
© 2021 Imperas Software Limited www.OVPworld.org Page 1 of 282

OVP VMI Morph Time Function Reference

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 7.47.0
Filename: OVP_VMI_Morph_Time_Function_Reference.doc
Project: OVP VMI Morph Time Function Reference
Last Saved: Wednesday, 15 September 2021
Keywords:

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 2 of 282

Copyright Notice
Copyright © 2021 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 3 of 282

Table of Contents
1 Introduction... 7
2 Interaction with Imperas Simulators .. 8
3 Instruction Fetch and Decode Support Routines ... 9

3.1 VMICXTFETCH[1248]BYTE ... 10
3.2 VMICXTFETCH .. 11
3.3 VMIDNEWDECODETABLE ... 12
3.4 VMIDNEWENTRY .. 13
3.5 VMIDNEWENTRYFMTBIN ... 16
3.6 VMIDDECODE.. 19

Basic Register Operations.. 20
3.7 SIMULATED REGISTER SPECIFICATION USING VMIREG.. 20
3.8 UNARY OPERATION TYPES ... 21
3.9 BINARY OPERATION TYPES .. 22
3.10 HANDLING INSTRUCTION FLAGS.. 24

3.10.1 Carry In Flag ... 24
3.10.2 Carry Out Flag .. 25
3.10.3 Parity Flag... 25
3.10.4 Zero Flag ... 25
3.10.5 Sign Flag.. 25
3.10.6 Overflow Flag .. 26
3.10.7 vmiFlags Structure Usage ... 26

3.11 HANDLING EXCEPTIONS... 29
3.11.1 Arithmetic Result Handler ... 29
3.11.2 Arithmetic Exception Handler ... 31

3.12 VMIMTGETSMPPARENTREGISTER... 33
3.13 VMIMTMOVERC .. 35
3.14 VMIMTMOVERSIMPC .. 36
3.15 VMIMTMOVERR .. 37
3.16 VMIMTMOVEEXTENDRR ... 38
3.17 VMIMTCONDMOVERRR .. 39
3.18 VMIMTCONDMOVERRC .. 40
3.19 VMIMTCONDMOVERCR .. 41
3.20 VMIMTCONDMOVERCC .. 42
3.21 VMIMTUNOPR.. 43
3.22 VMIMTUNOPRR ... 45
3.23 VMIMTUNOPRC ... 47
3.24 VMIMTBINOPRR .. 49
3.25 VMIMTBINOPRRR.. 51
3.26 VMIMTBINOPRC .. 53
3.27 VMIMTBINOPRCR.. 54
3.28 VMIMTBINOPRCC.. 56
3.29 VMIMTBINOPRRC.. 57
3.30 VMIMTMULOPRRR .. 58
3.31 VMIMTDIVOPRRR.. 60
3.32 VMIMTCOMPARERR... 62
3.33 VMIMTCOMPARECR... 64
3.34 VMIMTCOMPARERC... 66
3.35 VMIMTTESTRR .. 68
3.36 VMIMTTESTCR .. 70
3.37 VMIMTTESTRC .. 71
3.38 VMIMTSETSHIFTMASK... 73

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 4 of 282

4 Memory Operations.. 74
4.1 MEMORY CONSTRAINTS ... 74
4.2 VMIMTSTORERRO.. 76
4.3 VMIMTSTORERCO.. 78
4.4 VMIMTLOADRRO ... 81
4.5 VMIMTTRYSTORERC.. 84
4.6 VMIMTTRYLOADRC ... 86
4.7 VMIMTPRELOADRC.. 88
4.8 VMIMTSTORERRODOMAIN .. 89
4.9 VMIMTSTORERCODOMAIN .. 91
4.10 VMIMTLOADRRODOMAIN... 92
4.11 VMIMTTRYSTORERCDOMAIN.. 94
4.12 VMIMTTRYLOADRCDOMAIN... 96
4.13 VMIMTPRELOADRCDOMAIN ... 98

5 Control Flow Operations.. 99
5.1 VMIMTSETADDRESSMASK.. 100
5.2 VMIMTUNCONDJUMP .. 101
5.3 VMIMTUNCONDJUMPDELAYSLOT .. 103
5.4 VMIMTUNCONDJUMPREG ... 105
5.5 VMIMTUNCONDJUMPREGDELAYSLOT ... 107
5.6 VMIMTCONDJUMP... 109
5.7 VMIMTCONDJUMPDELAYSLOT... 111
5.8 VMIMTCONDJUMPDELAYSLOTANNUL ... 114
5.9 VMIMTCONDJUMPREG.. 117
5.10 VMIMTCONDJUMPREGDELAYSLOT ... 119
5.11 VMIMTCONDJUMPREGDELAYSLOTANNUL.. 121
5.12 VMIMTSKIPIFANNUL.. 123
5.13 VMIMTGETDELAYSLOTNEXTPC ... 124
5.14 VMIMTENTERDELAYSLOTC... 126
5.15 VMIMTENTERDELAYSLOTR... 127
5.16 VMIMTNEWLABEL ... 128
5.17 VMIMTINSERTLABEL.. 129
5.18 VMIMTUNCONDJUMPLABEL... 130
5.19 VMIMTCONDJUMPLABEL ... 132
5.20 VMIMTCONDJUMPLABELFUNCTIONRESULT .. 134
5.21 VMIMTTESTRRJUMPLABEL ... 136
5.22 VMIMTTESTRCJUMPLABEL ... 137
5.23 VMIMTCOMPARERRJUMPLABEL ... 139
5.24 VMIMTCOMPARERCJUMPLABEL ... 141

6 Indexed and Vector Register Operations.. 143
6.1 VMIMTDJNZLABEL .. 144
6.2 VMIMTGETINDEXEDREGISTER.. 146
6.3 VMIMTADDBASEC.. 148
6.4 VMIMTADDBASER.. 150
6.5 VMIMTGETBASEOFFSET ... 152
6.6 VMIMTZERORV .. 153
6.7 VMIMTMOVERRV .. 155
6.8 VMIMTBITOPVR ... 157
6.9 VMIMTTESTBITVRJUMPLABEL .. 159

7 Embedded Native Call Operations .. 160
7.1 VMIMTARGPROCESSOR... 161
7.2 VMIMTARGUNS32 .. 162

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 5 of 282

7.3 VMIMTARGUNS64 .. 163
7.4 VMIMTARGFLT64 ... 164
7.5 VMIMTARGREG .. 165
7.6 VMIMTARGREGP .. 167
7.7 VMIMTARGREGSIMADDRESS ... 169
7.8 VMIMTARGSIMADDRESS .. 171
7.9 VMIMTARGSIMPC .. 172
7.10 VMIMTARGNATADDRESS .. 173
7.11 VMIMTCALL, VMIMTCALLRESULT, VMIMTCALLATTRS, VMIMTCALLRESULTATTRS 174

8 Connection Operations... 177
8.1 VMIMTCONNGETRB ... 178
8.2 VMIMTCONNGETRNB .. 179
8.3 VMIMTCONNPUTRB ... 180
8.4 VMIMTCONNPUTRNB .. 181

9 Floating Point Operations .. 182
9.1 GENERAL FLOATING POINT OPERATION FLOW... 183
9.2 VMIFPCONFIG STRUCTURE ... 183
9.3 VMIFPCONTROLWORD STRUCTURE ... 187
9.4 VMIFPFLAGS STRUCTURE ... 188
9.5 VMIFTYPE ENUMERATION... 190
9.6 IEEE AND X87 SEMANTIC DIFFERENCES .. 191
9.7 QNAN/SNAN POLARITY SWITCH ... 192
9.8 DENORMALIZED ARGUMENT HANDLER ... 193
9.9 TINY RESULT HANDLER.. 195
9.10 GENERAL RESULT HANDLERS.. 198
9.11 QNAN HANDLERS.. 201
9.12 8-BIT, 16-BIT, 32-BIT AND 64-BIT INDETERMINATE HANDLERS .. 205
9.13 FLOATING POINT EXCEPTIONS ... 207
9.14 VMIMTFSETROUNDING .. 209
9.15 VMIMTFCONVERTRR, VMIMTFCONVERTSIMDRR... 210
9.16 VMIMTFUNOPRR, VMIMTFUNOPSIMDRR ... 212
9.17 VMIMTFBINOPRRR, VMIMTFBINOPSIMDRRR .. 215
9.18 VMIMTFTERNOPRRRR, VMIMTFTERNOPSIMDRRRR ... 219
9.19 VMIMTFCOMPARERR, VMIMTFCOMPARESIMDRR.. 223
9.20 VMIMTFCOMPARERRC, VMIMTFCOMPARESIMDRRC... 225
9.21 VMIMTFSTART, VMIMTFEND ... 228

10 Miscellaneous Operations... 233
10.1 VMIMTHALT... 234
10.2 VMIMTYIELD.. 235
10.3 VMIMTIDLE .. 236
10.4 VMIMTINTERRUPT .. 237
10.5 VMIMTEXIT .. 238
10.6 VMIMTFINISH ... 239
10.7 VMIMTENDBLOCK.. 240
10.8 VMIMTGETBLOCKMASK.. 243
10.9 VMIMTSETBLOCKMASKC.. 244
10.10 VMIMTSETBLOCKMASKR.. 245
10.11 VMIMTVALIDATEBLOCKMASK .. 246
10.12 VMIMTVALIDATEBLOCKMASKR ... 248
10.13 VMIMTTAGBLOCK.. 250
10.14 VMIMTPOLYMORPHICBLOCK ... 252
10.15 VMIMTICOUNT ... 255

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 6 of 282

11 QuantumLeap Parallel Simulation Support... 256
11.1 VMIMTATOMIC... 257

12 Extension Library Support .. 258
12.1 VMIMTGETR .. 259
12.2 VMIMTSETR ... 261
12.3 VMIMTGETEXTREG.. 263
12.4 VMIMTGETEXTTEMP ... 265

13 Instruction Attributes Support .. 267
13.1 VMIMTREGNOTREADR .. 269
13.2 VMIMTREGREADIMPL.. 271
13.3 VMIMTREGWRITEIMPL .. 273
13.4 VMIMTINSTRUCTIONCLASSADD... 275
13.5 VMIMTINSTRUCTIONCLASSSUB ... 277
13.6 VMIMTSETINSTRUCTIONCONDITION .. 278

14 Timing Estimation .. 280
14.1 VMIMTADDSKIPCOUNTC... 281
14.2 VMIMTADDSKIPCOUNTR... 282

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 7 of 282

1 Introduction
This is reference documentation for version 7.47.0 of the VMI morph time function
interface, defined in ImpPublic/include/host/vmi/vmiMt.h.

It also gives details of the VMI instruction fetch interface, defined in
ImpPublic/include/host/vmi/vmiCxt.h, and instruction decoder function interface
which greatly simplifies the creation of robust and correct instruction decoders. This
interface is defined in ImpPublic/include/host/vmi/vmiDecode.h.

The functions in the VMI morph time function interface are used to define instruction
behavior of a simulated processor, and are callable only within or beneath the processor
morph callback function (defined with the VMI_MORPH_FN macro, installed as the
morphCB field of the processor vmiIASAttr structure).

The morph callback performs the following actions:

1. It fetches an instruction at a simulated address supplied as an argument.
2. It decodes the instruction (for example, by a cascaded if driven by bit fields

extracted from the fetched instruction, or by using the decoder function interface);
3. It calls one or more of the routines specified here to describe the behavior of the

instruction.

Functions in section 3 of this document show how the fetch and decode support routines
are used to implement steps 1 and 2 above.

Remaining examples in this document describe step 3 only – the starting point for each is
a small emission function that is assumed to be called with appropriate arguments
extracted from a decoded instruction.

See the Imperas Processor Modeling Guide for a detailed explanation of the steps
required to model a processor using the functions in this interface.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 8 of 282

2 Interaction with Imperas Simulators
Processor models developed using this interface can be used with both Imperas OVP
platforms and the Imperas Simulator (imperas.exe) simulation product.

It is important to understand at a high level how the simulators use the morph callback
function, and what is happening when it is called. This is briefly described here.

1. When the simulator executes a branch to a simulated address that it has not
previously encountered, it calls the morph callback to translate a sequence of
simulated opcodes into native machine code. The code block is terminated when
the simulator detects a subsequent branch or jump instruction1. It then executes
that native code.

2. Previously-encountered translated sequences (code blocks) are cached in a
dictionary. If the simulator executes the same code again, it will reuse the cached
code block and not call the morph callback.

3. It is very important to understand that the morph callback does not execute
simulated instructions: instead, it describes the behavior of those instructions,
using a sequence of VMI morph time interface calls.

4. The VMI morph time interface routines generate an ordered list of native machine
interface (NMI) nodes which, when processed in order, together describe the full
behavior of an instruction.

5. When the simulator has assembled an NMI node list for a complete code block
(which can contain many instructions), the list is passed to a compiler module
which generates an equivalent native code block.

1 Or by the vmimtEndBlock function, described later in this document.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 9 of 282

3 Instruction Fetch and Decode Support Routines
The VMI morph-time routines described in this manual and processor model
disassembler routines both require support routines for the fetch and decode of
instructions.

File ImpPublic/include/host/vmi/vmiCxt.h provides an API for instruction fetch.

File ImpPublic/include/host/vmi/vmiDecode.h provides an API to simplify decode
of fetched instructions.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 10 of 282

3.1 vmicxtFetch[1248]Byte

Prototypes

Uns8 vmicxtFetch1Byte(vmiProcessorP processor, Addr simAddress);
Uns16 vmicxtFetch2Byte(vmiProcessorP processor, Addr simAddress);
Uns32 vmicxtFetch4Byte(vmiProcessorP processor, Addr simAddress);
Uns64 vmicxtFetch8Byte(vmiProcessorP processor, Addr simAddress);

Description
These four routines fetch (respectively) 1, 2, 4 and 8 byte instruction words from the
passed address for the passed processor. The endianness of the fetch is specified by the
current processor endianness.

Example
This example demonstrates usage of vmicxtFetch4Byte for the OR1K training
examples.

//
// Decode the OR1K instruction at the passed address. If the decode succeeds,
// dispatch it to the corresponding function in the dispatch table and return
// True; otherwise, dispatch using the defaultCB and return False.
//
Bool or1kDecode(
 or1kP or1k,
 Uns32 thisPC,
 or1kDispatchTableCP table,
 or1kDispatchFn defaultCB,
 void *userData,
 Bool inDelaySlot
) {
 // get the instruction at the passed address - always 4 bytes on OR1K
 vmiProcessorP processor = (vmiProcessorP)or1k;
 Uns32 instruction = vmicxtFetch4Byte(processor, thisPC);
 or1kInstructionType type = decode(instruction);

 // apply the callback, or the default if no match
 if(type!=OR1K_IT_LAST) {
 ((*table)[type])(or1k, thisPC, instruction, userData, inDelaySlot);
 return True;
 } else {
 defaultCB(or1k, thisPC, instruction, userData, inDelaySlot);
 return False;
 }
}

Notes and Restrictions

1. Multiple calls to vmicxt routines may be used to fetch parts of a single
instruction. For example, a CISC processor mode (such as an x86) can use
vmicxtFetch1Byte to get the first instruction byte and then, depending on the
value fetched, use further vmicxt functions calls to get subsequent instruction
bytes.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 11 of 282

3.2 vmicxtFetch

Prototypes

Uns32 vmicxtFetch(vmiProcessorP processor, Addr simAddress, void *value);

Description
This function can be used within an intercept library to fetch an instruction using the
base model fetch callback (specified as the fetchCB field in the processor vmiIASAttrs
structure). This is useful when the base model has complex instruction decode
requirements, either because the processor is modal or because it supports variable-length
instructions, because it enables the intercept library to perform an instruction fetch
without requiring knowledge of those details. The function fills the by-ref value
argument with the fetched bytes and returns the number of bytes filled.

