT(*"'unimplemented case'™); // LCOV_EXCL_LINE
break;

}

Note that or1kRestoreStateCB closely matches orikSaveStateCB in its form, except
that the VMIRT_RESTORE_FIELD macro is used in place of the VMIRT_SAVE_FIELD macro.
This macro expands to calls to the VMI function vmi rtRestore, each of which reads a
named record from the context.

© 2022 Imperas Software Limited.www.OVPworld.org Page 201 of 321

OVP Processor Modeling Guide

The only other significant difference is that after restoring model-specific state in the
SRT_END_CORE phase, a call is make to orilklInterruptNext:

VMIRT_RESTORE_FIELD(cxt, orlk, TTCRSetCount);
VMIRT_RESTORE_FIELD(cxt, orlk, timerRunning);
VMIRT_RESTORE_FIELD(cxt, orlk, resetlnput);
VMIRT_RESTORE_FIELD(cxt, orlk, reset);

// take any pending interrupt before the next instruction
orlkinterruptNext(orlk);

The purpose of this call is to make sure that if an interrupt or reset exception is required
immediately after restore because of processor state changes, it will be taken.

Prototypes for orlkSaveStateCB and orlkRestoreStateCB have been added to file
orlkFunctions.h

19.3.1 Save/Restore Data Constraints

One important constraint on save/restore is that the order of records read during restore
must match the order in which the records were created during save. Record names are
checked against expected names during the restore process, and restore will fail if a
difference is found. For example, modifying the order of restore field lines like this:

VMIRT_RESTORE_FIELD(cxt, orlk, TTCRSetCount);
VMIRT_RESTORE_FIELD(cxt, orlk, timerRunning);
VMIRT_RESTORE_FIELD(cxt, orlk, reset);
VMIRT_RESTORE_FIELD(cxt, orlk, resetlnput);

Produces this error during restore:

Fatal (SRE1l) Expected “reset® but found “resetlnput® - terminating restore
Info Exiting

This error indicates that there is a serious problem in the design of the processor model
save/restore interface and therefore terminates the simulation (processor state is very
likely to be corrupted, making it unusable).

After performing a restore, the simulator also automatically checks that the visible
processor register values are as expected; if not the restore will fail. For example,
modifying the restore lines like this:

VMIRT_RESTORE_FIELD(cxt, orlk, TTCRSetCount);
VMIRT_RESTORE_FIELD(cxt, orlk, timerRunning);
VMIRT_RESTORE_FIELD(cxt, orlk, resetlnput);
VMIRT_RESTORE_FIELD(cxt, orlk, reset);

// deliberately corrupt PICSR after restore
orlk->PICSR = 0x12345678;

Produces this error during restore:

Error (PC_RESTORE_CHK) Register "PICSR" value mismatch after restore -
expected:0x00000000 actual :0x12345678

© 2022 Imperas Software Limited.www.OVPworld.org Page 202 of 321

OVP Processor Modeling Guide

In this case, simulation is not terminated because the error is less serious than a restore
that fails completely, but it is usually the case that further simulation is inadvisable. The
return code for the restore function used (for example, opProcessorStateRestoreFile)
will be OP_SAVE_ERROR if any such error is found. Value inconsistencies such as this
usually occur when the value of a register is derived from some other processor state. To
correct them, ensure that all such dependent register state is derived at the end of the
SRT_END_CORE phase.

19.3.2 Multicore Processors

It is possible to create multicore processors using the VMI API (see SMP Processor
Hierarchies in the VMI Run Time Function Reference document for more information).
For such processors, the save/restore flow is as follows.

1. Asingle call is made to the save or restore function, passing the root processor and
phase of SRT_BEGIN.

2. For each leaf processor a call is made to the save or restore function, passing the leaf
processor and phase of SRT_BEGIN_CORE, followed by a second call with phase
SRT_END_CORE.

3. Finally, a single call is made to the save or restore function, passing the root
processor and phase of SRT_END.

19.4 Save/Restore Function Registration - orlkAttrs.c
The modelAttrs structure in orlkAttrs.c has been changed to include references to the
save/restore functions, as follows:
const vmilASAttr modelAttrs = {
- lines omitted . . .
LI11111771771777771771777777777777777777717717717/17717//7//7////7//////

// SAVE/RESTORE ROUTINES
1/1//1/777777777777/777/7/7/////7//7////////////7////7//////////////////7//7//7777

.saveCB = orlkSaveStateCB,
.restoreCB = orlkRestoreStateCB,
.srVersion = 1,

. lines omitted . . .
};

srVersion is the model-specific save/restore version number: it is this number that is
passed as the srversion parameter of the save callback. During restore, srVersion is
not taken from the modelAttrs structure, but instead from the saved context structure (in
other words, the restore callback is told the version number used when data was saved).

As models develop over time, it is often the case that the information used during
save/restore needs to change. By making the restore function sensitive to srversion, it is
possible to support both current and previous version save files if required.

© 2022 Imperas Software Limited.www.OVPworld.org Page 203 of 321

OVP Processor Modeling Guide

19.5 Save/Restore Mode Accesses - orlkExceptions.c

We stated previously that the processor interrupt timer state (i.e. timer state set using
vmirtSetlCountinterrupt) is saved and restored automatically and does not need to be
handled explicitly. However, we do still need to save and restore the value of the TTCR
field in the processor structure, because this value is used when calculating timer expiry
delays. We handle this by modifying getTTCR and setTTCR as follows:

inline static Uns32 getTTCR(orlkP orlk) {
Uns32 TTCR = orlk->TTCR;

if(orlk->timerRunning && 'orlk->inSaveRestore) {
TTCR = TTCR - orlk->TTCRSetCount + getThislCount(orilk);
}

return TTCR;
ks

If not in save/restore mode, getTTCR behaves as before. In in save/restore mode, getTTCR
now returns the unmodified value of the TTCR field.

static void setTTCR(orlkP orlk, Uns32 TTCR) {

// set raw value of TTCR
orlk->TTCR = TTCR;

// update fields dependent on TTCR only if save/restore is not active
if(lorlk->inSaveRestore) {

// record count at which TTCR was modified
orlk->TTCRSetCount = getThislCount(orlk);

// if the timer is running, calculate the cycle delay to any interrupt
// (28 bits maximum) and schedule timer interrupt
if(orlk->timerRunning) {
Uns32 iCount = (orlk->TTMR_TP-TTCR-1) & OxFFFffff;
vmirtSetlCountinterrupt((vmiProcessorP)orlk, iCount);
} else {
vmirtClearlCountinterrupt((vmiProcessorP)orlk);
}

}

If not in save/restore mode, setTTCR behaves as before. In in save/restore mode, setTTCR
simply updates the of the TTCR field with the given value.

19.6 Save/Restore Test Harness - platform/harness.c

The test harness for this example, platform/harness.c, has been specially constructed
to allow validation of save/restore. The platform instantiates two instances of the OR1K
processor (called procA and procB) connected to a common memory bus. Then,
simulation is run in a loop of the following steps:

1. Asingle instruction is executed on procA,;

© 2022 Imperas Software Limited.www.OVPworld.org Page 204 of 321

OVP Processor Modeling Guide

The state of procA is saved to a file using opProcessorStateSaveFi le;

The processor state is loaded onto procB using opProcessorStateRestoreFile;
A single instruction is executed on procB;

The state of procB is saved to a file using opProcessorStateSaveFi le;

The processor state is loaded onto procA using opProcessorStateRestoreFile, at
which point execution restarts at step 1.

ok wn

The effect of this harness is to run a simulation executing alternate instructions on procA
and procB, transferring all state from one processor to the other before each instruction is
executed. The loop is implemented in function simulate, as follows:

static Bool simulate(
procPairP pair,

Uns32 clocks,
optNetP intrONet,
Bool introvalue,
optNetP resetNet,
Bool resetValue
) {
const char *stateFile = "checkpoint.txt";
uUns32 i;

// simulate on alternate processors, one instruction at a time
for(i=0; i<clocks; i++) {

// get next processor to simulate
optProcessorP processor = pair->processors[pair->nextRun];

// restore processor state before simulation if required

if(pair->doRestore) {
opProcessorStateRestoreFile(processor, stateFile);

bs

// if not the first iteration, apply interrupt net stimulus
if(li) {

opNetWrite(intrONet, intrOValue);

opNetWrite(resetNet, resetValue);

}

optStopReason stopReason = opProcessorSimulate(processor, 1);

// save processor after simulation
opProcessorStateSaveFile(processor, stateFile);

// prepare for next iteration
pair->nextRun = Ipair->nextRun;
pair->doRestore = True;

switch(stopReason) {

case OP_SR_SCHED:
// hit the scheduler limit
break;

case OP_SR HALT:
// processor halted in reset
break;

case OP_SR_EXIT:

© 2022 Imperas Software Limited.www.OVPworld.org Page 205 of 321

OVP Processor Modeling Guide

// processor has exited
return False;

case OP_SR_FINISH:
// simulation must end
return False;

default:
opPrintf(*'unexpected stopReason %u\n', stopReason);
return False;

}

// here when the required number of instructions have been executed
return True;

}

The harness calls function simulate using this sequence:

// run for 9 instructions
simulate(&pair, 9, intrONet,0, resetNet,0);

// assert reset for 5 instructions
simulate(&pair, 5, intrONet,0, resetNet,1l);

// run for 9 instructions
simulate(&pair, 9, intrONet,0, resetNet,0);

// assert interrupt for 1 instruction
simulate(&pair, 1, intrONet,1, resetNet,0);

// run for 9 instructions
simulate(&pair, 9, intrONet,0, resetNet,0);

// assert interrupt for 1 instruction
simulate(&pair, 1, intrONet,1, resetNet,0);

// run processor until done
simulate(&pair, -1, intrONet,0, resetNet,0);

Refer to section 16.9 for more details on the purpose of this sequence.

19.7 Testing Save/Restore

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
—-—program application\asmtest.OR1K.elf \
--trace --tracechange --traceshowicount

The output from this should be as follows:

Info 1: "platform/procA®, 0x0000000000010000(_start): l.ori r30,r0,0x0
Info R30 deadbeef -> 00000000

Info 2: "platform/procB®, 0x0000000000010004(_start+4): l.addi
rl,r0,OxFFFFfFfff

Info R1 00000000 -> FFFFFFFF

Info 3: "platform/procA®, 0x0000000000010008(_start+8): I.mtspr r0,r1,18432
Info PICMR 00000000 -> FFFFFfff

© 2022 Imperas Software Limited.www.OVPworld.org Page 206 of 321

OVP Processor Modeling Guide

Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info

4: “platform/procB®, 0x000000000001000c(_start+c):
R1 FFFFFFFF -> 00000006

"platform/procA®, 0x0000000000010010(_start+10):
SR 00008001 -> 00008006

"platform/procB®, 0x0000000000010014(_start+14):
R1 00000006 -> 00000004

"platform/procA®, 0x0000000000010018(loopl):
R1 00000004 -> 00000003
SR 00008006 -> 00008406

"platform/procB®, 0x000000000001001c(loopl+4):

“platform/procA®, 0x0000000000010020(loopl+8):

1
5:
6:

7:

8:
9:
15:
SR 00008406 -> 0000a401
EPCR deadbeef -> 00010020
ESR deadbeef -> 00008406
16: "platform/procB®, 0x0000000000000100(.-text+100):
17: “platform/procA®, 0x0000000000000104(.-text+104):
R30 00000000 -> 00000001
SR 0000a401 -> 0000a001
Info 18: "platform/procB”, 0x0000000000010000(_start):
Info R30 00000001 -> 00000000
Info 19: “platform/procA®, 0x0000000000010004(_start+4):
rl,rO0,OxFFFFFFff
Info R1 00000003 -> FFFFFFFf
Info 20: "platform/procB®, 0x0000000000010008(_ start+8):
Info 21: "platform/procA®, 0x000000000001000c(_start+c):
Info R1 FFFFFFFF -> 00000006
Info 22: “platform/procB”, 0x0000000000010010(_start+10):
Info SR 0000a001 -> 00008006
Info 23: "platform/procA®, 0x0000000000010014(_start+14):
Info R1 00000006 -> 00000004
Info 24:
Info SR 00008006 -> 00008001
Info EPCR 00010020 -> 00010018
Info ESR 00008406 -> 00008006
Info PICSR 00000000 -> 00000001
Info EXCPT 00000000 -> 00000006
Info PICSR 00000001 -> 00000000
Info 25: "platform/procA®, 0x0000000000000800(.-text+800):
Info R30 00000000 -> 00000001
Info 26: "platform/procB®, 0x0000000000000804(.text+804):
Info SR 00008001 -> 00008006
Info 27: "platform/procA®, 0x0000000000010018(loopl):
Info R1 00000004 -> 00000003
Info SR 00008006 -> 00008406
Info 28: "platform/procB", 0x000000000001001c(loopl+4):
Info 29: "platform/procA®, 0x0000000000010020(loopl+8):
Info 30: "platform/procB", 0x0000000000010024(loopl+c):
Info 31: “platform/procA®, 0x0000000000010018(loopl):
Info R1 00000003 -> 00000002
Info 32: "platform/procB”, 0x000000000001001c(loopl+4):
Info 33: "platform/procA®, 0x0000000000010020(loopl+8):
Info 34:
Info SR 00008406 -> 0000a401
Info EPCR 00010018 -> 00010020
Info ESR 00008006 -> 00008406
Info PICSR 00000000 -> 00000001
Info PICSR 00000001 -> 00000000
Info 35: “platform/procA®, 0x0000000000000800(-text+800):
Info R30 00000001 -> 00000002
Info SR 0000a401 -> 0000a001
Info 36: "platform/procB", 0x0000000000000804(.text+804):
Info SR 0000a001 -> 00008406

1.addi

.ori

1.addi

1._addi

.ori rl,r0,0x6

I.mtspr rO,rl1,17
1.ori rl,r0,0x4
rl,rl,OXFFFFffef

sfeqi
bnf

ri1,0x0
0x00010018

"platform/procA®, 0x0000000000010024(loopl+c): *** FETCH EXCEPTION ***

0x00010000
r30,r30,0x1

1.j
I_addi

r30,r0,0x0

1.addi

1 ._mtspr
1.ori

ro,rl1,18432
rl,r0,0x6
I_mtspr rO,rl,17

l.ori ril,r0,0x4

"platform/procB®, 0x0000000000010018(loopl): *** FETCH EXCEPTION ***

1.addi r30,r30,0x1
1.rfe
ri,rl,OxFFFfffff
.sfeqi

.bnf
.nop

ri,0x0

0x00010018

0x0
ril,rl,OxFFFfffff

.sfeqi
-bnf

ri1,0x0
0x00010018

"platform/procB®, 0x0000000000010024(loopl+c): *** FETCH EXCEPTION ***

1.addi r30,r30,0x1

1.rfe

© 2022 Imperas Software Limited.www.OVPworld.org

Page 207 of 321

OVP Processor Modeling Guide

Info 37: "platform/procA®, 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info 38: "platform/procB", 0x0000000000010024(loopl+c): 1.nop 0x0

Info 39: "platform/procA®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFFFFfff
Info R1 00000002 -> 00000001

Info 40: “platform/procB”, 0x000000000001001c(loopl+4): I.sfeqi r1,0x0

Info 41: "platform/procA®, 0x0000000000010020(loopl+8): I.bnf 0x00010018
Info 42: “platform/procB”, 0x0000000000010024(loopl+c): 1.nop 0x0

Info 43: "platform/procA®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFFFFrfff
Info R1 00000001 -> 00000000

Info 44: "platform/procB®, 0x000000000001001c(loopl+4): I.sfeqi r1,0x0

Info SR 00008406 -> 00008606

Info 45: "platform/procA®, 0x0000000000010020(loopl1+8): I.bnf 0x00010018
Info 46: “platform/procB®, 0x0000000000010024(loopl+c): 1.nop 0x0

Info 47: "platform/procA®, 0x0000000000010028(exit): 0x0

The application is the same as was used in example

14 .orlkBehaviorExternal Interrupt. Note that instructions in the application are

executed alternately on processor procA and procB.

19.7.1 State File Format

When simulation completes, examine the state file checkpoint.txt in the run directory.

The contents should be as follows:

VERSION

2

TYPE

orlk

MODEL_VERSION
00000001

. lines omitted .
START_CORE

00000000
START_REGISTERS
REGISTER

R1

00000000

REGISTER

R2

deadbeef

. . . lines omitted .
REGISTER

EXCPT

00000006
END_REGISTERS
END_CORE

START_CORE

00000000
TTCRSetCount
00000000
timerRunning

00

reset

00

END_CORE

START_CHECK

- lines omitted .
END_CHECK
IMPLICIT_TIMER
0000000000000000FFFFFFFFFFFFFfff
END

© 2022 Imperas Software Limited.www.OVPworld.org

Page 208 of 321

OVP Processor Modeling Guide

The format of this file is largely a set of of key/value pairs, some information of which is
automatically-generated model and simulator data and some of which is explicitly-
created fields (for example, the TTCRSetCount, timerRunning and reset entries).

© 2022 Imperas Software Limited.www.OVPworld.org Page 209 of 321

OVP Processor Modeling Guide

20 Implementing Instruction Attributes

The OVP Instruction Attribute Interface simplifies the creation of tools that require
detailed knowledge of the instruction set of the processor on which they are installed. For
example, it might be required to know which registers are accessed and modified by an
instruction and exactly how those registers are used. When the instruction attributes
interface is implemented for a processor, this information is available using an API
defined in the ocl/oclia.h header file.

\ Note: instruction attributes are only supported for the Imperas M*SDK product.

20.1 Instruction Attribute Access —ocl/oclia.h

The fundamental structure describing a processor instruction is accessed using the
octiaAttrP opaque type pointer. It is possible to create a structure for a given instruction
address either using the VMI or OP interfaces. In the VMI interface, use function

vmi iaGetAttrs, defined in file vmi InstructionAttrs.h as follows:

octiaAttrP vmiiaGetAttrs(
vmiProcessorP processor,

Addr simPC,
octiaDataSelect select,
Bool applyDFA

)

This function takes a processor argument and an instruction address for which instruction
attributes are required. The kinds of data that should be returned is specified by the
select argument, which is a bitfield enumeration of type octiaDataSelect, defined in
ocl/ocliaTypes.h, described in detail in a later subsection. The applyDFA argument
affects how the effects of an instruction are reported, as explained below.

In the OP interface, function opProcessorInstructionAttributes is used to obtain
instruction attributes in a similar manner. The function is defined in op.h as follows:

octiaAttrP opProcessorinstructionAttributes (
optProcessorP processor,

Addr simPC,
uUns32 select,
Bool applyDFA

);

Generation of instruction attributes is performed as follows:

12 The oclI directory contains OVP common header files that may be included and used in both VVMI and
OP contexts.

© 2022 Imperas Software Limited.www.OVPworld.org Page 210 of 321

OVP Processor Modeling Guide

1. The morpher callback is called for the instruction address specified by the simPC
argument (in either interface) using the current processor state'®, producing the same
intermediate data structure from which the JIT compiler is normally driven.

2. If the applyDFA argument is True, the standard JIT compiler optimizations are then
run on the intermediate data structure. This can cause removal or simplification of
parts of the data structure.

3. Instead of using the intermediate data structure to generate JIT-compiled code, its
contents are translated to an ocl data structure that can then be traversed using the
instruction attributes API. By cross-referencing the intermediate data structure and the
debug register interface, a list of registers read and written by the instruction is
created.

The octiaAttrP structure is allocated from the heap. When it is no longer required, it
should be deleted using function ocliaFreeAttrs:

void ocliaFreeAttrs(octiaAttrP attrs);

Much of the information available using the instruction attributes API is generated
automatically from the processor morpher and debug register interface. The processor
model requires enhancement only to handle cases where information cannot be
automatically derived.

20.1.1 Information Available
The information returned in the octiaAttr structure is controlled by a bitfield enumeration
of type octiaDataSelect:

typedef enum octiaDataSelectE {

OCL_DS_NONE 0x00, ///< empty mask

OCL_DS_NODES 0x01, ///< record node list

OCL_DS_REG_R 0x02, ///< record debug interface registers read
OCL_DS REG_W 0x04, ///< record debug interface registers written

OCL_DS_RANGE_R
OCL_DS_RANGE_W
OCL_DS_FETCH
OCL_DS_NEXTPC
OCL_DS_ADDRESS
} octiaDataSelect;

0x08, ///< record field ranges read (and not registers)
0x10, ///< record field ranges written (and not registers)
0x20, ///< record fetch ranges

0x40, ///< record next PC expressions

0x80 ///< record load/store address expressions

Several classes of information can be returned by a single call by combining the required
members of the enumeration with bitwise-or. The meaning of each enumeration member
is given below.

20.1.1.1 Node List: OCL_DS_NODES
The oCL_DS_NODES member causes the intermediate node data structure to be recorded
with the instruction attributes structure. This is of use only for debugging; it is shown

3 For processors that support different instruction sets (e.g. ARM Thumb and AArch32 instructions) it
might sometimes be required to obtain attributes for a currently-inactive state. In this case, it is necessary to
temporarily force the processor into the required state while attribute generation is done.

© 2022 Imperas Software Limited.www.OVPworld.org Page 211 of 321

OVP Processor Modeling Guide

when instruction attributes are printed using function ocliaPrintAttrs, and not
discussed further here.

20.1.1.2 Registers Read: OCL_DS_REG_R

The oCL_DS_REG_R member causes registers read by an instruction to be recorded (in
other words, registers used as inputs to that instruction). The list of registers can be
traversed using functions ocliaGetFirstReadReg and ocliaGetRegListNext. Function
ocliaGetRegListReg obtains a register object for a register list element; this can then be
converted to the equivalent vmiReg InfoP structure using vmi iaConvertReglnfo, or to
the equivalent optRegP structure using opRegConvert, depending on whether the VMI or
OP APl is in use. See the harness used with this example for more details.

20.1.1.3 Registers Written: OCL_DS_REG_W

The oCL_DS_REG_W member causes registers written by an instruction to be recorded (in
other words, registers modified as outputs to that instruction). Usage is very similar to
OCL_DS_REG_R above, except that function ocliaGetFirstWrittenReg is used instead of
ocliaGetFirstReadReg to obtain the first written register list member.

20.1.1.4 Unknown Registers Read: OCL_DS_RANGE_R

As indicated previously, the instruction attributes API attempts to construct a list of
registers read by an instruction so that they can be reported using the oOCL_DS_REG_R
selection member, described above. To do this, it tries to match up any vmiReg specified
as part of an instruction implementation with a corresponding raw field specification in a
vmiReg Info structure for a register in the processor (see section 17.3 for more
information on the vmiRegInfo structure). Sometimes, a vmiReg used as an input is
found that does not match any vmiRegInfo structure in this way, which usually indicates
that the processor instruction attributes interface requires enhancement, as described later
in this chapter. The OCL_DS_RANGE_R member causes any such register range to be
recorded. The list of unmatched ranges can be traversed using functions
ocliaGetFirstReadRange and ocliaGetRangeNext. Functions ocl iaGetRangelLow and
ocliaGetRangeHigh return the low and high byte offsets of the vmiReg range that cannot
be matched with a processor register, respectively. See the harness used with this
example for more details.

20.1.1.5 Unknown Registers Written: OCL_DS_RANGE_W

The oCL_DS_RANGE_W member causes unmatched register ranges written by an instruction
to be recorded (in other words, unmatched register ranges modified as outputs to that
instruction). Usage is very similar to OCL_DS_RANGE_R above, except that function
ocliaGetFirstWrittenRange is used instead of ocl iaGetFirstReadRange to obtain
the first list member.

20.1.1.6 Instruction Fetch Operations: OCL_DS_FETCH

The ocL_DsS_FETCH member causes each fetch that was performed while translating an
instruction to be recorded. The list of the fetches can then be traversed using functions
ocliaGetFirstFetchRecord and ocliaGetNextFetchRecord. For each fetch, it is
possible to get:

© 2022 Imperas Software Limited.www.OVPworld.org Page 212 of 321

OVP Processor Modeling Guide

1. The low address (ocliaGetFetchRecordLow);
2. The high address (ocliaGetFetchRecordHigh); and
3. A pointer to the bytes that were fetched (ocliaGetFetchRecordBytes).

20.1.1.7 Next Instruction Expressions: OCL_DS_NEXTPC

The oCL_DS_NEXTPC member causes a list of potential next instruction expressions to be
recorded. Each expression can be evaluated using ocliaEvaluate to yield a program
counter to which control could be transferred once this instruction completes. For most
instructions, there will be a single next instruction expression which will be the next
instruction address. Unconditional jumps without delay slots will also have a single next
instruction expression, which evaluates to the the jump target address. Conditional jumps
will have two (or, occasionally, more) next instruction expressions, each of which
evaluates to a potential next instruction address. All jJumps with delay slots have two next
instruction expressions, for reasons explained later in this chapter.

20.1.1.8 Load/Store Address Expressions: OCL_DS_ADDRESS

The oCL_DS_ADDRESS member causes a list of load/store address expressions to be
recorded. Each address expression can be evaluated using ocliaEvaluate to yield an
address to which a load or store might be made. Information is also recorded giving the
load/store data size, the memory domain which is being accessed, and the list of registers
required to calculate the address.

20.2 Example Instruction Attributes Implementation
A model for the OR1K processor with instruction attributes can be found in:

$IMPERAS_HOME/Examples/Models/Processor/18.orlklInstructionAttributes

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/18.orilkInstructionAttributes .

Compile the model, harness and application using the make command:

cd 18.orlkliInstructionAttributes
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous example, with the changes listed in
following sections.

© 2022 Imperas Software Limited.www.OVPworld.org Page 213 of 321

OVP Processor Modeling Guide

20.3 Baseline Instruction Attributes

Initially, we will see what information is generated by default using the instruction
attributes API, and then as a second step enhance the model so that more information is
provided. To enable basic instruction attributes support, a new callback function of type
vmiRegImplFn must be defined. This type is defined by the following macro in
vmiDbg.h:

#define VMI_REG_IMPL_FN(_NAME) void _NAME(C \
vmiProcessorP processor \

)
typedef VMI_REG_IMPL_FN((*vmiRegImplFn));

This function takes a single processor argument. For the OR1K model, a function is
defined in orikRegisters.c using this macro as follows:

VMI_REG_IMPL_FN(orlkRegImpl) {
#iT(ENABLE_ATTRS)

. . lines omitted .
#endi

}

Note that at this point we have compiled with ENABLE_ATTRS undefined; this means that
the function body is empty for now. This register implementation callback is registered in
orikAttrs.c like this:

const vmilASAttr modelAttrs = {
. lines omitted .
/////777777777/7777777777/77777777/7777/77/77/7/777/777777/77777/77/7/7/7/777777777777

// REGISTER ACCESS SUPPORT ROUTINES (DEBUGGER & SEMIHOSTING)
L11177777777777777777777777777777/77777///7777////7777///77/7////7/7///7/77

-regGroupCB = orlkRegGroup,
-regInfoCB = orlkReglnfo,
-regimplCB = orlkReglmpl,
-exceptionInfoCB = orlkExceptioninfo,
-modelnfoCB = orlkModelnfo,
-getExceptionCB = orlkGetException,
-getModeCB = orlkGetMode,
.debugCB = orlkDumpRegisters,

. lines omitted .

e

Creating a register implementation callback like this is all that is required to enable
instruction attributes support. We will now discuss the harness (which uses the attributes)
before returning to the model later in this chapter.

© 2022 Imperas Software Limited.www.OVPworld.org Page 214 of 321

OVP Processor Modeling Guide

20.4 Test Harness - platform/harness.c

The test harness for this example, platform/harness.c*, has been designed to print out
instruction attributes for every instruction in a program as it runs. The harness is
described in detail here to show exactly how instruction attributes can be used.

The main simulation function is as follows:

static Bool simulate(optProcessorP processor, Uns32 clocks) {
Uns32 i;
for(i=0; i<clocks; i++) {
showlnstructionAttributes(processor);
optStopReason stopReason = opProcessorSimulate(processor, 1);
switch(stopReason) {

case OP_SR_SCHED:
// hit the scheduler limit
break;

case OP_SR_EXIT:
// processor has exited
return False;

case OP_SR_FINISH:
// simulation must end
return False;

case OP_SR_RD_PRIV:

case OP_SR_WR_PRIV:

case OP_SR_RD_ALIGN:

case OP_SR_WR_ALIGN:
// unhandled processor exception: simulation must end
return False;

default:
opPrintf("'unexpected stopReason %u\n', stopReason);
return False;

}

return True;

}

This simulation function calls opProcessorSimulate to execute instruction by
instruction. Before each instruction is executed, function showlnstructionAttributes
is called, defined as follows:

static void showlnstructionAttributes(optProcessorP processor) {

Addr thisPC = opProcessorPC(processor);

% Note that the legacy ICM interface does not support instruction attributes, so this example contains an OP
platform only.

© 2022 Imperas Software Limited.www.OVPworld.org Page 215 of 321

OVP Processor Modeling Guide

// select all attributes except nodes
octiaDataSelect select = (

OCL_DS_REG_R |

OCL_DS REG_W |

OCL_DS_RANGE_R |

OCL_DS _RANGE_W |

OCL_DS_FETCH |

OCL_DS_NEXTPC |

OCL_DS_ADDRESS

);

// get instruction attributes for the current PC
octiaAttrP attrs = opProcessorinstructionAttributes(
processor, thisPC, select, False

)
if(attrs) {

// print instruction disassembly

opPrintf(
vk ATTRIBUTES FOR INSTRUCTION AT ADDRESS OXx"FMT_Ax"™ (%s)\n",
thisPC,
opProcessorDisassemble(processor, thisPC, OP_DSA_NORMAL)

)

// walk attributes
walkAttrs(attrs);

// free attributes
ocliaFreeAttrs(attrs);

}

This function calls opProcessorlInstructionAttributes, requesting all attributes
except nodes to be selected (OCL_DS_NODES is absent). It then disassembles the
instruction and calls walkAttrs to show the attributes returned. Finally, it calls
ocliaFreeAttrs to free the instruction attributes structure back to the heap. Function
walkAttrs is implemented like this:

static void walkAttrs(octiaAttrP attrs) {

printClass(attrs);
printFetchRecords(attrs);

printRegList(ocliaGetFirstReadReg(attrs), "read");
printRangeList(ocliaGetFirstReadRange(attrs), *‘read™);
printRegList(ocliaGetFirstWrittenReg(attrs), "write');
printRangeList(ocliaGetFirstWrittenRange(attrs), "write');

printNextPCList(attrs);
printAddresseExpressionList(attrs);

opPrintf(*"\n");
}

This function prints information of various types extracted from the attributes structure,
as described in following sections.

© 2022 Imperas Software Limited.www.OVPworld.org Page 216 of 321

OVP Processor Modeling Guide

20.4.1 Instruction Class
Each instruction can have a class associated with it, defined by the
octialnstructionClass enumeration in ocl/ocliaTypes.h:

typedef enum octialnstructionClasskE {

OCL_IC_NONE = 0xO0, ///< no class information

OCL_IC_NOP = 1ULL<<O0, ///< explicit NOP

OCL_IC_INTEGER = 1ULL<<1, ///< instruction uses integer ALU
OCL_IC_FLOAT = 1ULL<<2, ///< instruction uses FPU

OCL_IC_DSP = 1ULL<<3, ///< instruction uses DSP
OCL_IC_MULTIPLY = 1ULL<<4, ///< instruction implements multiply

. lines omitted .
OCL_IC_CusTOM14
OCL_IC_CUSTOM15
OCL_IC_CUSTOM16
} octialnstructionClass;

1ULL<<61, ///< custom class 14
1ULL<<62, ///< custom class 15
1ULL<<63 ///< custom class 16

The enumeration is a bitfield, containing up to 48 standard types and up to 16 custom
types. Some instruction classes can be derived automatically (as we see below). Function
printClass is called to print the class for a particular instruction:

#define CLASS _ENTRY(_NAME) case OCL_IC_## NAME: opPrintf(#_NAME); break
static void printClass(octiaAttrP attrs) {
octialnstructionClass class;
if((class=ocliaGetlInstructionClass(attrs))) {
octialnstructionClass mask = 1;

opPrintf(*'\n");
opPrintf(** class ");

do {
if(class & mask) {

switch(mask) {
CLASS_ENTRY (NOP
CLASS_ENTRY (INTEGER
CLASS_ENTRY (FLOAT
CLASS_ENTRY(DSP
CLASS_ENTRY(MULTIPLY
- - - lines omitted .
CLASS_ENTRY(CUSTOM14
CLASS_ENTRY (CUSTOM15 ;
CLASS_ENTRY(CUSTOM16);
default: opPrintf(""*unknown*");

LA I A A A A v

}

class &= ~mask;

if(class) {
opPrintf("|"™);

}

mask <<= 1;

© 2022 Imperas Software Limited.www.OVPworld.org Page 217 of 321

OVP Processor Modeling Guide

} while(class);
opPrintf(*"\n"");
}
The function uses ocl iaGetlInstructionClass to obtain the class from the instruction

attributes structure, and then uses a macro to implement a case statement converting each
class member to a string.

