
© 2022 Imperas Software Limited www.OVPworld.org Page 1 of 23

OVP VMI Memory Model Component Function

Reference

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK

docs@imperas.com

Author: Imperas Software Limited

Version: 6.9.2

Filename: OVP_VMI_Memory_Model_Component_Function_Reference.doc

Project: OVP VMI MMC Reference

Last Saved: July 28, 2022

Keywords: MMC

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 2 of 23

Copyright Notice
Copyright © 2022 Imperas Software Limited All rights reserved. This software and

documentation contain information that is the property of Imperas Software Limited. The

software and documentation are furnished under a license agreement and may be used or

copied only in accordance with the terms of the license agreement. No part of the

software and documentation may be reproduced, transmitted, or translated, in any form or

by any means, electronic, mechanical, manual, optical, or otherwise, without prior written

permission of Imperas Software Limited, or as expressly provided by the license

agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the

documentation for its internal use only. Each copy shall include all copyrights,

trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the

United States of America. Disclosure to nationals of other countries contrary to United

States law is prohibited. It is the reader’s responsibility to determine the applicable

regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 3 of 23

Table of Contents

1 Introduction ... 4

1.1 TRANSPARENT AND FULL MMC MODELS .. 4

2 Example ... 5

2.1 MODEL ATTRIBUTES TABLE .. 5
2.2 CONSTRUCTION AND SPECIFICATION .. 6
2.3 REFRESH .. 6
2.4 READ AND WRITE CALLBACKS – FULL MMC MODE... 7
2.5 READ AND WRITE CALLBACKS – TRANSPARENT MMC MODE .. 7

3 Model Configuration .. 8

3.1 MODEL PARAMETERS ... 8
3.2 PARAMETER SPECIFICATION .. 8

4 Functions.. 11

4.1 VMIMMCGETNAME .. 11
4.2 VMIMMCGETHIERARCHICALNAME .. 12
4.3 VMIMMCGETNEXTPORT .. 13
4.4 VMIMMCGETNEXTDOMAIN ... 15
4.5 VMIMMCGETPORTATTRS ... 17
4.6 VMIMMCREFRESHTRANSPARENT ... 19
4.7 VMIMMCREFRESHFULL .. 20
4.8 VMIMMCADDCOMMAND .. 21
4.9 VMIMMCADDCOMMANDPARSE .. 22

5 Model Design Considerations .. 23

5.1 WHAT IS THE DIFFERENCE BETWEEN TRANSPARENT AND FULL ... 23
5.2 WHAT LIMITATIONS ARE THERE USING AN MMC FOR CACHE MODELING 23

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 4 of 23

1 Introduction
This is reference documentation for version 6.9.2 of the MMC function interface, defined

in ImpPublic/include/host/vmi/vmiMmc.h.

The functions in this interface are used to model memory model components, such as

instruction and data caches, that supplement Imperas processor models.

There are two distinct kinds of memory model component model: full and transparent.

Full models implement storage and so can be used to accurately model components such

as caches that are incoherent with main memory. Transparent models do not implement

storage (so cannot be incoherent) but can be used to create very fast performance

monitors. As an example, a transparent cache model would model only the cache tags and

use this information to count hits and misses.

Functions in this interface have the prefix vmimmc.

1.1 Transparent and Full MMC models

MMCs operate in two modes:

In Full Mode the model must implement read and write requests delivered to it.

Transactions can be satisfied locally (to simulate a cache-hit for example) or routed to

other models (to simulate a cache-miss). Since the model is simulating the storage and

recovery of data, cache coherency can be modeled in this mode.

Full mode has a detrimental effect on simulator performance especially when used with

very high speed processor models.

In Transparent Mode, the simulator automatically routes the read and write requests

around the model to whatever is connected beyond it. The model is notified of every

access by a callback function. The function is used to record data but does not implement

the reads and writes. Since data is not read or written by the model (other than for

performance analysis), cache coherency cannot be modeled in this mode, so cache

behavior will appear full coherent.