Example
This example demonstrates usage of vmicxtFetch in the Andes extension to the RISC-V
processor.

void andesDecode(
 riscvP riscv,
 vmiosObjectP object,
 riscvAddr thisPC,
 andesInstrInfoP info
) {
 Uns64 instr = 0;

 info->type = AN_IT_LAST;
 info->bytes = vmicxtFetch((vmiProcessorP)riscv, thisPC, &instr);
 info->instruction = instr;
 info->thisPC = thisPC;

 // decode based on instruction size
 if(info->bytes==4) {
 decode32(riscv, object, info);
 } else {
 decode16(riscv, info);
 }
}

Notes and Restrictions

1. The caller must ensure that the value buffer is large enough to accept any
instruction pattern supported by the base model and, if variable length
instructions are supported, the buffer should be initialized to zero (as in the above
example).

2. If the base model does not implement the fetchCB callback, vmicxtFetch will
return zero. In this case, the intercept library must use functions described in
section 3.1 to implement instruction fetch.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 12 of 282

3.3 vmidNewDecodeTable

Prototype

vmidDecodeTableP vmidNewDecodeTable(Uns32 bits, Uns32 defaultValue);

Description
This function returns a new decode table object, that is used to construct robust and
efficient instruction decoders. The decode table decodes instructions of width bits.
defaultValue specifies a value that is returned by function vmidDecode if an
unrecognized instruction is encountered.

Example
This example is part of the OR1K training examples.

//
// This macro adds a decode table entry for a specific instruction class
//
#define DECODE_ENTRY(_PRIORITY, _NAME) \
 vmidNewEntry(\
 table, \
 #_NAME, \
 OR1K_IT_##_NAME, \
 MASK_##_NAME, \
 OP_##_NAME, \
 _PRIORITY \
)

//
// Create the OR1K decode table
//
static vmidDecodeTableP createDecodeTable(void) {

 vmidDecodeTableP table = vmidNewDecodeTable(OR1K_BITS, OR1K_IT_LAST);

 // handle movhi instruction
 DECODE_ENTRY(0, MOVHI);

 // handle arithmetic instructions (second argument constant)
 DECODE_ENTRY(0, ADDI);
 DECODE_ENTRY(0, ADDIC);
 DECODE_ENTRY(0, ANDI);
 DECODE_ENTRY(0, ORI);
 DECODE_ENTRY(0, XORI);
 DECODE_ENTRY(0, MULI);
 … etc …
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64 currently.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 13 of 282

3.4 vmidNewEntry

Prototype

Bool vmidNewEntry(
 vmidDecodeTableP table,
 const char *name,
 Uns32 matchValue,
 Uns64 mask,
 Uns64 value,
 Int32 priority
);

Description
Given a previously-created decode table object, this function adds a new decode entry to
that table. Each decode entry decodes a single instruction type. The name of the entry is
given by the name argument (this is informative only and used in error messages).

An instruction matches the new entry if:
 (instruction & mask) == value
If this decode entry matches an instruction, vmidDecode will return matchValue (which
is typically a processor-model-specific enumeration member).

It is possible that multiple entries in a decode table match the same instruction pattern –
for example, often a RISC move instruction is a special case of an arithmetic instruction
(such as an add). If such conflicting entries are required, they must be given distinct
priority values, and the entry with greatest priority is deemed to match. A good default
method to specify a reasonable priority for an instruction is to use the number of non-zero
bits in the mask: this can be specified using the special value VMID_DERIVE_PRIORITY for
the mask. To distinguish the kinds of conflict described above, it is possible to use an
expression such as VMID_DERIVE_PRIORITY+1 (indicating a priority one higher than the
automatically-derived priority based on non-zero mask bits). If two entries with the same
priority both match a candidate instruction, a decode table entry conflict error will be
generated when vmidDecode is first called for the table.

If the decode entry was successfully created, vmidNewEntry returns True. Otherwise (if
the decode table is already in use or value specifies bits that are not selected by mask) it
returns False.

Typically, calls to vmidNewEntry are used within a macro as in the example below.

See also function vmidNewEntryFmtBin, which enables decode table entries to be created
from format strings.

Example
This example is part of the OR1K training examples. The decode for each opcode is
specified by patterns in file or1kInstructions.h:

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 14 of 282

//
// OPCODE FORM 4
// OPCODE(6) D(5) UNUSED(4) OPCODE(1) I(16)
//
#define OP4(_OP1, _OP2) (Uns32)((WIDTH(6,_OP1)<<26) | (WIDTH(1,_OP2)<<16))

#define OP4_MASK OP4(-1, -1)
#define OP4_D(_I) WIDTH(5,(_I)>>21)
#define OP4_I(_I) WIDTH(16,(_I)>>0)
#define MASK_MOVHI OP4_MASK
#define OP_MOVHI OP4(0x06, 0x0)

An enumeration specifying the different instruction types is in or1kDecode.h:

//
// Instruction type enumeration
//
typedef enum or1kInstructionTypeE {

 // movhi instruction
 OR1K_IT_MOVHI,

 // arithmetic instructions (second argument constant)
 OR1K_IT_ADDI,
 OR1K_IT_ADDIC,
 OR1K_IT_ANDI,
 OR1K_IT_ORI,
 OR1K_IT_XORI,
 OR1K_IT_MULI,
 … etc …
}

Then the decode table is filled by function createDecodeTable in file or1kDecode.c:

//
// This macro adds a decode table entry for a specific instruction class
//
#define DECODE_ENTRY(_PRIORITY, _NAME) \
 vmidNewEntry(\
 table, \
 #_NAME, \
 OR1K_IT_##_NAME, \
 MASK_##_NAME, \
 OP_##_NAME, \
 _PRIORITY \
)

//
// Create the OR1K decode table
//
static vmidDecodeTableP createDecodeTable(void) {

 vmidDecodeTableP table = vmidNewDecodeTable(OR1K_BITS, OR1K_IT_LAST);

 // handle movhi instruction
 DECODE_ENTRY(0, MOVHI);

 // handle arithmetic instructions (second argument constant)
 DECODE_ENTRY(0, ADDI);
 DECODE_ENTRY(0, ADDIC);
 DECODE_ENTRY(0, ANDI);
 DECODE_ENTRY(0, ORI);
 DECODE_ENTRY(0, XORI);
 DECODE_ENTRY(0, MULI);
 … etc …
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 15 of 282

Notes and Restrictions
1. Entries may not be added to a decode table after vmidDecode has been called on

that table.
2. mask must select all non-zero bits in value (i.e. (mask&~value) must be zero).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 16 of 282

3.5 vmidNewEntryFmtBin

Prototype

Bool vmidNewEntryFmtBin(
 vmidDecodeTableP table,
 const char *name,
 Uns32 matchValue,
 const char *format,
 Int32 priority
);

Description
Given a previously-created decode table object, this function adds a new decode entry to
that table. Each decode entry decodes a single instruction type. The name of the entry is
given by the name argument (this is informative only and used in error messages).

The instruction format string, format, contains three kinds of characters:

1. constrained characters (either ‘0’ or ‘1’) – the corresponding bit in the instruction
must have the same value;

2. spacer characters (any of ‘|’, ‘/’, comma, space or tab) – these are ignored and can
be freely used to improve readability of the format string;

3. don’t care characters (any character not listed above) – these characters can be
either 0 or 1 in the instruction and it will still match.

The format specifies bits in the instruction in most-significant bit to least-significant bit
order. For example, the following pattern could be used to create a decode table entry that
matches a 16-bit instruction with the five most-significant bits 01001 and the three least
significant bits 110:

 “01001........110”

The case above uses the dot character as a don’t care character. Here is another example
that matches exactly the same instruction pattern, but using x as a don’t care character
and using vertical-bar spacer characters to improve readability:

 “|01001|xxxxxxxx|110|”

It is possible that multiple entries in a decode table match the same instruction pattern –
for example, often a RISC move instruction is a special case of an arithmetic instruction
(such as an add). If such conflicting entries are required, they must be given distinct
priority values, and the entry with greatest priority is deemed to match. A good default
method to specify a reasonable priority for an instruction is to use the number of 1
characters in the format string: this can be specified using the special value
VMID_DERIVE_PRIORITY for the mask. To distinguish the kinds of conflict described
above, it is possible to use an expression such as VMID_DERIVE_PRIORITY+1 (indicating a
priority one higher than the automatically-derived priority based on 1 characters in the
format string). If two entries with the same priority both match a candidate instruction, a

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 17 of 282

decode table entry conflict error will be generated when vmidDecode is first called for the
table.

If the decode entry was successfully created, vmidNewEntryFmtBin returns True.
Otherwise (if the decode table is already in use, or the pattern string has the wrong
number of characters) it returns False.

Typically, calls to vmidNewEntryFmtBin are used within a macro as in the example
below.

See also function vmidNewEntry, which enables decode table entries to be created from
mask/value pairs.

Example
This example is part of the ARC processor model example. An enumeration specifying
the different instruction types is in arcDecodeTypes.h:

typedef enum arcInstructionTypeE {

 //
 // 32-BIT INSTRUCTIONS
 //

 // nonary instructions
 ITYPE_SET_32_0 (SWI),
 ITYPE_SET_32_0 (SYNC),
 ITYPE_SET_32_0 (RTIE),
 ITYPE_SET_32_0 (BRK),
 ITYPE_SET_32_0 (NOP),

 // unary instructions (with major opcode 0x04)
 ITYPE_SET_32_1 (ASL),
 ITYPE_SET_32_1 (ASR),
 ITYPE_SET_32_1 (LSR),
 ITYPE_SET_32_1 (ROR),
 ITYPE_SET_32_1 (RRC),
 ITYPE_SET_32_1 (SEXB),
 ITYPE_SET_32_1 (SEXW),
 ITYPE_SET_32_1 (EXTB),
 ITYPE_SET_32_1 (EXTW),
 ITYPE_SET_32_1 (ABS),
 ITYPE_SET_32_1 (NOT),
 ITYPE_SET_32_1 (RLC),

 … etc …
}

Macros are used to specify the decode entries for each instruction type, for example:

#define ITYPE_SET_32_1(_NAME) \
 ARC_IT_##_NAME##_B_C, \
 ARC_IT_##_NAME##_B_U6, \
 ARC_IT_##_NAME##_B_LIMM, \
 ARC_IT_##_NAME##_0_C, \
 ARC_IT_##_NAME##_0_U6, \
 ARC_IT_##_NAME##_0_LIMM

Decode entries corresponding to each instruction type are specified in file
arcDecodeEntries.h using vmidNewEntryFmtBin, as follows:

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 18 of 282

#define DECODE_ENTRY(_PRIORITY, _NAME, _PATTERN) \
 vmidNewEntryFmtBin(table, #_NAME, ARC_IT_##_NAME, _PATTERN, _PRIORITY)

#define DECODE_SET_32_1(_NAME, _F1, _F2) \
 DECODE_ENTRY(0, _NAME##_B_C, "|"_F1"|...|00|101111|.|...|......|"_F2"|"); \
 DECODE_ENTRY(0, _NAME##_B_U6, "|"_F1"|...|01|101111|.|...|......|"_F2"|"); \
 DECODE_ENTRY(1, _NAME##_B_LIMM, "|"_F1"|...|00|101111|.|...|111110|"_F2"|"); \
 DECODE_ENTRY(2, _NAME##_0_C, "|"_F1"|110|00|101111|.|111|......|"_F2"|"); \
 DECODE_ENTRY(2, _NAME##_0_U6, "|"_F1"|110|01|101111|.|111|......|"_F2"|"); \
 DECODE_ENTRY(3, _NAME##_0_LIMM, "|"_F1"|110|00|101111|.|111|111110|"_F2"|")

Decode tables are filled by functions createDecodeTable16 and createDecodeTable32
in file arcDecode.c:

static vmidDecodeTableP createDecodeTable32(void) {

 vmidDecodeTableP table = vmidNewDecodeTable(32, ARC_IT_LAST);

 // nonary instructions
 DECODE_SET_32_0 (SWI, "010", "01", "101111", "000", "111111");
 DECODE_SET_32_0 (SYNC, "011", "01", "101111", "000", "111111");
 DECODE_SET_32_0 (RTIE, "100", "00", "101111", "000", "111111");
 DECODE_SET_32_0 (BRK, "101", "01", "101111", "000", "111111");
 DECODE_SET_32_0 (NOP, "110", "01", "001010", "111", "000000");

 // unary instructions (with major opcode 0x04)
 DECODE_SET_32_1 (ASL, "00100", "000000");
 DECODE_SET_32_1 (ASR, "00100", "000001");
 DECODE_SET_32_1 (LSR, "00100", "000010");
 DECODE_SET_32_1 (ROR, "00100", "000011");
 DECODE_SET_32_1 (RRC, "00100", "000100");
 DECODE_SET_32_1 (SEXB, "00100", "000101");
 DECODE_SET_32_1 (SEXW, "00100", "000110");
 DECODE_SET_32_1 (EXTB, "00100", "000111");
 DECODE_SET_32_1 (EXTW, "00100", "001000");
 DECODE_SET_32_1 (ABS, "00100", "001001");
 DECODE_SET_32_1 (NOT, "00100", "001010");
 DECODE_SET_32_1 (RLC, "00100", "001011");

 … etc …
}

Notes and Restrictions

1. Entries may not be added to a decode table after vmidDecode has been called on
that table.

2. The number of constrained and don’t care characters added together must equal
the bits argument given when the decode table was created.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 19 of 282

3.6 vmidDecode

Prototype

Uns32 vmidDecode(vmidDecodeTableP table, Uns64 instr);

Description
This function decodes the passed instruction value instr using the decode table. If the
instruction matches some entry in the decode table, the matchValue associated with that
entry is returned. Otherwise, the defaultValue specified when the table was created is
returned.

Example
This example is part of the OR1K training examples.

//
// Decode the instruction and return an enum describing it
//
static or1kInstructionType decode(Uns32 instruction) {

 // get the OR1K decode table
 static vmidDecodeTableP decodeTable;
 if(!decodeTable) {
 decodeTable = createDecodeTable();
 }

 // decode the instruction to get the type
 or1kInstructionType type = vmidDecode(decodeTable, instruction);

 // some arguments to l.sf and l.sfi are invalid: filter them here
 if((type==OR1K_IT_SF) && !getCmpInfo(OP5_CMPOP(instruction))->name) {
 type = OR1K_IT_LAST;
 } else if((type==OR1K_IT_SFI) && !getCmpInfo(OP6_CMPOP(instruction))->name) {
 type = OR1K_IT_LAST;
 }

 return type;
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 20 of 282

Basic Register Operations
This section describes emission functions for basic register operations: moves, unary
operations, binary operations and comparisons.

3.7 Simulated Register Specification Using vmiReg
Most functions in this API require use of the vmiReg type to specify the location of
source and target registers in a structure representing a simulated processor. A short
introduction to usage of this type is given here; for a more detailed description, refer to
the Imperas Processor Modeling Guide.

As an example, the OVP OR1K processor is represented using a structure of type or1k,
defined as follows:

#define OR1K_REGS 32

typedef struct or1kS {

 Bool carryFlag; // carry flag
 Bool overflowFlag; // overflow flag
 Bool branchFlag; // branch flag

 Uns32 regs[OR1K_REGS]; // basic registers

 . . . fields omitted for clarity . . .

} or1k, *or1kP;

Here, for example, the regs member holds the value of each of the 32 GPRs. The
location of a register (for example, a GPR) is specified to the simulator using the vmiReg
type, defined in file vmiTypes.h. A vmiReg structure can be created for any field in a
processor structure using the VMI_CPU_REG macro, which takes a type pointer and a field
name argument. Typically, the processor header files will contain further macros that
encapsulate usage of the VMI_CPU_REG macro appropriately for that processor: for
example, the OVP OR1K model contains these macro definitions:

#define OR1K_CPU_REG(_F) VMI_CPU_REG(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_R])
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)
#define OR1K_BRANCH OR1K_CPU_REG(branchFlag)

As an example, this code could now be used to specify the location of the OR1K
branchFlag register to a morph-time API function:

vmiReg bf = OR1K_BRANCH;

Typically, usage of registers such as GPRs is encapsulated by sugar routines that handle
special values. In the case of the OR1K processor, GPR 0 is always zero and unwritable.
Therefore, the following sugar function is used to return an appropriate vmiReg for an
operation, given a GPR index:

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 21 of 282

static vmiReg getGPR(Uns32 r) {
 return r ? OR1K_REG(r) : VMI_NOREG;
}

For conciseness and clarity, Examples listed in this manual will typically refer to vmiReg
structures without giving details of the processor structure that contains those registers.