20.4.2 Fetch Records
Function printFetchRecords prints the fetch records extracted from the instruction
attributes structure:

static void printFetchRecords(octiaAttrP attrs) {
octiaFetchRecordP fr;
if((fr=ocliaGetFirstFetchRecord(attrs))) {
opPrintf(*'\n"");
for(; fr; fr=ocliaGetNextFetchRecord(fr)) {
Addr fetchLow
Addr fetchHigh
Uns8 *value

Uns32 bytes
Int32 1;

ocliaGetFetchRecordLow(fr);
ocliaGetFetchRecordHigh(fr);
ocliaGetFetchRecordBytes(fr);
fetchHigh-fetchLow+1;

opPrintf(
fetch OX"FMT_AX":0x"FMT_Ax" (value:0x",
fetchLow, fetchHigh

)

for(i=bytes-1; i>=0; i--) {
opPrintf('%02x", valuel[i]);

opPrintf(CH)\n");

}

20.4.3 Read and Written Registers
Function printRegList prints a list of read or written registers:

static void printRegList(octiaRegListP regList, const char *type) {
if(reglList) {
opPrintf(**\n"");
for(; regList; regList=ocliaGetRegListNext(regList)) {

optRegP reg = opRegConvert(ocliaGetRegListReg(regList));
opPrintf(** %5s %s\n", type, opRegName(reg));

© 2022 Imperas Software Limited.www.OVPworld.org Page 218 of 321

OVP Processor Modeling Guide

This is called twice from function walkAttrs, once to print read registers and once to
print written registers:

static void walkAttrs(octiaAttrP attrs) {
- - - lines omitted . . .
printRegList(ocliaGetFirstReadReg(attrs), "read');
- - - lines omitted . . .
printRegList(ocliaGetFirstWrittenReg(attrs), "write');
- lines omitted .

}

20.4.4 Unmatched Read and Written Ranges
Function printRangeList prints ranges within the processor structure that are read or
written but do not match any register specification:

static void printRangeList(octiaRawRangeP range, const char *type) {

if(range) {
opPrintf(*"\n"");

for(; range; range=ocliaGetRangeNext(range)) {
opPrintf(
%5s ""FMT_PTRd":""FMT_PTRd'"\n",

type,
ocliaGetRangeLow(range),
ocliaGetRangeHigh(range)

Dk

}

This is also called twice from from function walkAttrs, once to print unmatched read
registers and once to print unmatched written registers:

static void walkAttrs(octiaAttrP attrs) {
. . . lines omitted . . .
printRangeList(ocliaGetFirstReadRange(attrs), "read");
- . lines omitted . . .
printRangeList(ocliaGetFirstWrittenRange(attrs), "write');
. lines omitted .

}

20.4.5 Next PC Expressions

Function printNextPCList prints expressions calculating possible next PC addresses,
together with supplementary information (any jump hint associated with the target
address, and whether the jump has a delay slot instruction):

static void printNextPCList(octiaAttrP attrs) {
octiaNextPCP nextPC;
if((nextPC=ocliaGetFirstNextPC(attrs))) {

opPrintf(''\n");

© 2022 Imperas Software Limited.www.OVPworld.org Page 219 of 321

OVP Processor Modeling Guide

for(; nextPC; nextPC=ocliaGetNextNextPC(nextPC)) {

octiaJumpHint hint
const char *hintText
octiaAddrExpP nextPCExp

opPrintf(** next PC ');
printAddrExp(nextPCExp, attrs);

if(hintText) {
opPrintf(" %s', hintText);

ocliaGetNextPCHint(nextPC);
getHintText(ocliaGetNextPCHint(nextPC));
ocliaGetNextPCAddrExp(nextPC) ;

}
i F((nextPCExp->type==0CL_ET_CONST) && (hint&0CL_JH_RELATIVE)) {
opPrintf (" offset "FMT_Ad, ocliaGetNextPCOffset(nextPC));

}
iT(ocliaGetNextPCDS(nextPC)) {
opPrintf(" (DS)');

opPrintf('"\n"");

}

Function printNextPCList calls a helper function, printAddrExp, to evaluate and print

the next PC expression value:

static void printAddrExp(octiaAddrExpP exp, octiaAttrP attrs) {

if(exp->type==0CL_ET_UNKNOWN) {
opPrintf(*"UNKNOWN™) ;

} else if(exp->type==0CL_ET_CONST) {
opPrintf(""Ox""FMT_Ax, exp->c);

} else if(exp->type==0CL_ET_REG) {
optRegP reg = opRegConvert(exp->r);
if(reg) {

opPrintf(""%s", opRegName(reg));
} else {
opPrintf(*"UNKNOWN_REGISTER™) ;
} else if(exp->type==0CL_ET_EXTEND) {
opPrintf(
"(%cext-%u-to-%u ',
exp->e.signExtend?"s":"z",
exp->e.child->bits,
exp->bits

):

printAddrExp(exp->e.child, 0);

opPrintf(")™);

} else if(exp->type==0CL_ET_UNARY) {

opPrintf(""(%s ", exp->u.opName);

© 2022 Imperas Software Limited.www.OVPworld.org

Page 220 of 321

OVP Processor Modeling Guide

printAddrExp(exp->u.child, 0);
opPrintf(**)™);

} else if(exp->type==0CL_ET_BINARY) {

opPrintf(""(%s ", exp->b.opName);
printAddrExp(exp->b.child[0], 0);
opPrintf(", ");
printAddrExp(exp->b.child[1], 0);
opPrintf(*")');

} else if(exp->type==0CL_ET_LOAD) {
opPrintf('[');
printAddrExp(exp->1._.child, 0);
opPrintf(']™);

} else {

opPrintf(""{unexpected expression type %u}', exp->type);

// print evaluated expression unless it is a constant

if(attrs && (exp->type!=0CL_ET _CONST)) {

Uns32 bytes = BITS_TO_BYTES(exp->bits);
Uns8 result[bytes];
Int32 1;

// evaluate the expression
ocliaEvaluate(attrs, exp, result);

// print result

opPrintf(** {current value:0x™);

for(i=bytes-1; i>=0; i--) {
opPrintf('%02x™", result[i]);

opPrintf('}™);

}

Each expression is a tree consisting of nodes that are either constants, registers, sign/zero
extended expressions, unary expressions, binary expressions or memory reference

expressions.

20.4.6 Address Expressions

Function printAddressExpressionList prints information about memory references,
together with supplementary information about the type of access. It also prints all

register values on which the memory reference expression depends:

static void printAddressExpressionList(octiaAttrP attrs) {

octiaMemAccessP ma;

// memory access type strings

static const char *memAccessTypeString[] = {
[OCL_MAT_LOAD] "load",
[OCL_MAT_STORE] "'store",
[OCL_MAT_PRELOAD_LD] "preload-for-load”,

© 2022 Imperas Software Limited.www.OVPworld.org

Page 221 of 321

OVP Processor Modeling Guide

e

[OCL_MAT_PRELOAD_ST]
[OCL_MAT_PRELOAD_EX]

"preload-for-store™,
"preload-for-fetch"

if((ma=ocliaGetFirstMemAccess(attrs))) {

}
20.5

OpPrintf(’'\n"");
for(; ma; ma=ocliaGetNextMemAccess(ma)) {

octiaAddrExpP addrExp = ocliaGetMemAccessAddrExp(ma) ;
octiaRegListP depend;

// print characteristics of memory access
opPrintf(
" %u-bit %s address (bits %u): ',
ocliaGetMemAccessMemBits(ma),
memAccessTypeString[ocliaGetMemAccessType(ma)],
addrExp->bits

)

// print load/store address expression
printAddrExp(addrExp, attrs);
opPrintf(*"\n");

// print all dependencies of this load/store (registers that must
// be known before it can be evaluated)
for(
depend=ocl iaGetMemAccessFirstDepend(ma) ;
depend;
depend=ocl iaGetRegL istNext(depend)
) {
optRegP reg = opRegConvert(ocliaGetRegListReg(depend));
opPrintf (" depend %s\n', opRegName(reg)):;

Testing Baseline Instruction Attributes

Directory 18.orlklInstructionAttributes/application contains the following
example in file asmtest._S:

-org 0xc00

L11171777777777777777777777777777/777777/77777////7777///77/77////7/7///7/77
// SYS HANDLER (AT 0xc00)
L11177777777777777777777777777777/777777//7777////7777///7777////7/7///7/77

1.rfe // return from exception

-org 0x10000

-global
_start:

_start

1/1//1//17777777777777/77/77//7/7//7///7///////////////////////////////7//77/77
// MOVHI INSTRUCTION TEST
1/1//1//17777777777777/77/77//7/7//7///7///////////////////////////////7//77/77

1 .movhi rl,0x1234

© 2022 Imperas Software Limited.www.OVPworld.org Page 222 of 321

OVP Processor Modeling Guide

11//1/777777777777/7/77/7/77////7//7///7///////////////////////////////7//7777
// ARITHMETIC INSTRUCTION TESTS (SECOND ARGUMENT CONSTANT)
1/1//1//7777777777/7/77/77/77///////7///7/////////////////////////////////77/77

1.addi ri,r2,1
l.addic r3,r4,2
I.andi r5,r6,1
I.ori r7,r8,1
I.xori ro,ri1o,1
I.muli ril,ril2,1

L11171777777777777777777777777777/777777/77777////7777///77/77////7/7///7/77
// ARITHMETIC INSTRUCTION TESTS (SECOND ARGUMENT REGISTER)
L11171777777777777777777777777777/777777//77777////7777///7777////7/7///777

1.add ri,r2,r3
1.addc r3,r4,r5
1.sub ri3,rl4,r15
I.and r5,r6,r7
1.or r7,r8,r9
1.xor r9,ri0,ri1
1.mul ril,rl2,ri13
1.addi ri,r0,5
1.addi r2,r0,-7
1.div r3,r2,rl
1.divu r3,r2,rl

1/1//1/777777777777777/7/7/7//7/7/7/////7///////////////////////////////7//7777
// SHIFT/ROTATE INSTRUCTION TESTS (SECOND ARGUMENT CONSTANT)
1/1/7/777777777777777/7/7/7/7////7////7////7/////////7//////////////////7//7777

I1.slli ri,r2,1
l.srli r3,r4,2
I.srai r5,r6,3
I.rori r7,r8,4

L111717777777777777777777777777777777777//77777////7777///77/77////7/7/////77
// SHIFT/ROTATE INSTRUCTION TESTS (SECOND ARGUMENT REGISTER)
L11171777777777777777777777777777/777777//77777////7777///77/77////7/7///7/77

1.sll ri,r2,r3
I.srl r3,r4,r5
I.sra r5,r6,r7
I.ror r7,r8,r7

L11177777777777777777777777777777//7777///7777////7777///77/7////7//77//7/7/
// BRANCH INSTRUCTION TESTS
L111717777777777777777777777777777/7777///77777///7777////7/7////7/7//7//

1.sfeqi rl1,0 // rl1==07?

1_bnf 1f // go if condition false
1.addi rl,rl,0x12 // (delay slot)

1_nop // (not executed)

1.bf 1f // go if condition true
1_addi rl,rl,0x12 // (delay slot)

1.nop

1.j 1f

1.addi rl,rl,0x12 // (delay slot)

1._nop // (not executed)

1_jal 1f

1._addi rl,rl,0x12 // (delay slot)

1._nop // (not executed)

1 ._movhi ri, hi(fwdl) /7 r1l = fwdl (high)

© 2022 Imperas Software Limited.www.OVPworld.org Page 223 of 321

OVP Processor Modeling Guide

fwd1l:

fwd2:

-global
exit:

data:

I.ori rl,rl,lo(fwdl) // r1 = fwdl

1_jr rl

1_addi rl,rl,0x12 // (delay slot)
1.nop // (not executed)
1._movhi rl, hi(fwd2) // r1l = fwd2 (high)
1.ori rl,rl,lo(fwd2) // r1 = fwd2

1_jalr rl

1._addi rl,rl,0x12 // (delay slot)
1._nop // (not executed)

L11171777777777777777777777777777/777777/77777////7777///77/77////7/7///7/77
// SYS AND RFE INSTRUCTION TESTS
L11171777777777777777777777777777/777777//77777////7777///7777////7/7///777

1.sys 0x1234
LI1117777777777777777777777777//777777////777/////77/////77/7//////7///77/

// SYSTEM REGISTER INSTRUCTION TESTS
L111717777777777777777777777777777777777//7777////7777///77/77////7/7///777

1 _mfspr r2,r0,0x20 // get epc in r2
1.addi r2,r0,-1 // r2 = -1
1 _mtspr ro,r2,0x20 // set epc from r2

1/1//1/777777777777/777/7/77///7/7//7///7///////////////////////////////7//77/77
// LOAD/STORE INSTRUCTION TESTS
1/1//1/777777777777777/7/7/7//7/7/7/////7///////////////////////////////7//7777

1 _movhi rl, hi(data) // r1l = data (high)
1.ori rl,rl,lo(data) // rl = data
1_lwz r3,4(rl)

1.1hz r3,6(rl)

1_1bz r3,7(rl)

1.lws r3,4(rl)

1_1hs r3,6(rl)

1.1bs r3,7(rl)

1._sw 0o(r1),r3

1.sh 2(r1),r3

1.sb 3(r1),r3

1///1/7///7/7/////7///7///7//7/
// COMPARISON INSTRUCTION TESTS
1/1//1//7///777/7////7////7//7//

1.sfeqi rl1,0
1._sfeq ri,r2

[//1/777/7/777/7/77/7/7/7/7/7/7777777777
// NOP INSTRUCTION TEST
[//7/777777777777777777777/7777/777/7777777777/77777/77/7/7777777/7//7//7/7777777777
1_nop

exit

1_nop

.word 0x12345678
.word 0Ox89abcdef

© 2022 Imperas Software Limited.www.OVPworld.org Page 224 of 321

OVP Processor Modeling Guide

This example begins execution at _start in supervisor mode. It then executes an
instruction of every implemented type.

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe --program application\asmtest.OR1K.elf

The output from this should be as follows:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10000 (l.-movhi r1,0x1234)
fetch 0x10000:0x10003 (value:0x34122018)
write R1
next PC 0x10004 hint: (relative) offset 4
*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10004 (l.addi rl,r2,0x1)
fetch 0x10004:0x10007 (value:0x0100229c)
read R2
write R1
write 0:1
next PC 0x10008 hint: (relative) offset 4
*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10008 (l.addic r3,r4,0x2)
fetch 0x10008:0x1000b (value:0x020064a0)
read R4
read 0:0
write R3
write 0:1
next PC 0x1000c hint: (relative) offset 4
lines omitted .
*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10100 (l.sfeqi r1,0x0)
fetch 0x10100:0x10103 (value:0x000001bc)
read R1
write 2:2
next PC 0x10104 hint: (relative) offset 4
*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10104 (l.sfeq rl,r2)
fetch 0x10104:0x10107 (value:0x001001e4)

read R1

© 2022 Imperas Software Limited.www.OVPworld.org Page 225 of 321

OVP Processor Modeling Guide

read R2
write 2:2
next PC 0x10108 hint: (relative) offset 4
*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10108 (I.nop 0x0)
fetch 0x10108:0x1010b (value:0x00000015)
next PC 0x1010c hint: (relative) offset 4
*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x1010c (l.nop 0x0)
fetch 0x1010c:0x1010F (value:0x00000015)
next PC 0x10110 hint: (relative) offset 4
Processor "platform/cpul® terminated at “exit", address 0x1010c

Much useful information has been generated automatically. For example, consider the
add instruction at address 0x10004:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10004 (l.addi ri,r2,0x1)

fetch 0x10004:0x10007 (value:0x0100229c)

read R2

write R1

write 0:1

next PC 0x10008 hint: (relative) offset 4
Here, the instruction fetch has been correctly identified, and the source register (R2) and
destination register (R1) also identified automatically. The address of the next instruction

(0x10008) is also correct. However, two bytes of the processor structure are being written
that do not have a register correspondence that can be automatically identified:

write 0:1

The written range 0:1 is in bytes from the start of the processor structure:

typedef struct orilkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag
Bool branchFlag; // branch flag
Uns32 regs[OR1K_REGS]; // basic registers

lines omitted

} orilk, *orilkP;

© 2022 Imperas Software Limited.www.OVPworld.org Page 226 of 321

OVP Processor Modeling Guide

By inspection, byte 0O is the carry flag and byte 1 is the overflow flag. Writes to these
registers cannot be automatically identified because there is no register defined in
orlkRegisters.c that specifies them using the raw field of a vmiRegInfo structure.
Instead, these flags are included in the composed value of the SR register (by function
FillISR in orikutils.c). What we would therefore like to do is to enhance the model to
indicate that the carryFlag and overflowFlag fields are part of the SR register, and that
any reads or writes of them should be reported as an access to that register. This is
exactly what the currently-compiled-out lines in function orikRegImpl do:

#define OR1K_REG_IMPL_RAW(_REG, _FIELD, _BITS) \
vmirtRegImplRaw(processor, _REG, _FIELD, _BITS)

VMI_REG_IMPL_FN(orlkRegImpl) {
// specify that flag registers are in SR
vmiRegInfoCP CPSR = vmirtGetRegByName(processor, '"'SR');
OR1K_REG_IMPL_RAW(CPSR, OR1K_CARRY, 8);
OR1K_REG_IMPL_RAW(CPSR, OR1K_OVERFLOW, 8);
OR1K_REG_IMPL_RAW(CPSR, OR1K_BRANCH, 8);

}

Function vmi rtRegImpIRaw has this prototype:

void vmirtReglImplRaw(
vmiProcessorP processor,
vmiRegInfoCP regDesc,
vmiReg r,
Uns32 bits

):

It indicates that an unmatched access to a processor field identified by register r (of size
bits) should be reported as an access to the given regbDesc register. Moving further
down the log file, we come to the I.sfeqi instruction at address 0x10068:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10068 (I.sfeqi ri,0x0)
fetch 0x10068:0x1006b (value:0x000001bc)
read R1
write 2:2
next PC 0x1006c hint: (relative) offset 4
The written range 2:2 corresponds to the branchFlag field in the processor structure.
This is also part of the composed value of the SR register, so identified in orikReglImpl in

the same way as the other two flags above. The flag value is then used in a subsequent
branch instruction:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x1006c (lI.bnf 0x00010078)
class BRANCH_DS

fetch 0x1006c:0x1006F (value:0x0300000c)

© 2022 Imperas Software Limited.www.OVPworld.org Page 227 of 321

OVP Processor Modeling Guide

read 2:2

next PC 0x10078 (DS)
next PC 0x10070

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10070 (l.addi ri,r1,0x12)

fetch 0x10070:0x10073 (value:0x1200219c)

read R1

write R1

write 0:1

next PC 0x10074 hint: (relative) offset 4
Note that the branch instruction is indicated as having two next instructions: address
0x10070 (which is the delay slot instruction) and address 0x10078 (which is the
instruction address to execute after the delay slot instruction completes). Note that the
delay slot instruction itself is indicated as having a next instruction address of 0x10074,
even though that address is never executed (control transfers to 0x10078 instead). This is
because instruction attributes are generated from instruction patterns only and are

independent of delay slot state. The same idiom is apparent for unconditional 1. j
instructions:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10084 (I.j 0x00010090)
class BRANCH_DS
fetch 0x10084:0x10087 (value:0x03000000)

next PC 0x10090 (DS)
next PC 0x10088

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10088 (l.addi ri,r1,0x12)

fetch 0x10088:0x1008b (value:0x1200219c)

read R1

write R1

write 0:1

next PC 0x1008c hint: (relative) offset 4
Note that the I.j instruction has two next instruction expressions, even though the branch
is in fact unconditional. This is because the jump has a delay slot instruction, and
therefore both the next instruction address and the post-delay-slot address need to
identified (for the reason stated above, the delay slot instruction does not report a post-

delay-slot address as its next instruction). Unconditional jumps without delay slots report
only a single next instruction address (see I.rfe below).

Direct jump-and-link instructions (I _jal) indicate that the link register (R9) is a
destination:

© 2022 Imperas Software Limited.www.OVPworld.org Page 228 of 321

OVP Processor Modeling Guide

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10090 (I.jal 0x0001009c)
class BRANCH_DS
fetch 0x10090:0x10093 (value:0x03000004)
write R9
next PC 0x1009c hint:call (DS)
next PC 0x10094
rl,rl,0x12)

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10094 (lI.addi
fetch 0x10094:0x10097 (value:0x1200219c)

read R1
write R1

write 0:1
next PC 0x10098 hint: (relative) offset 4

Indirect jJumps (e.g. I.jr) indicate that the jump target register is read. One next
instruction expression is now a register instead of a constant:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x100a4 (l.jr rl)

class BRANCH_DS
fetch 0x100a4:0x100a7 (value:0x00080044)

read R1

next PC R1 {current value:0x000100b0} (DS)
next PC 0x100a8

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x100a8 (I.addi rl,rl,0x12)

fetch 0x100a8:0x100ab (value:0x1200219c)

read R1
write R1
write 0:1

next PC 0x100ac hint: (relative) offset 4

In file platform/harness.c, function printAddrExp uses OCL function
ocliaEvaluate to calculate the current value of any non-constant expression so that the

value can be displayed in the trace:

static void printAddrExp(octiaAddrExpP exp, octiaAttrP attrs) {

lines omitted .

// print evaluated expression unless it is a constant

© 2022 Imperas Software Limited.www.OVPworld.org Page 229 of 321

OVP Processor Modeling Guide

if(attrs && (exp->type!=0CL_ET _CONST)) {
Uns32 bytes = BITS_TO_BYTES(exp->bits);
Uns8 result[bytes];
Int32 1;

// evaluate the expression
ocliaEvaluate(attrs, exp, result);

// print result

opPrintf(** {current value:0x™);

for(i=bytes-1; i>=0; i--) {
opPrintf('%02x", result[i]);

opPrintf('}™);

}

The I.sys and 1. rfe instructions produce the following trace sequence:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x100c4 (l.sys)
fetch 0x100c4:0x100c7 (value:0x34120020)
next PC 0x100c8 hint: (relative) offset 4

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0xc00 (l.rfe)
class BRANCH
fetch 0xc00:0xc03 (value:0x00000024)

read ESR
read EPCR

next PC EPCR {current value:0x000100c8} hint:returnint

The I.rfe instruction has a single next instruction address expression, obtained from the
current value of the EPCR register. The 1.sys instruction is also indicated to have a single
next instruction, but this is incorrect (it is reported as 0x100c8, but should be the system
vector address 0xc00). The problem here is the way that function morphSys was
originally defined:

static ORLK_MORPH_FN(morphSYS) {

vmimtArgProcessor();

vmimtArguns32(OR1K_EXCPT_SYS);

vmimtArguns32(4);

vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;

}

Function orilkTakeException USeS vmirtSetPCException to modify the program
counter, but this cannot be known by scanning the JIT data structures. The problem can
be corrected by inserting an explicit jump to the exception vector as follows:

static OR1K_MORPH_FN(morphSYS) {

vmimtArgProcessor();

© 2022 Imperas Software Limited.www.OVPworld.org Page 230 of 321

OVP Processor Modeling Guide

vmimtArguns32(OR1K_EXCPT_SYS);
vmimtArguns32(4);
vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;

// correct next instruction address in instruction attributes
vmimtUncondJump(0, SYS_ADDRESS, VMI_NOREG, vmi_JH_CALLINT);

}

The new unconditional jump is never in fact executed: its only purpose is to indicate a
correct next instruction address.

Towards the end of the trace file, instruction attributes are generated for a series of load
and store instructions. For example:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x100ec (l.lhs r3,0x6(rl1))
fetch 0x100ec:0x100ef (value:0x06006198)
read R1
write R3
next PC O0x100f0 hint: (relative) offset 4

16-bit load address (bits 32): (ADD R1, 0x6) {current value:0x00010116}
depend R1

Each load and store indicates the size of the loaded data (16 bits in this case) and the
address size (32 bits). There is also an expression indicating the address (ADD R1, 0x6)
and the current value of that address expression. Finally, there is a list of registers on
which the address expression depends (R1 in this case).

20.6 Adding Instruction Classes

Some instruction types in the default trace have instruction class information
automatically added. For example, the I.jr instruction has class BRANCH_DS, indicating
that it is a branch with a delay slot:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x100a4 (l.jr rl)
class BRANCH_DS
fetch 0x100a4:0x100a7 (value:0x00080044)
read R1

next PC R1 {current value:0x000100b0} (DS)
next PC 0x100a8

Class information can provide useful information to client tools about the functional units
required to execute an instruction. However, many instructions do not have class
information generated for them by default. When required, class information may be
added explicitly using function vmimtiInstructionClassAdd, defined as follows:

© 2022 Imperas Software Limited.www.OVPworld.org Page 231 of 321

OVP Processor Modeling Guide

void vmimtinstructionClassAdd(octialnstructionClass value);

This function causes any instruction class specified using the argument to be added (by
bitwise-or) to the indicated class of the instruction currently being translated. To
implement explicit instruction classes, the oriklInstructionlinfo structure in file
orlkDecode.h has been updated as follows:

typedef struct orlkInstructionInfoS {

const char *opcode; // opcode name

const char *format; // disassembly format string
orlklnstructionType type; // instruction type
octialnstructionClass class; // instruction class

Uns32 thisPC; // instruction address

uUns32 instruction; // raw instruction

Uns32 rl; // register 1

uUns32 r2; // register 2

Uns32 r3; // register 3

uUns32 C; // constant value

Uns32 bytes; // load/store bytes (1, 2 or 4)
orlkExtend extend; // load sign/zero extension
orlkCondition cond; // condition

Bool iSuffix; // does opcode require "i" suffix?

} orilklInstructionlnfo, *orlklnstructionlnfoP;

The new class member is used in orlkMorphlnstruction:

VMI_MORPH_FN(orl1lkMorphlnstruction) {

orlkP orlk
orlkMorphState state

(orlkP)processor;

{{0}};

// decode instruction
orlkDecode(orlk, thisPC, &state.info);

#i1T(ENABLE_ATTRS)
// add any explicit instruction class
vmimtInstructionClassAdd(state.info.class);
#endif

lines omitted .

}

In file orilkDecode.c, the opAttrs structure now also has a new class member:

typedef struct opAttrsS {

const char *member; // enumeration member name

const char *opcode; // opcode name

const char *format; // format string

const char *decode; // decode string
octialnstructionClass class; // instruction class

regSpec rl : 8; // register 1 specification
regSpec r2 : 8; // register 2 specification
regSpec r3 : 8; // register 3 specification
constSpec (: 8; // constant value specification
Uns32 bytes : 8; // load/store size specification
orlkExtend extend : 8; // load/store sign extension
Bool isCond : 1; // is instruction conditional?
Bool iSuffix : 1; // does opcode require "i" suffix?

} opAttrs, *opAttrsP;

© 2022 Imperas Software Limited.www.OVPworld.org Page 232 of 321

OVP Processor Modeling Guide

The class member is set up by the attribute initialization macros. For example, system
instructions (I.sys and 1.rfe) are now explicitly identified:

#define ATTR_SET_SYS(_NAME, _OPCODE, _DECODE) \
[ORIK_IT_## NAME] = {
member : # NAME,
opcode : _OPCODE,
format : FMT_NONE,
class : OCL_IC_SYSTEM,
decode : _DECODE

Il

}

Finally, function orikDecode has been modified to assign the new class field in the
orlklInstructionlinfo structure using the opAttrs structure:

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklnstructioninfoP info) {
- lines omitted .

// Till structure fields
info->opcode attrs->opcode;
info->format attrs->format;
info->type type;
info->class attrs->class;

. lines omitted .

}

20.7 Testing Enhanced Instruction Attributes

The previous section identified various changes that could be made to the model to
improve the instruction attributes output. The example in fact contains all the suggested
changes: to enable them, we need to recompile the processor model with ENABLE_ATTRS
defined:

make clean
make ENABLE_ATTRS=1

And then rerun the example:

platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

Note that many more instructions now have class information, and that processor flags
are now correctly reported as members of the SR register when they are used as sources
and destinations:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x10008 (l.addic r3,r4,0x2)
class INTEGER
fetch 0x10008:0x1000b (value:0x020064a0)

read SR
read R4

© 2022 Imperas Software Limited.www.OVPworld.org Page 233 of 321

OVP Processor Modeling Guide

write SR
write R3

next PC 0x1000c hint: (relative) offset 4

The next instruction address for the I.sys instruction is now also correct:

*** ATTRIBUTES FOR INSTRUCTION AT ADDRESS 0x100c4 (l.sys)
class SYSTEM|]BRANCH
fetch 0x100c4:0x100c7 (value:0x34120020)

next PC 0xc00 hint:callint

© 2022 Imperas Software Limited.www.OVPworld.org Page 234 of 321

OVP Processor Modeling Guide

21 Implementing Fixed-Mapped Virtual Memory

The OR1K example described so far in this document has only physical memory. It is
also possible to implement virtual memory in a highly-efficient manner.

This chapter shows how to implement fixed-mapped virtual memory, where the virtual-
to-physical address mappings are constant. Chapter 22 extends this to show how to
implement dynamic-mapped virtual memory, where the virtual-to-physical address
mappings can be changed at run time.

21.1 Example Memory Maps

The OR1K processor can be configured with a full TLB-based virtual memory system.
Although it is perfectly possible to implement the full OR1K virtual memory algorithm
using the VMI interface, the code to do this is too complex for an introductory example.
Therefore, this chapter will implement a much simpler memory mapping scheme that
demonstrates the required concepts without the complexity of the true virtual memory
algorithm.

The fixed mapping scheme we will implement will look like this:

Supervisor Mode User Mode

0x00000000 L7 code 0x00000000
i OXOFFFFFFF

OXTFFFFFFF T

0x80000000 L

OX8FFFFFFF %

0x90000000

OXOFFFFFFF .

0xa0000000 S N
. data 0xF0000000

OXFFFFFFFF s, OXFFFFFFFF

In other words, the example memory mapping scheme will be as follows:
1. In supervisor mode, the entire address space is mapped with full access
permissions (read, write and execute)
2. Inuser mode, there are three distinct memory areas:
a. The address range 0x00000000 : OXOFFFFFFF is code memory which has

execute and read permission, but is not writable in user mode (any attempt

© 2022 Imperas Software Limited.www.OVPworld.org Page 235 of 321

OVP Processor Modeling Guide

to write to this address range should generate an exception). It is mapped
to the physical address range 0x80000000 : Ox8FFFFFFf (0, for example,
address 0x80000000 in supervisor mode addresses the same location as
address 0x00000000 in user mode).

b. The address range 0xf0000000 : OxFFFFFFFF is data memory which has
read and write permission, but is not executable in user mode (any attempt
to execute code in this address range should generate an exception). It is
mapped to the physical address range 0x90000000 : Ox9FFFFFFF (S0, for
example, address 0x90000000 in supervisor mode addresses the same
location as address 0xf0000000 in user mode).

c. The address range 0x10000000: Oxe FFFFFFF is unmapped in user mode;
any attempt to access this memory in any way should generate an
exception.

21.2 The Template Fixed-Mapped Model

A template model for the OR1K processor implementing a fixed-mapped virtual memory
scheme can be found in:

$IMPERAS_HOME/Examples/Models/Processor/19.or1kBehaviorVM

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/19.orlkBehaviorVM .