Transparent Mode has less effect on simulation performance.

The simulator chooses the mode of operation. It is recommended that both full and

transparent modes are implemented so that a model can be used in both cases.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 5 of 23

2 Example

A simple module that uses an MMC to model a cache is in

$IMPERAS_HOME/Examples/PlatformConstruction/fullMMC.

The module uses an OVP model from

$IMPERAS_HOME/ImperasLib/source/ovpworld.org/mmc/wb_1way_32byteline_2048tags/1.0

The source of this model is in

$IMPERAS_HOME/ImperasLib/source/ovpworld.org/mmc/support/1.0/include/cache.h

Note: Run-time tests in MMCs that would be required if the model were written to have

its configuration specified at run time would significantly affect the performance of the

model. Therefore this include file is parameterized to construct separate cache models

that are configured at compile time, thus saving the overhead of configuration

computations at run time.

2.1 Model attributes table

An MMC model defines a table that contains the addresses of entry functions required by

the simulator. The table is defined by the type vmimmcAttrs in vmimmcAttrs.h and must

be called modelattrs.

vmimmcAttr modelAttrs = {

 .versionString = VMI_VERSION,

 .modelType = VMI_MMC_MODEL,

 .componentSize = sizeof(cacheObject),

 .constructorCB = cacheConstructor,

 .linkCB = cacheLink,

 .destructorCB = cacheDestructor,

 .refreshCB = cacheRefresh,

 .readNFullCB = readNFull,

 .writeNFullCB = writeNFull,

 .readNTransparentCB = readNTransparent,

 .writeNTransparentCB = writeNTransparent,

 .paramSpecsCB = paramSpecs,

 .paramValueSizeCB = paramValueSize,

 .busPortSpecsCB = nextBusPortSpec

};

The fields must be initialized as follows:

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 6 of 23

2.2 Construction and specification

.versionString

Must be set to the macro VMI_VERSION defined in vmiVersion.h

.modelType

Must be set to VMI_MMC_MODEL defined in vmiTypes.h

.componentSize

Must be set to the total size (in bytes) of the data object defined by your model. In the

example cache.h, data is stored in the structure cacheObject.

.constructorCB

Use the macro VMIMMC_CONSTRUCTOR_FN to define your constructor function. This is used

to construct and initialize data associated with the MMC instance.

.destructorCB

Use the macro VMIMMC_DESTRUCTOR_FN to define your destructor function. This is used

to free any resources allocated by your model, and to report statistics and other

information to the use at the end of simulation.

.linkCB

This function is used when this is a transparent cache, to link to another cascaded cache.

.paramSpecsCB

This function is used by the simulator to get a list of formal parameters read by this

model. Parameters are set in the platform and can be read by the model to change its

behavior. Parameter usage is described in more detail in the next section.

.paramValueSizeCB

This function is used by the simulator to get the size of a parameter block needed to hold

parameters for the MMC model. Parameter usage is described in more detail in the next

section.

.busPortSpecsCB

This function is used by the simulator to get a list of bus ports used by the model.

2.3 Refresh

.refreshCB

This function is called before an MMC model becomes active (with state RS_RUN) and

before an MMC model becomes inactive (with state RS_SUSPEND). The purpose of the

callback is to allow the MMC model to update its state to take account of changes in the

platform while it has been inactive (if RS_RUN) or to propagate state changes from the

model to the wider platform (if RS_SUSPEND).

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 7 of 23

2.4 Read and Write callbacks – full MMC mode

.readNFullCB

This function is called to implement the reading of data by the bus master connected to

this model. It can supply the data from a local source or might choose to read data from

another source via its bus slave port.

.writeNFullCB

This function is called to implement the writing of data by the bus master. It can store the

data locally or might choose to write it to another destination via a master port.