3.8 Unary Operation Types
The available unary operations are described by the vmiUnop enumeration in
vmiTypes.h:

typedef enum {
 // MOVE OPERATIONS
 vmi_MOV, // d <- a
 vmi_SWP, // d <- byteswap(a)

 // ARITHMETIC OPERATIONS
 vmi_NEG, // d <- -a
 vmi_ABS, // d <- (a<0) ? -a : a

 // SATURATED ARITHMETIC OPERATIONS
 vmi_NEGSQ, // d <- saturate_signed(-a)
 vmi_ABSSQ, // d <- (a<0) ? saturate_signed(-a) : a

 // BITWISE OPERATIONS
 vmi_NOT, // d <- ~a
 vmi_RBIT, // d <- bit_reverse(a)

 // MISCELLANEOUS OPERATIONS
 vmi_CNTZ, // d <- count_zeros(a)
 vmi_CNTO, // d <- count_ones(a)
 vmi_CLS, // d <- count_leading_sign(a)
 vmi_CLZ, // d <- count_leading_zeros(a)
 vmi_CLO, // d <- count_leading_ones(a)
 vmi_CTZ, // d <- count_trailing_zeros(a)
 vmi_CTO, // d <- count_trailing_ones(a)
 vmi_BSFZ, // d <- least_significant_zero_index(a)
 vmi_BSFO, // d <- least_significant_one_index(a)
 vmi_BSRZ, // d <- most_significant_zero_index(a)
 vmi_BSRO, // d <- most_significant_one_index(a)

 // AES ENCRYPTION OPERATIONS
 vmi_AESMC, // d <- AES_mix_columns(a)
 vmi_AESIMC, // d <- AES_inverse_mix_columns(a)

 vmi_UNOP_LAST // KEEP LAST

} vmiUnop;

Signed saturation instructions clamp overflowing values to the smallest negative or
largest positive value.

Operation vmi_RBIT reverses the bit order of the operand.

Operations vmi_CNTZ and vmi_CNTO count the number of zero and one bits in the
argument value, respectively.

Operation vmi_CLS counts the number of leading bits that are equal to the sign bit (the
most significant bit). The sign bit is not included in this count. Operations vmi_CLZ,
vmi_CLO, vmi_CTZ and vmi_CTO count the number of leading (most significant) or

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 22 of 282

trailing (least significant) one or zero bits in the argument value. If there are no bits of the
required type, the result value is the size of the type in bits. For example, for an 8-bit
type, the result will be 8 if there are no bits of the required type in the argument;
otherwise it will be a value in the range 0-7.

Operations vmi_BSFZ, vmi_BSFO, vmi_BSRZ and vmi_BSRO return the bit index of the
most significant (BSR) or least significant (BSF) one or zero bit in the argument value,
where the least significant bit of a value is index 0. If there are no bits of the required
type, the result value is the size of the type in bits.

Operations vmi_AESMC and vmi_AESIMC implement the MixColumns and InvMixColumns
transformations described by the Advanced Encryption Standard (AES) specification.
Both take a 64-bit operand and generate a 64-bit result.

3.9 Binary Operation Types
The available binary operations are described by the vmiBinop enumeration in
vmiTypes.h:

typedef enum {
 // ARITHMETIC OPERATIONS
 vmi_ADD, // d <- a + b
 vmi_ADC, // d <- a + b + C
 vmi_SUB, // d <- a - b
 vmi_SBB, // d <- a - b - C
 vmi_RSBB, // d <- b - a - C
 vmi_RSUB, // d <- b - a
 vmi_IMUL, // d <- a * b (signed)
 vmi_MUL, // d <- a * b (unsigned)
 vmi_IDIV, // d <- a / b (signed)
 vmi_DIV, // d <- a / b (unsigned)
 vmi_IREM, // d <- a % b (signed)
 vmi_REM, // d <- a % b (unsigned)
 vmi_CMP, // a - b

 // SATURATED ARITHMETIC OPERATIONS
 vmi_ADDSQ // d <- saturate_signed(a + b)
 vmi_ADCSQ // d <- saturate_signed(a + b + C)
 vmi_SUBSQ // d <- saturate_signed(a - b)
 vmi_SBBSQ // d <- saturate_signed(a - b - C)
 vmi_RSUBSQ // d <- saturate_signed(b - a)
 vmi_RSBBSQ // d <- saturate_signed(b - a - C)
 vmi_ADDUQ // d <- saturate_unsigned(a + b)
 vmi_ADCUQ // d <- saturate_unsigned(a + b + C)
 vmi_SUBUQ // d <- saturate_unsigned(a - b)
 vmi_SBBUQ // d <- saturate_unsigned(a - b - C)
 vmi_RSUBUQ // d <- saturate_unsigned(b - a)
 vmi_RSBBUQ // d <- saturate_unsigned(b - a - C)

 // HALVING ARITHMETIC OPERATIONS
 vmi_ADDSH, // d <- ((signed)(a + b)) / 2
 vmi_SUBSH, // d <- ((signed)(a - b)) / 2
 vmi_RSUBSH, // d <- ((signed)(b - a)) / 2
 vmi_ADDUH, // d <- ((unsigned)(a + b)) / 2
 vmi_SUBUH, // d <- ((unsigned)(a - b)) / 2
 vmi_RSUBUH, // d <- ((unsigned)(b - a)) / 2
 vmi_ADDSHR, // d <- round(((signed)(a + b)) / 2)
 vmi_SUBSHR, // d <- round(((signed)(a - b)) / 2)
 vmi_RSUBSHR, // d <- round(((signed)(b - a)) / 2)
 vmi_ADDUHR, // d <- round(((unsigned)(a + b)) / 2)
 vmi_SUBUHR, // d <- round(((unsigned)(a - b)) / 2)
 vmi_RSUBUHR, // d <- round(((unsigned)(b - a)) / 2)

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 23 of 282

 // BITWISE OPERATIONS
 vmi_OR, // d <- a | b
 vmi_AND, // d <- a & b
 vmi_XOR, // d <- a ^ b
 vmi_ORN, // d <- a | ~b
 vmi_ANDN, // d <- a & ~b
 vmi_XORN, // d <- a ^ ~b
 vmi_NOR, // d <- ~(a | b)
 vmi_NAND, // d <- ~(a & b)
 vmi_XNOR, // d <- ~(a ^ b)

 // SHIFT/ROTATE OPERATIONS
 vmi_ROL, // d <- a << b | a >> <bits>-b
 vmi_ROR, // d <- a >> b | a << <bits>-b
 vmi_RCL, // (d,c) <- (a,c) << b | (a,c) >> <bits>-b
 vmi_RCR, // (d,c) <- (a,c) >> b | (a,c) << <bits>-b
 vmi_SHL, // d <- a << b
 vmi_SHR, // d <- (unsigned)a >> b
 vmi_SAR, // d <- (signed)a >> b

 // SATURATED SHIFT OPERATIONS
 vmi_SHLSQ, // d <- saturate_signed(a << b)
 vmi_SHLUQ, // d <- saturate_unsigned(a << b)

 // ROUNDING SHIFT OPERATIONS
 vmi_SHRR, // d <- round((unsigned)a >> b)
 vmi_SARR, // d <- round((signed)a >> b)

 // MIN/MAX OPERATIONS
 vmi_IMIN, // d <- min_signed(a, b)
 vmi_MIN, // d <- min_unsigned(a, b)
 vmi_IMAX, // d <- max_signed(a, b)
 vmi_MAX, // d <- max_unsigned(a, b)

 // WIDENING ARITHMETIC OPERATIONS
 vmi_IMULSU, // d <- a (signed) * b (unsigned)
 vmi_IMULUS, // d <- a (unsigned) * b (signed)

 // POLYNOMIAL ARITHMETIC OPERATIONS
 vmi_PMUL, // d <- a * b (carryless)

 // AES ENCRYPTION OPERATIONS
 vmi_AESENC1, // d <- AES_encrypt1(a), not last round
 vmi_AESENC1L, // d <- AES_encrypt1(a), last round
 vmi_AESDEC1, // d <- AES_decrypt1(a), not last round
 vmi_AESDEC1L, // d <- AES_decrypt1(a), last round
 vmi_AESENC2, // d <- AES_encrypt2(a), not last round
 vmi_AESENC2L, // d <- AES_encrypt2(a), last round
 vmi_AESDEC2, // d <- AES_decrypt2(a), not last round
 vmi_AESDEC2L, // d <- AES_decrypt2(a), last round

 vmi_BINOP_LAST // KEEP LAST

} vmiBinop;

Signed saturation instructions clamp overflowing values to the smallest negative or
largest positive value. Unsigned saturation instructions clamp overflowing values to zero
or the largest value.

Operations vmi_AESENC1, vmi_AESENC1L, vmi_AESDEC1, vmi_AESDEC1L, vmi_AESENC2,
vmi_AESENC2L, vmi_AESDEC2 and vmi_AESDEC2L implement primitives of the Advanced
Encryption Standard (AES) algorithm, taking two 64-bit operands and generating a 64-bit
result. In the terms of that specification, the operations are as follows:

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 24 of 282

vmi_AESENC1
result = ShiftRows(src1);
result = SubBytes(result);
result = MixColumns(result);
result = result xor src2;

vmi_AESENC1L
result = ShiftRows(src1);
result = SubBytes(result);
result = result xor src2;

vmi_AESDEC1
result = InvShiftRows(src1);
result = InvSubBytes(result);
result = InvMixColumns(result);
result = result xor src2;

vmi_AESDEC1L
result = InvShiftRows(src1);
result = InvSubBytes(result);
result = result xor src2;

vmi_AESENC2
result = result xor src2;
result = ShiftRows(src1);
result = SubBytes(result);
result = MixColumns(result);

vmi_AESENC2L
result = result xor src2;
result = ShiftRows(src1);
result = SubBytes(result);

vmi_AESDEC2
result = result xor src2;
result = InvShiftRows(src1);
result = InvSubBytes(result);
result = InvMixColumns(result);

vmi_AESDEC2L
result = result xor src2;
result = InvShiftRows(src1);
result = InvSubBytes(result);

3.10 Handling Instruction Flags
Several functions in this section use a vmiFlags structure to indicate how processor flags
are used and affected by translated native code. There is one input flag (carry) and five
output flags (carry, parity, zero, sign, and overflow), the behavior of which for any
instruction is specified by entries in the structure.

3.10.1 Carry In Flag
The carry in flag is used by arithmetic operations vmi_ADC and vmi_SBB to provide the
input carry or borrow value. For rotate-with-carry operations, the carry participates in an
N+1 bit rotation with the N bit operand value.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 25 of 282

3.10.2 Carry Out Flag
The carry out flag is set by arithmetic operations to indicate a carry out or a borrow. It is
also set by shift and rotate operations to indicate the last bit shifted or rotated out of the
operand. For rotate-with-carry operations, the carry participates in an N+1 bit rotation
with the N bit operand value; for shifts or rotates of zero, the carry is unchanged. For an
N-bit multiply operation, the carry flag is set if the result was truncated in order to fit into
N bits.

3.10.3 Parity Flag
The parity flag indicates the parity of the least significant byte of the result of an
operation. If the least significant byte contains an even number of one bits, the flag is set;
otherwise, it is cleared.

3.10.4 Zero Flag
The zero flag is set if an operation result is zero and cleared otherwise.

3.10.5 Sign Flag
The sign flag is set if the most significant bit of an operation result is set and cleared
otherwise.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 26 of 282

3.10.6 Overflow Flag
The overflow flag is set if an arithmetic operation overflowed (the carry into the most
significant bit of the result is different to the carry out). For an N-bit multiply operation,
the overflow flag is set if the result was truncated in order to fit into N bits.

3.10.7 vmiFlags Structure Usage
The carry input flag is be represented in a processor structure by an Uns8 entry. Each of
the five output flags may also be represented by an Uns8 entry, if required by that model.
In order to tell the simulator how to use the flags, each emission function that uses them
is passed a pointer to a vmiFlags structure:

typedef enum {
 vmi_CF=0, // carry flag
 vmi_PF=1, // parity flag
 vmi_ZF=2, // zero flag
 vmi_SF=3, // sign flag
 vmi_OF=4, // overflow flag
 vmi_LF=5 // KEEP LAST
} vmiFlag;

//
// Bitmask indicating whether particular flags should be negated
//
typedef enum {
 vmi_FN_NONE =0x00, // empty negate mask
 vmi_FN_CF_IN =0x01, // negate carry in flag
 vmi_FN_CF_OUT=0x02, // negate carry out flag
 vmi_FN_PF =0x04, // negate parity flag
 vmi_FN_ZF =0x08, // negate zero flag
 vmi_FN_SF =0x10, // negate sign flag
 vmi_FN_OF =0x20, // negate overflow flag
} vmiFlagNegate;

//
// Processor flag-related structures
//
typedef struct vmiFlagsS {
 vmiReg cin; // register specifying carry in
 vmiReg f[vmi_LF]; // registers to hold operation results
 vmiFlagNegate negate; // bitmask of negated flags
} vmiFlags;

If an emission function is passed a null pointer as its flags argument, then the function
should neither use nor set any flags. Otherwise, the function should obtain the carry in (if
required) from a register described by the cin field and write output flags to registers
described in the f array. If any register is given as VMI_NOFLAG, it should be ignored or
discarded by the emission function.

There is also a negate mask that allows the parity of flags in processor models to be
inverted with respect to those in the native processor.

As an example, here is how flag settings could be used to use register CPUX_CARRY as an
input flag (if required) and store the output carry to register CPUX_CARRY and the output
overflow to CPUX_OVERFLOW:

// processor structure definition

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 27 of 282

typedef struct cpuxS {
 Uns8 carryFlag; // carry flag
 Uns8 overflowFlag; // overflow flag
} cpux, *cpuxP;

// structure field accessor macros
#define CPUX_OFFSET(_F) VMI_CPU_REG(cpuxP, _F)
#define CPUX_CARRY CPUX_OFFSET(carryFlag);
#define CPUX_OVERFLOW CPUX_OFFSET(overflowFlag);

const vmiFlags flagsCO = {
 cin : CPUX_CARRY, // offset to carry in flag
 f : {
 [vmi_CF] = CPUX_CARRY, // offset to carry out flag
 [vmi_PF] = VMI_NOFLAG, // parity flag not used
 [vmi_ZF] = VMI_NOFLAG, // zero flag not used
 [vmi_SF] = VMI_NOFLAG, // sign flag not used
 [vmi_OF] = CPUX_OVERFLOW // offset to overflow flag
 }
};

For some processors, model flags are required to have inverted polarity with respect to
native flags. As an example, for ARM processors, SBC and SUB instructions use and emit
a borrow instead of a carry. To simulate this, the carry in must be negated before use (by
SBC) and the carry out must be negated before being written to the model structure. This
can be specified by using the negate mask in the vmiFlags structure as follows:

const vmiFlags flagsCO = {
 cin : CPUX_CARRY, // offset to carry in flag
 f : {
 [vmi_CF] = CPUX_CARRY, // offset to carry out flag
 [vmi_PF] = VMI_NOFLAG, // parity flag not used
 [vmi_ZF] = VMI_NOFLAG, // zero flag not used
 [vmi_SF] = VMI_NOFLAG, // sign flag not used
 [vmi_OF] = CPUX_OVERFLOW // offset to overflow flag
 },
 vmi_FN_CF_IN|vmi_FN_CF_OUT // negate carry in and carry out
};

Not all operations use or set all the flags; the following table gives usage for unary
operation types (defined in vmiTypes.h).