Compile the model, harness and application using the make command:

cd 19.orlkBehaviorVM
make OPT=1

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

21.3 orlkVM.c

The fixed-mapped virtual memory scheme described in the previous section is created by
defining a virtual memory constructor function for the OR1K processor. This is
implemented as follows in file orikvM.c:

VMI_VMINIT_FN(orlkVMInit) {

// for this example, the SUPERVISOR memory domain will be the physical
// domain; the USER memory domain will be a derived virtual domain
memDomainP physicalDomain = codeDomains[0];

© 2022 Imperas Software Limited.www.OVPworld.org Page 236 of 321

OVP Processor Modeling Guide

memDomainP supervisorDomain = physicalDomain;
memDomainP userDomain = vmirtNewDomain("'user", 32);

// create an initial mapping that makes physical addresses 0x80000000:
// OXBFFFFFFFf visible at 0x00000000:0xOffFFFFFF in the USER memory space
vmirtAliasMemory(

physicalDomain,

userDomain,

0x80000000,

OX8FFFffff,

0x00000000,

0

);

// remove write permissions from addresses 0x00000000:0xOfffffff in the
// user address space
vmirtProtectMemory(

userDomain,

0x00000000,

OXOFFFFfFfT,

MEM_PRIV_RX,

MEM_PRIV_SET

);

// create an initial mapping that makes physical addresses 0x90000000:
// OXOFFFFFFf visible at Oxf0000000:0xfFFFFFFFF In the USER memory space
vmirtAliasMemory(

physicalDomain,

userDomain,

0x90000000,

OXOFFFFffT,

0xf0000000,

0

);

// remove execute permissions from addresses Oxf0000000:OxfFFFFFfFf in the
// USER memory space
vmirtProtectMemory(

userDomain,

0xf0000000,

OXFFFFffff,

MEM_PRIV_RW,

MEM_PRIV_SET

);

// supervisorDomain should be used for both instruction and data in
// SUPERVISOR mode

codeDomains[OR1K_MODE_SUPERVISOR]
dataDomains[OR1K_MODE_SUPERVISOR]

supervisorDomain;
supervisorDomain;

// userDomain should be used for both instruction and data in USER mode
codeDomains[OR1K_MODE_USER] = userDomain;
dataDomains[OR1K_MODE_USER] = userDomain;

}

The virtual memory constructor is defined using the vM1_VMINIT_FN macro, defined as
follows in vmiAttrs.h:

#define VMI_VMINIT_FN(_NAME) void _NAME(C \
vmiProcessorP processor, \
memDomainPP codeDomains, \
memDomainPP dataDomains \

© 2022 Imperas Software Limited.www.OVPworld.org Page 237 of 321

OVP Processor Modeling Guide

)

The virtual memory constructor is called by the simulator after the processor constructor
has been called. It is passed three arguments:

1. the newly-constructed processor;

2. an array of memory domain objects for instruction fetch (the code domains);

3. an array of memory domain objects for data access (the data domains).

The number of entries in each of the code and data domain arrays is the same as the
number of code dictionaries that the processor has. The number of code dictionaries is
determined by the length of the dictionary names array in file orikAttrs.c:

static const char *dictNames[] = {"SUPERVISOR"™, "USER", O0};

For the OR1K, each of the code and data domain arrays will therefore contain two
entries. Each of the entries is used as follows:
1. entry O of codeDomains is used when fetching instructions in supervisor mode;
2. entry 1 of codeDomains is used when fetching instructions in user mode;
3. entry 0 of databomains is used for loads and stores in supervisor mode;
4. entry 1 of databomains is used for loads and stores in user mode;

Each entry in codeDomains is seeded with a physical domain associated with the bus
object that was connected to the INSTRUCTION bus port in the harness. Similarly, each
entry in dataDomains is seeded with a physical domain associated with the bus object
that was connected to the DATA bus port in the harness. However, the default entries in the
codeDomains and dataDomains arrays can be overridden with new memory domain
objects in the virtual memory constructor to specify different mappings for each
processor mode, as described in detail below.

memDomainP physicalDomain = codeDomains[0];

This line gets the physical domain automatically associated with the OR1K processor
when it was created.

memDomainP supervisorDomain = physicalDomain;

In supervisor mode, we want to use the physical domain for all accesses.

memDomainP userDomain = vmirtNewDomain(*'user™, 32);

In user mode, we do not want to use the physical domain, but instead we will use a new
domain, with a 32-bit address width, created by calling vmi rtNewDomain.

vmirtAliasMemory(
physicalDomain,
userDomain,
0x80000000,
OX8FFFffff,
0x00000000,

© 2022 Imperas Software Limited.www.OVPworld.org Page 238 of 321

OVP Processor Modeling Guide

);

This call to vmi rtAliasMemory maps addresses 0x80000000 : Ox8FFFFFFT in
physicalDomain to addresses 0x80000000 : Ox8FFFFFFF in userDomain. See the VMI
Run Time Function Reference documentation for more information about

vmirtAl iasMemory.

vmirtProtectMemory(
userDomain,
0x00000000,
OXOFFFffff,
MEM_PRIV_RX,
MEM_PRIV_SET

DE

This call to vmirtProtectMemory sets the access permissions on the address range
0x80000000 : Ox8FFFFFFT in userDomain to execute and read (but not write).

vmirtAliasMemory(
physicalDomain,
userDomain,
0x90000000,
OXOFFFffff,
0xf0000000,
(0]

DE

vmirtProtectMemory(
userDomain,
0x¥0000000,
OXFFFFffff,
MEM_PRIV_RW,
MEM_PRIV_SET

DE

These two calls map addresses 0x90000000 : Ox9FFFFFFF in physicalDomain to
addresses 0xf0000000 : OxFFFFFFFF in userDomain, and give that address range read and
write (but not execute) permission.

codeDomains[OR1K_MODE_SUPERVISOR]
dataDomains[OR1K_MODE_SUPERVISOR]

supervisorDomain;
supervisorDomain;

codeDomains[OR1K_MODE_USER]
dataDomains[OR1K_MODE_USER]

userDomain;
userDomain;

These lines override the default domains to use for the various access types and processor
modes, so that supervisorDomain is used for all supervisor mode accesses and
userDomain is used for all user mode accesses.

21.4 VM Function Registration - orlkAttrs.c

A prototype for orikvMInit has been added to orikFunctions.h, and is referenced in
the attribute structure in orikAttrs.c:

© 2022 Imperas Software Limited.www.OVPworld.org Page 239 of 321

OVP Processor Modeling Guide

const vmilASAttr modelAttrs = {

21.4.1 Virtual Memory Test Harness - platform/harness.c

lines omitted .

L11177777777777777777777777777777//7777///77777///7777///77/7////7//7//7//

// CREATE/DELETE ROUTINES

L11177777777777777777777777777777/7777//777777///7777///77/7////7//77//7//

.constructorCB = orlkConstructor,
.vmInitCB = orlkVMInit,
.destructorCB = orlkDestructor,

lines omitted .

The test platform for this example, platform/harness.c, has been changed to enable
simulated exceptions in the OR1K processor:

const char *modelFile = "model ."IMPERAS_ SHRSUF;
optProcessorP processor = opProcessorNew(

mr, modelFile, "cpul™, O,
OP_PARAMS (

)
DE

OP_PARAM_BOOL_SET(OP_FP_SIMULATEEXCEPTIONS, 1)

Simulated exceptions are required because we want the processor to run exception
handlers on illegal read, write or instruction fetch — if this is not enabled, then simulation

wou

21.5 Testing Fixed-Mapped Virtual Memory

Id terminate on an illegal access.

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —-trace -—traceshowicount \

-—program application/asmtest_OR1K.elf

The output from this should be as follows:

Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info

Info

Info
Info
Info

1: "cpul®, 0x0000000000000000:
2: "cpul®, 0x0000000000000004:
3: "cpul®, 0x0000000000000008:
4: "cpul®, 0x000000000000000c:
5: "cpul®, 0x0000000000000010:
6: "cpul®, 0x0000000000000014:
7: "cpul®, 0x0000000000000018:
8: "cpul®, 0x000000000000001c:
9: "cpul®, 0x0000000000000020:
10: "cpul®, 0x0000000000000024:
11: “"cpul®, 0x0000000000000028:
12: "cpul®, 0x000000000000002c:
lines omitted . . .
61: "cpul®, 0x000000000000002c:

62: “"cpul®, 0x0000000000000030:
63: "cpul®, 0x0000000000000034:
64: “"cpul®, 0x0000000000000038:

.ori
-movhi
.movhi
.ori
.movhi

.ori
Iwz
.SW
.addi

.addi
.stne
-bf

-bf
-nop
-mtspr
-mtspr

r31,r0,0x0
ri1,0x8000
r2,0x0
r2,r2,0xcOc
r3,0x0
r3,r3,0xc2c
r4,0x0(r2)
0ox0(rl),r4
r2,r2,0x4
rl,rl,0x4
r2,r3
0x00000018

0x00000018
0x0
ro,r0,64
ro,r0,32

© 2022 Imperas Software Limited.www.OVPworld.org

Page 240 of 321

OVP Processor Modeling Guide

Info 65: “"cpul®, 0x000000000000003c:
Info 66: "cpul”, 0x0000000000000000:
Info 67: “"cpul®, 0x0000000000000004:
Info 68: "cpul”, 0x0000000000000008:
Info 69: “"cpul®, 0x000000000000000c:
Info 70: “cpul®, 0x0000000000000300:
Info 71: “cpul®, 0x0000000000000304:
Info 72: “"cpul®, 0x0000000000000308:

.rfe

-.movhi rl1,0xf000
.ori r2,r0,0x1234
-Sw 0x0(rl),r2
-sw 0x0(r0),r2
-.mfspr r1,r0,32
.addi rl,rl,0x4
-mtspr r0,rl1,32

Info 73: “cpul®, 0x000000000000030c: I.rfe

Info 74: “cpul®, 0x0000000000000010: I.movhi r1,0xf000
Info 75: “cpul®, 0x0000000000000014: I.jalr ri

Info 76: "cpul®, 0x0000000000000018: nop 0x0

** FETCH EXCEPTION ***
-mtspr r0,r9,32

.rfe

-Sys

-.movhi r1,0x9000

Info 77: "cpul®, 0x00000000F0000000:
Info 78: "cpul®, 0x0000000000000400:
Info 79: "cpul®, 0x0000000000000404:
Info 80: "cpul®, 0x000000000000001c:
Info 81: “cpul®, 0x0000000000000c00:
Info 82: "cpul®, 0x0000000000000c04: 1.lwz r3,0x0(rl)

Info 83: “cpul®, 0x0000000000000c08: 1.nop 0x0
Processor "cpul® terminated at "exit", address 0xc08

RO : 00000000 R1 : 90000000 R2 : 00001234 R3 : 00001234
R4 : 20000000 R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 0000001c R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: deadbeef R31: 00000000
PC : 00000cOc SR : 00008001 ESR: 00008000 EPC: 00000020
TCR: 00000000 TMR: 00000000 PSR: 00000000 PMR: 00000000
BF:0 CF:0 OF:0

- e e

processor has executed 83 instructions

The source code for this example is as follows:

1///17777777777777/777/77/77///777/77/77/7//7/7//7//7///7///7/7/7/7///7/7////7////7//7/7/7/7/7/77777

// KERNEL START CODE (AT 0x0)

1/1/1/1//7777777777/777777/77/77777777/7//77/77////7//7/7/7//7//7//7///7/7///////7/7/7/777777
-global _start

_sStart:
1._ori r31,r0,0 // r31 = 0 (stack pointer)
// prepare to copy application to user space
1 _movhi r1,0x8000 // r1 = 0x80000000
1 _movhi r2,hi(appStart) // r2 = appStart
1_ori r2,r2,lo(appStart)
1 _movhi r3,hi(appEnd) // r3 = appEnd
1_ori r3,r3, lo(appEnd)
// copy application to user space

loop: 11wz r4,0(r2) // r4 = word of application code
1_sw o(rl),r4 // copy to 0x80000000
1.addi r2,r2,4 // increment src pointer
1.addi ri,rl,4 // increment dst pointer
1.sfne r2,r3 // r21=r3?
1_bf loop // go if true
1.nop // (delay slot instruction)

// run user code

© 2022 Imperas Software Limited.www.OVPworld.org Page 241 of 321

OVP Processor Modeling Guide

1 _mtspr ro,r0,0x40 // clear esr

1 _mtspr ro,r0,0x20 // clear epc (resume address in user space)

1_rfe // return from exception (runs user code)
.org 0x300

L11177777777777777777777777777777//7777///7777////7777///77/7////7//77//7//
// DATA PRIVILEGE EXCEPTION VECTOR (AT 0x300) - SKIP INSTRUCTION
L11177777777777777777777777777777/77777///77777////7777///7/7/77////7/7///7/77

1 _mfspr rl,r0,0x20 // get epc in rl
1._addi ri,rl,4 // increment address to skip faulting insn
1_mtspr ro,rl1,0x20 // set epc
1.rfe // return from exception
-org 0x400

1///1/////7/7////////7///7//7/
// CODE PRIVILEGE EXCEPTION VECTOR (AT 0x400) - RESUME AT LINK ADDRESS
1/1//1///7/777/////7///7//7//7//7/

1 _mtspr ro,r9,0x20 // set epc from link register (r9)
1.rfe // return from exception
.org 0xc00

1/1//1//17777777777777/77/77//7/7//7///7///////////////////////////////7//77/77
// SYSCALL VECTOR (AT 0xc00) - TERMINATE PROGRAM
11//1/777777777777/7/77/7/77////7//7///7///////////////////////////////7//7777

1 ._movhi ri,0x9000 // rl1 = 0x90000000

1_lwz r3,0(rl1) // load r3 from address 0x90000000
-global exit
exit: 1_nop

1/1/7/777777777777777/7/7/7/7////7////7////7/////////7//////////////////7//7777
// USER APPLICATION (IN KERNEL MEMORY)

L1111 7777777777777777777777/777777/7777777//7777///7777/////77/////7777/
appStart:

I .movhi rl1,0xf000 // r1 = 0xf0000000

I.ori r2,r0,0x1234 // r2 = 0x00001234

1._sw o(r1),r2 // legal store to 0xf0000000

1.sw 0o(ro),r2 // attempt ILLEGAL store to 0x00000000
I .movhi rl1,0xf000 // r1 = 0xf0000000

1_jalr rl // attempt ILLEGAL jump to Oxf0000000
1._nop // (delay slot instruction)

1._sys 0 // exit program

appEnd:

Execution starts at label _start. The application (running in supervisor mode) first
executes a loop to copy the code between labels appStart and appEnd to address
0x80000000 (so this code will become visible in the user address space at address
0x00000000). When this is done (at instruction 63), the processor clears esr and epc and

executes an 1. rfe instruction (return form exception) to start executing at address
0x00000000 in user mode:

1 _mtspr r0,r0,0x40 // clear esr
1_mtspr r0,r0,0x20 // clear epc (resume address in user space)
1.rfe // return from exception (runs user code)

Note that the trace output now shows user mode instruction addresses:

Info 66: "cpul®, 0x0000000000000000: I.movhi r1,0xF000
Info 67: “cpul®, 0x0000000000000004: 1.ori r2,r0,0x1234
Info 68: "cpul®, 0x0000000000000008: I.sw 0ox0(rl),r2

© 2022 Imperas Software Limited.www.OVPworld.org Page 242 of 321

OVP Processor Modeling Guide

The application stores the value 0x1234 to address 0xf0000000 (legal in user mode) and
then attempts the same store to address 0x00000000 (illegal in user mode, as this address
has read and execute permissions only). This causes a data privilege exception at
instruction 70. The data privilege exception handler simply increments epcr and returns
from the exception (to skip the faulting instruction):

Info
Info
Info
Info
Info

69: “cpul-,
70: "cpul®,
71: "cpul-®,
72: “cpul®,
73: “cpul-,

0x000000000000000c:
0x0000000000000300:
0x0000000000000304:
0x0000000000000308:
0x000000000000030c:

-SW
-mfspr
-addi
-mtspr
.rfe

0x0(r0),
rl,r0,32
rl,rl,0x
ro,rl1,32

r2

4

Next, the application attempts a call to address 0xf0000000 (also illegal in user mode, as
this address has read and write permissions only). This causes an instruction privilege
exception at instruction 78. The instruction privilege exception handler resumes
execution at the link address (0x1c in the user address space):

Info
Info
Info
Info
Info

75: “cpul®,
76: "cpul”,
77: “cpul-,
78: "cpul”,
79: “cpul-,

0x0000000000000014:
0x0000000000000018:
0x00000000F0000000:
0x0000000000000400:
0x0000000000000404 :

-Jalr
-nop

ri
0x0

*** FETCH EXCEPTION ***

.mtspr
.rfe

ro,r9,32

Finally, the user mode program executes an 1.sys instruction. The system call vector
loads the contents of address 0x90000000 into register r3 and then exits. On completion,
register r3 contains 0x1234, proving that address 0x90000000 in supervisor mode is
correctly mapped to address 0xf0000000 in user mode:

- 00000000
- 20000000
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
- 00000cOc
- 00000000

CF:0 OF:0

R1 :- 90000000 R2
R5 : deadbeef R6

: 00001234
: deadbeefF
R9 : 0000001c R10:
R13: deadbeef R14:
R17: deadbeef R18:
R21: deadbeef R22:
R25: deadbeef R26:
R29: deadbeef R30:
SR : 00008001 ESR:
TMR: 00000000 PSR:

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00008000
00000000

: 00001234
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000
- 00000020
- 00000000

© 2022 Imperas Software Limited.www.OVPworld.org

Page 243 of 321

OVP Processor Modeling Guide

22 Implementing a Dynamic-Mapped TLB

Chapter 18 showed how to implement fixed-mapped virtual memory. This chapter
extends that example to show how to implement dynamic-mapped memory, where the
virtual-to-physical address mappings can be changed at run time. Specifically, we
implement a simple TLB structure.

22.1 General TLB Concepts

Most processors that implement virtual memory have hardware support for virtual-to-
physical address translation, implemented using a translation lookaside buffer (TLB).
The TLB is in typically an associative cache of a number of valid virtual-to-physical page
mappings. If a memory access (fetch, read or write) uses a virtual address that is mapped
in the TLB, the corresponding physical address location is obtained immediately and
execution continues uninterrupted. Otherwise, if there is a TLB miss, a supervisor or
kernel mode routine is typically called to handle the miss. The miss handler typically has
access to a much larger table of virtual-to-physical address mappings in kernel memory:
if the virtual address was present in this table but not in the TLB, the miss handler will
eject an existing valid entry and replace it with the required entry from the page table; if
the virtual address was not valid, a privilege exception will typically be generated. When
an entry is being replaced, a key concept is the replacement policy that determines which
existing valid entry is to be ejected .

Note that a TLB miss is often not handled the same way as a cache miss: typically, a
cache miss simply stalls the processor while the cache line is filled, whereas a TLB miss
usually requires an exception handler to be called to process it and modify the TLB
contents

TLB entries typically hold more that just virtual-to-physical mappings: usually, each has
some access permissions associated with it, and often an address space id (ASID) that
restricts the validity of the entry to a subset of running processes (this prevents the TLB
having to be completely flushed and refilled on a process switch). There is often also a
choice of page sizes supported.

22.2 The Simple Example TLB

As mentioned in chapter 18, the OR1K processor can be configured with a full virtual
memory system implementing a TLB. However, although this can be modeled using the
VMI interface, it is too complex for an introductory example; instead, we will model a
very simple TLB structure that demonstrates the key concepts but is easier to understand.

The simple TLB will extend the fixed-mapped virtual memory example of chapter 18 as
follows:
1. Memory at addresses in the range 0x10000000 : Oxe FFFFFFF in user memory
space will be divided into 4096-byte pages that will be mapped on demand.

%3 In some processor architectures (e.g. ARM) the process of TLB maintenance is handled by special
hardware.

© 2022 Imperas Software Limited.www.OVPworld.org Page 244 of 321

OVP Processor Modeling Guide

2. The OR1K processor will implement a small TLB with four entries, so up to four
different 4096-byte pages may be mapped concurrently.

3. At address 0x10000 in the supervisor address space, we will locate a page table
structure. The data in this will be laid out as follows:

a. 0x10000: the number of entries in the table

0x10004: virtual address for entry 1

0x10008: virtual address for entry 2

0x1000c: virtual address for entry 3

(and so on up to the number of entries in the table)

The page table will dynamically grow as more pages in the user address space
need to be mapped.

4. The physical pages corresponding to the virtual addresses in the page table will be
allocated in order starting at 0x10000000 in supervisor space. In other words,
entry 1 in the table will be mapped to physical address 0x10000000, entry 2 will
be mapped to physical address 0x10001000, entry 3 will be mapped to physical
address 0x10002000, and so on.

5. In order to update the processor TLB, we will modify the behavior of the I.nop
99 instruction. When 1.nop 99 is executed, we will assume that:

a. register r1 holds a TLB index number (0-3) indicating the TLB entry to

replace;

b. register r2 holds a user space virtual address;

c. register r3 holds a physical address.
Executing the I.nop 99 should discard any current mapping for the numbered
TLB entry in the processor, and create a new mapping for that entry, mapping one
page of data at the virtual address in the user memory domain to the physical
address in the physical memory domain.

6. The replacement policy in this example will be simple round-robin.

7. In this simple example, all dynamically mapped pages will have read/write
privilege, and there will be no way to invalidate an entry in the TLB (other than to
replace it with a new mapping). We will also not implement any means of freeing
an allocated physical page. All these would of course be supported in a real
operating system, but would over complicate this example.

22.3 The Template Simple TLB Model

A template model for the OR1K processor implementing a simple TLB can be found in:

®Poo0 o

$IMPERAS_HOME/Examples/Models/Processor/20.or1lkBehaviorTLB

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/20.orlkBehaviorTLB .

Compile the model, harness and application using the make command:

cd 20.orlkBehaviorTLB
make OPT=1

© 2022 Imperas Software Limited.www.OVPworld.org Page 245 of 321

OVP Processor Modeling Guide

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

22.4 Defining TLB Structures - ori1kStructure.h
Some new #defines describe some aspects of the TLB:

#define OR1K_TLB_SIZE 4 // size of TLB
#define OR1K_PAGE_SIZE 4096 // size of TLB-mapped page

There is also a new type, tlbEntry, implementing a single entry in the TLB:

// simple TLB entry
typedef struct tlbEntryS {

Uns32 va; // virtual address
Uns32 pa; // physical address
Bool valid; // is entry valid?

} tlbEntry, *tlbEntryP;

The processor structure has an array of TLB entries, and also a new memory domain field
giving the physical domain for use during dynamic mapping:
typedef struct orilkS {

- lines omitted . . .

memDomainP physicalDomain; // physical domain target for TLB mappings
tlbEntry tlb[OR1K_TLB_SIZE];// simulated TLB

} orilk, *orilkP;

22.5 Implementing Virtual Memory - orikVM. [ch]

The virtual memory constructor has been modified to save the physical domain for use in
the TLB update function:

VMI_VMINIT_FN(orlkvMInit) {
. lines omitted . . .

// save physicalDomain on the OR1K structure for TLB usage
orlkP orlk = (orlkP)processor;
orlk->physicalDomain = physicalDomain;

}

A new function, or1kSetTLBEntry, is used to update the TLB mapping in the OR1K
structure. The function takes as arguments the processor, a virtual address (va) and a
physical address (pa):

© 2022 Imperas Software Limited.www.OVPworld.org Page 246 of 321

OVP Processor Modeling Guide

void orlkSetTLBEntry(orlkP orlk, Uns32 tlblndex, Uns32 va, Uns32 pa) {

// get the current instruction count (for messages)
Uns64 iCount = vmirtGetlCount((vmiProcessorP)orik);

// clip tlblndex, va and pa to valid values
tiblndex &= (OR1K_TLB_SIZE-1);

va &= ~(OR1K_PAGE_SIZE-1);

pa &= ~(OR1K_PAGE_SIZE-1);

// get the TLB entry to update and the memory domain affected
tlbEntryP entry &orlk->tlb[tlblndex];

memDomainP physicalDomain orlk->physicalDomain;

memDomainP tlbDomain orlk->tlbDomain;

// if TLB entry is already mapped, unmap it
if(entry->valid) {

vmiPrintf(
FMT_64u': DELETE entry %u mapping (va:0x%08x pa:0x%08x)\n",
iCount, tlblndex, entry->va, entry->pa

)

vmirtUnal iasMemoryVM(
tlbDomain, entry->va, entry->va+OR1K PAGE_SIZE-1, True, O

)
}
// update the TLB entry
entry->va = va;
entry->pa = pa;
entry->valid = True;

vmiPrintf(
FMT_64u': CREATE entry %u mapping (va:O0x%08x pa:0x%08x)\n",
iCount, tlblndex, va, pa

);

// establish the new page mapping with read/write permissions
vmirtAl iasMemoryVM(
physicalDomain, tlbDomain, pa, pa+OR1K_PAGE_SIZE-1, va, O,
MEM_PRIV_RW, True, O
):
}

The function first gets the TLB entry to update, and the physical and TLB domains:

tlbEntryP entry
memDomainP physicalDomain
memDomainP tlbDomain

&orlk->tlb[tlblndex];
orlk->physicalDomain;
orlk->tlbDomain;

Next, it invalidates any current mapping for the TLB entry using
vmirtUnal iasMemoryVM:

Bool vmirtUnaliasMemoryVM(
memDomainP virtualDomain,

Addr virtuallLowAddr,
Addr virtualHighAddr,
uUns64 ASI1DMaskOrG,

© 2022 Imperas Software Limited.www.OVPworld.org Page 247 of 321

OVP Processor Modeling Guide

Uns64 ASID
);

The arguments to this function are:

1. The domain in which to remove a virtual memory mapping.

2. The address range for which the mapping should be removed.

3. An entry indicating whether the entry is globally-mapped or ASID-mapped (see
TLB Modeling with ASID-Mapped Entries later in this section). In this example,
the TLB entries are assumed to be globally-mapped.

4. If the mapping to remove is ASID-managed, the corresponding ASID.

See the VMI Run Time Function Reference manual for more information about this
function.

To monitor what is happening, the details of the deleted mapping are also printed out:

if(entry->valid) {

vmiPrintf(
FMT_64u': DELETE entry %u mapping (va:0x%08x pa:0x%08x)\n",
iCount, tlblndex, entry->va, entry->pa

)

vmirtUnal iasMemoryVM(
tlbDomain, entry->va, entry->va+OR1K PAGE_SIZE-1, True, O
);

}

Next, the TLB entry is updated to describe the new mapping, and the details of the new
mapping are printed out:

entry->va = va;
entry->pa = pa;
entry->valid = True;

vmiPrintf(
FMT_64u': CREATE entry %u mapping (va:0x%08x pa:0x%08x)\n",
iCount, tlblndex, va, pa

);

Finally, the new mapping is established with read/write access permissions, using
function vmirtAliasMemoryVM:

Bool vmirtAliasMemoryVM(
memDomainP physicalDomain,
memDomainP virtualDomain,

Addr physicalLowAddr,
Addr physicalHighAddr,
Addr virtuallLowAddr,
memMRUSetP mruSet,

memPriv privilege,

Uns64 AS1DMaskOrG,
Uns64 ASID

© 2022 Imperas Software Limited.www.OVPworld.org Page 248 of 321

OVP Processor Modeling Guide

The arguments to this function are:

The physical domain to which to map.

The virtual domain in which the mapping should be created.

The address range in the physical domain of the region to map.

The base address in the virtual domain of the region to map.

A structure of type memMRUSetP, which automates the maintenance of region

usage so that the least-recently-used TLB entry can be identified if required. In

this example we are not interested in maintaining least-recently-used state (the
replacement policy is round-robin) so this argument is NULL. See chapter 23 which
discusses this in more detail.

6. An argument specifying the access privileges that the page should have.

7. An argument used to control whether an entry is globally-mapped or ASID-
mapped (see TLB Modeling with ASID-Mapped Entries later in this section). In
this example, the TLB entries are assumed to be globally-mapped.

8. If the mapping to create is ASID-managed, the corresponding ASID.

akrowndE

In this case, we create a globally-mapped entry, so ASI1DMaskOrG is True and ASID is zero
(the value is ignored for global entries):

vmirtAl iasMemoryVM(
physicalDomain, tlbDomain, pa, pa+OR1K_PAGE_SIZE-1, va, O,
MEM_PRIV_RW, True, O

);

22.6 Adding TLB Update Instruction - orlkMorph.c

Function morphNOP has been modified to handle a 1.nop 99 instruction, calling the new
TLB update function orikSetTLBEntry. To enable an example application to be
debugged, the 1.nop 98 instruction has also been subverted to print the current contents
of register ri:

static void vmic_printvVal(Uns32 val) {
vmiPrintf(” fib returns %u\n*, val);
s

static OR1K_MORPH_FN(morphNOP) {
Uns32 code = state->info.c;

// subvert nop 98 to print the contents of rl and nop 99 to set a TLB entry
if(code==98) {

vmimtArgReg(OR1K_BITS, getGPR(1));

vmimtCall((vmiCallFn)vmic_printval);
} else if(code==99) {

vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, getGPR(1)); // rl: TLB entry index
vmimtArgReg(OR1K_BITS, getGPR(2)); // r2: virtual address (va)

vmimtArgReg(OR1K_BITS, getGPR(3)); // r3: physical address (pa)
vmimtCall ((vmiCallFn)orlkSetTLBEntry);

© 2022 Imperas Software Limited.www.OVPworld.org Page 249 of 321

OVP Processor Modeling Guide

It can often be a very useful technique to subvert certain opcodes to assist application
debugging. Many processor instruction sets contain unassigned instructions for just
this purpose. Make sure not to leave debugging hacks in the final model!