2.5 Read and Write callbacks – transparent MMC mode

.readNTransparentCB

.writeNTransparentCB

These functions do not implement the read and write callbacks – the simulator reads and

writes data automatically from whatever is connected to the model’s slave ports. Instead

these called are used to record whatever information is required by the transparent model.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 8 of 23

3 Model Configuration
A model can have optional features that can be configured by the platform during

construction. Configuration is controlled by parameters which form part of the model's

interface.

3.1 Model Parameters

Parameters are specified to the simulator by an iterator function and a size function

specified in the model's attributes table. A parameter specification specifies the data type

and bounding conditions of the parameter so the model does not need to check for trivial

errors. The model must define a structure which contains value fields for each parameter.

It should use the provided macros of the form VMI_<type>_PARAM, which reserve space

for the value and for a Boolean which is true if the parameter has been set by the

platform, false otherwise.

The supported parameter types are described below:

macro data type
VMI_BOOL_PARAM boolean
VMI_INT32_PARAM 32 bit signed
VMI_INT64_PARAM 64 bit signed
VMI_UNS32_PARAM 32 bit unsigned
VMI_UNS64_PARAM 64 bit unsigned
VMI_DBL_PARAM floating point
VMI_STRING_PARAM 0 terminated string
VMI_ENUM_PARAM 0 terminated string
VMI_ENDIAN_PARAM 0 terminated string
VMI_PTR_PARAM native host pointer

During initialization, the simulator uses the iterator function to get the list of parameters

for the model. Then it allocates the model's parameter structure (using the size function)

and fills in the correct values. This structure is then passed to the model's constructor

where the model can use the values.

3.2 Parameter Specification

The parameter specification structure is defined in vmiParameters.h and should be

initialized using these macros:

macro data type limits
VMI_BOOL_PARAM_SPEC boolean 0 or 1
VMI_INT32_PARAM_SPEC 32 bit signed specified min / max
VMI_INT64_PARAM_SPEC 64 bit signed specified min / max
VMI_UNS32_PARAM_SPEC 32 bit unsigned specified min / max
VMI_UNS64_PARAM_SPEC 64 bit unsigned specified min / max
VMI_DBL_PARAM_SPEC floating point specified min / max
VMI_STRING_PARAM_SPEC 0 terminated string any string (or 0 if not specified)

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 9 of 23

VMI_ENUM_PARAM_SPEC 0 terminated string string must be a member of the specified list
VMI_ENDIAN_PARAM_SPEC 0 terminated string "big" or "little"
VMI_PTR_PARAM_SPEC native host pointer none

The iterator function must be supplied by the model and should use the provided macro

from vmiMmcAttrs.h:

Prototype
#define VMIMMC_PARAM_SPECS_FN(_NAME) vmiParameterP _NAME (\

 vmimmcComponentP component, \

 vmiParameterP prev \

)

It should return the first or subsequent parameter specification or 0 if at the end of the list.

Note that the iterator is also supplied with the MMC component pointer, so can include or

exclude parameters in an instance-specific way if required.

Example
// VMI header files

#include "vmi/vmiMmcAttrs.h"

#include "vmi/vmParameters.h"

//

// Define the parameter structure

//

typedef struct paramValuesS {

 VMI_BOOL_PARAM(verbose); // boolean parameter

 VMI_UNS32_PARAM(numSlavePorts); // 32 bit unsigned parameter

} pVals, *pValsP;

//

// Define the parameters

//

static vmiParameter formals[] = {

 VMI_BOOL_PARAM_SPEC(pVals, verbose, 0, "Enable text output"),

 VMI_UNS32_PARAM_SPEC(pVals, numSlavePorts, 1, 1, 8, "Slave port number"),

 // Add entry with name==NULL to terminate list

 VMI_END_PARAM

};

//

// Function to iterate the parameter specs

//

VMI_PROC_PARAM_SPECS_FN(getParamSpec) {

 if(!prev) {

 return formals;

 } else {

 prev++;

 if (prev->name)

 return prev;

 else

 return 0;

 }

}

//

// Get the size of the parameter values table

//

VMI_PROC_PARAM_TABLE_SIZE_FN(paramValueSize) {

 return sizeof(pVals);

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 10 of 23

}

//

// model constructor

//

VMIMMC_CONSTRUCTOR_FN(modelConstructor) {

 myMMCP myMMC = (myMMCP)component;

 pValsP params = (pValsP)parameterValues; // cast to my type

 // use the parameter values

 myMMC->numSlavePorts = params->numSlavePorts;

 if (params->verbose) {

 vmiPrintf(....);

 }

 ...