 ---------- ----- --------------------
 OPERATION INPUT OUTPUT
 ---------- ----- --------------------
 CY CY PF ZF SF OF
 ---------- ----- --------------------
 vmi_MOV - - A A A -
 vmi_SWP - - A A A -
 vmi_NEG - A A A A A
 vmi_ABS - A A A A A
 vmi_NEGSQ - A A A A A
 vmi_ABSSQ - A A A A A
 vmi_NOT - - A A A -
 vmi_RBIT - 0 A A A 0
 vmi_CNTZ - 0 A A 0 0
 vmi_CNTO - 0 A A 0 0
 vmi_CLS - 0 A A 0 0
 vmi_CLZ - 0 A A 0 0
 vmi_CLO - 0 A A 0 0
 vmi_CTZ - 0 A A 0 0
 vmi_CTO - 0 A A 0 0
 vmi_BSFZ - 0 A A 0 0
 vmi_BSFO - 0 A A 0 0
 vmi_BSRZ - 0 A A 0 0
 vmi_BSRO - 0 A A 0 0

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 28 of 282

 vmi_AESMC - - - - - -
 vmi_AESIMC - - - - - -
 ---------- ----- --------------------

 ------ -----------------------------
 SYMBOL MEANING
 ------ -----------------------------
 - Unused or unaffected
 A Flag affected (output)
 0 Flag cleared (output)
 ------ -----------------------------

The following table gives usage for binary operation types (defined in vmiTypes.h).

 ------------ ----- --------------------
 OPERATION INPUT OUTPUT
 ------------ ----- --------------------
 CY CY PF ZF SF OF
 ------------ ----- --------------------
 vmi_ADD - A A A A A
 vmi_ADC U A A A A A
 vmi_SUB - A A A A A
 vmi_SBB U A A A A A
 vmi_RSBB U A A A A A
 vmi_RSUB - A A A A A
 vmi_IMUL - A A A A A
 vmi_MUL - A A A A A
 vmi_IDIV - - A A A -
 vmi_DIV - - A A A -
 vmi_IREM - - A A A -
 vmi_REM - - A A A -
 vmi_CMP - A A A A A
 vmi_ADDSQ - A A A A A
 vmi_ADCSQ U A A A A A
 vmi_SUBSQ - A A A A A
 vmi_SBBSQ U A A A A A
 vmi_RSUBSQ - A A A A A
 vmi_RSBBSQ U A A A A A
 vmi_ADDUQ - A A A A A
 vmi_ADCUQ U A A A A A
 vmi_SUBUQ - A A A A A
 vmi_SBBUQ U A A A A A
 vmi_RSUBUQ - A A A A A
 vmi_ADDSH - A A A A -
 vmi_SUBSH - A A A A -
 vmi_RSUBSH - A A A A -
 vmi_ADDUH - A A A A -
 vmi_SUBUH - A A A A -
 vmi_RSUBUH - A A A A -
 vmi_ADDSHR - A A A A -
 vmi_SUBSHR - A A A A -
 vmi_RSUBSHR - A A A A -
 vmi_ADDUHR - A A A A -
 vmi_SUBUHR - A A A A -
 vmi_RSUBUHR - A A A A -
 vmi_OR - 0 A A A 0
 vmi_AND - 0 A A A 0
 vmi_XOR - 0 A A A 0
 vmi_ORN - 0 A A A 0
 vmi_ANDN - 0 A A A 0
 vmi_XORN - 0 A A A 0
 vmi_NOR - 0 A A A 0
 vmi_NAND - 0 A A A 0
 vmi_XNOR - 0 A A A 0
 vmi_ROL U0 A A A A -
 vmi_ROR U0 A A A A -
 vmi_RCL U A A A A -
 vmi_RCR U A A A A -
 vmi_SHL U0 A A A A -

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 29 of 282

 vmi_SHR U0 A A A A -
 vmi_SAR U0 A A A A -
 vmi_SHLSQ - A A A A A
 vmi_SHLUQ - A A A A A
 vmi_SHRR - A A A A -
 vmi_SARR - A A A A -
 vmi_IMIN - - A A A -
 vmi_MIN - - A A A -
 vmi_IMAX - - A A A -
 vmi_MAX - - A A A -
 vmi_IMULSU - A A A A A
 vmi_IMULUS - A A A A A
 vmi_PMUL - - A A A -
 vmi_AESENC1 - - - - - -
 vmi_AESENC1L - - - - - -
 vmi_AESDEC1 - - - - - -
 vmi_AESDEC1L - - - - - -
 vmi_AESENC2 - - - - - -
 vmi_AESENC2L - - - - - -
 vmi_AESDEC2 - - - - - -
 vmi_AESDEC2L - - - - - -
 ------------ ----- --------------------

 ------ --
 SYMBOL MEANING
 ------ --
 - Unused or unaffected
 U Flag used (input)
 U0 Flag used only if shift/rotate is zero (input)
 A Flag affected (output)
 0 Flag cleared (output)
 ------ --

For signed saturating operations (with SQ suffix) the flags represent the computed value
before saturation. It is therefore possible to tell whether signed saturation has occurred
using the overflow flag.

For unsigned saturating operations (with UQ suffix) the flags represent the computed
value before saturation. It is therefore possible to tell whether unsigned saturation has
occurred using the carry flag.

3.11 Handling Exceptions
Integer divide and remainder operations can cause two kinds of exception: integer
overflow (when the minimum negative integer is divided by -1) and divide-by-zero. It is
possible to handle such exceptions using one of two distinct VMI function interfaces:

1. A model arithmetic result handler. This should be used when the operation could
either cause a processor simulated exception or produce a known result.

2. A model arithmetic exception handler. This should be used when the operation
can under some circumstances leave target registers of the divide or remainder
unchanged. The interface is more general than the arithmetic result handler, but
more complex: use the arithmetic result handler by preference if possible.

More information about each of these two function types is given below.

3.11.1 Arithmetic Result Handler
The arithmetic result handler is of type vmiArithResultFn and is specified using the
arithResultCB field of the processor vmiIASAttrs structure. It is defined using the
VMI_ARITH_RESULT_FN macro:

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 30 of 282

#define VMI_ARITH_RESULT_FN(_NAME) void _NAME(\
 vmiProcessorP processor, \
 vmiDivideInfoCP divideInfo, \
 vmiDivideResultP divideResults \
)
typedef VMI_ARITH_RESULT_FN((*vmiArithResultFn));

The function is passed three arguments: the processor, a structure containing information
about the inputs and type of the current operation (divideInfo) and a structure in which
to return results (divideResults). The vmiDivideInfo type is defined in vmiTypes.h as
follows:

typedef struct vmiDivideInfoS {
 Uns8 bits; // bit size of operation (8, 16 ,32 or 64)
 Bool isSigned; // whether division is signed
 Uns64 dividendLSW; // least-significant part of dividend
 Uns64 dividendMSW; // most-significant part of dividend
 Uns64 divisor; // divisor
} vmiDivideInfo;

This structure gives the operation size in bits, whether the division/remainder operation is
signed or unsigned, and the divisor and dividend values. Because the VMI API supports
division of up to 128 bit dividends, the value of the dividend is passed as two Uns64
values. There is no information about whether the faulting operation is a division or
remainder operation: both results should be returned in the vmiDivideResult type (see
below).

The vmiDivideResult type type is defined in vmiTypes.h as follows:

typedef struct vmiDivideResultS {
 Uns64 quotient; // fill this with quotient
 Uns64 remainder; // fill this with remainder
} vmiDivideResult;

The function may fill the quotient and remainder fields of the divideResults
structure with appropriate values, given the function inputs in the divideInfo argument
structure, or possibly use vmirtSetPCException to jump to a simulated exception
vector. As an example, here is the arithmetic result handler from the OVP ARM model.
This function usually returns a default result, but for ARMv7-R architecture processors
can instead cause an exception (armUndefined eventually calls vmirtSetPCException):

VMI_ARITH_RESULT_FN(armArithExceptionCB) {

 armP arm = (armP)processor;

 if(divideInfo->divisor) {

 // integer overflow
 divideResults->quotient = divideInfo->dividendLSW;
 divideResults->remainder = 0;

 } else if(!MMU_PRESENT(arm) && SYS_FIELD_ALT(arm, SCTLR, WXN_DZ)) {

 // divide-by-zero, ARMv7-R architecture - note that SCTLR.DZ is only
 // valid on ARMv7-R; on ARMv7-A, this bit is used for something
 // completely different (WXN) and there is no way to specify that an
 // undefined instruction exception should be taken

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 31 of 282

 armUndefined(arm, getPC(arm), 0, False);

 } else {

 // handle divide-by-zero, no exception
 divideResults->quotient = 0;
 divideResults->remainder = 0;
 }
}

Note that there is no need to return a result if an exception is taken (the result is unused in
this case). Divide-by-zero and integer-overflow cases can be distinguished by whether the
divisor is zero or not.

3.11.2 Arithmetic Exception Handler
The arithmetic exception handler is of type vmiArithExceptFn and is specified using the
arithExceptCB field of the processor vmiIASAttrs structure. It is defined using the
VMI_ARITH_EXCEPT_FN macro:

#define VMI_ARITH_EXCEPT_FN(_NAME) vmiIntegerExceptionResult _NAME(\
 vmiProcessorP processor, \
 vmiNumericExceptionType exceptionType, \
 vmiExceptionContext exceptionContext \
)
typedef VMI_ARITH_EXCEPT_FN((*vmiArithExceptFn));

The exact reason it is being called is indicated by the exceptionType argument:

typedef enum vmiIntegerExceptionTypeE {
 VMI_INTEGER_DIVIDE_BY_ZERO,
 VMI_INTEGER_OVERFLOW
} vmiIntegerExceptionType;

The handler may modify processor state to reflect the result of the faulting operation, or
possibly use vmirtSetPCException to jump to a simulated exception vector. The return
value of the handler is of type vmiIntegerExceptionResult:

typedef enum vmiIntegerExceptionResultE {
 VMI_NUMERIC_UNHANDLED, // not handled
 VMI_NUMERIC_ABORT, // handled, abort current instruction
 VMI_NUMERIC_CONTINUE, // handled, continue current instruction
} vmiIntegerExceptionResult;

A result of VMI_INTEGER_UNHANDLED indicates that the exception condition is unexpected
and simulation should terminate.

A result of VMI_INTEGER_ABORT indicates that the current simulated instruction should be
terminated and simulation should resume with the next simulated instruction.

A result of VMI_INTEGER_CONTINUE indicates that simulation of the current instruction
should be resumed after the faulting operation. In this case, all results of the faulting
operation will be discarded and simulation will resume with the next VMI operation
(which could be in the next simulated instruction or a later operation in the current
simulated instruction).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 32 of 282

As an example, here is the arithmetic result handler from the OVP ARC model. This
function usually returns a default result, but may instead cause an exception for divide-
by-zero (arcTakeException0 eventually calls vmirtSetPCException):

VMI_ARITH_EXCEPT_FN(arcArithExceptionCB) {

 arcP arc = (arcP)processor;

 if(exceptionContext==VMI_EXCEPT_CXT_CALL) {

 // not expecting any arithmetic exceptions in calls from morphed code
 return VMI_INTEGER_UNHANDLED; // LCOV_EXCL_LINE

 } else switch(exceptionType) {

 case VMI_INTEGER_DIVIDE_BY_ZERO:
 // handle divide-by-zero
 if(AUX_FIELD(arc, status32, DZ)) {
 arcTakeException0(arc, EC_DivideByZero);
 } else if(arc->setFlags) {
 arc->aflags.VF = 1;
 }
 return VMI_INTEGER_ABORT;

 case VMI_INTEGER_OVERFLOW:
 // handle overflow (MIN_INT / -1)
 if(arc->setFlags) {
 arc->aflags.VF = 1;
 }
 return VMI_INTEGER_ABORT;

 default:
 // not expecting any other arithmetic exception types
 return VMI_INTEGER_UNHANDLED; // LCOV_EXCL_LINE
 }
}

Note that the simpler arithmetic exception result function cannot be used for the ARC
model because when an exception occurs the target register is not updated.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 33 of 282

3.12 vmimtGetSMPParentRegister

Prototype

vmiReg vmimtGetSMPParentRegister(vmiReg r, Uns32 level);

Description
The VMI interfaces allow the specification of SMP processor clusters. These clusters are
implemented as a number of levels of container processor objects, each of which can
contain further levels of container processors or leaf processors (which are actually
simulated). As an example, the MIPS 1004K OVP processor model has these hierarchy
levels:

1. a root level CMP processor object, containing:
2. a number of CPU processor objects, each containing:
3. a number of VPE (virtual processing element) processor objects, each containing:
4. a number of TC (thread context) objects, which are actually simulated.

The thread context objects each represent a microthread running on a VPE. Instructions
on a TC can refer to registers:

1. local to the TC itself (for example, the GPRs);
2. at the VPE level (for example, most system control registers are implemented at

the VPE level);
3. at the CPU level (a few system control registers are shared by all the VPEs).

It is possible for a TC to be moved to a different VPE on the same CPU at run time. For
example, TC0 might start life bound to VPE0 on CPU0, but later on be dynamically
rebound to VPE1 of CPU0 instead2. When this rebinding occurs, any reference to a
register at the VPE level must be sure to use the new VPE.

Function vmimtGetSMPParentRegister takes as an argument a vmiReg representing a
register in the processor and a level argument, indicating a parent level (level 0 is the
leaf level processor itself, level 1 is its parent, level 2 is its grandparent, and so on). It
returns a new vmiReg representing that register at the indicated parent level. The register
description remains valid even if the leaf level processor is subsequently relocated in the
SMP cluster so that the parent at that level changes.

Example
This example is taken from the MIPS processor model. In file mips32Morph.c, there is a
function mips32VPEReg which returns the vmiReg description for a VPE-level register for
the current TC. If the processor does not implement the multithreaded ASE, the TC and
VPE levels are equivalent; otherwise, function vmimtGetSMPParentRegister is used to
construct the correct vmiReg description for the parent VPE:

2 See function vmirtSetSMPParent in the VMI Run Time Function Reference.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 34 of 282

vmiReg mips32VPEReg(mips32P tc, vmiReg r) {
 mips32P vpe = VPE_FOR_TC(tc);
 return (tc==vpe) ? r : vmimtGetSMPParentRegister(r, 1);
}

This function is used, for example, in mips32MorphCop0.c to return the vmiReg
description for a control register:

static vmiReg getCOP0Reg(mips32P tc, Uns32 reg, Uns32 sel) {

 mips32Cop0RegId id = cop0RegInfo[reg][sel].id;
 vmiReg result = MIPS32_CPU_REG(cop0.regs[id]);

 switch(getCOP0Level(reg, sel)) {

 case COP0_RL_CPU:
 return VMI_REG_DELTA(result, tc->cpuDelta);

 case COP0_RL_VPE:
 return mips32VPEReg(tc, result);

 default:
 return result;
 }
}

It is only necessary to use vmimtGetSMPParentRegister when the parent at that level
can change dynamically at run time. In the case of the MIPS processor, a TC can be
bound to a different VPE at run time, but that VPE must lie on the same CPU. Therefore,
references to CPU level registers for a TC do not need to use
vmimtGetSMPParentRegister but can use the macro VMI_REG_DELTA instead. This
macro constructs a vmiReg value referencing a register at a constant offset from the
current processor.

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 35 of 282

3.13 vmimtMoveRC

Prototype

void vmimtMoveRC(
 Uns32 bits,
 vmiReg rd,
 Uns64 c
);

Description
Emit code to move a constant value c into target register rd within the processor. The
register has size bits within the processor structure.

Example
The OVP OR1K model uses this function to implement the MOVHI instruction:

// Emit code for a movhi instruction
static OR1K_MORPH_FN(morphMOVHI) {

 vmiReg rd = getGPR(state->info.r1);
 Uns32 c = state->info.c;

 vmimtMoveRC(OR1K_BITS, rd, c<<16);
}

Notes and Restrictions

1. bits can be any multiple of 8. If bits is greater than 64, the given constant is
replicated to fill the target register.