22.7 Testing the Simple TLB Model

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The output from this should be as follows:

369:

439:

549:

699:

919
919

fib returns 1

CREATE entry
fib returns 2

CREATE entry
fib returns 1
fib returns 3

CREATE entry
fib returns 1
fib returns 2
fib returns 5

CREATE entry
fib returns 1
fib returns
fib returns
fib returns
fib returns

WWEN

: DELETE entry
: CREATE entry

fib returns 1

0 mapping (va:0x80001000 pa

1 mapping (va:0x80002000 pa

2 mapping (va:0x80003000 pa

3 mapping (va:0x80005000 pa

0 mapping (va:0x80001000 pa

:0x10000000)

:0x10001000)

:0x10002000)

-0x10003000)

-0x10000000)

0 mapping (va:0x80008000 pa:0x10004000)

1021: DELETE entry 1
1021: CREATE entry 1

fib returns 2

1092: DELETE entry 2
1092: CREATE entry 2

: 80262000
: deadbeefF
: deadbeef

fib returns 1
fib returns 3

. lines omitted .
fib returns 233

62313: DELETE entry 1
62313: CREATE entry 1
fib returns 610

62494: DELETE entry 2
62494: CREATE entry 2

- 00000000
: 15000000
: deadbeef

R12: deadbeef
R16: deadbeef
R20: deadbeef
R24: deadbeef
R28: deadbeef

= 00000c04

TCR: 00000000 TMR:

:1 CF:0 OF:O0

mapping (va:0x80002000 pa:0x10001000)
mapping (va:0x80001000 pa:0x10000000)

mapping (va:0x80003000 pa:0x10002000)
mapping (va:0x80002000 pa:0x10001000)

mapping (va:0x80005000 pa:0x10003000)
mapping (va:0x800e9000 pa:0x1000b000)

mapping (va:0x8000d000 pa:0x10005000)
mapping (va:0x80262000 pa:0x1000d000)
Processor "cpul® terminated at "exit", address 0xc00

- 00000262
: deadbeefF
- 00000008
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
R29:
- 00008201

deadbeef

00000000

: deadbeef
: deadbeef
: deadbeefF
: deadbeef
R30:
ESR:
PSR:

000001f3
00008200
00000000

- 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
R31:
EPC:
PMR:

00000000
0000000c
00000000

© 2022 Imperas Software Limited.www.OVPworld.org

Page 250 of 321

OVP Processor Modeling Guide

processor has executed 62512 instructions

The source code for this example, in file application/asmtest.S, breaks down into
three main sections. Firstly, there is a section that initializes the processor and copies the
user program to 0x80000000 before entering user mode and starting the program. This is
exactly as in the example in chapter 18:

L1111 77777777777777177777777777///7777///77777////777////777//////77//77

// KERNEL START CODE (AT 0xO0)

L1111 17777717777777177777777777///7777////7777////777/////77//////77//7/7
-global _start

_start:
1._ori r31,r0,0 // r31 = 0 (stack pointer)
I.ori r30,r0,0 // r30 = 0 (TLB miss count)
// prepare to copy application to user space
1 _movhi r1,0x8000 // r1 = 0x80000000
1 _movhi r2,hi(appStart) // r2 = appStart
1._ori r2,r2,lo(appStart)
1 _movhi r3,hi(appEnd) // r3 = appEnd
1_ori r3,r3, lo(appEnd)
// copy application to user space
loop: 11wz r4,0(r2) // r4 = word of application code
1_sw o(rl),r4 // copy to 0x80000000
1.addi r2,r2,4 // increment src pointer
1.addi ri,rl,4 // increment dst pointer
1.sfne r2,r3 // r21=r3?
1_bf loop // go if true
1.nop // (delay slot instruction)
// run user code
1_mtspr ro,r0,0x40 // clear esr
1 _mtspr r0,r0,0x20 // clear epc (resume address in user space)
1.rfe // return from exception (runs user code)

The user mode application calculates fib(15) using the naive recursive algorithm
previously described in this document. On every return from the fib function, it reads
and writes to an address in user memory, calculated as 0x8000000 + result*4096. In
other words, if the Fib function is about to return 1, it reads and writes to address
0x80001000, if the Fib function is about to return 2, it reads and writes to address
0x80001000, and so on:

appStart:
1_jal fib // calculate fib(15)
1.addi rl,r0,15 // r1l = 15 (delay slot)
1._sys 0 // exit the application
fib: 1_sflesi ri,1 // rl1<=1? (signed)
1.bf done // done if so, result is rl
1._nop // (delay slot)
1.addi r31,r31,-12 // create stack frame
1.sw 0(r31),r9 // save link register
1._sw 4(r31),rl // save input rl
1_jal fib // calculate fib(N-1)
1._addi rli,rl,-1 // r1l = N-1 (delay slot)

© 2022 Imperas Software Limited.www.OVPworld.org Page 251 of 321

OVP Processor Modeling Guide

1_sw 8(r31),r1 // save Tib(N-1)
1_lwz rl1,4(r31) // restore initial N
1_jal fib // calculate fib(N-2)
1_addi rl,rl,-2 // rl = N-2 (delay slot)
1_lwz r2,8(r31) // restore Fib(N-1)
1.add ri,rl,r2 // r1 = fib(N-2) + fib(N-1)
1.1wz ro,0(r31) // restore link register
I.addi r31,r31,12 // destroy stack frame
1._nop 98 // whats in rl1?
I_muli r2,rl1,PAGE_SIZE // r2 = fib * page size
1 _movhi r3,0x8000 // r3 = user heap base (0x80000000)
1._add r2,r2,r3 // r2 = fib page
1_lwz r3,0(r2) // r3 = old fib count
1._addi r3,r3,1 // increment count
1._sw 0(r2),r3 // save new count

done: 1_jr ro // return, result in rl
1_nop // (delay slot instruction)

appEnd:

The choice of application is completely arbitrary, and has been selected merely to cause
writes to a somewhat random sequence of pages in the TLB mapped region starting at
address 0x80000000 in the user address space. The subverted instruction 1.nop 98 has
been used to print the return value from the fib function to make it easier to follow the
flow of execution.

The third section of the example is the data privilege exception handler:

-org 0x300
L1/1/1/77777777777777777777777777777/77777/7777777777/7//7/7/77/7//77//777/7777777
// DATA PRIVILEGE EXCEPTION VECTOR (AT 0x300) - UPDATE TLB
L//1/777777777777777777777777777777/77777/777777/7777/7///7///7/77///7//7777777777

1.sw -4(r31),r1 // save rl

1.sw -8(r31),r2 // save r2

1_sw -12(r31),r3 // save r3

1.sw -16(r31),r4 // save r4

1_sw -20(r31),r5 // save r5

1.sw -24(r31),r6 // save r6

1_sw -28(r31),r7 // save r7

1.addi r30,r30,1 // increment TLB miss count

1 _mfspr r2,r0,0x30 // r2 = eear

1.addi rl,r0,-PAGE_SIZE// r1l = page mask

1_and r2,r2,rl // mask faulting va to page size

1 _movhi r4,0x0001 // r4 = 0x10000 (page table address)

1_lwz r5,0(r4) // r5 = table size

1._addi r7,r4,8 // r7 = current page table entry

1._addi r6,r0,0 // r6 = 0 (current entry index)
try: 1._sfeq ré,r5 // last entry?

1.bf miss // go if so (a miss)

1._nop // (delay slot instruction)

1.1wz r1,0(r7) // rl = current entry va

1._sfeq rl,r2 // does va match entry?

1.bf hit // go if so (a hit)

© 2022 Imperas Software Limited.www.OVPworld.org Page 252 of 321

OVP Processor Modeling Guide

1_nop // (delay slot instruction)
1.addi r7,r7,4 // r7 = next page table entry
1.} try // try next entry
1.addi ré,r6,1 // r6 = next entry index (delay slot)
miss: 1.sw o(r7),r2 // save va into page table
1.addi r5,r5,1 // increment table size
1.sw o(r4),r5 // save new table size
hit: I.muli r3,r6,PAGE_SIZE // r3 = current entry index * page size
1 _movhi r5,0x1000 // r5 = heap base (0x10000000)
1._add r3,r3,r5 // r3 = pa
1_lwz rl,4(r4) // rl = tlblndex
1.nop 99 // set TLB entry
I.addi ri,rl,1 // increment tlblndex
1._andi rl,rl,TLB_SI1ZE-1// clip to TLB size
1._sw 4(rd),r1 // save tlblndex for next call
1_lwz rl,-4(r31) // restore rl
1.1wz r2,-8(r31) // restore r2
11wz r3,-12(r31) // restore r3
1_lwz r4,-16(r31) // restore r4
11wz r5,-20(r31) // restore r5
1_lwz r6,-24(r31) // restore r6
11wz r7,-28(r31) // restore r7
1_rfe // return from exception

The handler does the following:

1. it gets the fault address for the read or write;

2. it determines whether there is already a mapping for that fault address in the page
table at address 0x10000 in supervisor memory - if not, it allocates a new page
from the heap starting at 0x10000000 in supervisor memory, and creates a new
page table entry mapping the virtual page address to the new page;

3. finally, it executes I.nop 99 to update the processor simulated TLB entry.

The entry index to update is generated in a round-robin fashion. The fault handler keeps
count of the number of times it has been called in r30. Examining the test output, we see
that the first four page accesses in the TLB allocated region fill entries 0, 1, 2 and 3 of the
TLB in sequence:

fib returns 1

369: CREATE entry O mapping (va:0x80001000 pa:0x10000000)
fib returns 2

439: CREATE entry 1 mapping (va:0x80002000 pa:0x10001000)
fib returns 1
fib returns 3

549: CREATE entry 2 mapping (va:0x80003000 pa:0x10002000)
fib returns 1
fib returns 2
fib returns 5

699: CREATE entry 3 mapping (va:0x80005000 pa:0x10003000)

After that, every TLB miss must first cause an existing mapping to be deleted before the
new mapping is established:

fib returns 1
fib returns 2

© 2022 Imperas Software Limited.www.OVPworld.org Page 253 of 321

OVP Processor Modeling Guide

fib returns 1
fib returns 3
fib returns 8

919: DELETE entry O mapping (va:0x80001000 pa:0x10000000)
919: CREATE entry O mapping (va:0x80008000 pa:0x10004000)

fib returns 1

1021: DELETE entry 1 mapping (va:0x80002000 pa:0x10001000)
1021: CREATE entry 1 mapping (va:0x80001000 pa:0x10000000)

fib returns 2

1092: DELETE entry 2 mapping (va:0x80003000 pa:0x10002000)
1092: CREATE entry 2 mapping (va:0x80002000 pa:0x10001000)

. etc .

At the end of simulation, register r30 holds the number of TLB misses — 0x1f3 (499):

- 00000000
- 15000000
: deadbeefF
R12:
R16:
R20:
R24:
R28:
PC :
TCR:
BF:1 CF:0 OF:0

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00000c04
00000000

: 00000262
: deadbeef
- 00000008
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
- 00008201
- 00000000

: 80262000
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: 000001f3
- 00008200
- 00000000

- 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000
- 0000000c
- 00000000

22.8 TLB Modeling with Multiple Processor Modes

In this example, only the user mode address space was TLB mapped. In the general case,
more than one address space may be TLB mapped. This introduces an extra level of

complexity because memory mappings need to be maintained in all TLB mapped address
spaces.

There are two ways to address this problem, described in the following subsections.

22.8.1 Apply Changes in All TLB-Mapped Domains
One solution is to apply all TLB changes to every TLB-mapped domain. For example, if
both kernel and user domains are TLB mapped, each call to or1kSetTLBEntry would
require two calls to vmirtAliasMemoryVM, one to establish the mapping and protections
in the kernel mode domain and one to establish them in the user mode domain. This
solution is the simplest to implement initially.

22.8.2 Maintain Multiple Copies of the TLB
An alternative solution requires maintaining multiple copies of the TLB, one for each
TLB-mapped domain, as follows:

1. All TLB changes are made only in the copy of the TLB for the current processor
mode, and all calls to vmirtAliasMemoryVM and vmi rtUnal iasMemoryVM are
applied only to the current domain (as in the example above).

© 2022 Imperas Software Limited.www.OVPworld.org

Page 254 of 321

OVP Processor Modeling Guide

2. When the processor switches mode, all mappings from the previously-current
copy of the TLB are replicated in the new current TLB, and corresponding
memory mappings in the new current memory domain are established using
vmirtAl iasMemoryVM and vmi rtUnal iasMemoryVM.

Maintaining multiple copies of the TLB is often faster than the simpler approach of
applying changes to all TLB-mapped domains, but requires careful coding to avoid
obscure bugs.

22.9 TLB Modeling with ASID-Mapped Entries

It is common hardware practice to label TLB entries with address-space identifiers
(ASIDs). ASIDs allow a TLB to be partitioned efficiently between several processes: the
processor has a current ASID register, and only entries that match that register are
considered candidates for matching.

ASID-mapped virtual memory pages are supported directly by the simulator. You can set
the current ASID for the processor using:

void vmirtSetProcessorASID(vmiProcessorP processor, Uns64 ASID);

The ASID can be any 64-bit value. When pages are mapped and unmapped using
vmirtAliasMemoryVM and vmirtUnal iasMemoryVM, they can either be specified to be
global mappings (in which case the mapping is valid irrespective of ASID) or ASID-
managed mappings (in which case the mapping is valid only whether the processor ASID
matches the ASID specified when the virtual page was mapped). When the ASID is
modified by vmi rtSetProcessorAsSID, the simulator automatically invalidates any
existing ASID-managed mappings for the old ASID: no special action needs to be taken
in the model.

Functions vmirtAl iasMemoryVM and vmirtUnal iasMemoryVM both take an argument of
type Uns64 called ASIDMaskOrG which controls whether a virtual memory mapping
matches the current processor ASID or not. This parameter can take values with three
meanings, as follows:

1. If ASIDMaskOrG is True (i.e. has value 1) then the entry is globally-mapped. In this
case, the ASID parameter to these functions is ignored.

2. If ASIDMaskoOrG is False (i.e. has value 0) then the entry is fully-ASID-mapped. In
this case, the entry matches only if the current processor ASID exactly equals the
given ASID value.

3. If ASIDMaskorG is anything else, then it is treated as a bitmask, and the entry matches
only if:

(CcurrentASID & ASIDMaskOrG) == ASID)
where currentASID is the current processor ASID and AS1DMaskOrG and ASID are
the parameters to vmirtAl iasMemoryVM Or vmi rtUnal iasMemoryVM.

© 2022 Imperas Software Limited.www.OVPworld.org Page 255 of 321

OVP Processor Modeling Guide

In most cases, the simple usage model implied by the first two cases above suffices. The
third case can be useful when modeling processors that implement multiple levels of
address translation (for example, an ASID and a VMID, if hardware virtualization is
supported).

As an example, the following line creates a mapping valid only when the processor ASID
is 34:

vmirtAl tasMemoryVM(
physicalDomain, tlbDomain, pa, pa+OR1K_PAGE_SIZE-1, va, O,
MEM_PRIV_RW, False, 34

);

As a second example, the following line creates a mapping valid only when the least
significant 8 bits of the processor ASID contain the value 34 (all other bits of the
processor ASID are ignored):

vmirtAl iasMemoryVM(
physicalDomain, tlbDomain, pa, pa+OR1K_PAGE_SIZE-1, va, O,
MEM_PRIV_RW, Oxff, 34

DE

22.9.1 Managing Virtual Address Aliases with Different ASID

When processors support ASID-based mapping, it is common for their TLBs to be
populated with entries that map the same virtual address with different ASIDs. For
example, an operating system may always place the first executable address of a program
at the same virtual address, e.g. 0x80000000. If the processor is running an OS with four
currently-running user processes, there may therefore be four distinct mappings for
virtual address 0x80000000 in the TLB, one for each user process, each with a different
ASID.

As described above, the simulator automatically invalidates mappings for an old ASID on
a processor ASID switch. It does not, however, automatically re-establish any mapping
for the new ASID that may have been specified in the past: it is up to the model to do this.
In general, it is most efficient to re-establish mappings using a lazy scheme, as described
in the next subsection.

22.10 Lazy Mapping of TLB Entries

In the example described in this chapter, memory mappings are managed using
vmirtAliasMemoryVM and vmirtUnal iasMemoryVM whenever a TLB entry is updated.
However, these memory management functions are quite compute-intensive and should
be used sparingly. If TLB updates establish mappings that are not used by the running
program before being replaced, then the processor model will run slower than necessary
because time will be wasted setting up memory mappings that are never actually used.
This is very often the case for modal processors, since mappings are typically set up in
kernel mode and used only in user mode.

© 2022 Imperas Software Limited.www.OVPworld.org Page 256 of 321

OVP Processor Modeling Guide

For best performance, it is therefore best to establish virtual memory mappings on
demand in a lazy fashion. This is done as follows:

1. Each TLB entry has an additional boolean field, mapped. This boolean indicates
whether the TLB entry has already had a mapping established for it by
vmirtAliasMemoryVM. Any entry with mapped of False definitely has no
mapping established. Any entry with mapped of True may or may not have a
current valid mapping (if it is an ASID-managed entry, a mapping may have been
established but later invalidated by a processor ASID switch, as described in the
previous section).

2. Each TLB entry can be in one of three states:
a. valid=0, mapped=0: the TLB entry is not valid.
b. valid=1, mapped=1: the TLB entry is valid and possibly mapped.
c. valid=1, mapped=0: the TLB entry is valid but not currently mapped.

3. When a TLB entry is written, if entry->mapped is 1 then any existing mapping
for that entry must be discarded using vmi rtunal iasMemoryVM. If the entry is an
ASID-managed entry, then the isGlobal and ASID parameters must match those
specified when the mapping was created.

However, a new mapping is not established with vmi rtAliasMemoryVM at this
point: instead, entry->mapped is set to 0.

4. When the lazy scheme is in use, processor model exception handler callbacks will
be called for processor addresses that are valid but not mapped. Therefore, each
exception handler needs to allow for this by establishing a mapping for a valid but
unmapped address if required. Template code for the OR1K could be as follows:

VMI_RD_PRIV_EXCEPT_FN(orlkRdPrivExceptionCB) {
orlkP orlk = (orlkP)processor;
// if the address is present in the TLB but not currently mapped, establish
// the mappings
if(orlkTLBMapRead(orlk, address, bytes)) {

// here if the read address range is mapped and readable — redo the read
*action = VMI_LOAD_ STORE_CONTINUE;

} else if(MEM_AA_1S_TRUE_ACCESS(attrs)) {
// here if a true exception

orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_DPF, 0);

}

Code for or1kTLBMapRead (not shown) would do the following:
1. Establish whether the address range address:address+bytes-1 lies ina TLB-
mapped page that allows read access and is valid. The matching entry may or may not

© 2022 Imperas Software Limited.www.OVPworld.org Page 257 of 321

OVP Processor Modeling Guide

be already marked as mapped (it may be an ASID-managed entry that was
automatically unmapped by an ASID switch).

2. If so, create the mapping using vmi rtAliasMemoryVM, set entry->mapped to 1, and
return True.

3. If not, return False.

Note the behavior of function or1kRdPrivExceptionCB when or1kTLBMapRead returns
True. In this case, the function sets the by-ref parameter action to the value
VMI_LOAD_STORE_CONTINUE. What this does is cause the failing read to be retried on
return from the exception callback — since a TLB mapping has been established, this read
should now succeed (but see the detailed description in section 12 for cases in which the
access may still fail).

Also note that the TLB mapping and subsequent read are done for both artifact and non-
artifact accesses, but any exception is taken only for non-artifact accesses. Refer to
section 12 for a detailed description of how these access types are indicated by the attrs
parameter to the exception callback.

© 2022 Imperas Software Limited.www.OVPworld.org Page 258 of 321

OVP Processor Modeling Guide

23 Implementing a TLB LRU Replacement Policy

Chapter 22 showed how to implement a TLB with a round-robin replacement policy.
Often, other replacement policies are used. One of the most common is the LRU
replacement policy, where the entry to replace is the least-recently-used entry. The
simulator has special support to enable an LRU replacement policy to be efficiently
modeled, as demonstrated in this example.

23.1 Introduction to LRU Replacement Implementation

Before looking at the details of the LRU replacement policy implementation, it is useful
to understand some of the associated concepts.

To model an LRU replacement policy, it is first required to have a state variable that
represents the current order of entries in the table. For example, suppose that the TLB
contains four entries, numbered 0, 1, 2 and 3. At a particular point in time, the four
entries may have been accessed (in most-to-least-recent order) in any of 4! (i.e. 24)
different ways. Suppose that the current state implies the following ordering:

0312

If there is now a read of an address mapped by TLB entry 1, that entry should be
promoted to the most-recently-used (MRU) position, yielding a new current state,
implying the following ordering:

1032

In general, it is possible to construct a transition table for each TLB entry that, when
indexed by the current state, will return the new state:

newState = transitionTable[currentState];

When an entry has to be ejected from the table, the last entry implied by the state is the
least recently used and should be selected (entry 2 in this example).

To implement an LRU replacement policy on a set of TLB entries, two things are
therefore required:
1. A state variable that encodes the entry ordering for the set of LRU-managed
entries.
2. A set of transition tables, one for each entry, used to get the next state when the
current entry is promoted to the most-recently-used position.

Given this information, the simulator is able to manage the state variable automatically at
each read, write or fetch access.

© 2022 Imperas Software Limited.www.OVPworld.org Page 259 of 321

OVP Processor Modeling Guide

23.2 The Template LRU Replacement Policy Model

A template model for the OR1K processor implementing a TLB with LRU replacement
policy can be found in:

$IMPERAS_HOME/Examples/Models/Processor/21.or1kBehaviorTLBMRU

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/21.orlkBehaviorTLBMRU .

Compile the model, harness and application using the make command:

cd 21.orlkBehaviorTLBMRU
make OPT=1

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

23.3 Adding MRU Entry State - orikStructure.h

The tlbEntry structure has been modified to contain a new field of type memMRUSet
(defined in vmiTypes.h):

typedef struct tlbEntryS {

Uns32 va; // virtual address
Uns32 pa; // physical address
Bool valid; // is entry valid?
memMRUSet set; // MRU management

} tlbEntry, *tlbEntryP;
The memMRUSet type has this definition:

typedef struct memMRUSetS {
const Uns32 *nextState; // LUT giving next state from current state
uUns32 *currentState; // reference to current state

} memMRUSet;

The memMRUSet structure has two entries:
1. A transition table, nextState. Given a current state, this is indexed to find the
next state.
2. A pointer to a current state variable, currentState.

The orlk structure has a new mruState field, used to represent the current state of the
TLB entry set:

© 2022 Imperas Software Limited.www.OVPworld.org Page 260 of 321

OVP Processor Modeling Guide

typedef struct orilkS {

. lines omitted . . .

memDomainP physicalDomain; // physical domain target for TLB mappings
memDomainP tlbDomain; // memory domain to which TLB mappings apply
tlbEntry tIb[OR1K_TLB_SIZE]; // simulated TLB

Uns32 mruState; // TLB MRU state variable

} orilk, *orilkP;

23.4 Using MRU Entry State - orikVM.c
Function orlkVVMInit has some new code to initialize the memMRUSet structures inside
the TLB entries:

VMI_VMINIT_FN(orlkvMInit) {
. lines omitted . . .

uns32 i;

for(i=0; i<OR1K_TLB_SIZE; i++) {
orlk->tlb[i].-set._nextState
orlk->tlb[i]-set.currentState

vmirtGetMRUStateTable(OR1K_TLB_SIZE, 1);
&orlk->mruState;

}

For each entry, two things are done:

1. The nextState field is initialized with a transition table returned by a call to
function vmi rtGetMRUStateTable. Given the number of entries in the TLB
(OR1K_TLB_SI1ZE) and the index number of this entry (i), this function returns a
transition table encoding state transitions when entry i is promoted to the most-
recently-used slot.

2. The currentState field is initialized to point to the mruState field in the OR1K
processor structure.

Function vmi rtGetMRUStateTable can be used to obtain transition tables for any
number of entries up to and including 8. The transition table it returns is of type
const Uns32 *.

You do not have to use vmirtGetMRUStateTable to obtain the transition table — it is
provided for convenience only, and any other transition table can be provided if
desired.

In this example, we have a single set of MRU-managed entries, and therefore there is
a single state variable, mruState, in the processor structure. Multiple independent
MRU-managed sets can be modeled: simply ensure that there is a separate state
variable for each set in the processor model.

Function or1kSetTLBEntry has been modified so that, if it is passed a t1bIndex equal to
the number of TLB entries (OR1K_TLB_SIZE), it selects the least-recently-used entry to
discard:

© 2022 Imperas Software Limited.www.OVPworld.org Page 261 of 321

OVP Processor Modeling Guide

void orlkSetTLBEntry(orlkP orlk, Uns32 tlblndex, Uns32 va, Uns32 pa) {

// get the current instruction count (for messages)
Uns64 iCount = vmirtGetlCount((vmiProcessorP)orilk);

// either use the specified TLB index or, if tlblndex is OR1K _TLB_SIZE,
// replace the LRU entry
if(tlbIndex==0R1K_TLB_SIZE) {
tiblndex = vmirtGetNthStatelndex(
OR1K_TLB_SIZE, orilk->mruState, OR1K_TLB_SIZE-1
):

} else {
tiblndex &= (OR1K_TLB_SIZE-1);
b

Function vmirtGetNthStatelndex has the following prototype (in file vmiRt.h):

Uns8 vmirtGetNthStatelndex(Uns32 numEntries, Uns32 state, Uns32 position);

Given the number of entries in a transition table, a current state and a position, this
function returns the entry at the passed position for that state. A position of 0 implies the
most-recently-used entry and a position of numEntries-1 implies the least-recently-used
entry (the function can also return the entry at any intermediate position between the most
and least recently used, though this is seldom useful).

In this example, we provide the current MRU state from the processor structure and
request the least-recently-used entry (position OR1K_TLB_SI1ZE-1).

vmirtGetNthState Index works only with states managed by transition tables
returned by vmi rtGetMRUStateTable. If you use custom state tables, you will need
to derive the least-recently-used state yourself.

In order to tell the simulator that memory accesses to a particular dynamic-mapped
memory region should update an MRU state variable, there is one further change in
function orikSetTLBEntry:

vmirtAl tasMemoryVM(
physicalDomain, tlbDomain, pa, pa+OR1K_PAGE_SIZE-1, va,
&orlk->tlb[tlblndex].set, MEM_PRIV_RW, True, O

E

The mruSet argument to vmirtAl iasMemoryVM is a pointer to a memMRUSet structure — in
this case, we select the structure in the current TLB entry.

23.5 Testing the LRU Replacement Policy Model

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The output from this should be as follows:

© 2022 Imperas Software Limited.www.OVPworld.org Page 262 of 321

OVP Processor Modeling Guide

fib returns 1
369: CREATE entry O mapping (va:0x80001000 pa:0x10000000)
fib returns 2
436: CREATE entry 1 mapping (va:0x80002000 pa:0x10001000)
fib returns 1
fib returns 3
543: CREATE entry 2 mapping (va:0x80003000 pa:0x10002000)
fib returns 1
fib returns 2
fib returns 5
690: CREATE entry 3 mapping (va:0x80005000 pa:0x10003000)
fib returns
fib returns
fib returns
fib returns
fib returns
907: DELETE entry 3 mapping (va:0x80005000 pa:0x10003000)
907: CREATE entry 3 mapping (va:0x80008000 pa:0x10004000)
fib returns
fib returns
fib returns
fib returns
fib returns
fib returns
fib returns
1192: DELETE entry 3 mapping (va:0x80008000 pa:0x10004000)
1192: CREATE entry 3 mapping (va:0x80005000 pa:0x10003000)
. lines omitted . . .
fib returns 233
53940: DELETE entry 1 mapping (va:0x80005000 pa:0x10003000)
53940: CREATE entry 1 mapping (va:0x800e€9000 pa:0x1000b000)
fib returns 610
54118: DELETE entry 3 mapping (va:0x8000d000 pa:0x10005000)
54118: CREATE entry 3 mapping (va:0x80262000 pa:0x1000d000)
Processor "cpul® terminated at "exit", address 0xc00
RO : 00000000 R1 : 00000262 R2 : 80262000 R3 : 00000001
R4 : 15000000 R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 00000008 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 00000156 R31: 00000000
PC : 00000c04 SR : 00008201 ESR: 00008200 EPC: 0000000c
TCR: 00000000 TMR: 00000000 PSR: 00000000 PMR: 00000000
BF:1 CF:0 OF:0

OWEFENPE

QNEFPWENPE

processor has executed 54133 instructions

The source code for this example, in file application/asmtest.S, is identical to the
previous example, except that TLB_SI1ZE is always used as the entry argument to the
I.nop 99 instruction to indicate that the LRU entry should be replaced:

hit: I.muli r3,r6,PAGE_SIZE // r3 = current entry index * page size
1 _movhi r5,0x1000 // r5 = heap base (0x10000000)
1.add r3,r3,r5 // r3 = pa
1_addi rl,rO,TLB_SIZE // r1l = TLB_SIZE (i.e. replace LRU entry)
1.nop 99 // set TLB entry

© 2022 Imperas Software Limited.www.OVPworld.org Page 263 of 321

OVP Processor Modeling Guide

When the application runs, it proceeds in a similar way to the run in chapter 22 until the
point just after the fib(8) result; at this point, entry 3 is discarded (the fib(5) result
entry) since this is the least-recently-used entry.

At the end of simulation, register r30 holds the number of TLB misses — 0x156 (342):

> 80262000
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeefF
: deadbeef
: 00000156
- 00008200
- 00000000

RO : 00000000
R4 : 15000000
R8 : deadbeef
R12: deadbeef
R16: deadbeef
R20: deadbeef
R24: deadbeef
R28: deadbeef
PC : 00000c04
TCR: 00000000
BF:1 CF:0 OF:0

- 00000262
: deadbeefF
- 00000008
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
- 00008201
- 00000000

- 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000
- 0000000c
- 00000000

Note that the number of misses in this example (342) is less than the number in the
previous example (499), implying that the LRU replacement policy is giving some

benefit over a simple round-robin policy.

© 2022 Imperas Software Limited.www.OVPworld.org

Page 264 of 321

OVP Processor Modeling Guide

24 Implementing QuantumLeap-Compatible Models

As of VMI version 6.0.0, Imperas Professional Simulation products implement a parallel
simulation algorithm called QuantumLeap, which enables multicore platform simulation
to be distributed over separate threads on multiple cores of the host machine for improved
performance.

In order for processor models to run correctly under QuantumLeap, some care must be
taken to indicate to the simulator instructions that need to be executed atomically or
which access shared state. This chapter explains the changes required.

24.1 Introduction to Multiprocessor Simulation

The OVP Processor Modeling Guide describes how multiprocessor platforms may be
simulated with QuantumLeap parallel simulation enabled. Refer to the chapter titled
Parallel Simulation: QuantumLeap in that document before reading further.

24.2 QuantumlLeap Requirements

The QuantumLeap parallel simulation algorithm accelerates multiprocessor simulation by
distributing execution of cores in the platform over threads on multiple cores of the host
machine. This means that simulation of multiple cores is performed in parallel, increasing
performance. Unless informed otherwise, the simulator kernel assumes that instructions
can execute in parallel, except in the following cases:

1. The instruction makes an embedded call to a synchronizing function from the
VMl interface (for example, see the VMI Run Time Function Reference manual
for a description of which functions in that API are synchronizing).

2. The instruction activates a memory read or write callback function.

3. The instruction is intercepted (for example, by a Semihost library).

In any of the cases described above, the simulator will assume that synchronous
execution is required. It will ensure that all other parallel processor threads are stopped
before allowing the current processor thread to proceed, thereby guaranteeing that the
current processor sees a consistent system state that cannot be asynchronously modified
by execution of another processor. The simulator also enforces synchronous execution
during code morphing and intercepted function calls.

The algorithm automatically ensures safe, deterministic parallel simulation in the vast
majority of cases. However, there are three scenarios that need to be handled explicitly in
the processor model:

1. Identification of test-and-set or atomic swap instructions.

2. ldentification of load/store exclusive constructs.

3. Identification of instructions that access shared register state.

These three cases are covered in the next sections.

© 2022 Imperas Software Limited.www.OVPworld.org Page 265 of 321

OVP Processor Modeling Guide

24.3 Test-and-Set or Atomic Swap Instructions

Traditionally, instruction sets have implemented test-and-set or swap instructions that
enable a memory location to be read and updated in a single atomic instruction. Using the
basic VMI morph-time API, a swap instruction could be described like this:

vmimtLoadRRO(
32, 32, c, CPUX_TMP, CPUX_REG(ra), MEM_ENDIAN BIG, True,
MEM_CONSTRAINT_ALIGNED

v&imtStoreRRO(
32, c, CPUX_REG(ra), CPUX_REG(rd), MEM_ENDIAN_BIG,
MEM_CONSTRAINT_ALIGNED

);
vmimtMoveRR(CPUX_GBITS, CPUX_REG(rd), CPUX_TMP);

This sequence emits code that first loads the contents of a memory location into a
processor temporary, then stores to the same location from a register, and finally moves
the temporary to the same register. The overall effect is to swap the register and memory
location.

The above emitted code sequence works correctly using the standard, single-threaded
multiprocessor simulation algorithm. However, when QuantumLeap is enabled, there is a
chance that another asynchronously-executing processor could modify the memory
location between execution of the load and the store, leading to incorrect behavior
(assuming the instruction is atomic in the real hardware). To prevent this occurring, the
current instruction should be identified as atomic, using the vmimtAtomic function, as
follows:

vmimtAtomic();

vmimtLoadRRO(
32, 32, c, CPUX_TMP, CPUX_REG(ra), MEM_ENDIAN_BIG, True,
MEM_CONSTRAINT_ALIGNED

E

vmimtStoreRRO(
32, c, CPUX_REG(ra), CPUX_REG(rd), MEM_ENDIAN_BIG,
MEM_CONSTRAINT_ALIGNED

DE
vmimtMoveRR(CPUX_GBITS, CPUX_REG(rd), CPUX_TMP);

Function vmimtAtomic indicates to the simulator that all other processors in a
multiprocessor simulation must be stopped while this instruction executes. This ensures
that the memory location content cannot be updated by an asynchronously-executing
processor between the load and store.

Function vmimtAtomic can be called at any point in the emission of the current
instruction. We could, for example, have inserted the call after the final vmimtMoveRR
and achieved the same effect.