}

//

// Add functions to the model attributes table

//

const vmiMMCAttr modelAttrs = {

 ...

 .constructorCB = modelConstructor,

 .paramSpecsCB = getParamSpec,

 .paramValueSizeCB = paramValueSize,

 ...

};

Restrictions
The parameter structure exists only for the life of the constructor function.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 11 of 23

4 Functions

4.1 vmimmcGetName

Prototype
const char *vmimmcGetName(vmimmcComponentP component);

Description
This function returns the name of an MMC component. Typically this will be used in

debug messages or in summary messages.

The name returned is that of the component only, as defined in the platform file. The

related function vmimmcGetHierarchicalName returns the name including the full

instantiation path.

Example

#include “vmi/vmiMmc.h”

#include “vmi/vmiMmcAttrs.h”

#include “vmi/vmiMessage.h”

// Cache object destructor

static VMIMMC_DESTRUCTOR_FN(cacheDestructor) {

 vmiPrintf(

 "\n%s called for %s\n",

 FUNC_NAME,

 vmimmcGetName(component)

);

 cacheObjectP cache = (cacheObjectP)component;

 debugDestructor(cache);

}

Notes and Restrictions

None.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 12 of 23

4.2 vmimmcGetHierarchicalName

Prototype
const char *vmimmcGetHierarchicalName(vmimmcComponentP component);

Description
This function returns the name of a memory model component, including the full

instantiation path, as defined in the platform file.

The related function vmimmcGetName returns the component base name omitting the

instantiation path.

Example

#include “vmi/vmiMmc.h”

#include “vmi/vmiMmcAttrs.h”

#include “vmi/vmiMessage.h”

// Cache object destructor

static VMIMMC_DESTRUCTOR_FN(cacheDestructor) {

 vmiPrintf(

 "\n%s called for %s\n",

 FUNC_NAME,

 vmimmcGetHierarchicalName(component)

);

 cacheObjectP cache = (cacheObjectP)component;

 debugDestructor(cache);

}

Notes and Restrictions

None.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 13 of 23

4.3 vmimmcGetNextPort

Prototype
vmimmcPortP vmimmcGetNextPort(

 vmimmcComponentP component,

 const char *portName

);

Description
Given an MMC component and an output port name for that component, this function

returns the input port of any subsequent MMC component connected to that port.

Typically, this is used in combination with vmimmcGetPortAttrs to establish

connectivity in the VMIMMC_LINK_FN callback, as shown in the following example.

This function returns non-NULL only if the current MMC component is transparent. If

the component implements a full MMC model, this function will return NULL, but

vmimmcGetNextDomain will return the connected domain.

Example

// Cache object

typedef struct cacheObjectS {

 // MODELING ARTIFACTS

 vmimmcPortP nextPort; // next port (TRANSPARENT)

 memDomainP nextDomain; // next domain (FULL)

 memRegionP lastRegion; // last accessed (FULL)

 Addr mruKey; // access optimization

 cacheLineP mruLine; // access optimization

 cacheAccessInfo readInfo; // read access recording

 cacheAccessInfo writeInfo; // write access recording

 // TRUE CACHE CONTENTS

 Addr keys[CACHE_TAGS][CACHE_WAYS]; // set of keys for cache

 cacheLineP index[CACHE_TAGS][CACHE_WAYS]; // index into cache lines

 cacheLine lines[CACHE_TAGS][CACHE_WAYS]; // set of lines for cache

} cacheObject, *cacheObjectP;