2. For target registers less than 64 bits wide, the constant must be either a zero or
sign extended pattern that can be represented in that number of bits.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 36 of 282

3.14 vmimtMoveRSimPC

Prototype

void vmimtMoveRSimPC(
 Uns32 bits,
 vmiReg rd
);

Description
Emit code to move the current simulated program counter into target register rd within
the processor. The register has size bits within the processor structure.

If a processor model does not use physically-mapped code dictionaries, then this is
equivalent to using vmimtMoveRC, specifying the current program counter as the constant
argument. However, when processor models do use physically-mapped code dictionaries,
vmimtMoveRSimPC must be used to obtain the current simulated address, because the
same JIT-compiled code block can be mapped at different simulated virtual addresses.

See the description of vmirtAliasMemoryVM in the VMI Run Time Function Reference
and also the Imperas Processor Modeling Guide for more information about physically-
mapped code dictionaries.

Example
The OVP MIPS model uses this function when calculating link addresses:

// Emit code to set link address to thisPC+8
static void emitSetLinkAddress(vmiReg rl) {

 Uns32 bits = MIPS32_GPR_BITS;

 vmimtMoveRSimPC(bits, rl);
 vmimtBinopRC(bits, vmi_ADD, rl, 8, 0);
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 37 of 282

3.15 vmimtMoveRR

Prototype

void vmimtMoveRR(
 Uns32 bits,
 vmiReg rd,
 vmiReg ra
);

Description
Emit code to move from source register ra to target register rd within the processor. Both
registers are of size bits within the processor structure.

Example
The OVP RISC-V model uses this function to define register-to-register moves:

static RISCV_MORPH_FN(emitMoveRR) {

 vmiReg rd = getReg(state, 0);
 vmiReg rs = getReg(state, 1);
 Uns32 bits = getRegBits(state, 0);

 vmimtMoveRR(bits, rd, rs);

 writeReg(state, 0);
}

Notes and Restrictions
1. bits must be 8, 16, 32, 64 or 128.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 38 of 282

3.16 vmimtMoveExtendRR

Prototype

void vmimtMoveExtendRR(
 Uns32 destBits,
 vmiReg rd,
 Uns32 srcBits,
 vmiReg ra,
 Bool signExtend
);

Description
Emit code to move from source register ra to target register rd within the processor. The
destination register is of size destBits and the source register of size srcBits
(destBits must be equal to or larger than srcBits). If source and destination sizes are
unequal, then the source will be zero-extended (if signExtend is False) or sign-
extended (if signExtend is True) to the full destination size.

If source and destination sizes match, this function is exactly equivalent to vmimtMoveRR.

Example
The OVP RISC-V model uses this function to calculate an exclusive access tag address:

static void generateEATag(riscvMorphStateP state, vmiReg rtag, vmiReg ra) {

 Uns32 bits = getEABits(state);
 Uns32 raBits = getModeBits(state);

 vmimtMoveExtendRR(bits, rtag, raBits, ra, 0);
 vmimtBinopRC(bits, vmi_AND, rtag, state->riscv->exclusiveTagMask, 0);
}

Notes and Restrictions
1. destBits and srcBits must be 8, 16, 32, 64 or 128.
2. destBits must be equal to or greater than srcBits.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 39 of 282

3.17 vmimtCondMoveRRR

Prototype

void vmimtCondMoveRRR(
 Uns32 bits,
 vmiReg flag,
 Bool select1,
 vmiReg rd,
 vmiReg ra,
 vmiReg rb
);

Description
Emit code to compare the (8-bit) register flag in the processor structure with select1. If
flag equals select1, the emitted code will move from source register ra to target register
rd within the processor. Otherwise, the emitted code will move source register rb to
target register rd within the processor. All registers are of size bits within the processor
structure.

Example
The OVP RISC-V model uses this function to implement an atomic conditional select
instruction:

static AMO_FN(emitAMOCmpopRRRCB) {

 vmiReg tf = getTmp(state, 2);

 vmimtCompareRR(bits, state->attrs->cond, ra, rb, tf);
 vmimtCondMoveRRR(bits, tf, True, rd, ra, rb);
}

Notes and Restrictions

1. bits must be 8, 16, 32, 64 or 128.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 40 of 282

3.18 vmimtCondMoveRRC

Prototype

void vmimtCondMoveRRC(
 Uns32 bits,
 vmiReg flag,
 Bool select1,
 vmiReg rd,
 vmiReg ra,
 Uns64 c
);

Description
Emit code to compare the (8-bit) register flag in the processor structure with select1. If
flag equals select1, the emitted code will move from source register ra to target register
rd within the processor. Otherwise, the emitted code will move constant c to target
register rd within the processor. All registers are of size bits within the processor
structure.

Example
The OVP RISC-V model uses this function to convert input floating point register values
that are not NaN-boxed to a QNaN:

static vmiReg getRegFS(riscvMorphStateP state, Uns32 argNum) {

 riscvRegDesc r = state->info.r[argNum];
 Uns32 bits = getRegBits(state, argNum);
 vmiReg result = getReg(state, argNum);

 if(isFReg(r)) {

 Uns32 archBits = riscvGetFlenArch(state->riscv);
 Uns32 fprMask = getRegMask(r);

 if((archBits>bits) && !(state->blockState->fpNaNBoxMask&fprMask)) {

 // use temporary corresponding to the input argument
 vmiReg tmp = getTmp(state, argNum);
 vmiReg upper = VMI_REG_DELTA(result,bits/8);

 // is the upper half all ones?
 vmimtCompareRC(bits, vmi_COND_EQ, upper, -1, tmp);

 // seed the apparent value, depending on whether the source is
 // correctly NaN-boxed
 vmimtCondMoveRRC(bits, tmp, True, tmp, result, FP32_DEFAULT_QNAN);

 // use the temporary as a source
 result = tmp;
 }
 }

 return result;
}

Notes and Restrictions

1. bits must be 8, 16, 32, 64 or 128.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 41 of 282

3.19 vmimtCondMoveRCR

Prototype

void vmimtCondMoveRCR(
 Uns32 bits,
 vmiReg flag,
 Bool select1,
 vmiReg rd,
 Uns64 c,
 vmiReg rb
);

Description
Emit code to compare the (8-bit) register flag in the processor structure with select1. If
flag equals select1, the emitted code will move constant c to target register rd within the
processor. Otherwise, the emitted code will move source register rb to target register rd
within the processor. All registers are of size bits within the processor structure.

Example
The OVP ARC model uses this function to implement a min/max operation taking a
constant and register as arguments:

static void emitMinmaxopRCRInt(arcMorphStateP state, Int32 c1, vmiReg rs1) {

 vmiReg rd = GET_RD(state, rd);
 vmiFlagsCP flags = getFlagsOrNull(state);
 vmiCondition minmaxCCond = state->attrs->minmaxCCond;
 vmiReg tf = flags ? ARC_CF : getTemp(state);

 // generate flags if required
 if(flags) {
 vmimtBinopRCR(ARC_GPR_BITS, vmi_CMP, VMI_NOREG, c1, rs1, flags);
 }

 // generate the selection condition
 vmimtCompareCR(ARC_GPR_BITS, minmaxCCond, c1, rs1, tf);

 // do the conditional move
 vmimtCondMoveRCR(ARC_GPR_BITS, tf, False, rd, c1, rs1);
}

Notes and Restrictions

1. bits must be 8, 16, 32, 64 or 128.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 42 of 282

3.20 vmimtCondMoveRCC

Prototype

void vmimtCondMoveRCC(
 Uns32 bits,
 vmiReg flag,
 Bool select1,
 vmiReg rd,
 Uns64 c1,
 Uns64 c2
);

Description
Emit code to compare the (8-bit) register flag in the processor structure with select1. If
flag equals select1, the emitted code will move constant c1 to target register rd within
the processor. Otherwise, the emitted code will move constant c2 to target register rd
within the processor. Register rd is of size bits within the processor structure.

Example
The OVP ARM model uses this function to implement some per-element vector compare
instructions:

static SIMD_EL_OP_FN(simdVCmpSelBool_F) {

 vmiFPRelation cond = state->attrs->fpRelation;
 Bool allowQNaN = state->attrs->allowQNaN;
 Uns64 ones = allOnes(resultSize);
 vmiReg relation = getTemp(state, 32);
 vmiFlags flags = getZFFlags(VMI_REG_DELTA(relation, 1));

 // Compare the floating point operands, getting vmiFPRelation result in the
 // register relation
 vmimtFCompareRR(bytesToFType(opSize/8), relation, r2, r3, allowQNaN);

 // Move zeros or ones to result depending on whether any cond bits are set in
 // relation
 vmimtBinopRRC(8, vmi_AND, VMI_NOREG, relation, cond, &flags);
 vmimtCondMoveRCC(resultSize, flags.f[vmi_ZF], False, result, ones, 0);
}

Notes and Restrictions

1. bits must be 8, 16, 32, 64 or 128.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 43 of 282

3.21 vmimtUnopR

Prototype

void vmimtUnopR(
 Uns32 bits,
 vmiUnop op,
 vmiReg rd,
 vmiFlagsCP flags
);

Description
Emit code to perform a unary operation on register rd in the processor structure, writing
the result back to the same register. The argument bits gives the bit width for the
operation.

Argument op is the unary operation to perform. Available unary operations are defined in
vmiTypes.h: see Simulated Register Specification Using vmiReg
Most functions in this API require use of the vmiReg type to specify the location of
source and target registers in a structure representing a simulated processor. A short
introduction to usage of this type is given here; for a more detailed description, refer to
the Imperas Processor Modeling Guide.

As an example, the OVP OR1K processor is represented using a structure of type or1k,
defined as follows:

#define OR1K_REGS 32

typedef struct or1kS {

 Bool carryFlag; // carry flag
 Bool overflowFlag; // overflow flag
 Bool branchFlag; // branch flag

 Uns32 regs[OR1K_REGS]; // basic registers

 . . . fields omitted for clarity . . .

} or1k, *or1kP;

Here, for example, the regs member holds the value of each of the 32 GPRs. The
location of a register (for example, a GPR) is specified to the simulator using the vmiReg
type, defined in file vmiTypes.h. A vmiReg structure can be created for any field in a
processor structure using the VMI_CPU_REG macro, which takes a type pointer and a field
name argument. Typically, the processor header files will contain further macros that
encapsulate usage of the VMI_CPU_REG macro appropriately for that processor: for
example, the OVP OR1K model contains these macro definitions:

#define OR1K_CPU_REG(_F) VMI_CPU_REG(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_R])
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)
#define OR1K_BRANCH OR1K_CPU_REG(branchFlag)

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 44 of 282

As an example, this code could now be used to specify the location of the OR1K
branchFlag register to a morph-time API function:

vmiReg bf = OR1K_BRANCH;

Typically, usage of registers such as GPRs is encapsulated by sugar routines that handle
special values. In the case of the OR1K processor, GPR 0 is always zero and unwritable.
Therefore, the following sugar function is used to return an appropriate vmiReg for an
operation, given a GPR index:

static vmiReg getGPR(Uns32 r) {
 return r ? OR1K_REG(r) : VMI_NOREG;
}

For conciseness and clarity, Examples listed in this manual will typically refer to vmiReg
structures without giving details of the processor structure that contains those registers.
Unary Operation Types for more information about this.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

Example
The OVP PowerPC model uses this function to implement negate instructions:

PPC32_MORPH_FN(morphSE_NEG_R1) {

 Uns8 RX = state->info.RX;
 vmiReg GPR_RX = PPC32_GPR_WR(RX);

 vmimtUnopR(PPC32_GPR_BITS, vmi_NEG, GPR_RX, 0);
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64; for AES operations, bits must be 64.
2. The vmi_SWP unary operation entirely reverses the byte order of the argument. For

example the 64-bit value 0x0102030405060708 becomes 0x0807060504030201.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 45 of 282

3.22 vmimtUnopRR

Prototype

void vmimtUnopRR(
 Uns32 bits,
 vmiUnop op,
 vmiReg rd,
 vmiReg ra,
 vmiFlagsCP flags
);

Description
Emit code to perform a unary operation on register ra in the processor structure, writing
the result to register rd. Argument bits gives the bit width for the operation.

Argument op is the unary operation to perform. Available unary operations are defined in
vmiTypes.h: see Simulated Register Specification Using vmiReg
Most functions in this API require use of the vmiReg type to specify the location of
source and target registers in a structure representing a simulated processor. A short
introduction to usage of this type is given here; for a more detailed description, refer to
the Imperas Processor Modeling Guide.

As an example, the OVP OR1K processor is represented using a structure of type or1k,
defined as follows:

#define OR1K_REGS 32

typedef struct or1kS {

 Bool carryFlag; // carry flag
 Bool overflowFlag; // overflow flag
 Bool branchFlag; // branch flag

 Uns32 regs[OR1K_REGS]; // basic registers

 . . . fields omitted for clarity . . .

} or1k, *or1kP;

Here, for example, the regs member holds the value of each of the 32 GPRs. The
location of a register (for example, a GPR) is specified to the simulator using the vmiReg
type, defined in file vmiTypes.h. A vmiReg structure can be created for any field in a
processor structure using the VMI_CPU_REG macro, which takes a type pointer and a field
name argument. Typically, the processor header files will contain further macros that
encapsulate usage of the VMI_CPU_REG macro appropriately for that processor: for
example, the OVP OR1K model contains these macro definitions:

#define OR1K_CPU_REG(_F) VMI_CPU_REG(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_R])
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)
#define OR1K_BRANCH OR1K_CPU_REG(branchFlag)

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 46 of 282

As an example, this code could now be used to specify the location of the OR1K
branchFlag register to a morph-time API function:

vmiReg bf = OR1K_BRANCH;

Typically, usage of registers such as GPRs is encapsulated by sugar routines that handle
special values. In the case of the OR1K processor, GPR 0 is always zero and unwritable.
Therefore, the following sugar function is used to return an appropriate vmiReg for an
operation, given a GPR index:

static vmiReg getGPR(Uns32 r) {
 return r ? OR1K_REG(r) : VMI_NOREG;
}

For conciseness and clarity, Examples listed in this manual will typically refer to vmiReg
structures without giving details of the processor structure that contains those registers.
Unary Operation Types for more information about this.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

If rd and ra are the same, this is equivalent to vmimtUnopR.

Example
The OVP ARM model uses this function to implement some per-element vector compare
instructions:

static SIMD_EL_OP_FN(simdVCmp0) {

 vmiCondition cond = state->attrs->cond;

 // do the indicated comparison test on the operands
 vmimtCompareRC(opSize, cond, r2, 0, result);

 // extend to operand size
 vmimtMoveExtendRR(opSize, result, 8, result, False);

 // negate to fill with zeros or ones
 vmimtUnopRR(opSize, vmi_NEG, result, result, 0);
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64; for AES operations, bits must be 64.
2. The vmi_SWP unary operation entirely reverses the byte order of the argument. For

example the 64-bit value 0x0102030405060708 becomes 0x0807060504030201.
3. rd may be VMI_NOREG, in which case the operation result is discarded. This is

useful if only flag values are required.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 47 of 282

3.23 vmimtUnopRC

Prototype

void vmimtUnopRC(
 Uns32 bits,
 vmiUnop op,
 vmiReg rd,
 Uns64 c,
 vmiFlagsCP flags
);

Description
Emit code to perform a unary operation on constant c, writing the result to register rd.
Argument bits gives the bit width for the operation.

Argument op is the unary operation to perform. Available unary operations are defined in
vmiTypes.h: see Simulated Register Specification Using vmiReg
Most functions in this API require use of the vmiReg type to specify the location of
source and target registers in a structure representing a simulated processor. A short
introduction to usage of this type is given here; for a more detailed description, refer to
the Imperas Processor Modeling Guide.

As an example, the OVP OR1K processor is represented using a structure of type or1k,
defined as follows:

#define OR1K_REGS 32

typedef struct or1kS {

 Bool carryFlag; // carry flag
 Bool overflowFlag; // overflow flag
 Bool branchFlag; // branch flag

 Uns32 regs[OR1K_REGS]; // basic registers

 . . . fields omitted for clarity . . .