© 2022 Imperas Software Limited.www.OVPworld.org Page 266 of 321

OVP Processor Modeling Guide

24.4 Load/Store Exclusive Constructs

Traditional test-and-set or swap instructions and now being replaced in more modern
instruction sets with load/store exclusive blocks, because these scale better to highly-
parallel systems. Load/store exclusive synchronization is typically implemented using a
pair of instructions: an initial load exclusive, which loads from an address and sets up a
monitor that detects any writes by other processors to that address, and a subsequent store
exclusive, which commits a write to the address only if the monitor has not detected a
write to the same address by another processor in the interim. Many features of load/store
exclusive instructions are typically implementation-dependent (for example, the
granularity of the exclusive region and the conditions that can cause an exclusive store to
fail) but this is not significant here.

In following subsections, we will first describe how the basic load/store exclusive
construct should be implemented assuming QuantumLeap is not in use, and then describe
the changes required to support QuantumLeap.

24.4.1 Describing the Load Exclusive Instruction
The load exclusive instruction is typically implemented using a load which additionally
sets a load-exclusive-active flag and records the load-exclusive address, like this:

// load from address in ra

vmimtLoadRRO(
32, 32, 0, CPUX_REG(rd), CPUX_REG(ra), MEM_ENDIAN_BIG, True,
MEM_CONSTRAINT_ALIGNED

);

// indicate load/store exclusive is active
vmimtMoveRC(8, CPUX_LDREX_FLAG, 1);

// record load/store exclusive address
vmimtMoveRR(32, CPUX_LDREX_ADDRESS, CPUX_REG(ra));

(In this example, CPUX_LDREX_FLAG and CPUX_LDREX_ADDRESS are assumed to be
architectural registers that indicate whether a load/store exclusive is active and the
load/store exclusive address, respectively.)

24.4.2 Describing the Store Exclusive Instruction

The store exclusive instruction typically does the following:
1. Validates that the load-exclusive-active flag is set (otherwise the store is skipped);
2. Validates that the load-exclusive address matches (otherwise the store is skipped);
3. Performs the store;
4. Clears the load-exclusive-active flag.

A simple implementation could therefore be:

vmiLabelP done = vmimtNewLabel();

// skip store if load/store exclusive is not active
vmimtCompareRCJumpLabel (8, vmi_COND_NE, CPUX_LDREX_FLAG, 1, done);

// skip store if load/store address does not match
vmimtCompareRR(32, vmi_COND_NE, CPUX_LDREX_ADDRESS, CPUX_REG(ra), CPUX_TMP);
vmimtCondJumpLabel (CPUX_TMP, True, done);

© 2022 Imperas Software Limited.www.OVPworld.org Page 267 of 321

OVP Processor Modeling Guide

// store to address in ra

vmimtStoreRRO(
32, 0, CPUX_REG(ra), CPUX_REG(rd), MEM_ENDIAN_BIG,
MEM_CONSTRAINT_ALIGNED

);

// jump to here if store should be skipped
vmimtInsertLabel (done);

// terminate load/store exclusive
vmimtMoveRC(8, CPUX_LDREX_FLAG, 0);

24.4.3 Handling the Address Monitor

The basic load/store exclusive instructions have now been implemented to the level
required for single-processor simulation. The implementation is not yet sufficient for a
multiprocessor simulation, however, because there is no monitor installed on the
load/store exclusive address to detect writes to that address by other processors.

When QuantumLeap is not active, there is no chance that another processor could write to
the load/store exclusive address while the current processor is running because the
simulation is single-threaded: if this processor is running, then all others must be
suspended. However, if a load/store exclusive is in force when a processor reaches the
end of its time-slice then it is possible for another processor to store to the monitored
address while this processor is suspended awaiting its next time slice. This can be
efficiently handled as follows:

1. If a load/store exclusive is in force when the processor reaches the end of its time
slice, install a memory callback on the load/store exclusive address to detect
writes to that address by other processors.

2. When a processor starts a new time slice, remove any previously installed memory
callback before resuming simulation.

Here is a typical implementation of this algorithm:

//
// Callback to abort load/store exclusive on a conflicting write by another
// processor
//
static VMI_MEM_WATCH_FN(abortEA) {
if(processor) {

cpuxP cpux = (cpuxP)userData;

cpux->ldrexActive = False;

updateExclusiveAccessCal lback(cpux, False);

}

//

// Install or remove the exclusive access monitor callback

//

static void updateExclusiveAccessCallback(cpuxP cpux, Bool install) {

memDomainP domain = vmirtGetProcessorDataDomain((vmiProcessorP)cpux) ;
Uns32 simLow = cpux->ldrexAddress;
uUns32 simHigh = simLow+3;

© 2022 Imperas Software Limited.www.OVPworld.org Page 268 of 321

OVP Processor Modeling Guide

// install or remove a watchpoint on the current exclusive access address
if(install) {

vmirtAddWriteCal Iback(domain, 0, simLow, simHigh, abortEA, cpux);
} else {

vmirtRemoveWriteCallback(domain, 0, simLow, simHigh, abortEA, cpux);
ks

}

//
// This is called on simulator context switch (when this processor is either
// about to start or about to stop simulation)
//
VMI_ITASSWITCH_FN(cpuxContextSwitchCB) {

cpuxP cpux = (cpuxP)processor;

if(cpux->ldrexActive) {

updateExclusiveAccessCal lback(cpux, (state==RS_SUSPEND));
}

}

In the algorithm, field IdrexActive corresponds to VMI register CPUX_LDREX_FLAG, and
field 1drexAddress corresponds to VMI register CPUX_LDREX_ADDRESS.

The context-switch function cpuxContextSwitchCB is defined using the macro
VMI_1ASSWITCH_FN, define in file vmiAttrs.h:

#define VMI_IASSWITCH_FN(_NAME) void _NAME(C \
vmiProcessorP processor, \
vmi lASRunState state \

)
Parameter state indicates the new state of the processor:

typedef enum vmilASRunStateE {
RS_RUN, // processor about to be run
RS_SUSPEND // processor has just been suspended
} vmilASRunState;

When a processor is about to start its time slice, the context switch function is called with
a state of RS_RUN; when it has completed its time slice, the context switch function is
called with a state of RS_SUSPEND. The context-switch callback needs to be specified in
the processor model attributes structure using the switchCB field:

const vmilASAttr modelAttrs = {
. Fields omitted ...
-switchCB = cpuxContextSwitchCB,
. . Fields omitted ...

24.4.4 Load/Store Exclusive with QuantumLeap
The preceding subsections describe how to implement load/store exclusive instructions in
the absence of QuantumLeap simulation. When QuantumLeap simulation is enabled, the

© 2022 Imperas Software Limited.www.OVPworld.org Page 269 of 321

OVP Processor Modeling Guide

algorithm as described is no longer sufficient because it is no longer true that other
processors are stopped while the load/store exclusive block is active.

To make the algorithm compatible with QuantumLeap, the only change required is to
indicate that the initial load exclusive instruction is atomic: the simulator is then able to
correctly detect writes to an exclusive block by other processors. The load-exclusive
instruction therefore should be changed like this:

// indicate load-exclusive is atomic
vmimtAtomic();

// load from address in ra

vmimtLoadRRO(
32, 32, 0, CPUX_REG(rd), CPUX_REG(ra), MEM_ENDIAN_BIG, True,
MEM_CONSTRAINT_ALIGNED

);

// initiate load/store exclusive is active
vmimtMoveRC(8, CPUX_LDREX_FLAG, 1);

// save load/store exclusive address
vmimtMoveRR(32, CPUX_LDREX_ADDRESS, CPUX_REG(ra));

24.5 Accessing Shared Register State

Apart from the explicit synchronization instructions described above, the only other area
in which care needs to be taken when making models compatible with QuantumLeap is in
accesses to shared register state. It is sometimes the case (particularly in multicore
models) that a particular register is accessible to more than one core. If such a shared
register is accessed in a read-modify-write fashion, or is updated non-atomically by
several VMI morph-time calls in a single simulated instruction, then use vmimtAtomic to
ensure that all other processors are stopped while the updates occur to prevent them from
seeing invalid interim register state. Note that there is generally no need to use
vmimtAtomic if the shared register is written or read in its entirety: such accesses will be
atomic.

Take special care to ensure that embedded calls are not accessing dynamically-changing
shared state in an uncontrolled way. If an embedded call needs to access such state, use
vmimtAtomic together with vmimtCal I/vmimtCal IResult to ensure other processors are
stopped while the call takes place. As mentioned above, many calls in the VMI API are
synchronizing: that is, in a QuantumLeap simulation they will cause the current thread to
suspend until all other asynchronously-executing threads have been safely stopped. This
often means that embedded calls that access shared state are in fact implicitly
synchronizing and do not need to be explicitly identified as such with vmimtAtomic.

24.6 Enabling QuantumLeap in a processor model

When the requirements described above have been met, the model must notify the
simulator that it can support parallel simulation. To do this, set to True the QLQualified
field in the vmiProcessorinfo structure for the model (see section 4.2.6.11). Note that
unless this field is set, the simulator will not run in parallel mode.

© 2022 Imperas Software Limited.www.OVPworld.org Page 270 of 321

OVP Processor Modeling Guide

25 Function Address Semihosting

Semihosting allows behavior that would normally occur on a simulated system to be
implemented using features of the host system instead. As a simple example, a real
platform might contain a UART peripheral to receive output. When simulating this
system, it is generally more convenient not to simulate the UART at all but instead to
intercept any write call that a processor makes and redirect the output to the simulator
log instead.

This section will describe a semihosting support library for the OR1K processor when
used with the popular Newlib library.

25.1 Interception

Semihosting is based on a more fundamental concept: interception. Using Imperas
technology, it is possible to define intercept libraries, which are loadable shared objects
(on Linux™®) or dynamic linked libraries (on Windows).

The intercept library can specify alternate behavior for a particular instruction type (for
example a TRAP or SYS instruction), or when execution reaches a particular address (for
example, an interrupt vector address), or when a particular function is executed (for
example, a call to write).

Interception requires no application image file modification or special application
compilation modes (except that, for function address interception, the application must be
compiled with function symbols present). There can be several intercept libraries
available for use with a processor (for example, there might be a Newlib semihosting
intercept library and a uClibc semihosting intercept library). It is even possible to cascade
multiple intercept libraries for a single processor®’.

Intercept libraries exist entirely separately from the processor model. This means that you
do not need access to the processor model source to create a new intercept library. To
access the processor model registers, the intercept library uses the Debug interface, also
used to support gdb RSP (see chapter 17). This of course implies that the Debug interface
must be implemented as a prerequisite before an intercept library can be created.

25.2 The Template Semihosting Library

A template model for the OR1K Newlib semihosting intercept library can be found in:

$IMPERAS_HOME/Examples/Models/Processor/22.orlkSemiHosting

Take a copy of the template model:

'8 Imperas Professional tools are available on both Linux and Windows operating systems and fully support
the OVP APIs.
7 This feature is available only in the Imperas Professional tools.

© 2022 Imperas Software Limited.www.OVPworld.org Page 271 of 321

OVP Processor Modeling Guide

cp —r $IMPERAS_HOME/Examples/Models/Processor/22._orlkSemiHosting .

Compile the model, harness, semihost library and application using the make command:

cd 22.orlkSemiHosting
make

Note that the harness, semihost library and application can be compiled individually if
required using these commands:

make —C platform
make —C semihosting
make —C application

The processor model is the same as that described in example
18.orlklInstructionAttributes, with one small change, described in section 25.4.

There is a new directory, semihosting, which contains the source file for the Newlib
semihosting intercept library (ori1kNewlib.c). This is compiled to a Linux shared library,
orlkNewlib.so, or Windows dll, orikNewlib.dl1l. File orikNewlib.c is described in
the next section.

25.3 File semihosting/orikNewlib.c
Every intercept library has an object of type vmiosAttr describing the interceptions it
performs. The structure type is defined in vmiosAttrs.h:

typedef struct vmiosAttrS {

L11171777777777777777777777777777/77777///7777////7777///7777////7/7///77/
// VERSION
L111777777777777777777777777777777777777//7777////7777///7/7/77////7/7///7/7/

const char *versionString; // version string

vmiModelType modelType; // type of model (enum)

vmi InterceptType interceptType; // required in an intercept library
const char *packageName; // package name

Uns32 objectSize; // size in bytes of VMIOS object

L11717777777777777777777777777777/77777///7777////7777///77/77////7/7///77/
// MODEL STATUS
L11171777777777777777777777777777777777///77777////7777///7777////7/7///77/

vmiVisibility visibility; // model visibility (enum)
vmiReleaseStatus releaseStatus; // model release status (enum)

1/1////77/77/7//////7/7///7//7//7//7//
// SAVE/RESTORE ROUTINES
L111777777777777777777777777777777/7777//777777///7777///7/7/7////7//7//7/7/

vmiosSaveStateFn saveCB; // model state save callback
vmiosRestoreStateFn restoreCB; // model state restore callback
Uns32 srVersion; // model save/restore version

L111777777777777777777777777777777/7777//777777///7777///77/7////7/7//7/7/
// CONSTRUCTOR/DESTRUCTOR ROUTINES

© 2022 Imperas Software Limited.www.OVPworld.org Page 272 of 321

OVP Processor Modeling Guide

1/1//1/7777777777777/7777/77////7//////////////////7//7//////////////////7//7777

vmiosConstructorFn constructorCB; // constructor
vmiosPostSimulateFn postSimulateCB; // post-simulation, pre-destruction
vmiosDestructorFn destructorCB; // destructor

1/1//1/7/77777777/77/77777/7/////77//////////////7////7////////////////////7//7777
// INSTRUCTION INTERCEPT ROUTINES
1///1//7//7/7//7////7/////7//7/7/7//

vmiosMorphFn morphCB; // morph override callback
vmiosNextPCFn nextPCCB; // get next instruction address
vmiosDisassFn disCB; // disassemble instruction

/////777/7777777/777777777777777777777/77/7777777777/77/7777/77/7/77/7777/77777777
// FORMAL PARAMETERS iterators to find parameters accepted by this model
////7/7/7777777777777777777777777777/777777777777/77/7777/77/77/7/7/77/77777777

vmiosParamSpecFn paramSpecsCB; // callback for next formal param
vmiosParamValueSizeFn paramValueSizeCB; // callback to get size of table

//////7/7/7/777/7/7/777/77/7/77/77/77/7/7/7/7/7/7/7/7/7/7//7/7/7///////////7///7/7//7/777777
// Debugger assistance
//////7/7/777777//7/7/7/7/77/7/7/7777/77/77/7//7///7//7/77/7/7//7//////7//////7//7/77/7777

vmiosStepLineBeginFn stepLineBeginCB; // callback to begin next operation
vmiosStepLinelterateFn stepLinelterateCB;// callback to see if next is done

L1117 7777777777/777777/777777/7/777/77/7/777/7/7/777/77/7//77/7/7/7/77/7/77/7/7777/7
// Model VLNV
L1117 7777777777/7777777777777/7/777/77/7/7777/7/777/77/7/77/7//7/77/7/77/7/7777/7

vmiVinvinfo vinv; // vendor/library/name/version
/////777777777/777777777777777777/777777/77/7777777777/77/777777/7/7/7/7/7777777777
// ADDRESS INTERCEPT DEFINITIONS
//////77777777/777777777777777777/77/77/77/77/77/77/777777/77/77/7/777/7/7777777777777

vmioslInterceptDesc intercepts[]: // null-terminated intercept list

} vmiosAttr;

25.3.1 OR1K Newlib Semihosting vmiosAttr Definition

For the OR1K Newlib semihosting intercept library, the vmiosAttr structure instance is
as follows:

vmiosAttr modelAttrs = {

1/1//1/777777777/7/777777/////7/7////7////////7//////////////////////7//7//7777
// VERSION
1/1//1/7777777777/777777/77/////77/7/////////////7///7//7////////////////////7777

-versionString = VMI_VERSION, // version string

-modelType = VMI_INTERCEPT_LIBRARY, // model type

-interceptType = VMI_IT_INTERCEPT, // intercept type

-packageName = "Newlib", // description

-objectSize = sizeof(vmiosObject), // size in bytes of 0SS object

1///1//77/777//7////7//7//7/
// CONSTRUCTOR/DESTRUCTOR ROUTINES
1///1///7/777//7////7///7//7/

© 2022 Imperas Software Limited.www.OVPworld.org Page 273 of 321

OVP Processor Modeling Guide

.constructorCB = constructor, // object constructor
.destructorCB = destructor, // object destructor

1/1//1/77777777/777777777/77///7/7/7////7///////7//////////////////////////7777
// ADDRESS INTERCEPT DEFINITIONS
1/1//1/7/77777777/77/77777/7/////77//////////////7////7////////////////////7//7777

-intercepts =

{
/) e -
// Name Address Attributes Cal Iback
/) e -
{ "_close", o, OSI1A_OPAQUE, closelnt 1.
{"_exit", 0, OSIA_OPAQUE, exitint 3},
{ " _fstat", o, OSI1A_OPAQUE, fstatint 3,
{ "_gettimeofday', O, OSI1A_OPAQUE, gettimeofdaylnt },
{ "_ioctl", o, OSIA_OPAQUE, ioctlInt 3,
{ "_lIseek™, 0, OSIA OPAQUE, IseekiInt 1},
{ " _Istat", o, OSI1A_OPAQUE, Istatint 3,
{ " _open", o, OSI1A_OPAQUE, openint 3.
{ "_read”, 0, OSIA_OPAQUE, readlnt 1.
{ " _stat", o, OSIA_OPAQUE, statiInt 3.
{ "_time", 0, OSIA_OPAQUE, timelnt 3,
{ " _times", o, OSIA_OPAQUE, timesint 3.
{ "_unlink", 0, OSIA_OPAQUE, unlinkint 1.
{ " _write", o, OSIA_OPAQUE, writelnt 3.
{O }1

}

e

In detail, the sections of this file are described below.

-versionString = VMI_VERSION, // version string
-modelType = VMI_INTERCEPT_LIBRARY, // model type
-interceptType = VMI_IT_INTERCEPT, // intercept type

Each intercept library contains a reference to the current VMI version (from
vmiVersion.h) and the type of model (in vmiTypes.h) so that the simulator can verify
interface compatibility. interceptType controls when the library must be loaded and
initialized; a processor extension at the same time as the processor model, an intercept
library later during elaboration.

-packageName = "Newlib", // description

This is a descriptive name (used for message reporting only).

.objectSize = sizeof(vmiosObject), // size in bytes of 0SS object

The intercept library defines a custom structure, used to hold all data required for an
instance of that library; this defines the size of that structure so that it can be
automatically allocated by the simulator when the library is instantiated. For the Newlib
semihosting intercept library, the structure is defined like this:

#define FILE_DES_NUM 128
#define REG_ARG_NUM 3

© 2022 Imperas Software Limited.www.OVPworld.org Page 274 of 321

OVP Processor Modeling Guide

typedef struct vmiosObjectS {

// first few argument registers (standard ABI)
vmiRegInfoCP args[REG_ARG_NUM];

// return register (standard ABI)
vmiRegInfoCP result;

// stack pointer (standard ABI)
vmiRegInfoCP sp;

// __impure_ptr address and domain
Addr impurePtrAddr;
memDomainP impurePtrDomain;

// fTile descriptor table
Int32 fileDescriptors[FILE_DES_NUM];

} vmiosObject;

(The fields of this structure will be covered in more detail on following sections.)

Next, the vmiosAttr structure contains references to constructor and destructor
functions, called when an instance of the intercept library is created and destroyed,

respectively:

.constructorCB
.destructorCB

These functions will be covered in detail in a later subsection.

constructor, // object constructor
destructor, // object destructor

Finally, the vmiosAttr structure contains a list of address intercept definitions:

closelnt
exitint
fstatint

gettimeofdaylint

ioctlInt
IseekInt
Istatint
openlint
readlnt
statint
timelnt
timesint
unlinkint
writelnt

S e ey e e ey e ey g e eyl e e

-intercepts =

{
// -
// Name Address Attributes
// -
{ "_close", o, OSI1A_OPAQUE,
{"_exit", 0, OSI1A_OPAQUE,
{ " _fstat", 0, OSIA_OPAQUE,
{ "_gettimeofday', O, OSIA OPAQUE,
{ "_ioctl", 0, OSIA_OPAQUE,
{ "_Iseek", 0, OSIA_OPAQUE,
{ " _Istat", 0, OSIA_OPAQUE,
{ "_open", 0, OSI1A_OPAQUE,
{ " _read", 0, OSIA_OPAQUE,
{ "_stat", 0, OSI1A_OPAQUE,
{ "_time", 0, OSIA_OPAQUE,
{ " _times", 0, OSI1A_OPAQUE,
{ "_unlink", 0, OSIA_OPAQUE,
{ " _write", 0, OSI1A_OPAQUE,
{0

}

Each entry in this null-terminated table of intercept definitions is of type

vmiosinterceptDesc:

© 2022 Imperas Software Limited.www.OVPworld.org

Page 275 of 321

OVP Processor Modeling Guide

typedef enum vmioslinterceptAttrE {

OSIA_NONE = 0xO0, // no special attributes
OSI1A_OPAQUE = 0x1, // opaque intercept (otherwise transparent)
OSIA_THREAD = 0x2, // run in thread (otherwise synchronous)

} vmioslnterceptAttr;

typedef struct vmioslinterceptDescS {

const char *name; // for interception by name

Addr simAddress; // for interception by address
vmiosinterceptAttr attrs; // intercepted function attributes
vmiosInterceptFn interceptCB; // interception callback

void *userData; // client-specific data pointer
Bool skipPrologue;// Use gdb to find the prologue

} vmioslnterceptDesc;

In detail, each entry has the following fields:

1. A function name: if non-NULL, this field specifies the name of a function in the
application executable to which this row applies. For example, the first row in the
Newlib semihosting intercept library applies to function _close.

2. A function address: if non-zero, this field specifies an address within the
application executable to which this row applies. This field isn’t used in this
example, but is useful when interception of a known address, such as an exception
handler address, is required.

3. A Dbitfield enumeration, attrs, comprised of bitwise-or of the following
members:

OSIA_OPAQUE: this indicates whether the action performed by this intercept should
replace any default behavior specified by the processor model (if present) or be
performed in addition to the default behavior specified by the processor model (if
absent). Semihosting libraries in general specify replacement behaviors, so this
field is usually present.

OSIA_THREAD: this option is available only with Imperas Professional products. It
indicates that the intercepted function should be run in a separate hardware thread,
improving simulator performance.

4. An intercept function, which specifies the new behavior for the intercepted
address. For example, the first row in the Newlib semihosting intercept library
associates intercept function closeInt with the application function _close.
Intercept functions are covered in more detail below.

5. A client-specific data pointer, passed as an argument to the intercept function.
This is unused in the current example.

6. A Boolean, skipPrologue: if False, then the exact symbol address is
intercepted; if True, then a gdb for the processor is invoked by the simulator to
calculate the intercept address after any function prologue. This is not required for
this example.

The template Newlib semihosting intercept library supplies opaque function address
intercepts for each of the following functions in the application: _close, __exit, _fstat,
gettimeofday, ioctl, Iseek, Istat, open, read, stat, time, times,
_unlink and _write. Because these functions are all opaquely intercepted, whenever the

© 2022 Imperas Software Limited.www.OVPworld.org Page 276 of 321

OVP Processor Modeling Guide

simulator executes at any of these function addresses, it will perform actions specified by
the corresponding intercept functions instead of the normal processor model behavior.

25.3.2 OR1K Newlib Semihosting Constructor Definition
The constructor for the OR1K Newlib semihosting intercept library has this definition:

static VMIOS_CONSTRUCTOR_FN(constructor) {

}

uUns32 i;

// first few argument registers (standard ABI)

object->args[0] vmiosGetRegDesc(processor, '"R3");
object->args[1] vmiosGetRegDesc(processor, '‘R4™);
object->args[2] vmiosGetRegDesc(processor, '"R5");

// return register (standard ABI)
object->result = vmiosGetRegDesc(processor, "R11"™);

// stack pointer (standard ABI)
object->sp = vmiosGetRegDesc(processor, ""R1');

// __impure_ptr address

object->impurePtrDomain = vmirtAddressLookup(
processor, ERRNO_REF, &object->impurePtrAddr

)

// initialize stdin, stderr and stdout
object->FileDescriptors[0] vmiosGetStdin(processor);
object->FfileDescriptors[1] vmiosGetStdout(processor);
object->FileDescriptors[2] vmiosGetStderr(processor);

// initialize remaining file descriptors

for(i=3; I<FILE_DES_NUM; i++) {
object->FileDescriptors[i] = -1;

}

The constructor first obtains register description objects that enable certain named
registers with the processor model to be read and written. Because we are writing
function address intercepts in this library, we need to be able to access several registers
used in the standard processor ABI: the first few function argument registers (R3, R4 and
R5 for the OR1K), the function result register (R11 for the OR1K) and the stack pointer
(R1 for the OR1K):

// first few argument registers (standard ABI)

object->args[0] = vmiosGetRegDesc(processor, "R3"
object->args[1] vmiosGetRegDesc(processor, '"R4"
object->args[2] vmiosGetRegDesc(processor, "R5"

o/ \o/ \/

// return register (standard ABI)
object->result = vmiosGetRegDesc(processor, ""R11'™);

// stack pointer (standard ABI)
object->sp = vmiosGetRegDesc(processor, "R1");

The vmiRegInfoCP object returned by vmiosGetRegDesc is in fact a register descriptor
supplied by the debug interface, created in chapter 17.

© 2022 Imperas Software Limited.www.OVPworld.org

Page 277 of 321

OVP Processor Modeling Guide

Next, to support correct error return from functions implemented in the Newlib library,
the constructor obtains the address of a special symbol, __impure_ptr, that is always
defined in any Newlib application:

object->impurePtrDomain = vmirtAddressLookup(
processor, ERRNO_REF, &object->impurePtrAddr
):

Newlib allows reentrant calls, so that instead of having a single errno variable to signal
library errors there is instead a pointer, __impure_ptr, that points to the current errno
value to update. Hence, if we are to semihost a call that could set errno, we need to
obtain the address in __impure_ptr to determine what errno address to write.

Finally, the constructor initializes a file descriptor map for the semihost intercept library.
This maps from file numbers expected by the application to native file pointers. Files 0, 1
and 2 are the standard input, standard output and standard error, respectively:

object->FileDescriptors[0]
object->FileDescriptors[1]
object->fileDescriptors[2]

vmiosGetStdin(processor);
vmiosGetStdout(processor) ;
vmiosGetStderr(processor) ;

Other files are initially closed:

for(i=3; I<FILE_DES_NUM; i++) {
object->fileDescriptors[i] = -1;
by

See the VMI OS Support Function Reference manual for more information about all
functions with the vmios prefix.

25.3.3 OR1K Newlib Semihosting Destructor Definition
The destructor for the OR1K Newlib semihosting intercept library is currently a void
function:

static VMIOS_DESTRUCTOR_FN(destructor) {
}

Typically, the destructor would be used to print out statistics gathered by the intercept
library and free any temporary structures that were allocated.

25.3.4 Function Address Intercept Example: closelnt

To understand how to write a function address intercept callback, see function closelnt
in orlkNewl ib.c, which supplies alternate behavior to be performed when the
application _close function is executed. This function should close a file descriptor
passed as the only argument. It is implemented like this:

static VMIOS_INTERCEPT_FN(closelnt) {

Int32 fd;

© 2022 Imperas Software Limited.www.OVPworld.org Page 278 of 321

OVP Processor Modeling Guide

// obtain function arguments
getArg(processor, object, 0, &fd);

// implement close
Int32 fdMap = mapFileDescriptor(processor, object, fd);
Int32 result = vmiosClose(processor, fdMap);

// null out the semihosted file descriptor if success
if(lresult) {

object->fileDescriptors[fd] = -1;
}

// return result
setErrnoAndResult(processor, object, result, context);

}

All function address intercept callbacks should be defined using the
VMI0S_INTERCEPT_FN macro, defined in file vmiOSAttrs.h:

#define VMIOS_INTERCEPT_FN(_NAME) void _NAME(\

vmiProcessorP processor, \
vmiosObjectP object, \
Addr thisPC, \
const char *context, \
void *userData, \
Bool atOpaquelntercept \

)
typedef VMIOS_INTERCEPT_FN((*vmiosInterceptFn));

The function address intercept callback is called at morph time and should use the VMI
Morph Time Function API to generate code to implement required behavior. The
callback is passed six arguments:

The processor that is about to execute code at the intercepted address;

The current function intercept object;

The intercepted address;

A context string, which gives the function name being intercepted (e.g.

“ close”).

5. The client-specific data pointer associated with the row of the function address
intercept table defining this interception.

6. An indication of whether the current address is already opaquely intercepted. This

may be required when intercept libraries are cascaded — for example, an intercept

of a function call may expect there to be a corresponding return later, but this

won’t be the case if the call has been opaquely intercepted already.

NS

This function first gets the first argument (argument 0) of _close, using a utility function
getArg:

Int32 fd;
getArg(processor, object, 0, &fd);

© 2022 Imperas Software Limited.www.OVPworld.org Page 279 of 321

OVP Processor Modeling Guide

getArg itself simply accesses a register value with the standard OR1K ABI, using
function vmiosRegRead, which obtains the value of the register using the Debug
interface:

static void getArg(
vmiProcessorP processor,
vmiosObjectP object,
uUns32 index,
void *result

) {
i f(index>=REG_ARG_NUM) {
vmiMessage("'P"", "OR1K_ANS_NEWLIB",

"No more than %u function arguments supported®,
REG_ARG_NUM

):
vmirtFinish(-1);
} else {

vmiosRegRead(processor, object->args[index], result);

}

Next, closelnt calls another utility function, mapFi leDescriptor, which translates
from an application file number to the equivalent native one, and closes that file using the
vmios-prefixed function vmiosClose:

Int32 fdMap
Int32 result

mapFi leDescriptor(processor, object, fd);
vmiosClose(processor, fdMap);

mapFi leDescriptor is very simple, and uses the table of file descriptors in the intercept
library instance object to perform the mapping:

static Int32 mapFileDescriptor(
vmiProcessorP processor,
vmiosObjectP object,
Uns32 i
) {
if(i>=FILE_DES_NUM) {
return -1;

} else {

return object->FileDescriptors[i];
}

A mapping table used to translate from application to native file descriptors instead of
using native descriptors directly for two reasons.

Firstly, it ensures that the application sees the full range of expected file numbers 0, 1,
2, ... FILE_DES_NuUM-1, irrespective of what native files are in use.

Secondly, it prevents badly-behaved simulated applications closing or otherwise
modifying unrelated native files of which it should have no knowledge.

Always use a mapping table to translate from application to native file descriptors in
semihosting intercept libraries.

© 2022 Imperas Software Limited.www.OVPworld.org Page 280 of 321

OVP Processor Modeling Guide

If the file close succeeded, closelnt then nulls out the corresponding entry in the file
descriptor table:

if(lresult) {

}

object->FileDescriptors[fd] = -1;

Finally, a utility function setErrnoAndResult is called. This does two things:

1.

2.

setErrnoAndResult(processor, object, result, context);

setErrnoAndResult is defined as:

static void setErrnoAndResult(
vmiProcessorP processor,
vmiosObjectP object,
Int32 result,
const char *context

) H

if(lobject->impurePtrDomain) {

vmiMessage("'P*", "OR1K_ICF_NEWLIB",
"Interception of "%s" failed - %s not found **

It updates the current errno so that it is consistent with the command just
executed;
It assigns the result of vmiosClose to the appropriate result register in the OR1K
ABI:

"(application does not appear to be compiled with newlib "

"or has no symbols)",
context, ERRNO_REF

)

vmirtFinish(-1);

} else if(result<0) {

memDomainP domain
memEndian endian

object->impurePtrDomain;

Int32 errnoValue -result;
Uns32 impurePtrAddr;
result = -1;

// swap errno endianness if required
if(endian "= ENDIAN_NATIVE) {

errnoValue = swap4(errnoValue);
}

// read __impure_ptr value

vmirtReadNByteDomain(
domain, object->impurePtrAddr, &impurePtrAddr,
sizeof(impurePtrAddr), 0, False

)

// swap errno address endianness if required
if(endian = ENDIAN_NATIVE) {
impurePtrAddr = swap4(impurePtrAddr);

vmirtGetProcessorDataEndian(processor);

© 2022 Imperas Software Limited.www.OVPworld.org

Page 281 of 321

OVP Processor Modeling Guide

}

// write back errno
vmirtWriteNByteDomain(
domain, impurePtrAddr+OR1K_ERRNO_OFFSET, &errnoValue,
sizeof(errnovValue), 0, True
);
s

vmiosRegWrite(processor, object->result, &result);

}

setErrnoAndResult reads the address in the __impure_ptr variable using

vmi rtReadNByteDomain and stores the required errno value to this address using
vmirtWriteNByteDomain. It also performs any endianness conversions required if (as for
the OR1K) the simulated processor endianness differs from the host.