// Cache object link

static VMIMMC_LINK_FN(cacheLink) {

 vmiPrintf(

 "\n%s called for %s\n",

 FUNC_NAME,

 vmimmcGetHierarchicalName(component)

);

 cacheObjectP cache = (cacheObjectP)component;

 vmimmcPortP nextPort = vmimmcGetNextPort(component, "mp1");

 memDomainP nextDomain = vmimmcGetNextDomain(component, "mp1");

 // sanity check that we know whether we are in transparent or full

 // mode

 VMI_ASSERT(

 !(nextPort && nextDomain),

 "%s: expected either nextPort (transparent) “

 “or nextDomain (full), not both",

 FUNC_NAME

);

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 14 of 23

 // set the next connected MMC model port

 cache->nextPort = nextPort;

 cache->nextDomain = nextDomain;

 if(nextPort) {

 vmimmcAttrCP attrs = vmimmcGetPortAttrs(nextPort);

 // set transparent functions to call on a miss

 if(attrs) {

 cache->readInfo.missCB = attrs->readNTransparentCB;

 cache->writeInfo.missCB = attrs->writeNTransparentCB;

 }

 }

}

Notes and Restrictions

None.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 15 of 23

4.4 vmimmcGetNextDomain

Prototype
memDomainP vmimmcGetNextDomain(

 vmimmcComponentP component,

 const char *portName

);

Description
Given an MMC component and an output port name for that component, this function

returns any memory domain object connected to that port.

This function returns NULL if the current MMC component is transparent. In this case,

vmimmcGetNextPort should be used to obtain information about the next port.

The domain is typically used in full model callback functions. As an example, a model of

a cache may need to call vmirtReadNByteDomain or vmirtWriteNByteDomain in the

case of a cache miss.

Example

// Cache object

typedef struct cacheObjectS {

 // MODELING ARTIFACTS

 vmimmcPortP nextPort; // next port (TRANSPARENT)

 memDomainP nextDomain; // next domain (FULL)

 memRegionP lastRegion; // last accessed (FULL)

 Addr mruKey; // access optimization

 cacheLineP mruLine; // access optimization

 cacheAccessInfo readInfo; // read access recording

 cacheAccessInfo writeInfo; // write access recording

 // TRUE CACHE CONTENTS

 Addr keys[CACHE_TAGS][CACHE_WAYS]; // set of keys for cache

 cacheLineP index[CACHE_TAGS][CACHE_WAYS]; // index into cache lines

 cacheLine lines[CACHE_TAGS][CACHE_WAYS]; // set of lines for cache

} cacheObject, *cacheObjectP;

// Cache object link

static VMIMMC_LINK_FN(cacheLink) {

 vmiPrintf(

 "\n%s called for %s\n",

 FUNC_NAME,

 vmimmcGetHierarchicalName(component)

);

 cacheObjectP cache = (cacheObjectP)component;

 vmimmcPortP nextPort = vmimmcGetNextPort(component, "mp1");

 memDomainP nextDomain = vmimmcGetNextDomain(component, "mp1");

 // sanity check that we know whether we are in transparent or full

 // mode

 VMI_ASSERT(

 !(nextPort && nextDomain),

 "%s: expected either nextPort (transparent) “

 “or nextDomain (full), not both",

 FUNC_NAME

);

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 16 of 23

 // set the next connected MMC model port

 cache->nextPort = nextPort;

 cache->nextDomain = nextDomain;

 if(nextPort) {

 vmimmcAttrCP attrs = vmimmcGetPortAttrs(nextPort);

 // set transparent functions to call on a miss

 if(attrs) {

 cache->readInfo.missCB = attrs->readNTransparentCB;

 cache->writeInfo.missCB = attrs->writeNTransparentCB;

 }

 }

}

Notes and Restrictions

None.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 17 of 23

4.5 vmimmcGetPortAttrs

Prototype
vmimmcAttrCP vmimmcGetPortAttrs(vmimmcPortP port);

Description
Given an MMC input port, this function returns the attribute structure associated with that

port. The attribute structure defines the behavior of the input port (for example, callback

functions to be activated when data is read or written).