} or1k, *or1kP;

Here, for example, the regs member holds the value of each of the 32 GPRs. The
location of a register (for example, a GPR) is specified to the simulator using the vmiReg
type, defined in file vmiTypes.h. A vmiReg structure can be created for any field in a
processor structure using the VMI_CPU_REG macro, which takes a type pointer and a field
name argument. Typically, the processor header files will contain further macros that
encapsulate usage of the VMI_CPU_REG macro appropriately for that processor: for
example, the OVP OR1K model contains these macro definitions:

#define OR1K_CPU_REG(_F) VMI_CPU_REG(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_R])
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)
#define OR1K_BRANCH OR1K_CPU_REG(branchFlag)

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 48 of 282

As an example, this code could now be used to specify the location of the OR1K
branchFlag register to a morph-time API function:

vmiReg bf = OR1K_BRANCH;

Typically, usage of registers such as GPRs is encapsulated by sugar routines that handle
special values. In the case of the OR1K processor, GPR 0 is always zero and unwritable.
Therefore, the following sugar function is used to return an appropriate vmiReg for an
operation, given a GPR index:

static vmiReg getGPR(Uns32 r) {
 return r ? OR1K_REG(r) : VMI_NOREG;
}

For conciseness and clarity, Examples listed in this manual will typically refer to vmiReg
structures without giving details of the processor structure that contains those registers.
Unary Operation Types for more information about this.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

Example
The OVP PowerPC model uses this function to implement some load-immediate
instructions:

PPC32_MORPH_FN(morphLI_D2_1) {

 Uns8 RT = state->info.RT;
 vmiReg GPR_RT = PPC32_GPR_WR(RT);
 Int16 SI = state->info.SI;

 vmimtUnopRC(PPC32_GPR_BITS, vmi_ADD, GPR_RT, SI, 0);
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64; for AES operations, bits must be 64.
2. The vmi_SWP unary operation entirely reverses the byte order of the argument. For

example the 64-bit value 0x0102030405060708 becomes 0x0807060504030201.
3. rd may be VMI_NOREG, in which case the operation result is discarded. This is

useful if only flag values are required.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 49 of 282

3.24 vmimtBinopRR

Prototype

void vmimtBinopRR(
 Uns32 bits,
 vmiBinop op,
 vmiReg rd,
 vmiReg ra,
 vmiFlagsCP flags
);

Description
Emit code to perform a binary operation on registers rd and ra in the processor
structure, writing the result to register rd. Argument bits gives the bit width for the
operation.

Argument op is the binary operation to perform. Available binary operations are defined
in vmiTypes.h: see Binary Operation Types for more information about this.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

Example
The OVP ARM model uses this function to implement some instructions that set a
cumulative saturation flag:

static void emitOpSetQ(
 armMorphStateP state,
 Uns32 bits,
 vmiBinop op,
 vmiReg rd,
 vmiReg rs1,
 vmiReg rs2
) {
 vmiReg tf = getTemp(state, 32);
 vmiFlags flags = getOFFlags(tf);

 // do the operation, setting flags
 vmimtBinopRRR(bits, op, rd, rs1, rs2, &flags);

 // set the sticky Q flag of there was overflow
 vmimtBinopRR(8, vmi_OR, ARM_QF, tf, 0);
}

Notes and Restrictions

1. The bits argument must be 8, 16, 32 or 64; for AES operations, bits must be 64.
2. Arithmetic exceptions can be generated by some operations (for example, integer

divide by zero). A handler for these arithmetic exceptions can be supplied if
required (defined with the VMI_ARITH_EXCEPT_FN macro, installed as the
arithExceptCB field of the processor vmiIASAttr structure).

3. For shift/rotate operations (vmi_ROL, vmi_ROR, vmi_RCL, vmi_RCR, vmi_SHL,
vmi_SHR and vmi_SAR) the shift/rotate amount b is by default masked using

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 50 of 282

bits-1 before use. For example, if bits is 32 then the shift/rotate amount will
be masked to the range 0..31 before use. This default behavior can be overridden
by vmimtSetShiftMask.

4. rd may be VMI_NOREG, in which case the operation result is discarded. This is
useful if only flag values are required.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 51 of 282

3.25 vmimtBinopRRR

Prototype

void vmimtBinopRRR(
 Uns32 bits,
 vmiBinop op,
 vmiReg rd,
 vmiReg ra,
 vmiReg rb,
 vmiFlagsCP flags
);

Description
Emit code to perform a binary operation on registers ra and rb in the processor structure,
writing the result to register rd. Argument bits gives the bit width for the operation.

Argument op is the binary operation to perform. Available binary operations are defined
in vmiTypes.h: see Binary Operation Types for more information about this.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

If rd and ra are equal, this is equivalent to vmimtBinopRR.

Example
The OVP RISC-V model uses this function to implement generic binops:

static RISCV_MORPH_FN(emitBinopRRR) {

 vmiReg rd = getReg(state, 0);
 vmiReg rs1 = getReg(state, 1);
 vmiReg rs2 = getReg(state, 2);
 Uns32 bits = getRegBits(state, 0);

 vmimtBinopRRR(bits, state->attrs->binop, rd, rs1, rs2, 0);

 writeReg(state, 0);
}

Notes and Restrictions

1. Argument bits must be 8, 16, 32 or 64; for AES operations, bits must be 64.
2. Arithmetic exceptions can be generated by some operations (for example, integer

divide by zero). A handler for these arithmetic exceptions can be supplied if
required (defined with the VMI_ARITH_EXCEPT_FN macro, installed as the
arithExceptCB field of the processor vmiIASAttr structure).

3. For shift/rotate operations (vmi_ROL, vmi_ROR, vmi_RCL, vmi_RCR, vmi_SHL,
vmi_SHR and vmi_SAR) the shift/rotate amount b is by default masked using
bits-1 before use. For example, if bits is 32 then the shift/rotate amount will
be masked to the range 0..31 before use. This default behavior can be overridden
by vmimtSetShiftMask.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 52 of 282

4. rd may be VMI_NOREG, in which case the operation result is discarded. This is
useful if only flag values are required.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 53 of 282

3.26 vmimtBinopRC

Prototype

void vmimtBinopRC(
 Uns32 bits,
 vmiBinop op,
 vmiReg rd,
 Uns64 c,
 vmiFlagsCP flags
);

Description
Emit code to perform a binary operation on register rd in the processor structure and
constant c, writing the result to register rd. Argument bits gives the bit width for the
operation.

Argument op is the binary operation to perform. Available binary operations are defined
in vmiTypes.h: see Binary Operation Types for more information about this.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

Example
The OVP RISC-V model uses this function to calculate an exclusive access tag address:

static void generateEATag(riscvMorphStateP state, vmiReg rtag, vmiReg ra) {

 Uns32 bits = getEABits(state);
 Uns32 raBits = getModeBits(state);

 vmimtMoveExtendRR(bits, rtag, raBits, ra, 0);
 vmimtBinopRC(bits, vmi_AND, rtag, state->riscv->exclusiveTagMask, 0);
}

Notes and Restrictions

1. Argument bits must be 8, 16, 32 or 64; for AES operations, bits must be 64.
2. For target registers less than 64 bits wide, the unused most significant bits of c are

silently discarded.
3. Arithmetic exceptions can be generated by some operations (for example, integer

divide by zero). A handler for these arithmetic exceptions can be supplied if
required (defined with the VMI_ARITH_EXCEPT_FN macro, installed as the
arithExceptCB field of the processor vmiIASAttr structure).

4. rd may be VMI_NOREG, in which case the operation result is discarded. This is
useful if only flag values are required.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 54 of 282

3.27 vmimtBinopRCR

Prototype

void vmimtBinopRCR(
 Uns32 bits,
 vmiBinop op,
 vmiReg rd,
 Uns64 c,
 vmiReg rb,
 vmiFlagsCP flags
);

Description
Emit code to perform a binary operation on constant c and register rb in the processor
structure, writing the result to register rd. Argument bits gives the bit width for the
operation.

Argument op is the binary operation to perform. Available binary operations are defined
in vmiTypes.h: see Binary Operation Types for more information about this.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

Example
The OVP ARC model uses this function to implement a logical operation taking a
constant and register as arguments:

static void emitLogopRCRInt(arcMorphStateP state, Uns32 c1, vmiReg rs1) {

 vmiReg rd = GET_RD(state, rd);
 vmiBinop op = state->attrs->binop;
 vmiFlagsCP flags = getFlagsOrNull(state);

 // emit code to create an appropriate mask in temp
 vmiReg temp = emitMakeBitMask(state, rs1);

 vmimtBinopRCR(ARC_GPR_BITS, op, rd, c1, temp, flags);
}

Notes and Restrictions

1. Argument bits must be 8, 16, 32 or 64; for AES operations, bits must be 64.
2. Arithmetic exceptions can be generated by some operations (for example, integer

divide by zero). A handler for these arithmetic exceptions can be supplied if
required (defined with the VMI_ARITH_EXCEPT_FN macro, installed as the
arithExceptCB field of the processor vmiIASAttr structure).

3. For shift/rotate operations (vmi_ROL, vmi_ROR, vmi_RCL, vmi_RCR, vmi_SHL,
vmi_SHR and vmi_SAR) the shift/rotate amount b is by default masked using
bits-1 before use. For example, if bits is 32 then the shift/rotate amount will
be masked to the range 0..31 before use. This default behavior can be overridden
by vmimtSetShiftMask.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 55 of 282

4. rd may be VMI_NOREG, in which case the operation result is discarded. This is
useful if only flag values are required.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 56 of 282

3.28 vmimtBinopRCC

Prototype

void vmimtBinopRCC(
 Uns32 bits,
 vmiBinop op,
 vmiReg rd,
 Uns64 c1,
 Uns64 c2,
 vmiFlagsCP flags
);

Description
Emit code to perform a binary operation on constants c1 and c2, writing the result to
register rd.

Argument op is the binary operation to perform. Available binary operations are defined
in vmiTypes.h: see Binary Operation Types for more information about this.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

Example
The OVP ARC model uses this function to implement a logical operation taking two
constants as arguments:

static void emitLogopRCCInt(arcMorphStateP state, Uns32 c1, Uns32 c2) {

 vmiReg rd = GET_RD(state, rd);
 vmiBinop op = state->attrs->binop;
 vmiFlagsCP flags = getFlagsOrNull(state);

 // invert the constant and subtract 1 if required
 c2 = makeBitMask(state, c2);

 vmimtBinopRCC(ARC_GPR_BITS, op, rd, c1, c2, flags);
}

Notes and Restrictions

1. Argument bits must be 8, 16, 32 or 64.
2. For target registers less than 64 bits wide, the unused most significant bits of c1

and c2 are silently discarded prior to use.
3. Arithmetic exceptions can be generated by some operations (for example, integer

divide by zero). A handler for these arithmetic exceptions can be supplied if
required (defined with the VMI_ARITH_EXCEPT_FN macro, installed as the
arithExceptCB field of the processor vmiIASAttr structure).

4. rd may be VMI_NOREG, in which case the operation result is discarded. This is
useful if only flag values are required.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 57 of 282

3.29 vmimtBinopRRC

Prototype

void vmimtBinopRRC(
 Uns32 bits,
 vmiBinop op,
 vmiReg rd,
 vmiReg ra,
 Uns64 c,
 vmiFlagsCP flags
);

Description
Emit code to perform a binary operation on register ra in the processor structure and
constant c, writing the result to register rd. Argument bits gives the bit width for the
operation.

Argument op is the binary operation to perform. Available binary operations are defined
in vmiTypes.h: see Binary Operation Types for more information about this.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

Example
The OVP ARC model uses this function to implement a logical operation taking a
register and constant as arguments:

static void emitLogopRRCInt(arcMorphStateP state, vmiReg rs1, Uns32 c1) {

 vmiReg rd = GET_RD(state, rd);
 vmiBinop op = state->attrs->binop;
 vmiFlagsCP flags = getFlagsOrNull(state);

 // invert the constant and subtract 1 if required
 c1 = makeBitMask(state, c1);

 vmimtBinopRRC(ARC_GPR_BITS, op, rd, rs1, c1, flags);
}

Notes and Restrictions

1. Argument bits must be 8, 16, 32 or 64.
2. For target registers less than 64 bits wide, the unused most significant bits of c are

silently discarded prior to use.
3. Arithmetic exceptions can be generated by some operations (for example, integer

divide by zero). A handler for these arithmetic exceptions can be supplied if
required (defined with the VMI_ARITH_EXCEPT_FN macro, installed as the
arithExceptCB field of the processor vmiIASAttr structure).

4. rd may be VMI_NOREG, in which case the operation result is discarded. This is
useful if only flag values are required.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 58 of 282

3.30 vmimtMulopRRR

Prototype

void vmimtMulopRRR(
 Uns32 bits,
 vmiBinop op,
 vmiReg rdh,
 vmiReg rdl,
 vmiReg ra,
 vmiReg rb,
 vmiFlagsCP flags
);

Description
Emit code to perform a multiply operation on registers ra and rb in the processor
structure. Argument bits gives the bit width of these two registers. The result of the
multiply has size bits*2; the most significant part of the result (size bits) is assigned to
processor register rdh, and the least significant part of the result (also of size bits) is
assigned to processor register rdl.

Either rdh or rdl may have the special value VMI_NOREG; this indicates that this part of
the result is to be discarded (not saved in a processor register). If rdh is VMI_NOREG, this
function is equivalent to vmiBinopRRR.

Available binary operations are this subset from the vmiBinop type defined in
vmiTypes.h:

typedef enum {
 vmi_IMUL, // d <- a * b (signed)
 vmi_MUL, // d <- a * b (unsigned)
 vmi_IMULSU, // d <- a (signed) * b (unsigned)
 vmi_IMULUS, // d <- a (unsigned) * b (signed)
 vmi_PMUL, // d <- a * b (carryless)
} vmiBinop;

The first four operations are normal multiplications taking every combination of signed
and unsigned arguments. Operation vmi_PMUL is a carryless multiplication in which terms
are combined using exclusive-or instead of by addition; this is often required in
cryptographic instructions.

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

Example
The OVP RISC-V model uses this function to implement a multiply operation that selects
the upper half of the result:

static RISCV_MORPH_FN(emitMulopHRRR) {

 vmiReg rd = getReg(state, 0);
 vmiReg rs1 = getReg(state, 1);

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 59 of 282

 vmiReg rs2 = getReg(state, 2);
 Uns32 bits = getRegBits(state, 0);

 vmimtMulopRRR(bits, state->attrs->binop, rd, VMI_NOREG, rs1, rs2, 0);

 writeReg(state, 0);
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64.
2. Operations other than the subset listed above not supported by this function.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 60 of 282

3.31 vmimtDivopRRR

Prototype

void vmimtDivopRRR(
 Uns32 bits,
 vmiBinop op,
 vmiReg rdd,
 vmiReg rdr,
 vmiReg rah,
 vmiReg ral,
 vmiReg rb,
 vmiFlagsCP flags
);

Description
Emit code to perform a divide operation, producing both result and remainder. The
dividend is of size bits*2 and is constructed from the register pair rah:ral. The divisor
is in register rb. The result of the division is assigned to processor register rdd. The
remainder is assigned to processor register rdr.

Either rdd or rdr may have the special value VMI_NOREG; this indicates that the result or
remainder (as appropriate) is to be discarded (not saved in a processor register).

Available binary operations are this subset from the vmiBinop type defined in
vmiTypes.h:

typedef enum {
 vmi_IDIV, // d <- a / b (signed)
 vmi_DIV, // d <- a / b (unsigned)
} vmiBinop;

If the flags argument is non-null, it defines how any flags should be handled by this
operation: see Handling Instruction Flags for more information about this.