The template Newlib semihosting intercept library has been designed to be relatively
easy to port to any new processor: changes should be limited to the constructor
(where details of the processor ABI will need to be encoded) and perhaps getArg (if
parameter values are passed on the stack instead of in registers).

25.4 Semihosting Function Return - orikSemiHost.c
The OR1K model contains one new file, orikSemiHost.c, which implements a single
function that is required to support opaque function interception: orikIntReturnCB.

VMI_INT_RETURN_FN(orlkIntReturnCB) {
vmimtUncondJumpReg(0, OR1K_REG(ORLK_LINK), VMI_NOREG, vmi_JH_RETURN);
ks

This intercept return function generates code that forces a return from an opaquely-
intercepted function address after one instruction. For the OR1K, this is done simply by
jumping to the link address. Note that this function does not implement any true
processor behavior: it is required merely to allow opaque function intercepts to work —
therefore, there should be no attempt to model true hardware features such as delay slots.

The new function is prototyped in orlkFunctions.h and referenced in orlkAttrs.h:

const vmilASAttr modelAttrs = {
. lines omitted . . .
L1117/ 7777777777/777777/777777/777/777//7/777/77/7/7/77/7/77/77/7/777/7/7/77/77
// IMPERAS INTERCEPTED FUNCTION SUPPORT ROUTINES
L1117/ 7777777777/777777/777/77/777/77/7/77/777/77//777/77/7/77/7/7/77/7/7/77/77
.intReturnCB = orlkIntReturnCB,

. lines omitted . . .

© 2022 Imperas Software Limited.www.OVPworld.org Page 282 of 321

OVP Processor Modeling Guide

25.5 File platform/harness.c
To use the new semihost library, platform/harness.c has been changed as follows:

// create a processor instance
const char *modelFile = "model."IMPERAS SHRSUF;
optProcessorP processor = opProcessorNew(mr, modelFile, "cpul', 0, 0);

// attach Newlib semihost library to processor
const char *semihostFile = "semihosting/model." IMPERAS_ SHRSUF;
opProcessorExtensionNew(processor, semihostFile, "Newlib™, 0);

25.6 Flow of Control for Opaque Address Intercepts

When an opaquely-intercepted function is encountered by the simulator, the flow of
control will appear as follows:

1. The call to the intercepted address will be as normal.

2. The simulator will appear to execute one instruction at the intercepted function
address. However, this single instruction will perform the entire behavior
specified by the interception library for that address.

3. After the instruction completes, the processor will immediately return to the
instruction after the call to the intercepted address — in other words, the entire
functionality at the intercepted address will appear to have been replaced by a
single instruction.

25.7 Testing the Semihosting Intercept Library

Run the platform using the C program executable file:

platform/harness.$IMPERAS_ARCH.exe —trace —traceshowicount \
-—program application/application.OR1K.elf

The output from this should be as follows:

Info 1: "cpul®, 0x0000000000000100: I.addi r2,r0,0x0

Info 2: "cpul®, 0x0000000000000104: 1.addi r3,r0,0x0

Info 3: "cpul®, 0x0000000000000108: I.addi r4,r0,0x0

Info 4: "cpul®, 0x000000000000010c: I.addi r5,r0,0x0

Info 5: "cpul®, 0x0000000000000110: I.addi r6,r0,0x0

- . . lines omitted . . .

Info 340: “platform/cpul®, 0x0000000000009854: 1.ori r3,r4,0x0

Info 341: “platform/cpul®, 0x0000000000009858: 1.addi r4,r0,0x0

Info 342: "platform/cpul”, 0x000000000000985c: I.sw 0x0(rl1l0),r4
I

Info 343: “platform/cpul®, 0x0000000000009860: jal 0x00009bc4

Info 344: “platform/cpul®, 0x0000000000009864: 1.ori r4,r5,0x0

Info 345: "platform/cpul”, 0x0000000000009bc4: *** INTERCEPT *** (_fstat)

Info 346: “platform/cpul®, 0x0000000000009868: 1.sfnei rl1l1,0OxFFFFFfff

- - - lines omitted . . .

Info 1394: “platform/cpul®, 0x00000000000099b4: 1I.sw 0x0(r10),r4

Info 1395: "platform/cpul®, 0x00000000000099b8: I1.ori r4,r5,0x0

Info 1396: “platform/cpul®, 0x00000000000099%bc: 1.jal 0x00009c48

Info 1397: "platform/cpul®, 0x00000000000099c0: l.ori r5,r6,0x0

Info 1398: “platform/cpul®, 0x0000000000009c48: *** INTERCEPT *** (_write)

main called

Info 1399: “platform/cpul®, 0x00000000000099c4: I.sfnei rll1,0xFFFFFFFF
lines omitted .

© 2022 Imperas Software Limited.www.OVPworld.org Page 283 of 321

OVP Processor Modeling Guide

Info 2231: “platform/cpul®, 0x0000000000001718: 1_jal 0x00009b3c

Info 2232: "platform/cpul®, 0x000000000000171c: l.ori r3,rl10,0x0

Info 2233: "platform/cpul®, 0x0000000000009b3c: *** INTERCEPT *** (__exit)
processor has executed 2233 instructions

The application starts running normally. Then, after 345 instructions, there is a call to
function _fstat, which is intercepted. The entire behavior of the intercepted _fstat
appears to occur in a single instruction, and at instruction 346 execution has returned
from _fstat. At instruction 1398, there is an intercepted call to _write, which actually
writes the string main called to the standard output, before returning after one
instruction. There are various other intercepted calls in this run, finishing with an
intercepted call to _exit at instruction 2233, which terminates the current processor,
ending simulation.

Note that intercepted calls are automatically reported in the trace output to make it clear
where behavior is deviating from the standard processor model.

25.8 Intercepts and Multicore Processors

It is possible to create multicore processors using the VMI API (see SMP Processor
Hierarchies in the VMI Run Time Function Reference document for more information).
When such processors are instantiated, a hierarchy of optProcessorP objects is created
beneath a container optProcessorP root object (or icmProcessorP objects, when using
the legacy ICM API). For example, instantiating an ARM Cortex-A57MPx4 processor
variant creates a single optProcessorP root object representing the container, plus four
further optProcessorP objects linked as children of this, one for each of the cores in the
container processor. In this case, using the OP API, it is possible to get the first leaf core
by calling function opProcessorcChild on the root processor, and each subsequent leaf
by applying opProcessorSiblingNext to the previous leaf core. Note that, in general,
there could be more than two levels of hierarchy (for example OVP MIPS processor
models can have to four hierarchy levels).

When installing intercept libraries on such a multicore processor, it is possible to do so at
any level in the hierarchy: the rule is that an intercept library applies to all leaf cores
below that level. For example, installing an intercept library on the Cortex-A57MPx4 root
object would cause it to be instanced on each of the four leaf cores, but installing it on a
leaf would apply to that leaf only.

When intercept libraries are instanced hierarchically, the default behavior is to allocate a
vmiosObject for each leaf level core, and perform all the steps described in previous
sections (for example, execute the constructor, morpher function, destructor, and so on)
for each of those leaf levels independently. If (for example) an intercept library was
installed at the root level of a Cortex-A57MPx4, the effect would be equivalent to
installing the same intercept library on each of the leaf cores independently.

Sometimes, it is required that intercept libraries at leaf levels are not entirely independent,
but instead are able to communicate. The default behavior described above can be
overridden using the al ILevels member of the vmiosAttr structure:

© 2022 Imperas Software Limited.www.OVPworld.org Page 284 of 321

OVP Processor Modeling Guide

typedef struct vmiosAttrS {

L11177/7/77777///77/7////77/////7777/7/
// VERSION & TYPE
L11777777777777777777777777777777777777/777/77//77//7//7///7//77//77//7777

const char *versionString; // version string (THIS MUST BE FIRST)
vmiModelType modelType; // type of model (enum)

vmi InterceptType interceptType; // required in an intercept library
const char *packageName; // package name

Uns32 objectSize; // size in bytes of VMIOS object

Bool allLevels; // apply at all levels (leaf if False)

. fields omitted for clarity

} vmiosAttr;

When allLevels is set to True in a vmiosAttr structure definition, and that intercept
library is applied to a non-leaf level of the hierarchy, the behavior is as follows.

1. avmiosObject is allocated for the top-level processor first (remember that this is not
the case when allLevels is set to False: with that setting, structures are allocated
only at leaf levels);

The constructor at the top level is called.

3. Asecond vmiosObject is allocated for the first child of the top-level processor, and
the constructor is called for that object. The constructor in this case is passed a
parent argument, which is a pointer to the previously-allocated top-level
vmiosObject.

4. Object allocation continues as the processor hierarchy is covered in an in-order
traversal.

no

To clarify, the vmiosConstructorFn function type is defined in vmiOSAttrs.h like this:

#define VMIOS_CONSTRUCTOR_FN(_NAME) void _NAME(\

vmiProcessorP processor, \
vmiosObjectP object, \
vmiosObjectP parent, \
void *parameterValues \

)
typedef VMIOS_CONSTRUCTOR_FN((*vmiosConstructorFn));

The second and third arguments are the current object and parent object, respectively.
Typically, the constructor will set up any required intercept object hierarchy; the example
below initializes a parent member on each vmiosObject structure for later use, and also
a root member that holds the vmiosObject at the highest hierarchy level:

typedef struct vmiosObjectS {
vmiosObjectP root;
vmiosObjectP parent;

} vmiosObject;

static VMIOS_CONSTRUCTOR_FN(constructor) {

// save root on object
object->root = parent ? parent->root : object;

© 2022 Imperas Software Limited.www.OVPworld.org Page 285 of 321

OVP Processor Modeling Guide

// save parent on object
object->parent = parent;

}

These members can be used at run time to access data that needs to be shared across
intercept library instances.

© 2022 Imperas Software Limited.www.OVPworld.org Page 286 of 321

OVP Processor Modeling Guide

26 Using Intercept Libraries for Instruction Set
Enhancement

The previous chapter described how to use Imperas intercept library technology to
implement semihosting libraries. When using Imperas Professional products, it is also
possible to use this technology to implement enhancements to processor model
instruction sets, registers or ports, even when the source of the processor model is
unavailable. When used in this way, intercept libraries are referred to as extension
libraries.

Note that this feature is not available in OVPsim.

26.1 The Template Instruction Set Enhancement
Library

A template model for the OR1K processor with its instruction set enhanced by an
external intercept library can be found at:

$IMPERAS_HOME/Examples/Models/Processor/23.orl1kExchange

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/23.orlkExchange .

Compile the model, harness and application using the make command:

cd 23.orlkExchange
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is the same as that described in example 22.or1kSemiHosting.

There is a new directory, exchange, which contains the source file for the enhanced
instruction set extension library. This is compiled to a Linux shared library, model . so, or
Windows dll, model .dl1l. File orikExchange.c is described in the next section.

26.2 File exchange/orlkExchange.c

The standard OR1K processor contains no single instruction that enables a register to be
exchanged with a memory location. It might be reasonable to want to enhance the
instruction set to provide this capability, if the OR1K is to be used in a multiprocessor
platform.

© 2022 Imperas Software Limited.www.OVPworld.org Page 287 of 321

OVP Processor Modeling Guide

This example adds an exchange instruction using an intercept library, so that the core
functionality of the basic model is unaffected. As well as a new instruction, the example
also adds four new registers, as follows:

exchCount: counts the number of exchange instructions executed.
exchAddress: records the memory address used by the previous exchange.
exchRDValue: records the value read by the previous exchange.
exchAddress: records the value written by the previous exchange.

The vmiosAttr structure implementing the additional exchange instruction is defined as
follows:

vmiosAttr modelAttrs = {

L11171777777777777777777777777777//7777///77777///7/77////7/7////7//77//7//
// VERSION
L11177777777777777777777777777777/77777///7777////7777///7777////7/7/7//77/

-versionString = VMI_VERSION, // version string

-modelType = VMI_INTERCEPT_LIBRARY, // model type

-interceptType = VMI_IT_PROC_EXTENSION, // type of intercept
-packageName = "Exchange™, // description

.objectSize = sizeof(vmiosObject), // size in bytes of 0SS object

L117177777777777777777777777777777/77777///7777////7777///77777////7/7///77/
// CONSTRUCTOR/DESTRUCTOR ROUTINES
L117171777777777777777777777777777777777///7777////7777///7777////7/7///777

.constructorCB = constructor, // object constructor
L1117 77777777777777777/7/7777/7/7777/7/77/7/7//7/77/7//7/7/77/7//7/7/77//7//7/7777

// INSTRUCTION INTERCEPT ROUTINES
1///1/7777777777/77/77777/77///7/7//7////7///////7//////7//////////////////7//7777

-morphCB = exchangeMorph, // morph callback
-nextPCCB = exchangeNextPC, // get next instruction address
.disCB = exchangeDisass, // disassemble instruction

1/1//1/77777777777/7/77777/7/7///777/////////////7//////////7//////////////7//7777
// DEBUGGER INTEGRATION SUPPORT ROUTINES
1/1//1/777777777777/7777/7//7///7/7////7////////7/////////////////////7////7777

-regGroupCB
-reginfoCB

= exchangelterRegGroup, // regGroup callback

= exchangelterReglnfo, // reglnfo callback
1/1/1/1/77777777777777777/77/77777777//7/77/7///7///7/7/7/7////7////7///////7/7/7/77/7777
// PORT ACCESS ROUTINES
1/1/1/1777777777777777777/77/77777777//7/7//////7///7/7//7/7//////7//7//////7/7/7/7777777

-netPortSpecsCB = exchangelterNetPorts, // net port callback

/////777777777/7777777777/777777/77/7/777/77/77/7777/7777777777/7/77/777/77/7777777777
// ADDRESS INTERCEPT DEFINITIONS
//////7/7/77/7/7/7/7/7/777/7/7/7777/77/77/7/7/7/7///7//7/7/77///////////////7//7/77/7777
.intercepts = {{0}}

}:

© 2022 Imperas Software Limited.www.OVPworld.org Page 288 of 321

OVP Processor Modeling Guide

When implementing supplementary instructions in an extension library, a morpher
callback, a disassembly callback and a next PC callback are required. If the extension
library implements new registers, a register group iterator callback and a register iterator
callback are required. This extension library also implements a net port exposing the
value of the exchCount register can be externally; the net port is defined using a net port
iterator. Note that it is also possible to implement bus and fifo ports if required, using
similar iterators.

Address intercepts are not required, so the address intercept table for this extension
library is empty.

26.2.1 OR1K Newlib Semihosting vmiosAttr Definition
The vmiosObject for this extension library is defined as follows:

#define OR1K_GPR_NUM 32
typedef struct vmiosObjectS {

// handles for the OR1K GPRs
vmiRegInfoCP orlkRegs[OR1K_GPR_NUM];

// enhanced instruction decode table
vmidDecodeTableP table;

// new 32-bit registers implemented by this extension library
Uns32 exchCount;

Uns32 exchAddress;

Uns32 exchRDValue;

Uns32 exchWRValue;

// 32-bit temporaries implemented by this extension library
Uns32 exchTmp;

// net written with value of exchCount
Uns32 exchCountNetHandle;

// descriptions of registers and register groups
vmiRegGroup localGroups[LR_EXCH_GROUP_NUM];
vmiReglnfo localRegs[LR_EXCH_NUM];

// descriptions of nets
vmiNetPort localNetPorts[LR_EXCH_NET_NUM];

} vmiosObject;

Field orikRregs is initialized in the constructor to hold a vmiRegInfo handle to each of
the OR1K GPRs. Field table is also initialized in the constructor, and holds a decode
table to decode supplementary instructions implemented by this intercept library.

Fields exchCount, exchAddress, exchRDValue and exchWRValue hold the values of
extension registers implemented in this extension library. Field exchTmp is used to hold a
temporary value used during execution of an exchange instruction. Field
exchCountNetHandle is used to hold a handle to a net exposing the value of exchCount
externally.

© 2022 Imperas Software Limited.www.OVPworld.org Page 289 of 321

OVP Processor Modeling Guide

Field 1ocalGroups defines register groups implemented by this model; in this case, there
is a single group, identified by the member LR_EXCH_GROUP of the localGroup
enumeration:

typedef enum localGroupE {
LR_EXCH_GROUP, // register counting number of exchanges
LR_EXCH_GROUP_NUM, // KEEP LAST: for sizing

} localGroup;

Field 1ocalRegs defines registers implemented by this model; in this case, there are four
registers, identified in the localReg enumeration:

typedef enum localRegE {

LR_EXCH_COUNT, // register counting number of exchanges
LR_EXCH_ADDR, // register recording last exchange address
LR_EXCH_RD, // register recording last exchange value read
LR_EXCH_WR, // register recording last exchange value written
LR_EXCH_NUM, // KEEP LAST: for sizing

} localReg;

Field 1ocalNetPorts defines net ports implemented by this model; in this case, there is
one net port, identified in the localNet enumeration:

typedef enum localNetE {
LR_EXCH_NET, // net to which exchCount is written
LR_EXCH_NET_NUM, // KEEP LAST: for sizing

} localNet;

26.2.2 Constructor Definition
The constructor has this definition:

static VMIOS_CONSTRUCTOR_FN(constructor) {
uns32 i;

// get handles to the OR1K GPRs
for(i=0; §<OR1K_GPR_NUM; i++) {
char regName[8];
sprintf(regName, "R%u", 1);
object->orlkRegs[i] = vmiosGetRegDesc(processor, regName);

}

// create enhanced instruction decoder
object->table = createDecodeTable();

// Till local group descriptors
for(i=0; i<LR_EXCH_GROUP_NUM; i++) {

vmiRegGroupP this = &object->localGroups[i];
// this gives group names for exchange unit register groups

static const char *localGroupNames[] = {
[LR_EXCH_GROUP] = "Exchange_Unit",
}:

this->name = localGroupNames[i];

© 2022 Imperas Software Limited.www.OVPworld.org Page 290 of 321

OVP Processor Modeling Guide

}

// type used to describe extension registers
typedef struct extRegDescS {

const char *name; // register name
const char *description; // register description
Uns32 *value; // pointer to register value

} extRegDesc, *extRegDescP;

// describe extension registers
extRegDesc extRegs[] = {
[LR_EXCH_COUNT] = {

name : "exchCount",
description : "count of exchange instructions executed",
value : &object->exchCount
3.
[LR_EXCH_ADDR] = {
name : "exchAddress",
description : "last exchange address™,
value : &object->exchAddress

[LR_EXCH RD] = {

name : "exchRDValue",
description : "last value read by exchange",
value : &object->exchRDValue

3.

[LR_EXCH_WR] = {
name : "exchWRValue',
description : "last value written by exchange",
value : &object->exchWRValue

}.

e

// Till local register descriptors
for(i=0; I<LR_EXCH_NUM; i++) {

vmiRegInfoP this
extRegDescP desc

= &object->localRegs[i];
= &extRegs[i];
this->name
this->description
this->group
this->gdblndex

desc->name;
desc->description;

LOCAL_ INDEX+i ;

&object->localGroups[LR_EXCH_GROUP];

this->access vmi_RA_RW;
this->bits 32;
this->raw vmimtGetExtReg(processor, desc->value);
}
// fill local net port descriptors
{
vmiNetPortP this = &object->localNetPorts[0];
this->name = "exchCountNet";
this->type = vmi_NP_OUTPUT;
this->handle = &object->exchCountNetHandle;
}

}

The constructor first obtains register description objects for each of the OR1K general-

purpose registers, and saves them in the ori1kRegs array for later use:

for(i=0; i1<OR1K_GPR_NUM; i++) {

© 2022 Imperas Software Limited.www.OVPworld.org

Page 291 of 321

OVP Processor Modeling Guide

char regName[8];
sprintf(regName, "R%u', i);
object->orlkRegs[i] = vmiosGetRegDesc(processor, regName);

}

Then it creates a decoder table to decode extra instructions implemented by this library:

object->table = createDecodeTable();

Function createDecodeTable uses the standard VMI decoder API functions to create a
new decode table for a single exchange instruction:

static vmidDecodeTableP createDecodeTable(void) {
vmidDecodeTableP table = vmidNewDecodeTable(OR1K_BITS, OR1K _EIT_LAST);

// handle exchange instruction
DECODE_ENTRY(O, EXW, "J1112101._ .. oo oo eee e 1'D;

return table;

}

We have selected an arbitrary unused instruction prefix for the new instruction. Refer to
chapter 5 for detailed information about the VMI decoder function API.

Next, the constructor initializes information about the register groups that the model
implements:

// fill local group descriptors
for(i=0; i<LR_EXCH_GROUP_NUM; i++) {

vmiRegGroupP this = &object->localGroups[i];
// this gives group names for exchange unit register groups

static const char *localGroupNames[] = {
[LR_EXCH_GROUP] = "Exchange_unit",
}:

this->name = localGroupNames[i];

}

In this case, the single group is called Exchange_uUnit.

Next, the constructor defines a local array of structures (extRegs) giving the name,
description and address in the extension library object of each of the four extension
registers that it implements:

// type used to describe extension registers
typedef struct extRegDescS {

const char *name; // register name
const char *description; // register description
Uns32 *value; // pointer to register value

} extRegDesc, *extRegDescP;

// describe extension registers
extRegDesc extRegs[] = {

© 2022 Imperas Software Limited.www.OVPworld.org Page 292 of 321

OVP Processor Modeling Guide

[LR_EXCH_COUNT] = {

name : "exchCount',
description : "count of exchange instructions executed",
value : &object->exchCount

[LR_EXCH_ADDR] = {

name : "exchAddress',
description : "last exchange address",
value : &object->exchAddress

[LR_EXCH RD] = {

name : "exchRDvalue",
description : "last value read by exchange",
value : &object->exchRDValue

[LR_EXCH WR] = {

name : "exchWRValue',
description : "last value written by exchange",
value : &object->exchWRValue

3.

Next, the constructor uses the extRegs array to populate a list of vmiReglInfo register
descriptions about the registers that it implements:

// fill local register descriptors
Ffor(i=0; i<LR_EXCH_NUM; i++) {

vmiRegInfoP this
extRegDescP desc

= &object->localRegs[i];
= &extRegs[i];

desc->name;

desc->description;
&object->localGroups[LR_EXCH_GROUP];
LOCAL_INDEX+i ;

this->name
this->description
this->group
this->gdblndex

this->access vmi_RA_RW;
this->bits 32;
this->raw vmimtGetExtReg(processor, desc->value);

}

Here, each of the four local registers are given a name and description extracted from the
extRegs array. Each register is specified to be a member of the new group, initialized
previously. The registers are defined to have indices 0x1000-0x1003, and are all
described as read/write and of 32-bit size. Finally, the raw field is set to a vmiReg value
returned from function vmimtGetExtReg (defined in header file vmimt.h). This function
creates a register descriptor that targets a given address when in a given processor
context. In this case, we use it to inform the simulator that the values of the new registers
can be found in the exchCount, exchAddress, exchRDValue and exchWRValue fields in
the extension library object.

See chapter 17 for more detailed information about how registers are described using
vmiRegInfo objects.

Finally, the constructor initializes the single net port implemented by this extension
library:

© 2022 Imperas Software Limited.www.OVPworld.org Page 293 of 321

OVP Processor Modeling Guide

// Till local net port descriptors

{
vmiNetPortP this = &object->localNetPorts[0];
this->name = "exchCountNet";
this->type = vmi_NP_OUTPUT;
this->handle = &object->exchCountNetHandle;
}

See chapter 16 for more detailed information about how net ports are described using
vmiNetPort objects.

26.2.3 The Morpher Callback: exchangeMorph

This example implements a morpher callback function that specifies behavior for the new
exchange instruction. It is defined as follows:

static VMIOS_MORPH_FN(exchangeMorph) {

// decode the instruction to get the type
UnsPS instruction = vmicxtFetch4Byte(processor, thisPC);
orlkEnhancedlInstrType type vmidDecode(object->table, instruction);

i f(type==0R1K_EIT_EXW) {

// instruction is enhanced exchange
emitExchange(processor, object, instruction);

// indicate standard behavior has been replaced
*opaque = True;

}

// no intercept callback specified
return O;

}

The intercept library morpher callback is called before the standard processor model
callback. It first decodes the instruction at the current program counter address:

uUnsPS instruction
orlkEnhancedlInstrType type

vmicxtFetch4Byte(processor, thisPC);
vmidDecode(object->table, instruction);

If the instruction is the new exchange instruction, the function then calls a subfunction,
emitExchange, which uses morph-time primitives to describe the instruction behavior
(see the next subsection):

i f(type==0R1K_EIT_EXW) {

// instruction is enhanced exchange
emitExchange(processor, object, instruction);

It then indicates that the extension instruction is an opaque intercept:

*opaque = True;

© 2022 Imperas Software Limited.www.OVPworld.org Page 294 of 321

OVP Processor Modeling Guide

What this means is that the behavior in the extension library will replace any default
behavior in the processor model - if opaque was instead set to False, then this would be
a transparent intercept, and behavior specified in the extension library would be
performed in addition to the standard behavior in the processor model.

The function finally returns a NULL pointer value, indicating that no call to a supplemental
intercept function is required (all behavior is implemented by morph-time calls emitted
previously).

26.2.4 The Exchange Instruction Morpher Callback: emitExchange

Code to implement the exchange instruction is emitted by function emitExchange,
defined as follows:

static void emitExchange(

vmiProcessorP processor,

vmiosObjectP object,

Uns32 instruction
) {

// get processor endianness for loads and stores

memEndian endian = vmirtGetProcessorDataEndian(processor);
memConstraint constraint = MEM_CONSTRAINT_ALIGNED;

// extract instruction fields

Uns32 ra = OPEX_A(instruction);
Uns32 rb = OPEX_B(instruction);
Intl6 i = OPEX_I(instruction);

// create vmiReg objects addressing extension registers and temporaries
// from processor context

vmiReg exchCount vmimtGetExtReg (processor, &object->exchCount);
vmiReg exchAddress = vmimtGetExtReg (processor, &object->exchAddress);
vmiReg exchRDValue = vmimtGetExtReg (processor, &object->exchRDValue);
vmiReg exchWRValue = vmimtGetExtReg (processor, &object->exchWRValue);
vmiReg exchTmp vmimtGetExtTemp(processor, &object->exchTmp);

// increment count of exchange instructions executed
vmimtBinopRC(32, vmi_ADD, exchCount, 1, 0);

// copy rb and ra processor GPRs to exchWRValue and exchAddress
vmimtGetR(processor, 32, exchWRValue, object->orlkRegs[rb]);
vmimtGetR(processor, 32, exchAddress, object->orlkRegs[ral]);

// adjust address, including constant offset
vmimtBinopRC(32, vmi_ADD, exchAddress, i, 0);

// load exchTmp from exchAddress
vmimtLoadRRO(32, 32, 0, exchTmp, exchAddress, endian, False, constraint);

// store exchWRValue to exchAddress
vmimtStoreRRO(32, 0, exchAddress, exchWRValue, endian, constraint);

// copy exchTmp to exchRDValue
vmimtMoveRR(32, exchRDValue, exchTmp);

// copy exchTmp to processor GPR
vmimtSetR(processor, 32, object->orlkRegs[rb], exchTmp);

// write exchCountNet if required

© 2022 Imperas Software Limited.www.OVPworld.org Page 295 of 321

OVP Processor Modeling Guide

if(object->exchCountNetHandle) {
vmimtArgProcessor();
vmimtArguUns32(object->exchCountNetHandle);
vmimtArgReg(32, exchCount);
vmimtCal IResul tAttrs(
(vmiCallFn)vmirtWriteNetPort, 0, VMI_NOREG, VMCA_NA
):

}

Because this instruction is going to access processor memory, the callback first gets the
processor endianness, and specifies how misaligned load/store addresses should be
handled:

memEndian endian
memConstraint constraint

vmirtGetProcessorDataEndian(processor);
MEM_CONSTRAINT_ALIGNED;

Next, it uses functions vmimtGetExtReg and vmimtGetExtTemp to obtain vmiReg
descriptors for extension library structure fields that implement extension registers and
temporaries that will be used in this instruction:

vmiReg exchCount
vmiReg exchAddress
vmiReg exchRDValue
vmiReg exchWRValue
vmiReg exchTmp

vmimtGetExtReg (processor, &object->exchCount);
vmimtGetExtReg (processor, &object->exchAddress);
vmimtGetExtReg (processor, &object->exchRDValue);
vmimtGetExtReg (processor, &object->exchWRValue);
vmimtGetExtTemp(processor, &object->exchTmp);

The first action of the instruction is to increment exchCount, which records the number
of times the instruction has been executed:

vmimtBinopRC(32, vmi_ADD, exchCount, 1, 0);

Next, function vmimtGetR is used to copy current values from OR1K GPRs into
extension library registers:

vmimtGetR(processor, 32, exchWRValue, object->orlkRegs[rb]);
vmimtGetR(processor, 32, exchAddress, object->orlkRegs[ral]);

This is required because the extension library cannot directly access OR1K registers: it
has no visibility of OR1K data structures. Having retrieved the base address register, code
Is then emitted to add the constant offset (i) encoded in the instruction to form the full
target address:

vmimtBinopRC(32, vmi_ADD, exchAddress, i, 0);
Next, code is emitted to load the value at the target address into a temporary:

vmimtLoadRRO(32, 32, 0, exchTmp, exchAddress, endian, False, constraint);

The next step is to emit code to store the value from the OR1K GPR indexed by rb to the
same address:

© 2022 Imperas Software Limited.www.OVPworld.org Page 296 of 321

OVP Processor Modeling Guide

vmimtStoreRRO(32, 0, exchAddress, exchWRValue, endian, constraint);

Next, the value previously loaded into a temporary is copied to both the OR1K GPR
indexed by rb and the extension library exchRDValue register. To access the OR1K GPR,
function vmimtSetR is used; note that this is required because the extension library
cannot directly access OR1K registers:

vmimtMoveRR(32, exchRDValue, exchTmp);
vmimtSetR(processor, 32, object->orlkRegs[rb], exchTmp);

Note that the value loaded from memory is first assigned only to a temporary, and
committed to the result register only when the instruction completes. This means that
register state will not be updated if the store of the new value causes an exception (for
example, because the targeted address is read-only).

The final step is to write the new value of exchCount to the exchCountNet port, if that
port is connected:

if(object->exchCountNetHandle) {
vmimtArgProcessor();
vmimtArguUns32(object->exchCountNetHandle);
vmimtArgReg(32, exchCount);
vmimtCal IResul tAttrs(
(vmiCallFn)vmirtWriteNetPort, O, VMI_NOREG, VMCA_NA
)

}

26.2.5 The Next Instruction Callback: exchangeNextPC
This example also implements a next PC callback function that specifies the next
instruction address after for the new exchange instruction. It is defined as follows:

//

// Return instruction address after passed program counter
//

static VMIOS_NEXT_PC_FN(exchangeNextPC) {

// decode the instruction to get the type
Uns32 instruction = vmicxtFetch4Byte(processor, thisPC);
orlkEnhancedlInstrType type = vmidDecode(object->table, instruction);

if(type==0R1K_EIT_EXW) {
*nextPC = thisPC+4;
return True;

} else {
return False;

hs

}

The callback decodes the instruction at the passed address. If it is the exchange
instruction, it sets the nextPC byref argument to the address of the instruction following
the instruction and returns True; otherwise, it returns False.

© 2022 Imperas Software Limited.www.OVPworld.org Page 297 of 321

OVP Processor Modeling Guide

The next instruction address callback is in fact only required if the next instruction
address differs from the address that would be calculated by the base model, which is
not the case for the OR1K model (since all instructions are four bytes long). The
callback could therefore have been omitted for this example (and specified as 0 in the
attribute structure). It has been specified in this case for example purposes only.