Typically, this is used in combination with vmimmcGetNextPort to establish connectivity

in the VMIMMC_LINK_FN callback, as shown in the following example.

Example

// Cache object

typedef struct cacheObjectS {

 // MODELING ARTIFACTS

 vmimmcPortP nextPort; // next port (TRANSPARENT)

 memDomainP nextDomain; // next domain (FULL)

 memRegionP lastRegion; // last accessed (FULL)

 Addr mruKey; // access optimization

 cacheLineP mruLine; // access optimization

 cacheAccessInfo readInfo; // read access recording

 cacheAccessInfo writeInfo; // write access recording

 // TRUE CACHE CONTENTS

 Addr keys[CACHE_TAGS][CACHE_WAYS]; // set of keys for cache

 cacheLineP index[CACHE_TAGS][CACHE_WAYS]; // index into cache lines

 cacheLine lines[CACHE_TAGS][CACHE_WAYS]; // set of lines for cache

} cacheObject, *cacheObjectP;

// Cache object link

static VMIMMC_LINK_FN(cacheLink) {

 vmiPrintf(

 "\n%s called for %s\n",

 FUNC_NAME,

 vmimmcGetHierarchicalName(component)

);

 cacheObjectP cache = (cacheObjectP)component;

 vmimmcPortP nextPort = vmimmcGetNextPort(component, "mp1");

 memDomainP nextDomain = vmimmcGetNextDomain(component, "mp1");

 // sanity check that we know whether we are in transparent or full

 // mode

 VMI_ASSERT(

 !(nextPort && nextDomain),

 "%s: expected either nextPort (transparent) “

 “or nextDomain (full), not both",

 FUNC_NAME

);

 // set the next connected MMC model port

 cache->nextPort = nextPort;

 cache->nextDomain = nextDomain;

 if(nextPort) {

 vmimmcAttrCP attrs = vmimmcGetPortAttrs(nextPort);

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 18 of 23

 // set transparent functions to call on a miss

 if(attrs) {

 cache->readInfo.missCB = attrs->readNTransparentCB;

 cache->writeInfo.missCB = attrs->writeNTransparentCB;

 }

 }

}

Notes and Restrictions

None.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 19 of 23

4.6 vmimmcRefreshTransparent

Prototype
vmimmcAttrCP vmimmcRefreshTransparent(

 vmimmcPortP port,

 vmiIASRunState state

);

Description
When an MMC's refresh callback is called, the model must refresh any cascaded MMCs.

Typically, this is used in combination with vmimmcRefreshFull so that either transparent

or full models are refreshed.

Example
// Cache refresh callback

static VMIMMC_REFRESH_FN(cacheRefresh) {

 // get cascaded models (which must be held on the model object).

 cacheObjectP cache = (cacheObjectP)component;

 vmimmcPortP nextPort = cache->nextPort;

 memDomainP nextDomain = cache->nextDomain;

 if(nextPort) {

 vmimmcRefreshTransparent(nextPort, state);

 else if (nextDomain) {

 vmimmcRefreshFull(nextDomain, state);

 } else {

 // there are no cascaded components

 }

 // now perform local refresh actions.

}

vmimmcAttr modelAttrs = {

 ...

 cacheDestructor,

 cacheRefresh, // install the refresh callback

 readNFull,

 ...

};

Notes and Restrictions

The refresh callback is updated at the start of each time-slice. It is typically used in a

full cache model to synchronize its state with any changes to the memory it is caching

that were caused by other processors.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 20 of 23

4.7 vmimmcRefreshFull

Prototype
vmimmcAttrCP vmimmcRefreshFull(

 vmimmcPortP port,

 memDomainP nextDomain

);

Description
When an MMC's refresh callback is called, the model must refresh any cascaded MMCs.