Example
The OVP MIPS model uses this function to implement double-width divide operations:

static void emitDivRR(mipsInstructionInfoP info, vmiBinop op) {

 Uns32 bits = getOpBits(info);
 vmiReg lo = MIPS_REG_LO(0);
 vmiReg hi = MIPS_REG_HI(0);
 vmiReg rs = getR1(info);
 vmiReg rt = getR2(info);
 mipsIDivType divType = (op == vmi_IDIV) ? MIPS_IDIV_DIV : MIPS_IDIV_DIVU;

 // save operation size (in bytes) in divType
 divType |= (bits/8) << MIPS_IDIV_SIZE_SHIFT;

 // be ready for exceptions (divide by zero or overflow)
 vmimtMoveRC(8, MIPS_TMP_DIV_TYPE, divType);
 vmimtMoveRR(bits, MIPS_TMP_DIVIDEND, rs);

 vmimtDivopRRR(bits, op, lo, hi, VMI_NOREG, rs, rt, 0);

 // sign-extend to 64 bits if required

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 61 of 282

 MIPS_MT_SIGN_EXTEND(lo, bits);
 MIPS_MT_SIGN_EXTEND(hi, bits);

 // Clear divide type setting
 vmimtMoveRC(8, MIPS_TMP_DIV_TYPE, MIPS_IDIV_NONE);
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64.
2. Operations other than the subset listed above not supported by this function.
3. Arithmetic exceptions can be generated by some operations (for example, integer

divide by zero or integer overflow). A handler for these arithmetic exceptions can
be supplied if required (defined with the VMI_ARITH_EXCEPT_FN macro, installed
as the arithExceptCB field of the processor vmiIASAttr structure).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 62 of 282

3.32 vmimtCompareRR

Prototype

void vmimtCompareRR(
 Uns32 bits,
 vmiCondition cond,
 vmiReg ra,
 vmiReg rb,
 vmiReg flag
);

Description
Emit code to compare the two processor registers ra and rb of size bits. The
comparison to perform is indicated by cond and is implemented by subtracting the
second argument from the first using twos complement arithmetic and discarding the
result. If the comparison is true assign 1 to the 8-bit processor register flag; otherwise,
assign 0 to this register.

Available comparison operations are defined in vmiTypes.h:

typedef enum {
 vmi_COND_O = 0, // overflow (OF==1)
 vmi_COND_NO = 1, // no overflow (OF==0)
 vmi_COND_B = 2, // below (unsigned) (CF==1)
 vmi_COND_NB = 3, // not below (unsigned) (CF==0)
 vmi_COND_Z = 4, // zero (ZF==1)
 vmi_COND_EQ = 4, // equal (alias of zero) (ZF==1)
 vmi_COND_NZ = 5, // not zero (ZF==0)
 vmi_COND_NE = 5, // not equal (alias of not zero) (ZF==0)
 vmi_COND_BE = 6, // below or equal (unsigned) (CF==1 || ZF==1)
 vmi_COND_NBE = 7, // not below or equal (unsigned) (CF==0 && ZF==0)
 vmi_COND_S = 8, // negative (SF==1)
 vmi_COND_NS = 9, // not negative (SF==0)
 vmi_COND_P = 10, // parity even (PF==1)
 vmi_COND_NP = 11, // not parity even (PF==0)
 vmi_COND_L = 12, // less (signed) (SF!=OF)
 vmi_COND_NL = 13, // not less (signed) (SF==OF)
 vmi_COND_LE = 14, // less or equal (signed) (ZF==1 || SF!=OF)
 vmi_COND_NLE = 15 // not less or equal (signed) (ZF==0 && SF==OF)
} vmiCondition;

Example
The OVP RISC-V model uses this function to implement register-register compare
operations:

static RISCV_MORPH_FN(emitCmpopRRR) {

 vmiReg rd = getReg(state, 0);
 vmiReg rs1 = getReg(state, 1);
 vmiReg rs2 = getReg(state, 2);
 Uns32 bits = getRegBits(state, 0);

 vmimtCompareRR(bits, state->attrs->cond, rs1, rs2, rd);

 writeRegSize(state, 0, 8);
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 63 of 282

Notes and Restrictions
1. bits must be 8, 16, 32 or 64.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 64 of 282

3.33 vmimtCompareCR

Prototype

void vmimtCompareCR(
 Uns32 bits,
 vmiCondition cond,
 Uns64 c,
 vmiReg rb,
 vmiReg flag
);

Description
Emit code to compare constant c and register rb of size bits. The comparison to perform
is indicated by cond and is implemented by subtracting the second argument from the
first using twos complement arithmetic and discarding the result. If the comparison is true
assign 1 to the 8-bit processor register flag; otherwise, assign 0 to this register.

Available comparison operations are defined in vmiTypes.h:

typedef enum {
 vmi_COND_O = 0, // overflow (OF==1)
 vmi_COND_NO = 1, // no overflow (OF==0)
 vmi_COND_B = 2, // below (unsigned) (CF==1)
 vmi_COND_NB = 3, // not below (unsigned) (CF==0)
 vmi_COND_Z = 4, // zero (ZF==1)
 vmi_COND_EQ = 4, // equal (alias of zero) (ZF==1)
 vmi_COND_NZ = 5, // not zero (ZF==0)
 vmi_COND_NE = 5, // not equal (alias of not zero) (ZF==0)
 vmi_COND_BE = 6, // below or equal (unsigned) (CF==1 || ZF==1)
 vmi_COND_NBE = 7, // not below or equal (unsigned) (CF==0 && ZF==0)
 vmi_COND_S = 8, // negative (SF==1)
 vmi_COND_NS = 9, // not negative (SF==0)
 vmi_COND_P = 10, // parity even (PF==1)
 vmi_COND_NP = 11, // not parity even (PF==0)
 vmi_COND_L = 12, // less (signed) (SF!=OF)
 vmi_COND_NL = 13, // not less (signed) (SF==OF)
 vmi_COND_LE = 14, // less or equal (signed) (ZF==1 || SF!=OF)
 vmi_COND_NLE = 15 // not less or equal (signed) (ZF==0 && SF==OF)
} vmiCondition;

Example
The OVP ARC model uses this function to modify results of some binary operations
taking a constant and register as arguments:

static void emitBinopRCRInt(arcMorphStateP state, Uns32 c1, vmiReg rs1) {

 Uns32 bits = ARC_GPR_BITS;
 vmiReg rd = GET_RD(state, rd);
 vmiBinop op = state->attrs->binop;
 vmiFlagsCP flags = getFlagsOrCIn(state);
 vmiCondition cond;

 // emit boolean indicating whether flags should be updated
 emitRequireSetFlags(state, op);

 // invert, scale and mask the variable second argument if required
 rs1 = emitInvertScaleMaskR(state, rs1);

 // do the operation

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 65 of 282

 vmimtBinopRCR(bits, op, rd, c1, rs1, flags);

 // handle any result condition
 if(getResultCondition(state, rd, &cond)) {
 vmimtCompareCR(bits, cond, c1, rs1, rd);
 emitExtendFlag(state, rd);
 }
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 66 of 282

3.34 vmimtCompareRC

Prototype

void vmimtCompareRC(
 Uns32 bits,
 vmiCondition cond,
 vmiReg ra,
 Uns64 c,
 vmiReg flag
);

Description
Emit code to compare the processor register ra and constant c of size bits. The
comparison to perform is indicated by cond and is implemented by subtracting the
second argument from the first using twos complement arithmetic and discarding the
result. If the comparison is true assign 1 to the 8-bit processor register flag; otherwise,
assign 0 to this register.

Available comparison operations are defined in vmiTypes.h:

typedef enum {
 vmi_COND_O = 0, // overflow (OF==1)
 vmi_COND_NO = 1, // no overflow (OF==0)
 vmi_COND_B = 2, // below (unsigned) (CF==1)
 vmi_COND_NB = 3, // not below (unsigned) (CF==0)
 vmi_COND_Z = 4, // zero (ZF==1)
 vmi_COND_EQ = 4, // equal (alias of zero) (ZF==1)
 vmi_COND_NZ = 5, // not zero (ZF==0)
 vmi_COND_NE = 5, // not equal (alias of not zero) (ZF==0)
 vmi_COND_BE = 6, // below or equal (unsigned) (CF==1 || ZF==1)
 vmi_COND_NBE = 7, // not below or equal (unsigned) (CF==0 && ZF==0)
 vmi_COND_S = 8, // negative (SF==1)
 vmi_COND_NS = 9, // not negative (SF==0)
 vmi_COND_P = 10, // parity even (PF==1)
 vmi_COND_NP = 11, // not parity even (PF==0)
 vmi_COND_L = 12, // less (signed) (SF!=OF)
 vmi_COND_NL = 13, // not less (signed) (SF==OF)
 vmi_COND_LE = 14, // less or equal (signed) (ZF==1 || SF!=OF)
 vmi_COND_NLE = 15 // not less or equal (signed) (ZF==0 && SF==OF)
} vmiCondition;

Example
The OVP RISC-V model uses this function to implement register-constant compare
operations:

static RISCV_MORPH_FN(emitCmpopRRC) {

 vmiReg rd = getReg(state, 0);
 vmiReg rs1 = getReg(state, 1);
 Uns32 bits = getRegBits(state, 0);
 Uns64 c = state->info.c;

 vmimtCompareRC(bits, state->attrs->cond, rs1, c, rd);

 writeRegSize(state, 0, 8);
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 67 of 282

Notes and Restrictions
1. bits must be 8, 16, 32 or 64.
2. For bits less than 64, the unused most significant bits of c are silently discarded.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 68 of 282

3.35 vmimtTestRR

Prototype

void vmimtTestRR(
 Uns32 bits,
 vmiCondition cond,
 vmiReg ra,
 vmiReg rb,
 vmiReg flag
);

Description
Emit code to compare the two processor registers ra and rb of size bits. The
comparison to perform is indicated by cond and is implemented by a bitwise-and of the
two arguments, discarding the result. If the comparison is true assign 1 to the 8-bit
processor register flag; otherwise, assign 0 to this register.

Available comparison operations are defined in vmiTypes.h (but note that CF and OF are
always set to zero by this comparison):

typedef enum {
 vmi_COND_O = 0, // overflow (OF==1)
 vmi_COND_NO = 1, // no overflow (OF==0)
 vmi_COND_B = 2, // below (unsigned) (CF==1)
 vmi_COND_NB = 3, // not below (unsigned) (CF==0)
 vmi_COND_Z = 4, // zero (ZF==1)
 vmi_COND_EQ = 4, // equal (alias of zero) (ZF==1)
 vmi_COND_NZ = 5, // not zero (ZF==0)
 vmi_COND_NE = 5, // not equal (alias of not zero) (ZF==0)
 vmi_COND_BE = 6, // below or equal (unsigned) (CF==1 || ZF==1)
 vmi_COND_NBE = 7, // not below or equal (unsigned) (CF==0 && ZF==0)
 vmi_COND_S = 8, // negative (SF==1)
 vmi_COND_NS = 9, // not negative (SF==0)
 vmi_COND_P = 10, // parity even (PF==1)
 vmi_COND_NP = 11, // not parity even (PF==0)
 vmi_COND_L = 12, // less (signed) (SF!=OF)
 vmi_COND_NL = 13, // not less (signed) (SF==OF)
 vmi_COND_LE = 14, // less or equal (signed) (ZF==1 || SF!=OF)
 vmi_COND_NLE = 15 // not less or equal (signed) (ZF==0 && SF==OF)
} vmiCondition;

Example
The OVP ARM model uses this function to implement some per-element vector compare
instructions:

static SIMD_EL_OP_FN(simdVTst) {

 // set result if bitwise-and of operands is non-zero
 vmimtTestRR(opSize, vmi_COND_NZ, r2, r3, result);

 // extend to operand size
 vmimtMoveExtendRR(opSize, result, 8, result, False);

 // negate to fill with zeros or ones
 vmimtUnopRR(opSize, vmi_NEG, result, result, 0);
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 69 of 282

Notes and Restrictions
1. bits must be 8, 16, 32 or 64.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 70 of 282

3.36 vmimtTestCR

Prototype

void vmimtTestCR(
 Uns32 bits,
 vmiCondition cond,
 Uns64 c,
 vmiReg rb,
 vmiReg flag
);

Description
Emit code to compare constant c and register rb of size bits. The comparison to perform
is indicated by cond and is implemented by a bitwise-and of the two arguments,
discarding the result. If the comparison is true assign 1 to the 8-bit processor register
flag; otherwise, assign 0 to this register.

Available comparison operations are defined in vmiTypes.h (but note that CF and OF are
always set to zero by this comparison):

typedef enum {
 vmi_COND_O = 0, // overflow (OF==1)
 vmi_COND_NO = 1, // no overflow (OF==0)
 vmi_COND_B = 2, // below (unsigned) (CF==1)
 vmi_COND_NB = 3, // not below (unsigned) (CF==0)
 vmi_COND_Z = 4, // zero (ZF==1)
 vmi_COND_EQ = 4, // equal (alias of zero) (ZF==1)
 vmi_COND_NZ = 5, // not zero (ZF==0)
 vmi_COND_NE = 5, // not equal (alias of not zero) (ZF==0)
 vmi_COND_BE = 6, // below or equal (unsigned) (CF==1 || ZF==1)
 vmi_COND_NBE = 7, // not below or equal (unsigned) (CF==0 && ZF==0)
 vmi_COND_S = 8, // negative (SF==1)
 vmi_COND_NS = 9, // not negative (SF==0)
 vmi_COND_P = 10, // parity even (PF==1)
 vmi_COND_NP = 11, // not parity even (PF==0)
 vmi_COND_L = 12, // less (signed) (SF!=OF)
 vmi_COND_NL = 13, // not less (signed) (SF==OF)
 vmi_COND_LE = 14, // less or equal (signed) (ZF==1 || SF!=OF)
 vmi_COND_NLE = 15 // not less or equal (signed) (ZF==0 && SF==OF)
} vmiCondition;

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. bits must be 8, 16, 32 or 64.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 71 of 282

3.37 vmimtTestRC

Prototype

void vmimtTestRC(
 Uns32 bits,
 vmiCondition cond,
 vmiReg ra,
 Uns64 c,
 vmiReg flag
);

Description
Emit code to compare the processor register ra and constant c of size bits. The
comparison to perform is indicated by cond and is implemented by a bitwise-and of the
two arguments, discarding the result. If the comparison is true assign 1 to the 8-bit
processor register flag; otherwise, assign 0 to this register.

Available comparison operations are defined in vmiTypes.h (but note that CF and OF are
always set to zero by this comparison):

typedef enum {
 vmi_COND_O = 0, // overflow (OF==1)
 vmi_COND_NO = 1, // no overflow (OF==0)
 vmi_COND_B = 2, // below (unsigned) (CF==1)
 vmi_COND_NB = 3, // not below (unsigned) (CF==0)
 vmi_COND_Z = 4, // zero (ZF==1)
 vmi_COND_EQ = 4, // equal (alias of zero) (ZF==1)
 vmi_COND_NZ = 5, // not zero (ZF==0)
 vmi_COND_NE = 5, // not equal (alias of not zero) (ZF==0)
 vmi_COND_BE = 6, // below or equal (unsigned) (CF==1 || ZF==1)
 vmi_COND_NBE = 7, // not below or equal (unsigned) (CF==0 && ZF==0)
 vmi_COND_S = 8, // negative (SF==1)
 vmi_COND_NS = 9, // not negative (SF==0)
 vmi_COND_P = 10, // parity even (PF==1)
 vmi_COND_NP = 11, // not parity even (PF==0)
 vmi_COND_L = 12, // less (signed) (SF!=OF)
 vmi_COND_NL = 13, // not less (signed) (SF==OF)
 vmi_COND_LE = 14, // less or equal (signed) (ZF==1 || SF!=OF)
 vmi_COND_NLE = 15 // not less or equal (signed) (ZF==0 && SF==OF)
} vmiCondition;

Example
The OVP ARM model uses this function to implement table branch instructions:

ARM_MORPH_FN(armEmitTBZ) {

 Uns32 bits = ARM_GPR_BITS(state);
 vmiReg rn = GET_RS(state, r1);
 vmiReg tf = getTemp(state, 32);
 Uns32 bit = state->info.c;

 // do the comparison
 vmimtTestRC(state, bits, vmi_COND_NZ, rn, (1ULL<<bit), tf);

 // get information about the jump
 armJumpInfo ji;
 seedJumpInfo(&ji, state, False, False, True);

 // do the jump

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 72 of 282

 armEmitCondJump(state, &ji, tf, state->attrs->jumpIfTrue);
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64.
2. For bits less than 64, the unused most significant bits of c are silently discarded.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 73 of 282

3.38 vmimtSetShiftMask

Prototype

void vmimtSetShiftMask(Uns8 mask);

Description
The shift/rotate amount for shift/rotate binops is normally masked to bits-1, where bits
is the operand size. It is possible to override this default shift mask with any mask in the
range 1..255 by immediately preceding the binop with a call to vmimtSetShiftMask
giving the required shift mask.