26.2.6 The Disassembler Callback: exchangeDisass
This example also implements a disassembler callback function that specifies
disassembly for the new exchange instruction. It is defined as follows:

static VMIOS_DISASSEMBLE_FN(exchangeDisass) {

Uns32 instruction = vmicxtFetch4Byte(processor, thisPC);
orlkEnhancedInstrType type = vmidDecode(object->table, instruction);

iT(type==0R1K_EIT_EXW) {
static char buffer[256];

// extract instruction fields

Uns32 ra = OPEX_A(instruction);
Uns32 rb = OPEX_B(instruction);
Intl6 i = OPEX_I(instruction);

sprintf(buffer, "%-8s Ox%x(r%u),r%u', "l.exw", i, ra, rb);
return buffer;
} else {

return O;

}

Once again, the callback first decodes the instruction at the passed address:

vmicxtFetch4Byte(processor, thisPC);
vmidDecode(object->table, instruction);

Uns32 instruction
orlkEnhancedInstrType type

If the instruction is the new exchange instruction, a disassembly string is created in a
static buffer and returned. The general approach is just the same as for standard
instruction disassembly callbacks; refer to chapter 6 for more details. We have assumed
that the new instruction takes arguments in the same format as the existing 1.sw (store
word) instruction:

if(type==OR1K_EIT_EXW) {
static char buffer[256];

// extract instruction fields

Uns32 ra = OPEX_A(instruction);
Uns32 rb = OPEX_B(instruction);
Intl6 i OPEX_I1(instruction);

sprintf(buffer, "%-8s Ox%x(r%u),r%u*, "l.exw", i, ra, rb);

© 2022 Imperas Software Limited.www.OVPworld.org Page 298 of 321

OVP Processor Modeling Guide

return buffer;

If the new instruction is not the new exchange instruction, the function returns a null
pointer to indicate that standard processor model disassembly should be performed.

26.2.7 The Register Group Iterator Callback: exchangel terRegGroup
This example implements a register group iterator callback function that enables register
groups defined in the extension library to be iterated. It is defined as follows:

static VMIOS_REG_GROUP_FN(exchangelterRegGroup) {
vmiRegGroupP first = object->localGroups;

if(Iprev) {
return first;
} else {
localGroup nextlndex = (prev-first)+1;
return nextlndex<LR_EXCH_GROUP_NUM ? first+nextindex : O;

}

Given an argument of type vmiRegGroupCP (i.e. a pointer to a member of the
localGroups array) this function should return the next register group description in the
array, or NULL if there are no more register group descriptions. If called with a NULL
argument, it should return the first register group description in the array.

26.2.8 The Register Iterator Callback: exchangelterRegInfo
This example implements a register iterator callback function that enables registers
defined in the extension library to be iterated. It is defined as follows:

static VMIOS_REG_INFO_FN(exchangelterReginfo) {
vmiRegInfoP first = object->localRegs;

iT(type!=VMIRIT_NORMAL) {
return O;
} else if(Iprev) {
return first;
} else {
localReg nextlndex = (prev-first)+1;
return nextlndex<LR_EXCH_NUM ? first+nextlndex : O;

}

Given an argument of type vmiRegInfoCP (i.e. a pointer to a member of the localRegs
array) this function should return the next register description in the array, or NULL if
there are no more register group descriptions. If called with a NULL argument, it should
return the first register description in the array.

26.3 The Harness File, platform/harness.c

The platform is similar to previous examples. One new line is included to install the new
intercept library on the processor model using function opProcessorExtensionNew:

© 2022 Imperas Software Limited.www.OVPworld.org Page 299 of 321

OVP Processor Modeling Guide

// attach exchange instruction semihost library to processor
const char *exchangeFile = "exchange/model ." IMPERAS_ SHRSUF;
opProcessorExtensionNew(processor, exchangeFile, "exchange', 0);

Note that the new intercept library is installed in addition to the standard semihost library
on the processor model itself. This ability to install multiple intercept libraries is only
available with the Imperas Professional products.

Lines have also been included to connect to the exchCountNet port on the extension
library, and install a callback to monitor changes on that net:

L1117777777777777777777777777777777777777//77777////777//////7////////7////7777
// ADD NET MONITOR OF EXCHANGE COUNTER
L1117777777777777777777777777777777777777//777777///777//////7////////77/////777

// create exchCountNet net
optNetP exchCountNet = opNetNew(mr, "exchCountNet', 0, 0);

// connect exchCountNet net to the processor
opObjectNetConnect(processor, exchCountNet, "exchCountNet');

// install callback monitoring net
opNetWriteMonitorAdd(exchCountNet, exchCountMonitor, 0);

L111717777777777777777777777777777/7777777/77777///7777/////77///////7////777

Note that from the OP interface, the net port defined in the extension library appears just
like other processor ports. The callback function is defined as follows:

static OP_NET_WRITE_FN(exchCountMonitor) {
opPrintf(*'>>> exchCount net written with %u\n', value);
}

26.4 Testing the Intercept Library

Run the platform using the assembler program executable file:

platform/harness.$IMPERAS_ARCH.exe —trace —tracechange --traceshowicount\
-—program application/asmtest_OR1K.elf

The example is a very simple one: it saves a value on the stack and then uses the new
exchange instruction to exchange that with a value in a register. Then, it makes a second
call to exchange a new value with the previously-saved value. Because the standard
assembler does not know about the new exchange instruction, it is specified as a raw bit
pattern using the .word assembler directive:

L1111 77777717777777177777777777///7777////7777///7777/////77//////77//7/

// MAIN ROUTINE

L1111 17777717777777177777777777///7777////7777////777/////77//////77//7/7
-global _start

_start:
1.addi r31,r0,0 // initialize stack pointer to O
1.addi rl,r0,0x100 // rl = 0x100
1._sw -4(r31),r1 // save rl value on stack

© 2022 Imperas Software Limited.www.OVPworld.org Page 300 of 321

OVP Processor Modeling Guide

1.addi rl,r0,0x200 // r1l = 0x200

-word OxF7ffOoffc // exch rl1,-4(r31)

1_lwz r2,-4(r31) // get current value of -4(r31)
1._addi rl,r0,0x300 // rl1 = 0x300

-word OxF7ffOffc // exch rl1,-4(r31)

11wz r2,-4(r31) // get current value of -4(r3l)

[//1/777/7/777/7/77/7/7/7/7/7/7777777777
// EXIT FROM POINT TEST
L1/1/177777777777777777777777777777/77777/77777777777/7////7/7/7///7//7777//7777777
-global exit
exit:
1.nop

The output from this should be as follows:

Info 1: "platform/cpul®, 0x0000000001000074(_start): 1._addi r31,r0,0x0

Info R31 deadbeef -> 00000000

Info 2: "platform/cpul®, 0x0000000001000078(_start+4): l.addi rl,r0,0x100

Info R1 00000000 -> 00000100

Info 3: "platform/cpul®, 0x000000000100007c(_start+8): l.sw OxFFFffffc(r3l),rl

Info 4: "platform/cpul®, 0x0000000001000080(_start+c): I.addi r1l,r0,0x200

Info R1 00000100 -> 00000200

Info 5: "platform/cpul®, 0x0000000001000084(_start+10): I.exw OxFFFffffc(r3l),rl
>>> exchCount net written with 1

Info R1 00000200 -> 00000100

Info exchCount 00000000 -> 00000001

Info exchAddress 00000000 -> fffffffc

Info exchRDValue 00000000 -> 00000100

Info exchWRvValue 00000000 -> 00000200

Info 6: "platform/cpul®, 0x0000000001000088(_start+14): 1.lwz r2,0xfrrffffc(r3l)
Info R2 deadbeef -> 00000200

Info 7: "platform/cpul®, 0x000000000100008c(_start+18): I.addi r1l,r0,0x300

Info R1 00000100 -> 00000300

Info 8: "platform/cpul®, 0x0000000001000090(_start+lc): I.exw OxFFFffffc(r3l),rl
>>> exchCount net written with 2

Info R1 00000300 -> 00000200

Info exchCount 00000001 -> 00000002

Info exchRDValue 00000100 -> 00000200

Info exchWRValue 00000200 -> 00000300

Info 9: "platform/cpul®, 0x0000000001000094(_start+20): 1.1wz r2,0xfFFfFfffc(r3l)
Info R2 00000200 -> 00000300

Info 10: “platform/cpul®, 0x0000000001000098(exit): I.nop 0x0

Processor “platform/cpul® terminated at “exit", address 0x1000098

processor has executed 10 instructions

Note that trace is emitted for the extension instruction and extension registers just as if
they were core processor instructions and registers, and that the callback installed on the
exchCount net reflects the value of the new exchCount register as it changes.

26.5 Extension Libraries and Multicore Processors

It is possible to create multicore processors using the VMI API (see SMP Processor
Hierarchies in the VMI Run Time Function Reference document for more information)
and section 25.8 explained how intercept library instances can be configured to create
structure only at the leaf hierarchy level or at all hierarchy levels.

The same method can be used when intercept libraries are used for processor extension. If
the allLevels Boolean in the vmiosAttr structure is False, then vmiosObject
structures are created at leaf levels only, and these objects are effectively independent of
each other. If allLevels is True, then vmiosObject structures are created at every level

© 2022 Imperas Software Limited.www.OVPworld.org Page 301 of 321

OVP Processor Modeling Guide

at or below the instantiation level, and these structures can be linked together in the
constructors as shown in section 25.8. In addition, the register and port iterator callbacks
are called at each hierarchy level: this means that it is possible to add registers and ports
that are common to subtrees of the processor hierarchy, not just at the leaf level. For
example, the following code adds net port rootPort at the root level only, and net port
subPort at each non-root level:

#define MAX_PORTS 2

typedef struct vmiosObjectS {

vmiosObjectP root;
vmiosObjectP parent;

Uns32 rootPortHandle;
Uns32 subPortHandle;

vmiNetPort ports[MAX_PORTS];

} vmiosObject;

static VMIOS_CONSTRUCTOR_FN(constructor) {

}

// save root on object
object->root = parent ? parent->root : object;

// save parent on object
object->parent = parent;

// get first port to fill
vmiNetPortP thisNP = &object->ports[0];

// add root-level net port

if(Iparent) {
thisNP->name
thisNP->type
thisNP->handle
thisNP++;

“rootPort';
vmi_NP_INPUT;
&object->rootPortHandle;

}

// add sub-level net port

if(parent) {
thisNP->name
thisNP->type
thisNP->handle
thisNP++;

"'subPort";
vmi_NP_INPUT;
&object->subPortHandle;

static VMIOS_NET_PORT_SPECS_FN(iterNetPorts) {

vmiNetPortP first
vmiNetPortP this
Uns32 index

&object->ports[0];
prev ? prev+l : First;
this-first;

iT((index<MAX_PORTS) && this->name) {
return this;

} else {
Return NULL;
}

© 2022 Imperas Software Limited.www.OVPworld.org

Page 302 of 321

OVP Processor Modeling Guide

26.6 Pre-Morph and Post-Morph Callbacks

Adding extension instructions to processor models as described in previous sections
entails replacement of all behavior described using the processor model morphCB function
with the new behavior from the extension library. Usually this is desirable, but
occasionally it is not: for example, the ARC processor model implements a zero-
overhead loop construct, which enables loop behavior based only on the address of an
instruction. Each instruction for the ARC processor is therefore dependent on information
derived both from the instruction and from control registers for the zero-overhead loop.
When extending this processor instruction set, we want to replace the instruction
information but retain the zero-overhead loop behavior from the base model.

From VMI version 7.1.0, additional pre-morph and post-morph callback functions, with
the same prototype as the existing morphCB callback, have been added to the vmi 1ASAttr
structure to handle such cases:

typedef struct vmilASAttrS {
. Fields omitted for clarity .
/////777777777777777777777777777777777/77/7777/777777/7777/7777/77/77/7777777777

// S1ZE ATTRIBUTES
L111777777777777777777777777777777777777//7777////7777///7/7/77////7/7///7/7/

const char **dictNames; // null-terminated dictionary name list
Uns32 cpuSize; // full size of CPU object

Uns32 blockStateSize; // size of block state structure

uUns32 instrStateSize; // size of instruction state structure

. Fields omitted for clarity .

1///1//77/777//7////7//7//7/
// MORPHER CORE ROUTINES
1/1//1///7/777/7////7//7///7//7//7//

vmiStartEndBlockFn startBlockCB; // called before block translate
vmiStartEndBlockFn endBlockCB; // called after block translate
vmiMorphFn preMorphCB; // called at start of each instruction
vmiMorphFn morphCB; // morph callback

vmiMorphFn postMorphCB; // called at end of each instruction
vmiPostOpaqueFn postOpaqueCB; // called after opaque intercept
vmiFetchSnapFn fetchSnapCB; // fetch address snap callback
vmiRdWrSnapFn rdSnapCB; // read alignment snap function
vmiRdWrSnapFn wrSnapCB; // write alignment snap function

. Fields omitted for clarity . .
// update functions (for save/restore)
} vmilASAttr;

When translating an instruction, the flow is as follows:

1. The preMorphcB callback, if specified, is called. This should emit code required at
the start of every instruction (even if base model code is replaced by an extension
library).

2. The morphcCB callback is called, unless replaced in an extension library.

© 2022 Imperas Software Limited.www.OVPworld.org Page 303 of 321

OVP Processor Modeling Guide

3. The postMorphCB callback, if specified, is called. This should emit code required at
the end of every instruction (even if base model code is replaced by an extension
library).

All three functions have the same prototype:

#define VMI_MORPH_FN(_NAME) void _NAME(C \

vmiProcessorP processor, \
Addr thisPC, \
uns8 inDelaySlot, \
Bool firstinBlock, \
Bool emitTrace, \
void *blockState, \
void *instrState \

)
typedef VMI_MORPH_FN((*vmiMorphFn));

The final two arguments (blockState and instrState) allow communication between
callbacks as instruction translation proceeds.

The blockState argument is a pointer to a block of scratch memory of size defined by
the blockStateSize field in the vmi IASAttr structure. This memory is initialized to
zero at the start of each code block and passed to each of the callbacks described above as
translation proceeds. It is therefore useful when information about translated code needs
to be passed between calls that translate different instructions in a code block.

The instrState argument is a pointer to a block of scratch memory of size defined by
the instrStateSize field in the vmi IASAttr structure. This memory is initialized to
zero at the start of each instruction and passed to each of the callbacks described above as
translation proceeds. It is therefore useful when information about translated code needs
to be passed between the pre-morph, morph and post-morph functions for a single
instruction.

The OVP ARC model uses these functions to implement zero-overhead loops. The
vmi IASAttr structure is defined as follows:

const vmilASAttr modelAttrs = {

L1111777777777777777777777777777//7777//77777////7777///77/7////7//7//7//
// VERSION & SIZE ATTRIBUTES
L111717777777777777777777777777777/7777///77777///7777///77/7////7//7//7//

.versionString = VMI_VERSION,
-modelType = VMI_PROCESSOR_MODEL,
.releaseStatus = VMI_OVP,

.dictNames = dictNames,

-cpuSize = sizeof(arc),
-blockStateSize = sizeof(arcBlockState),
-instrStateSize = sizeof(arcMorphState),

. Fields omitted for clarity .

L11171777777777777777777777777777/77777///7777////7777///7777////7/7///777
// NMORPHER CORE ROUTINES

© 2022 Imperas Software Limited.www.OVPworld.org Page 304 of 321

OVP Processor Modeling Guide

1/1//1/7777777777777/7777/77////7//////////////////7//7//////////////////7//7777

-preMorphCB = arcPreMorphlnstruction,
-morphCB = arcMorphlnstruction,
-postMorphCB = arcPostMorphlnstruction,
.FetchSnapCB = arcFetchSnap,
-rdSnapCB = arcRdWrSnapCB,
-wrSnapCB = arcRdWrSnapCB,

. Fields omitted for clarity .

};

blockStateSize is set to the size of a structure used to hold per-block information:

typedef struct arcBlockStateS {
vmiReg branchFlag;
Bool branchlfTrue;
Bool isUncondBranchDS;
Uns32 blocklIndex;

} arcBlockState;

// register to test for branch

// branch if flag true?

// is delay-slot branch unconditional?
// index number of instruction in block

instrStateSize is set to the size of a structure used to hold per-instruction information:

typedef struct arcMorphStateS {

arclnstructioninfo info; //
arcMorphAttrCP attrs; //
arcBlockStateP blockState; //
arcP arc; //
Uns32 nextPC; //
vmiLabelP skipLabel; //
Uns32 templdx; //
Bool inDelaySlot; //
Bool atZoL; //
Bool pclSet; //
Bool iSEX; //

} arcMorphState;

instruction description (from decoder)
instruction attributes

current block state

current processor

next instruction address in sequence
label to skip instruction body
current temporary index

instruction is in delay slot?
instruction at zero-overhead address?
is PCL valid?

is this an EX instruction

Function arcPreMorphlinstruction decodes the instruction and sets up initial state for
zero-overhead loops. It also handles annulled delay slot instructions:

VMI_MORPH_FN(arcPreMorphlnstruction) {

arcP arc = (arcP)processor;
arcBlockStateP arcBlockState = blockState;
arcMorphStateP state = instrState;

// get instruction and instruction

type

arcDecode(arc, thisPC, &state->info);

// get morpher attributes for the decoded instruction and initialize other

// state fields

state->attrs =
state->arc =
state->blockState =

arc;
arcBlockState;

// indicate whether

state->atZ0L = (nextPC==AUX_REG(arc,

&dispatchTable[state->info.type];

the current instruction terminates a zero-overhead loop

Ip_end));

// do actions required when starting an instruction at the zero-overhead

© 2022 Imperas Software Limited.www.OVPworld.org

Page 305 of 321

OVP Processor Modeling Guide

// loop end address
if(state->atZ0L) {

arcEmitStartzZOL(state);
by

// skip actions after this point if annulling
arcEmitSkiplfAnnul () ;

}

Function arcMorphinstruction performs instruction translation (if not replaced in an
extension library):

VMI_MORPH_FN(arcMorphlnstruction) {
arcMorphStateP state = instrState;

if(state->attrs->morphCB) {
// translate the instruction
morphImplemented(state);
} else if(state->info.type==ARC_IT_LAST) {
// take Illegallnstruction exception
emitlllegal Instruction(state);
} else {
// here it no morph callback specified
vmiMessage("'F'", CPU_PREFIX"_UII", // LCOV_EXCL_LINE
SRCREF_FMT *‘unimplemented instruction®,
SRCREF_ARGS(processor, state->info.thisPC)

);
}

Function arcPostMorphlInstruction handles termination of zero-overhead loops:

VMI_MORPH_FN(arcPostMorphiInstruction) {
arcMorphStateP state = instrState;

// do actions required and end of instruction at the zero-overhead loop end
// address
arcEmitEndZOL(state);

}

Functions arcEmitStartzoL and arcEmitEndzZOL optimize zero-overhead loop overhead
in cases where loops are disabled or not active at the current address. They are quite
complex and included here for completeness, but not explained in detail:

void arcEmitStartZOL(arcMorphStateP state) {

Uns32 bits = ARC_GPR_BITS;
vmiLabelP nolLPUpdate = vmimtNewLabel();
Uns32 IpcMask = state->arc->IpcMask;

// when executing this block, validate that Ip_end has the same value
// that it has when code for the block was generated
vmimtVal idateBlockMaskR(ARC_GPR_BITS, ARC_AUX_REG(Ip_end), -1);

// tag this block to avoid unnecessary deletion when Ip_end changes
vmimtTagBlock(VBT_1);

© 2022 Imperas Software Limited.www.OVPworld.org Page 306 of 321

OVP Processor Modeling Guide

// ARC700 and ARCv2 implement STATUS32.L flag, disabling zero-overhead loops
iF(isARC700v2(state->arc)) {

// assume zero-overhead loop is disabled
vmimtMoveRC(8, ARC_ZOL_BRANCH, 0);

// go to the label if L bit is set
vmimtCondJumpLabel (ARC_L, True, nolLPUpdate);
}

// define flags to detect non-zero condition, when loop count is decremented
vmiFlags flags = {
VMI_NOFLAG,

{
[vmi_CF] = VMI_NOFLAG,
[vmi_PF] = VMI_NOFLAG,
[vmi_ZF] = ARC_ZOL_BRANCH,
[vmi_SF] = VMI_NOFLAG,
[vmi_OF] = VMI_NOFLAG

.

vmi_FN_ZF

e

// decrement loop count and perhaps mask it, generating non-zero flag
if(state->arc->IpcMask==-1) {
vmimtBinopRC(bits, vmi_SUB, ARC_LP_COUNT, 1, &flags);
} else {
vmimtBinopRC(bits, vmi_SUB, ARC_LP_COUNT, 1, 0);
vmimtBinopRC(bits, vmi_AND, ARC_LP_COUNT, IpcMask, &flags);
}

iT(isARC600(state->arc)) {

// ARC600 loop terminates if pre-decrement value is either O or 1, so
// include detection of *post-decrement* value -1

vmiReg tf = ARC_TEMP(state->templdx+1);

vmimtCompareRC(bits, vmi_COND_NE, ARC_LP_COUNT, IpcMask, tf);
vmimtBinopRR(bits, vmi_AND, ARC_ZOL_ BRANCH, tf, 0);

} else if(state->inDelaySlot) {

// on ARC700 and ARCv2, if in a delay slot, only branch if STATUS32.DE
// is zero
vmimtBinopRR(8, vmi_ANDN, ARC_ZOL_BRANCH, ARC_DE, 0);

T

// here if zero-overhead loops are disabled
vmimtInsertLabel (noLPUpdate);
}

void arcEmitEndzZOL(arcMorphStateP state) {

if(state->atZ0L) {
vmimtCondJumpReg(

ARC_ZOL_BRANCH,
True,
o,
ARC_AUX_REG(lp_start),
VMI_NOREG,
vmi_JH_NONE

© 2022 Imperas Software Limited.www.OVPworld.org Page 307 of 321

OVP Processor Modeling Guide

27 Processor Configuration

A processor model is configured by variables which can be set by the platform or
simulation environment. They are called model parameters. Model parameters are
collected into a structure which is initialized by the simulator then passed to the model's
constructor function. The structure exists only when the constructor is executing. To
specify the type and constraints of each parameter, the model must provide an iterator
function which returns each parameter specification in turn. This allows the simulator to
set and check each parameter and allows other tools to discover the configuration
interface of the model.

27.1 Example of a Configurable Processor
A model for the OR1K processor with model parameters can be found in:

$IMPERAS_HOME/Examples/Models/Processor/24.orlkConfigurable

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/24.orlkConfigurable .

Compile the model, harness and application using the make command:

cd 24 _orlkConfigurable
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the model of example
18.orlklInstructionAttributes, with the changes listed in following sections.

27.2 The Parameters Structure
The parameters structure is defined in orilkParameters.h:

typedef struct orlkParamValuesS {
VMI_BOOL_PARAM(verbose);
VMI_UNS32_PARAM(extinterrupts);
VMI_STRING_PARAM(extintlogfile);

} orlkParamValues, *orlkParamValuesP;

The example defines boolean, integer and string parameters. This is the complete list of
available parameter types:

© 2022 Imperas Software Limited.www.OVPworld.org Page 308 of 321

OVP Processor Modeling Guide

macro data type
VMI_BOOL_PARAM boolean
VMI_INT32_PARAM 32 bit Signed
VMI_UNS32_PARAM 32 bit unsigned
VMI_INT64_PARAM 64 bit signed
VMI_UNS64_PARAM 64 bit unsigned
VMI_PTR_PARAM po inter
VMI_DBL_PARAM f|0atind point
VMI_STRING_PARAM null terminated string
VMI_ENUM_PARAM null terminated string
VMI_ENDIAN_PARAM null terminated string

27.3 Parameter Specification - orlkParameters.c
The parameters are specified in orlkParameters.c.

27.3.1 Structure Size

The simulator allocates this structure so needs to know its size. A function must be
defined (using the VMI1_PROC_PARAM_TABLE_SIZE_FN) and set in the model attributes
table:

//

// Get the size of the parameter values table

//

VMI_PROC_PARAM_TABLE_SIZE_FN(orlkParamValueSize) {
return sizeof(paramvValues);

bs

//

// Add function to the model attributes table
//

const vmilASAttr modelAttrs = {

-paramValueSizeCB = orlkParamValueSize,
};

27.3.2 Specification Objects

A function must be defined to supply the attribute specifications to the simulator (using
the VM1_PROC_PARAM_SPECS_FN macro) and set in the model attributes table. In this
model, the parameter specifications are built as a static list, and the function iterates over
the list.

Each element of the list is initialized using macros defined in vmiParameters.h:

//
// Table of parameter specs
//
static vmiParameter formals[] = {
VMI_BOOL_PARAM_SPEC (orilkParamValues, verbose, O,
"Verbose mode'),

VMI_UNS32_PARAM_SPEC (orilkParamValues,extinterrupts, 1, 1, 8,
“"Number of external interrupts"”),

© 2022 Imperas Software Limited.www.OVPworld.org Page 309 of 321

OVP Processor Modeling Guide

VMI_STRING_PARAM_SPEC(orilkParamValues,extintlogfile, O,
"Event log file"),

VMI_END_PARAM
}:

//
// Function to iterate over the parameter specs
//
VMI_PROC_PARAM_SPECS_FN(orlkGetParamSpec) {
if(Iprev) {
return formals;
} else {
prev++;
if (prev->name)
return prev;

else
return O;
T
}
//
// Add function to the model attributes table
//

const vmilASAttr modelAttrs = {

-paramSpecsCB = orlkGetParamSpec,
};

This is the complete list of parameter specification macros corresponding to the
parameter definition macros:

macro data type limits

VMI_BOOL_PARAM_SPEC boolean Oor 1

VMI_INT32_PARAM_SPEC 32 bit signed specified min / max
VMI_UNS32_PARAM_SPEC 32 bit unsigned specified min / max
VMI_INT64_PARAM_SPEC 64 bit signed specified min / max
VMI_UNS64_PARAM_SPEC 64 bit unsigned specified min / max
VMI_PTR_PARAM_SPEC pointer NULL if not specified
VMI_DBL_PARAM_SPEC floating point specified min / max
VMI_STRING_PARAM_SPEC null terminated string | any string (NULL if not specified)
VMI_ENUM_PARAM_SPEC null terminated string | string must be a member of the specified list
VMI_ENDIAN_PARAM_SPEC null terminated string | "big" or "little"

27.3.3 Using the Parameters
The parameter structure is allocated and assigned by the simulator then passed to the
model constructor. In this example the constructor is in orlkMain.c:

//

// OR1K processor constructor

//
VMI_CONSTRUCTOR_FN(orilkConstructor) {

orlkP orlk = (orlkP)processor;

© 2022 Imperas Software Limited.www.OVPworld.org Page 310 of 321

OVP Processor Modeling Guide

orlkParamValuesP params = parameterValues;

// copy parameters to the model instance
orlk->numExtlints params->extinterrupts;
orlk->noisy params->verbose;

// open a log file and report or not
if (params->extintlogfile) {
orlk->logFile = fopen(params->extintlogfile, "w");
if (params->verbose) {
iT (orlk->logFile) {
--- (eto)
}

}

The values noisy, numExtints and logFile are saved on the model instance, so can be
used subsequently anywhere in the processor model. numExtints is used to control the
number of external interrupt nets:

1/1//1/77777777777777777/7777//7/7/7//7///7///////7///////////////////////////7////7/777
// NET PORTS
1/1///77777777777777/77777/////7//7///7/////////////////////////////////////7//7//7777

//

// Template net port list

//

const static vmiNetPort netPorts[] = {
{"reset”, vmi_NP_INPUT, (void*)O, orlkExternalReset }.
{"intr0™”, vmi_NP_INPUT, (void*)1, orlkExternal Interrupt},
{intrl”, vmi_NP_INPUT, (void*)2, orlkExternal Interrupt},
{"intr2”, vmi_NP_INPUT, (void*)4, orlkExternal Interrupt},
{intr3”, vmi_NP_INPUT, (void*)8, orlkExternal Interrupt},
{"intr4”, vmi_NP_INPUT, (void*)16, orlkExternallnterrupt},
{intr5”, vmi_NP_INPUT, (void*)32, orlkExternallnterrupt},
{"intr6™”, vmi_NP_INPUT, (void*)64, orlkExternallnterrupt},
{intr7, vmi_NP_INPUT, (void*)128, orlkExternallnterrupt},

};

//
// Get the number of processor net ports (reset port plus external
// interrupts)
//
static Uns32 getNumNetPorts(orlkP orilk) {
return 1 + orlk->numExtints;
}

//

// Allocate net port specifications
//

static void newNetPorts(orlkP orilk) {

Uns32 numNetPorts = getNumNetPorts(orilk);
uns32 i;

orlk->netPorts = STYPE_CALLOC_N(vmiNetPort, numNetPorts);

© 2022 Imperas Software Limited.www.OVPworld.org Page 311 of 321

OVP Processor Modeling Guide

for(i=0; i<numNetPorts; i++) {
orlk->netPorts[i] = netPorts[i];
by

}

//
// Get the next net port
//

VMI_NET_PORT_SPECS_FN(orlkGetNetPortSpec) {
orlkP orlk = (orlkP)processor;
if(lprev) {

// first port
return orlk->netPorts;

} else {

// port other than the first

Uns32 numNetPorts getNumNetPorts(orik);
Uns32 previndex (prev-orlk->netPorts);
Uns32 thislndex previndex+1;

return (thislndex<numNetPorts) ? &orlk->netPorts[thisindex] : O;

}

The 1ogFile variable is used to control logging of interrupt events to a special file:

static VMI_NET_CHANGE_FN(externallnterrupt) {

orlkP orik
Uns32 deviceld

(or1lkP)processor;
(Uns32)userData;

if(newvalue) {
if(orlk->logFile) {
fprintf(orlk->logFile, "Taking interrupt with I1D=0x%x\n", deviceld);
}

}

27.4 Parameter Function Registration - orlkAttrs.c
The new parameter callbacks are registered in orikAttrs.c:

const vmilASAttr modelAttrs = {
lines omitted .
L11/1/777777777777777777777777777777777777777/77777/777/7/77/////7/777777777
// PARAMETER SUPPORT ROUTINES
L1/1/177/77777//7777/77/7/7//77777777777

-paramSpecsCB
-paramValueSizeCB

orlkGetParamSpec,
orlkParamValueSize,

lines omitted .

© 2022 Imperas Software Limited.www.OVPworld.org Page 312 of 321

OVP Processor Modeling Guide

e

27.5 Using a parameterized model

The example platform (platform/harness.c) creates two model instances. procA uses
default parameter values, with simulated exceptions enabled:

optProcessorP procA = opProcessorNew(
mr,
"'model . IMPERAS_SHRSUF,
"'procA",
0,
OP_PARAMS (
OP_PARAM_BOOL_SET(OP_FP_SIMULATEEXCEPTIONS, 1)
)

):
procB has its parameters overridden:

optProcessorP procB = opProcessorNew(

mr,

"'model ."" IMPERAS_SHRSUF,

"'procB",

0,

OP_PARAMS (
OP_PARAM_BOOL_SET(OP_FP_SIMULATEEXCEPTIONS, 1),
OP_PARAM_BOOL_SET(OP_FP_VERBOSE, 1),
OP_PARAM_UNS32_SET(“'extinterrupts’, 2),
OP_PARAM_STRING_SET("extintlogfile™, "test.log")

)

):

Consequently, procB can be connected to two interrupt nets while proca can be connected
to only one.