Typically, this is used in combination with vmimmcRefreshTransparent so that either

transparent or full models are refreshed.

Example
// Cache refresh callback

static VMIMMC_REFRESH_FN(cacheRefresh) {

 // get cascaded models (which must be held on the model object).

 cacheObjectP cache = (cacheObjectP)component;

 vmimmcPortP nextPort = cache->nextPort;

 memDomainP nextDomain = cache->nextDomain;

 if(nextPort) {

 vmimmcRefreshTransparent(nextPort, state);

 else if (nextDomain) {

 vmimmcRefreshFull(nextDomain, state);

 } else {

 // there are no cascaded components

 }

 // now perform local refresh actions.

}

vmimmcAttr modelAttrs = {

 ...

 cacheDestructor,

 cacheRefresh, // install the refresh callback

 readNFull,

 ...

};

Notes and Restrictions

The refresh callback is updated at the start of each time-slice. It is typically used in a

full cache model to synchronize its state with any changes to the memory it is caching

that were caused by other processors.

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 21 of 23

4.8 vmimmcAddCommand

Prototype
void vmimmcAddCommand(

 vmimmcComponentP component,

 const char *name,

 const char *exampleArguments,

 vmimmcCommandFn commandCB

);

Description
This function adds a command that can be called from the simulator. The command is

typically used to change the mode of the MMC or to report something about its internal

state.

Please use vmimmcAddCommandParse in preference to this function.

Example
static VMIMMC_COMMAND_FN(enableCallback) {

 if (argc == 2) {

 const char *firstArg = argv[1];

 ... // use the argument

 return "OK";

 } else {

 vmiPrintf("Error calling command '%s'", argv[0]);

 return "";

 }

}

// Cache constructor callback

static VMIMMC_REFRESH_FN(cacheconstructor) {

 ...

 vmimmcAddCommand(

 component,

 "enable",

 "-on | -off" // this is used by the help system

 enableCallback

);

Notes and Restrictions

The string returned by the command callback is passed to the tcl interpreter (if an

interpreter is active).

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 22 of 23

4.9 vmimmcAddCommandParse

Prototype
void vmimmcAddCommandParse(

 vmimmcComponentP component,

 const char *name,

 const char* help,

 vmimmcCommandParseFn commandCB,

 vmiCommandAttrs attrs

);

Description
This function adds a command that can be called from the simulator. The command is

typically used to change the mode of the MMC or to report something about its internal

state.

Example
static VMIMMC_COMMAND_PARSE_FN(enableCallback) {

 cacheObjectP cache = (cacheObjectP) component;

 cache->enabled = True;

 return “”;

}

// Cache constructor callback

static VMIMMC_REFRESH_FN(cacheconstructor) {

 ...

 vmimmcAddCommandParse(

 component,

 "enable",

 "Enable the cache",

 enableCallback,

 VMI_CT_MODE|VMI_CO_CACHE|VMI_CA_CONTROL

);

Notes and Restrictions

The string returned by the command callback is passed to the tcl interpreter (if an

interpreter is active).

OVP VMI MMC Reference

© 2022 Imperas Software Limited www.OVPworld.org Page 23 of 23

5 Model Design Considerations
This section is intended to provide some Questions and Answer that may aid in the

efficient design and use of the MMC as a modeling component.

5.1 What is the difference between Transparent and Full

In transparent mode the data transfers are not modified, the MMC is called back to say

what has happened but transfers are direct between processor and other models and

memory i.e. there is no change.

In full mode the MMC is providing cached data/instructions, it is the responsibility of the

cache model to correctly fill and provide the data to the processor model. Any errors in

the coding of the cache model could cause issues with program execution.

5.2 What limitations are there using an MMC for cache modeling

When using an MMC as a cache model you do not get the action of the cache

instructions, such as flush etc, applied to the cache memory. This can also have an effect

on the program execution depending how the application code is written.