// create nets

optNetP nl = opNetNew(mr, "n1", O, 0);
optNetP n2 = opNetNew(mr, "n2", 0, 0);
optNetP n3 = opNetNew(mr, "'n3", 0, 0);

// connect nets to processors

opObjectNetConnect(procA, nl, "intr0™);
opObjectNetConnect(procB, n2, "intr0™);
opObjectNetConnect(procB, n3, "intrl™);

To demonstrate that configuration has worked, the harness includes a function that shows
the net ports present on a given processor instance:

static void queryNetPorts(optProcessorP processor) {
const char *name = opObjectHierName(processor);
if(lopObjectNetPortNext(processor, 0)) {

opPrintf(""%s HAS NO NET PORTS\n", name);

} else {

© 2022 Imperas Software Limited.www.OVPworld.org Page 313 of 321

OVP Processor Modeling Guide

opPrintf('%s NET PORTS\n', name);
optNetPortP netPort = O;

while((hetPort=opObjectNetPortNext(processor, netPort))) {
opPrintf(
%s (%s)\n',
opObjectName(netPort),
opNetPortTypeString(netPort)
):

}

opPrintf(*'\n"");
3

This is called for each processor before simulation starts:

// print net ports
queryNetPorts(procA);
queryNetPorts(procB);

27.6 Testing Processor Configuration
Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
--program application/asmtest.OR1K.elf

The output from this should be as follows:

Opened log file “test.log”
platform/procA NET PORTS

reset (input)

intrO (input)
platform/procB NET PORTS

reset (input)

intrO (input)

intrl (input)
Info "platform/procA®, 0x0000000000010000(_start): l.ori r30,r0,0x0
Info "platform/procA®, 0x0000000000010004(_start+4): l.ori rl,r0,0x7
Info "platform/procA®, 0x0000000000010008(_start+8): I.mtspr rO0,r1,17
Info "platform/procA®, 0x000000000001000c(_start+c): I_addi rl,r0,OxFFFFFFFf
Info "platform/procA®, 0x0000000000010010(_start+10): I.mtspr 1r0,r1,18432
Info "platform/procA®, 0x0000000000010014(_start+14): 1.ori rl,r0,0x8
Info "platform/procA®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFEfrrfff
Info "platform/procA®, 0x000000000001001c(loopl+4): I.sfeqi r1,0x0
Info "platform/procA®, 0x0000000000010020(loopl1+8): I.bnf 0x00010018
Info "platform/procB®, 0x0000000000010000(_start): l.ori r30,r0,0x0
Info "platform/procB”, 0x0000000000010004(start+4): l.ori rl,r0,0x7
Info "platform/procB®, 0x0000000000010008(_start+8): I.mtspr r0,r1,17
Info "platform/procB®, 0x000000000001000c(_start+c): I.addi r1,r0,OxFFFFFfff
Info “platform/procB”, 0x0000000000010010(_start+10): I.mtspr rO0,r1,18432
Info "platform/procB®, 0x0000000000010014(_start+14): 1.ori rl,r0,0x8
Info “platform/procB®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFrFffff
Info "platform/procB", 0x000000000001001c(loopl+4): I.sfeqi r1,0x0
Info “platform/procB®, 0x0000000000010020(loop1+8): I.bnf 0x00010018
Interrupting A & B
Info “platform/procA®, 0x0000000000010024(loopl+c): *** FETCH EXCEPTION ***
Info "platform/procB”, 0x0000000000010024(loopl+c): *** FETCH EXCEPTION ***

© 2022 Imperas Software Limited.www.OVPworld.org Page 314 of 321

OVP Processor Modeling Guide

Info "platform/procA®, 0x0000000000000800(-text+800): I.addi r30,r30,0x1
Info "platform/procA®, 0x0000000000000804(.text+804): l.rfe

Info "platform/procA®, 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info "platform/procA®, 0x0000000000010024(loopl+c): 1.nop 0x0

Info "platform/procA®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFFFFfFf
Info "platform/procA®, 0x000000000001001c(loopl+4): l.sfeqi r1,0x0

Info "platform/procA®, 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info "platform/procA®, 0x0000000000010024(loopl+c): 1._.nop 0x0

Info “platform/procA®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFrfrffff
Info "platform/procB®, 0x0000000000000800(.-text+800): I.addi r30,r30,0x1
Info “platform/procB®, 0x0000000000000804(.text+804): I1.rfe

Info "platform/procB®, 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info "platform/procB®, 0x0000000000010024(loopl+c): 1._.nop 0x0

Info "platform/procB®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFFFFfff
Info “platform/procB®, 0x000000000001001c(loopl+4): l.sfeqi r1,0x0

Info "platform/procB", 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info "platform/procB®, 0x0000000000010024(loopl+c): 1.nop 0x0

Info "platform/procB®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFFFFrfff
Interrupting B

Info "platform/procA®, 0x000000000001001c(loopl+4): I.sfeqi r1,0x0

Info "platform/procB®, 0x000000000001001c(loopl+4): *** FETCH EXCEPTION ***
Info "platform/procA®, 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info "platform/procA®, 0x0000000000010024(loopl+c): 1.nop 0x0

Info "platform/procA®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFFFFfFf
Info "platform/procA®, 0x000000000001001c(loopl+4): l.sfeqi r1,0x0

Info "platform/procA®, 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info "platform/procA®, 0x0000000000010024(loopl+c): 1.nop 0x0

Info "platform/procA®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFFFFfFf
Info "platform/procA®, 0x000000000001001c(loopl+4): l.sfeqi r1,0x0

Info "platform/procA®, 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info "platform/procA®, 0x0000000000010024(loopl+c): 1.nop 0x0

Info "platform/procB®, 0x0000000000000800(-text+800): I.addi r30,r30,0x1
Info "platform/procB®, 0x0000000000000804(.text+804): l.rfe

Info “platform/procB®, 0x000000000001001c(loopl+4): l.sfeqi r1,0x0

Info "platform/procB®, 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info "platform/procB®, 0x0000000000010024(loopl+c): 1.nop 0x0

Info "platform/procB®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFFFFrfff
Info “platform/procB®, 0x000000000001001c(loopl+4): I.sfeqi r1,0x0

Info "platform/procB", 0x0000000000010020(loop1+8): I.bnf 0x00010018
Info “platform/procB®, 0x0000000000010024(loopl+c): 1.nop 0x0

Info "platform/procB®, 0x0000000000010018(loopl): I.addi rl,rl,OxFFFFFfff

processor A has executed 30 instructions
processor B has executed 30 instructions

Note the lines at the start of the run showing net ports present on each instance, revealing
that procA has a single interrupt input but procB has two such inputs:

platform/procA NET PORTS
reset (input)
intrO (input)
platform/procB NET PORTS
reset (input)
intrO (input)
intrl (input)

After the simulation completes, the procB processor-specific test file test. log contains
this:

Taking interrupt with 1D=0x2
Taking interrupt with I1D=0x1

© 2022 Imperas Software Limited.www.OVPworld.org Page 315 of 321

OVP Processor Modeling Guide

Finished

© 2022 Imperas Software Limited.www.OVPworld.org Page 316 of 321

OVP Processor Modeling Guide

28 Making High-Performance Processor Models

Previous sections in this document have shown some of the techniques required to make
high performance processor models. This section summarizes some key points, not all of
which have been mentioned previously.

Do as much work as possible at morph time. If it is possible to simplify an instruction
by making a decision at morph time, always do so. As an example, for some OR1K
control register accesses it was possible to determine at morph time which control register
was being accessed, and special code was generated to do such accesses. As another
example, instructions that have different behavior in different modes (e.g. user and
supervisor) need only morph the behavior required for the current mode in a modal
processor.

Use morph time constructs wherever possible and reasonable in preference to
embedded calls. With every instruction, there is a fundamental choice of implementation
strategy: should it be implemented by a morpher primitive, or by an embedded calltoa C
function? The interface in vmiMt.h contains a rich set of morph time primitives, and
these should almost always be used in preference to embedded calls. Embedded calls are
slower, and the DFA optimizer in the simulator cannot propagate optimizations across
calls, which means the code around the call is also less efficient.

The one exception is when an instruction requires many morph primitives to implement —
in this case, a call to a native function may be faster (and the JIT compiled code will be
smaller).

In particular, use vmimtUncondJump etc in preference to vmirtSetPC in an embedded
call. Jumps described using the morph-time functions are hugely faster.

In particular, use vmimtLoadRRO etc in preference to vmirtRead\NByteDomain etc in
an embedded call. Loads and stores described using the morph-time functions are hugely
faster.

Position the most-frequently-used simulated registers in the first 128 bytes of the
processor structure. This section of the processor model is accessed in JIT code using a
byte offset from the processor object, so the generated code is most compact.

Always use VMI_REG_TEMP to describe intermediates that are not true processor
registers. The JIT code generator can often assign these entirely to native registers or
optimize away references to them altogether.

Do not explicitly assign the program counter on every instruction. The program
counter can be found when required using vmi rtGetpPC etc, so do not maintain its value
explicitly in the processor structure.

© 2022 Imperas Software Limited.www.OVPworld.org Page 317 of 321

OVP Processor Modeling Guide

Derive complex register values on demand. Infrequently-accessed but frequently-
changing registers like status registers should have their values assembled on demand
when required. This is especially true if the registers contain flags.

Master flag register values as bytes in the processor structure. Do not master them as
bits in a status register, as this will require complex code to correct the status register on
every flag change.

Use vmi rtAliasMemoryVM/vmirtUnal iasMemoryVvM to model virtual memory pages.
The simulator will generate JIT code in such regions so that it is physically mapped and
relocatable, which dramatically improves simulation performance of VM systems.

Use vmirtAliasMemory/vmirtUnal iasMemory to model fixed-mapped pages. The
simulator will generate JIT code in such regions so that it is virtually mapped and not
relocatable, which is even faster than relocatable physically mapped sections, provided
that the mapping remains constant.

28.1 Processor Model Efficiency Analysis

When a processor model is fully implemented there are a some further checks that can be
made to ensure that it is working effectively as possible. The first step is to enable
dictionary statistics at the end of a simulation run using the -—verbosedict command
line parameter. For example:

platform/harness.$IMPERAS_ARCH.exe --verbosedict --program
application/asmtest.OR1K. elf

When this attribute is used, additional summary statistics are printed at the end of
simulation for each of the code dictionaries. Here is the result for an OR1K processor
running ucLinux:

info ---------- - - ----»-- \ \; o (l i i i i i i i i i i ————— -
Info CPU "plat/cpuA® STATISTICS

info ---------- - - ----»-- \ \; o (l i i i i i i i i i i ————— -
Info DICTIONARY "SUPERVISOR®" STATISTICS

Info Simulated code size : 95,132 bytes

Info Native code size : 306,278 bytes

Info bloat factor 1 3.2

Info Writeback fragment size : 3,705 bytes

Info of which small : 3,093 bytes

Info of which large : 612 bytes

Info large fragments 197

Info Active code blocks : 4,138

Info Pair code blocks : 155 (3.7% of active)
Info Pair native code size : 36,931 bytes

Info Block ejections

Info colliding : 6

Info bad memory window 4

Info remorph icount -3

Info set mode block t 4

Info Mispredicted branches : 6,916

Info MEMORY STATISTICS

Info Static mapped memory : 0 bytes

© 2022 Imperas Software Limited.www.OVPworld.org Page 318 of 321

OVP Processor Modeling Guide

Info smaller than 1Kb 1

Info smaller than 4Kb 2

Info at least 4Kb - 37

Info Slave regions (by size)

Info smaller than 1Kb - 8

Info smaller than 4Kb 0

Info at least 4Kb 0

Info Memory model efficiency

Info fast region lookups : 4,336

Info uncached reads : 36

Info - which set region : 36

Info - which set function: 36

Info uncached writes - 784

Info - which set region 359

Info - which set function: 39

Info window misses - 82

Info---------- -\ -\ - - i e e ——————
Info DICTIONARY “USER® STATISTICS

Info Simulated code size : 40,544 bytes
Info Native code size : 129,838 bytes
Info bloat factor 1 3.2

Info Writeback fragment size : 957 bytes
Info of which small : 819 bytes
Info of which large : 138 bytes
Info large fragments - 23

Info Active code blocks : 1,675

Dynamic mapped memory

Pair code blocks
Pair native code size

: 4,530,440 bytes
Master regions (by size)

: 8 (0.5% of active)
: 1,339 bytes

Info Block ejections

Info colliding : 11

Info Mispredicted branches 1,966
Info MEMORY STATISTICS

Info Static mapped memory : 0 bytes
Info Dynamic mapped memory : 4,530,440 bytes
Info Master regions (by size)

Info smaller than 1Kb -1

Info smaller than 4Kb : 2

Info at least 4Kb - 37

Info Slave regions (by size)

Info smaller than 1Kb - 8

Info smaller than 4Kb 0

Info at least 4Kb 0

Info Memory model efficiency

Info fast region lookups : 4,336
Info uncached reads 36

Info - which set region 36

Info - which set function: 36

Info uncached writes 784
Info - which set region 359
Info - which set function: 39

Info window misses : 82

info -------- - -\ - - - - o o b b b b

The fields of most interest are the bloat factor and the categories listed beneath Block
ejections.

'bloat factor® gives the ratio of JIT-translated code size to the original simulated code
size for all currently-active code blocks (for example, if a simulated instruction sequence
of 20 bytes gets translated into a native block of 100 bytes, the bloat factor is 5).

© 2022 Imperas Software Limited.www.OVPworld.org Page 319 of 321

OVP Processor Modeling Guide

Typically, JIT-translated code is somewhat more verbose than the original source, so this
number is usually greater than 1. If the ratio is much higher than 5 or 6, then it could
mean that some instruction translations are producing very long native code equivalents,
which could be a cause of inefficiency. Create small (probably assembler) test cases to
help identify which instructions may be suffering from poor translation.

'‘Block ejections' indicates how many code blocks were ejected during simulation,
grouped by the reason for the ejection. If a large number of code blocks are ejected
during a simulation run, that could indicate an error in the model (an inappropriate use of
block masks, for example). By writing small, probably assembler, test cases and using --
verbosedict, individual instructions and/or families of instructions can be verified for
efficiency.

28.1.1 Processor Model Profiling

When using the Imperas Professional products with the CPUMAN_MULT1 personality, it is
possible to enable model instruction profiling to determine which simulated instructions
take most execution time. This feature requires the IMP_CPUDEV license key in addition to
your regular license key. The profiler works by sampling the processor simulated
program counter at regular intervals during the simulation and accumulating samples for
each instruction type. Profiling can be enabled in one of three ways:

1. by using the option —profile <number> on the simulator command line;

2. by setting the Int32 parameter profile to <number> on the root module, when
using an OP platform;

3. by setting environment variable IMPERAS_PROFILE to <number> when running a
simulation.

In each case, <number> is the maximum number of instruction categories that should be
reported at the end of simulation. As an example, running an OR1K simulation of an
H.264 encoding algorithm with the environment variable setting IMPERAS_PROF ILE=20
produces this output at the end of simulation:

addi .84s (orlk_1/cpuA)
sb -15s (orlk_1/cpuA)
Iwz -16s (orlk_1/cpuA)
1bz .92s (orlk_1/cpuA)
sw .96s (orlk_1/cpuA)
lhz .55s (orlk_1/cpuA)
.add .46s (orlk_1/cpuA)
.slhli .44s (orlk_1/cpuA)
.or .28s (orlk_1/cpuA)
.and (orlk_1/cpuA)

JIT translation)

.ori .20s (orlk_1/cpuA)

R e e]
OCO0OO0OO0OO0O0O0O0DO0OO0O0OO0OO0OORFRPNWW
N
[y
()

-sub .19s (orlk_1/cpuA)
-sh -13s (orlk_1/cpuA)
.srli .09s (orlk_1/cpuA)
.nop .07s (orlk_1/cpuA)
.srai .06s (orlk_1/cpuA)
.sfeqi .06s (orlk_1/cpuA)
-movhi .05s (orlk_1/cpuA)

© 2022 Imperas Software Limited.www.OVPworld.org Page 320 of 321

OVP Processor Modeling Guide

1.bf 0.05s (orlk_1/cpuA)
TOTAL TIME 15.45s

From this, it is possible to see that most time was taken in the 1.addi instruction (which
happens to be by far the most frequently-used instruction type in this example), but
generally loads and stores are dominant. Time taken by the JIT morpher is also shown in
a special category.

Simple profiling is the least intrusive and therefore gives the most accurate indication of
where time is spent. It is possible to enable somewhat more intrusive profiling that also
counts instructions and therefore can generate a report giving the mean time spent in a
particular instruction type. To do this, specify a negative value for IMPERAS_PROFILE; for
example, setting IMPERAS_PROFILE=-20 produces this output on the same example:

1._addi 5.43s 6,246,115,414 0.9ps/instruction (orlk_1/cpuA)
1.sb 4_34s 1,634,569,969 2.7ps/instruction (orlk_1/cpuA)
1.lwz 2.72s 1,220,710,977 2.2ps/instruction (orlk_1/cpuA)
1.1bz 1.81s 1,589,078,874 1.1ps/instruction (orlk_1/cpuA)
1.sw 0.87s 614,735,643 1.4ps/instruction (orlk_1/cpuA)
1.1hz 0.71s 330,262,102 2.1ps/instruction (orlk_1/cpuA)
1.add 0.69s 981,748,236 0.7ps/instruction (orlk_1/cpuA)
1_slli 0.66s 833,395,483 0.8ps/instruction (orlk_1/cpuA)
1.and 0.46s 235,084,866 2.0ps/instruction (orlk_1/cpuA)
JIT translation) 0.38s 107,923 3.4ns/instruction

1.or 0.23s 267,618,753 0.9ps/instruction (orlk_1/cpuA)
1.sub 0.20s 277,832,028 0.7ps/instruction (orlk_1/cpuA)
1.ori 0.18s 440,171,168 0.4ps/instruction (orlk_1/cpuA)
1_movhi 0.15s 252,801,812 0.6ps/instruction (orlk_1/cpuA)
1.nop 0.13s 171,563,151 0.8ps/instruction (orlk_1/cpuA)
1.sh 0.11s 40,420,735 2.7ps/instruction (orlk_1/cpuA)
1.j 0.10s 82,737,470 1.2ps/instruction (orlk_1/cpuA)
I.srli 0.09s 267,001,754 0.3ps/instruction (orlk_1/cpuA)
1.bfF 0.08s 2,292,386,744 0.0ps/instruction (orlk_1/cpuA)
I.srai 0.07s 81,752,183 0.9ps/instruction (orlk_1/cpuA)
TOTAL 19.82s 20,717,653,845

In this report, the columns for each instruction type are as follows:

the instruction type (for example, 1._addi);

the total execution time for instructions of that type (for example, 5.43s);

the number of instructions of that type executed (for example, 6,246,115,414);
the time per instruction of that type (for example, 0.9ps/instruction).

o

The speed of JIT translation per instruction is also shown: in this case, it is 3.4ns per
instruction. A large JIT translation time per instruction might indicate an inefficiency in
the processor model morpher.

Note that simulation is slower than in the previous report because of the extra overhead
required for event counting, but the general time distribution pattern is similar.

© 2022 Imperas Software Limited.www.OVPworld.org Page 321 of 321

	1 Preface
	1.1 Notation
	1.2 Recommended Reading
	1.3 Related Imperas & OVP Documents

	2 Introduction
	2.1 Prerequisites

	3 Imperas Simulation Overview
	3.1 Simulation Environments
	3.2 Processor Models
	3.3 Semihosting
	3.4 Cache and Memory Subsystem Models

	4 Introduction to Processor Modeling
	4.1 Prerequisites
	4.2 Creating a Processor Outline Model
	4.2.1 Declaring Shared Functions - or1kFunctions.h
	4.2.2 Defining Processor Structure - or1kStructure.h
	4.2.3 Constructor, Destructor and Ports - or1kMain.c
	4.2.4 JIT Translations - or1kMorph.c
	4.2.5 Support Functions - or1kUtils.c
	4.2.5.1 The Endianness Function
	4.2.5.2 The Next Instruction Function

	4.2.6 Processor Information - or1kInfo.c
	4.2.6.1 Model Location (vlnv)
	4.2.6.2 Default Semihost Library Location (semihost)
	4.2.6.3 List Of Extension Libraries (mandatoryExtensions)
	4.2.6.4 ELF codes (elfCode and alternativeElfCodes)
	4.2.6.5 Endian fields (endianFixed and endian)
	4.2.6.6 gdbPath
	4.2.6.7 gdbFlags
	4.2.6.8 gdbInitCommands
	4.2.6.9 helper
	4.2.6.10 debugHelper
	4.2.6.11 QLQualified
	4.2.6.12 Debugger snap address

	4.2.7 Function Registration - or1kAttrs.c

	4.3 Implementing a Test Platform using OVPsim
	4.4 Creating an Application Test Case
	4.5 Running the Application Test Case with the Processor Model

	5 Implementing the Instruction Decoder
	5.1 The Template Decoder Model
	5.1.1 Defining Decoder Types - or1kDecode.h
	5.1.2 Decode Implementation - or1kDecode.c
	5.1.3 JIT Translations - or1kMorph.c
	5.1.4 Instruction Disassembler - or1kDisassemble.c

	5.2 Running the Application Test Case with the Processor Model
	5.3 More Complex Decoders

	6 Implementing the Instruction Disassembler
	6.1 The Template Disassembler Model
	6.1.1 Instruction Formats - or1kDisassembleFormats.h
	6.1.2 Supporting Instruction Formats - or1kDecode.h
	6.1.3 Adding Instruction Formats - or1kDecode.c
	6.1.4 Using Instruction Formats - or1kDisassemble.c

	6.2 Running the Application Test Case with the Processor Model
	6.3 Creating Disassembler Point Tests
	6.3.1 Elegant Test Termination using Semihosting

	6.4 Uncooked Disassembly

	7 Implementing Simple Behavior
	7.1 An Introduction to Code Morphing
	7.2 The Template Simple Behavioral Model
	7.2.1 Defining GPRs - or1kStructure.h
	7.2.2 Initializing GPRs - or1kMain.c
	7.2.3 Implementing Binops - or1kMorph.c

	7.3 Running the Application Test Case with the Processor Model
	7.4 Instruction Temporaries

	8 Processor Flags and Register Dumping
	8.1 The Template Flags Model
	8.1.1 Adding Flag Registers - or1kStructure.h
	8.1.2 Using Flags - or1kMorph.c

	8.2 Validating Flag Behavior with Tests
	8.3 Model-Specific Dump Format
	8.3.1 Defining Status Register - or1kStructure.h
	8.3.2 Adding Register Dump - or1kUtils.c
	8.3.2.1 Printing the Program Counter (PC)
	8.3.2.2 Printing the Status Register (sr)

	8.3.3 Initializing Status Register - or1kMain.c
	8.3.4 Dump Function Registration - or1kAttrs.c

	8.4 Validating Register Dumping with Point Tests
	8.5 Derived Flags

	9 Implementing Unconditional Jump Instructions
	9.1 The Template Unconditional Jump Model
	9.1.1 Defining Link Register - or1kStructure.h
	9.1.2 Defining Jump Instruction Types - or1kDecode.h
	9.1.3 Decoding Jump Instructions - or1kDecode.c
	9.1.4 Jump Instruction Formats - or1kDisassembleFormats.h
	9.1.5 Jump Instruction Disassembly - or1kDisassemble.c
	9.1.6 Implementing Jump Instructions - or1kMorph.c
	9.1.6.1 Direct Unconditional Jump Instructions (l.j and l.jal)
	9.1.6.2 Indirect unconditional Jump Instructions (l.jr and l.jalr)

	9.2 Validating Unconditional Jumps with Point Tests

	10 Implementing Conditional Jump Instructions
	10.1 The Template Conditional Jump Model
	10.1.1 Defining Branch Flag - or1kStructure.h
	10.1.2 Decoding Instructions - or1kDecode.[ch]
	10.1.3 Disassembling Conditions - or1kDisassemble.c
	10.1.4 Implementing Conditional Jumps - or1kMorph.c
	10.1.4.1 Conditional Branch Instructions (l.bf and l.bnf)
	10.1.4.2 Comparison Instructions

	10.2 Validating Conditional Jumps with Point Tests

	11 Implementing Memory Access Instructions
	11.1 The Template Memory Access Model
	11.1.1 Decoding Loads and Stores - or1kDecode.c
	11.1.2 Load/Store Disassembly - or1kDisassemble.c
	11.1.3 Implementing Loads and Stores - or1kMorph.c
	11.1.3.1 Load Instructions
	11.1.3.2 Store Instructions

	11.1.4 Load/Store Test Harness - platform/harness.c

	11.2 Fibonacci Example
	11.2.1 Basic Example
	11.2.2 Validating Simulation Performance
	11.2.3 Demonstrating Jump Hint Effectiveness

	12 Modeling Exceptions
	12.1 Basic Example
	12.1.1 Adding Exception Registers - or1kStructure.h
	12.1.2 Declaring Exception Handlers - or1kFunctions.h
	12.1.3 Defining Exception Types - or1kExceptionTypes.h
	12.1.4 Implementing Exceptions - or1kExceptions.c
	12.1.5 Taking Exceptions - or1kUtils.[ch]
	12.1.6 Exception Function Registration - or1kAttrs.c
	12.1.7 l.rfe and l.sys Instructions

	12.2 Misaligned Load/Store Address Snapping and Value Rotation
	12.2.1 ARM Model Load/Store Address Snap Callback

	12.3 Memory Aborts
	12.4 Misaligned Fetch Address Snapping

	13 Modeling Mode-Dependent Behavior (Part 1)
	13.1 The Template Modal Model
	13.2 Correcting l.rfe Behavior
	13.3 Implementing l.mtspr
	13.4 Implementing l.mfspr
	13.5 Root Module Simulation - platform/harness.c
	13.6 Testing Illegal Instruction Exceptions
	13.7 Testing l.mtspr and l.mfspr Performance
	13.7.1 Increase application/asmtest.S to Loop Count
	13.7.2 Use Index Register r31

	13.8 Passing Register Arguments to Embedded Calls

	14 Modeling Mode-Dependent Behavior (Part 2)
	14.1 The Template Fast Modal Model
	14.2 Remove Temporary Flag - or1kStructure.h
	14.3 Mode-Dependent JIT Functions - or1kMorph.c
	14.4 Testing Optimized Illegal Instruction Exceptions
	14.5 Using Multiple Code Dictionaries
	14.6 Cautionary Notes about Code Dictionaries
	14.6.1 vmirtSetMode is Slow
	14.6.2 Model Code is More Complicated

	15 Implementing a Tick Timer
	15.1 OR1K Tick Timer Overview
	15.2 Tick Timer Modeling Considerations
	15.3 The Template Tick Timer Model
	15.4 Adding Timer Registers - or1kStructure.h
	15.5 Timer Register Read and Write - or1kMorph.c
	15.6 Adding Timer Exceptions - or1kExceptions.c
	15.7 Status Register Update - or1kUtils.c
	15.8 Fetch/Timer Callback Registration - or1kAttrs.c
	15.9 Testing Tick Timer Exceptions
	15.10 Explicit Processor Timers

	16 Modeling External Interrupts
	16.1 OR1K PIC Overview
	16.2 The Template External Interrupt Model
	16.3 Defining PIC Registers - or1kStructure.h
	16.4 Adding PIC Register Read and Write - or1kMorph.c
	16.5 Adding PIC Exceptions - or1kExceptions.c
	16.6 Adding Net Ports - or1kMain.c
	16.7 Enhancing Register Dump - or1kUtils.c
	16.8 PIC Test Harness - platform/harness.c
	16.9 Testing External Exceptions

	17 Implementing the Debug Interface
	17.1 The Template Debug Interface Model
	17.2 Adding Query Functions - or1kUtils.c
	17.2.1 Processor Mode Iterator Function
	17.2.2 Processor Current Mode Query Function
	17.2.3 Processor Exception Iterator Function
	17.2.4 Processor Current Exception Query Function

	17.3 Register Access Functions - or1kRegisters.c
	17.3.1 Register Read Callback Functions
	17.3.2 Register Write Callback Functions

	17.4 Raw and Callback Register Access
	17.5 Handling Artifact Accesses - or1kExceptions.c
	17.6 Debug Function Registration - or1kAttrs.c
	17.7 Debug Function Test Harness - platform/harness.c
	17.8 Testing the Debugger Interface
	17.9 Testing Register Change Tracing

	18 Adding an Extended Programmers View
	18.1 An Example Programmers View
	18.2 Adding View Object and Event - or1kStructure.h
	18.3 Implementing Programmer’s View - or1kView.c
	18.4 Triggering View Events - or1kExceptions.c
	18.5 Testing the Extended Programmers View
	18.5.1 Running in OVP
	18.5.2 Operation in Imperas MP Debugger

	19 Implementing Save/Restore
	19.1 Example Save/Restore Implementation
	19.2 Save/Restore Mode Active - or1kStructure.h
	19.3 Save/Restore Interface Functions - or1kMain.c
	19.3.1 Save/Restore Data Constraints
	19.3.2 Multicore Processors

	19.4 Save/Restore Function Registration - or1kAttrs.c
	19.5 Save/Restore Mode Accesses - or1kExceptions.c
	19.6 Save/Restore Test Harness - platform/harness.c
	19.7 Testing Save/Restore
	19.7.1 State File Format

	20 Implementing Instruction Attributes
	20.1 Instruction Attribute Access – ocl/oclia.h
	20.1.1 Information Available
	20.1.1.1 Node List: OCL_DS_NODES
	20.1.1.2 Registers Read: OCL_DS_REG_R
	20.1.1.3 Registers Written: OCL_DS_REG_W
	20.1.1.4 Unknown Registers Read: OCL_DS_RANGE_R
	20.1.1.5 Unknown Registers Written: OCL_DS_RANGE_W
	20.1.1.6 Instruction Fetch Operations: OCL_DS_FETCH
	20.1.1.7 Next Instruction Expressions: OCL_DS_NEXTPC
	20.1.1.8 Load/Store Address Expressions: OCL_DS_ADDRESS

	20.2 Example Instruction Attributes Implementation
	20.3 Baseline Instruction Attributes
	20.4 Test Harness - platform/harness.c
	20.5 Testing Baseline Instruction Attributes
	20.6 Adding Instruction Classes
	20.7 Testing Enhanced Instruction Attributes

	21 Implementing Fixed-Mapped Virtual Memory
	21.1 Example Memory Maps
	21.2 The Template Fixed-Mapped Model
	21.3 or1kVM.c
	21.4 VM Function Registration - or1kAttrs.c
	21.5 Testing Fixed-Mapped Virtual Memory

	22 Implementing a Dynamic-Mapped TLB
	22.1 General TLB Concepts
	22.2 The Simple Example TLB
	22.3 The Template Simple TLB Model
	22.4 Defining TLB Structures - or1kStructure.h
	22.5 Implementing Virtual Memory - or1kVM.[ch]
	22.6 Adding TLB Update Instruction - or1kMorph.c
	22.7 Testing the Simple TLB Model
	22.8 TLB Modeling with Multiple Processor Modes
	22.9 TLB Modeling with ASID-Mapped Entries
	22.10 Lazy Mapping of TLB Entries

	23 Implementing a TLB LRU Replacement Policy
	23.1 Introduction to LRU Replacement Implementation
	23.2 The Template LRU Replacement Policy Model
	23.3 Adding MRU Entry State - or1kStructure.h
	23.4 Using MRU Entry State - or1kVM.c
	23.5 Testing the LRU Replacement Policy Model

	24 Implementing QuantumLeap-Compatible Models
	24.1 Introduction to Multiprocessor Simulation
	24.2 QuantumLeap Requirements
	24.3 Test-and-Set or Atomic Swap Instructions
	24.4 Load/Store Exclusive Constructs
	24.5 Accessing Shared Register State
	24.6 Enabling QuantumLeap in a processor model

	25 Function Address Semihosting
	25.1 Interception
	25.2 The Template Semihosting Library
	25.3 File semihosting/or1kNewlib.c
	25.4 Semihosting Function Return - or1kSemiHost.c
	25.5 File platform/harness.c
	25.6 Flow of Control for Opaque Address Intercepts
	25.7 Testing the Semihosting Intercept Library
	25.8 Intercepts and Multicore Processors

	26 Using Intercept Libraries for Instruction Set Enhancement
	26.1 The Template Instruction Set Enhancement Library
	26.2 File exchange/or1kExchange.c
	26.3 The Harness File, platform/harness.c
	26.4 Testing the Intercept Library
	26.5 Extension Libraries and Multicore Processors
	26.6 Pre-Morph and Post-Morph Callbacks

	27 Processor Configuration
	27.1 Example of a Configurable Processor
	27.2 The Parameters Structure
	27.3 Parameter Specification - or1kParameters.c
	27.4 Parameter Function Registration - or1kAttrs.c
	27.5 Using a parameterized model
	27.6 Testing Processor Configuration

	28 Making High-Performance Processor Models
	28.1 Processor Model Efficiency Analysis