Example 1
On the Intel x86 processor, all shifts, including byte and word size shifts, are masked to
the range 0..31. This behavior can be specified as follows:

vmimtSetShiftMask(31);
vmimtBinopRR(CPUX_GBITS, vmi_ROR, CPUX_REG(rd), CPUX_REG(ra), 0);

Example 2
On ARM processors, the shift amount is byte sized. This behavior can be specified as
follows:

vmimtSetShiftMask(255);
vmimtBinopRRR(CPUX_GBITS, vmi_ROR, CPUX_REG(rd), CPUX_REG(ra) , CPUX_REG(rb), 0);

Notes and Restrictions

1. The call to vmimtSetShiftMask must immediately precede the vmimtBinop* call
to which the shift mask must be applied.

2. If vmimtSetShiftMask is called before a vmimtBinop* call that is not one of the
shift/rotate opcodes (vmi_ROR, vmi_ROL, vmi_RCL, vmi_RCR, vmi_SHL, vmi_SHR
or vmi_SAR) it is ignored.

3. If vmimtSetShiftMask is called before any VMI morph time interface function
that is not a vmimtBinop* call, it is ignored.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 74 of 282

4 Memory Operations
This section describes emission functions for memory operations (loads and stores).

In VMI versions prior to 4.3.0, only the current processor data domain could be targeted
by load and store primitives.

From VMI version 4.3.0 onwards any domain can be targeted by a load or store
primitive. This is useful in situations where loads or stores are targeted at a different
domain to the default domain for the current processor mode. For example, the LDRT and
STRT instructions in the ARM processor perform user-level loads and stores when
executing in privileged mode.

From VMI version 6.2.0 onwards, load and store operations can handle any operand size
from 1 to 128 bytes.

From VMI version 6.3.0 onwards, load and store functions can have constraints applied
to their operation, as documented below.

4.1 Memory Constraints
The action of functions that emit code to load and store from memory can be refined
using a memory constraint. Available constraints are defined by the memConstraint type
in vmiTypes.h:

typedef enum memConstraintE {

 MEM_CONSTRAINT_NONE = 0x0, // no constraint
 MEM_CONSTRAINT_ALIGNED = 0x1, // access must not be misaligned
 MEM_CONSTRAINT_USER1 = 0x2, // no access when privilege is MEM_PRIV_USER1
 MEM_CONSTRAINT_USER2 = 0x4, // no access when privilege is MEM_PRIV_USER2

 // legacy alias
 MEM_CONSTRAINT_NO_DEVICE = MEM_CONSTRAINT_USER1

} memConstraint;

The memConstraint type is a bitmask, so constraints may be combined.

Constraint MEM_CONSTRAINT_ALIGNED specifies that the load or store operation must use
an address that is aligned to the size of the data element. If the address is misaligned, a
simulated exception will be taken using the rdAlignExceptCB or wrAlignExceptCB
callback functions specified in the attribute structure of the processor. See the Imperas
Processor Modeling Guide for more information about the attributes structure.

Constraints MEM_CONSTRAINT_USER1 and MEM_CONSTRAINT_USER2 specify that the load
or store operation must not access a memory region with one of two user-defined
privilege constraints. Such regions are specified by using a memPriv including
MEM_PRIV_USER1 or MEM_PRIV_USER2, respectively, when a memory region is defined
using vmirtAliasMemoryVM or modified using vmirtProtectMemory (refer to the VMI

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 75 of 282

Run Time Function Reference for more information about these functions). If the memory
region is of type MEM_PRIV_USER1 and the access specifies constraint
MEM_CONSTRAINT_USER1, or the memory region is of type MEM_PRIV_USER2 and the
access specifies constraint MEM_CONSTRAINT_USER2, then a simulated exception will be
taken using the rdDeviceExceptCB or wrDeviceExceptCB callback functions specified
in the attribute structure of the processor. See the Imperas Processor Modeling Guide for
more information about the attributes structure.

Note that in versions of the VMI interface prior to version 6.45.1 there was a single user-
specified constraint, indicated by the MEM_PRIV_DEVICE / MEM_CONSTRAINT_NO_DEVICE
pair. This has been generalized to allow two distinct constraints to be specified.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 76 of 282

4.2 vmimtStoreRRO

Prototype

void vmimtStoreRRO(
 Uns32 bits,
 Addr offset,
 vmiReg ra,
 vmiReg rb,
 memEndian endian,
 memConstraint constraint
);

Description
Emit code to store the value of processor register rb (of size bits) to an address
calculated from the value of ra plus the fixed displacement offset.

The size of the address register ra is derived from the size of the current processor data
domain, as follows:

1. If the domain is up to 16 bits: ra is 16 bits (i.e. 2 byte address);
2. If the domain is 17-32 bits: ra is 32 bits (i.e. 4 byte address);
3. If the domain is 33-63 bits: ra is 64 bits (i.e. 8 byte address).

If ra has the value VMI_NOREG, the address at which to store is offset alone. If the store
address calculated by ra+offset is invalid (the platform defines no writable entity at that
address), the simulator will call the store privilege exception handler (wrPrivExceptCB)
defined for the processor model.

This function emits code that targets the current processor data domain. From VMI
version 4.3.0, it is possible to specify any target domain – see related function
vmimtStoreRRODomain.

Argument bits can be any multiple of eight between 8 (i.e. 1 byte) and 1024 (i.e. 128
bytes). Behavior is different when bits is 8, 16, 32 or 64 to all other cases; see the
following subsections.

bits equal to 8, 16, 32 or 64
If endian is MEM_ENDIAN_LITTLE, then the store is performed little-endian. If it is
MEM_ENDIAN_BIG, the store is performed big-endian.

If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the store address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits. If the address is misaligned, the
simulator will first call any store address snap handler (wrSnapCB) defined for the
processor model. If there is no store address snap handler, or the store address snap
handler returns zero (indicating no address snap is to be performed), the simulator will

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 77 of 282

then call any store alignment exception handler (wrAlignExceptCB) defined for the
processor model.

bits not equal to 8, 16, 32 or 64
The endian argument is ignored. Data is always stored little-endian.

If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the store address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits; if the implied byte size is not a
power of two, then the next smallest power of two is chosen. For example, if bits is 80
(implying a 10-byte store) then the simulator will verify that the address is aligned to an
8-byte boundary. Actions for misaligned address are the same as for bits of 8, 16, 32 or
64, as described above.

When the store is executed, it is broken down into individual transactions of 1, 2, 4 or 8
bytes in size, starting with the largest possible size. For example, a 10-byte store will be
broken down into an 8-byte store followed by a 2-byte store.

Example
The OVP RISC-V model uses this function to implement store instructions:

static void emitStoreCommon(
 riscvMorphStateP state,
 vmiReg rs,
 vmiReg ra,
 memConstraint constraint
) {
 Uns32 memBits = state->info.memBits;
 Uns64 offset = state->info.c;
 memEndian endian = getDataEndian(state->riscv);

 vmimtStoreRRO(memBits, offset, ra, rs, endian, constraint);
}

Notes and Restrictions

1. When the the data address bus width is 32 bits or less, the appropriate type for the
address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. bits must be a multiple of 8 in the range 8 to 1024..

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 78 of 282

4.3 vmimtStoreRCO

Prototype

void vmimtStoreRCO(
 Uns32 bits,
 Addr offset,
 vmiReg ra,
 Uns64 c,
 memEndian endian,
 memConstraint constraint
);

Description
Emit code to store the constant value c (of size bits) to an address calculated from the
value of ra plus the fixed displacement offset.

The size of the address register ra is derived from the size of the current processor data
domain, as follows:

1. If the domain is up to 16 bits: ra is 16 bits (i.e. 2 byte address);
2. If the domain is 17-32 bits: ra is 32 bits (i.e. 4 byte address);
3. If the domain is 33-63 bits: ra is 64 bits (i.e. 8 byte address).

If ra has the value VMI_NOREG, the address at which to store is offset alone. If the store
address calculated by ra+offset is invalid (the platform defines no writable entity at that
address), the simulator will call the store privilege exception handler (wrPrivExceptCB)
defined for the processor model.

This function emits code that targets the current processor data domain. From VMI
version 4.3.0, it is possible to specify any target domain – see related function
vmimtStoreRCODomain.

Argument bits can be any multiple of eight between 8 (i.e. 1 byte) and 1024 (i.e. 128
bytes). Behavior is different when bits is 8, 16, 32 or 64 to all other cases; see the
following subsections.

bits equal to 8, 16, 32 or 64
If endian is MEM_ENDIAN_LITTLE, then the constant value is stored little-endian. If it is
MEM_ENDIAN_BIG, the constant value is stored big-endian.

If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the store address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits. If the address is misaligned, the
simulator will first call any store address snap handler (wrSnapCB) defined for the
processor model. If there is no store address snap handler, or the store address snap
handler returns zero (indicating no address snap is to be performed), the simulator will

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 79 of 282

then call any store alignment exception handler (wrAlignExceptCB) defined for the
processor model.

bits not equal to 8, 16, 32 or 64
If endian is MEM_ENDIAN_LITTLE, then the constant value is stored little-endian. If it is
MEM_ENDIAN_BIG, the constant value is stored big-endian.

If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the store address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits; if the implied byte size is not a
power of two, then the next smallest power of two is chosen. For example, if bits is 80
(implying a 10-byte store) then the simulator will verify that the address is aligned to an
8-byte boundary. Actions for misaligned address are the same as for bits of 8, 16, 32 or
64, as described above.

When the store is executed, it is broken down into individual transactions of 1, 2, 4 or 8
bytes in size, starting with the largest possible size. For example, a 10-byte store will be
broken down into an 8-byte store followed by a 2-byte store.

When bits is greater than 64, the constant value is written repeatedly into each 64-bit (8
byte) element of the written memory.

Example
The OVP ARC model uses this function to implement constant store instructions:

void arcEmitStoreRCO(
 arcMorphStateP state,
 Uns32 bits,
 Uns32 offset,
 vmiReg ra,
 Uns32 c,
 Bool checkAlign
) {
 // emit stack check prologue if required
 Bool doStackCheck = emitSCPrologue(state, offset, ra);
 memEndian endian = state->arc->endian;

 if(doStackCheck) {

 // try-store is required if stack checking is enabled (otherwise a stack
 // check error will not prevent the store from happening)
 vmimtTryStoreRC(bits, offset, ra, checkAlign);

 // emit stack check epilogue if required
 emitSCEpilogue(state, False);
 }

 // do the store if stack check succeeds
 vmimtStoreRCO(bits, offset, ra, c, endian, checkAlign);
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 80 of 282

Notes and Restrictions
1. When the data address bus width is 32 bits or less, the appropriate type for the

address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. bits must be a multiple of 8 in the range 8 to 1024..
5. For bits less than 64, the unused most significant bits of c are silently discarded.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 81 of 282

4.4 vmimtLoadRRO

Prototype

void vmimtLoadRRO(
 Uns32 destBits,
 Uns32 memBits,
 Addr offset,
 vmiReg rd,
 vmiReg ra,
 memEndian endian,
 Bool signExtend,
 memConstraint constraint
);

Description
Emit code to load the value of processor register rd (of size destBits) from an address
calculated from the value of ra plus the fixed displacement offset.

The size of the address register ra is derived from the size of the current processor data
domain, as follows:

1. If the domain is up to 16 bits: ra is 16 bits (i.e. 2 byte address);
2. If the domain is 17-32 bits: ra is 32 bits (i.e. 4 byte address);
3. If the domain is 33-63 bits: ra is 64 bits (i.e. 8 byte address).

If ra has the value VMI_NOREG, the address from which to load is offset alone. If the
load address calculated by ra+offset is invalid (the platform defines no readable entity
at that address), the simulator will call the load privilege exception handler
(rdPrivExceptCB) defined for the processor model.

This function emits code that targets the current processor data domain. From VMI
version 4.3.0, it is possible to specify any target domain – see related function
vmimtLoadRRODomain.

Arguments memBits and destBits must be a multiple of eight between 8 (i.e. 1 byte)
and 1024 (i.e. 128 bytes). Behavior is different when both values are 8, 16, 32 or 64 to all
other cases; see the following subsections.

destBits and memBits both equal to 8, 16, 32 or 64
The size of the value to load from memory is given by memBits, which must be less than
or equal to destBits. If memBits is less than destBits, the value will be sign-extended
to destBits (if signExtend is True) or zero-extended (if signExtend is False).

If endian is MEM_ENDIAN_LITTLE, then the load is performed little-endian. If it is
MEM_ENDIAN_BIG, the load is performed big-endian. Any required sign extension is done
after endian swapping.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 82 of 282

If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the load address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits. If the address is misaligned, the
simulator will first call any load address snap handler (rdSnapCB) defined for the
processor model. If there is no load address snap handler, or the load address snap
handler returns zero (indicating no address snap is to be performed), the simulator will
then call any load alignment exception handler (rdAlignExceptCB) defined for the
processor model.

destBits and memBits not equal to 8, 16, 32 or 64
The size of the value to load from memory is given by memBits, which must be equal to
destBits. The signExtend argument is ignored

The endian argument is ignored. Data is always loaded little-endian.

If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the load address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits; if the implied byte size is not a
power of two, then the next smallest power of two is chosen. For example, if bits is 80
(implying a 10-byte load) then the simulator will verify that the address is aligned to an
8-byte boundary. Actions for misaligned address are the same as for bits of 8, 16, 32 or
64, as described above.

When the load is executed, it is broken down into individual transactions of 1, 2, 4 or 8
bytes in size, starting with the largest possible size. For example, a 10-byte load will be
broken down into an 8-byte load followed by a 2-byte load.

Example
The OVP RISC-V model uses this function to implement load instructions:

static void emitLoadCommon(
 riscvMorphStateP state,
 vmiReg rd,
 vmiReg ra,
 memConstraint constraint
) {
 Uns32 bits = getRegBits(state, 0);
 Uns32 memBits = state->info.memBits;
 Uns64 offset = state->info.c;
 Bool sExtend = !state->info.unsExt;
 memEndian endian = getDataEndian(state->riscv);

 vmimtLoadRRO(bits, memBits, offset, rd, ra, endian, sExtend, constraint);
}

Notes and Restrictions

1. When the data address bus width is 32 bits or less, the appropriate type for the
address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 83 of 282

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. destBits and memBits bits must be a multiple of 8 in the range 8 to 1024.
5. destBits must be equal to or greater than memBits (if both are 8, 16, 32 or 64).

Both values must be equal in all other cases.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 84 of 282

4.5 vmimtTryStoreRC

Prototype

void vmimtTryStoreRC(
 Uns32 bits,
 Addr offset,
 vmiReg ra,
 memConstraint constraint
);

Description
Emit code to trigger any exceptions that would be generated if a store of the passed bit
size was made to the passed address. If no exceptions would be generated, the function
has no effect.

If ra has the value VMI_NOREG, the address at which to store is offset alone. If the store
address calculated by ra+offset is invalid (the platform defines no writable entity at that
address), the simulator will call the store privilege exception handler (wrPrivExceptCB)
defined for the processor model.

This function emits code that targets the current processor data domain. From VMI
version 4.3.0, it is possible to specify any target domain – see related function
vmimtTryStoreRCDomain.

Argument bits can be any multiple of eight between 8 (i.e. 1 byte) and 1024 (i.e. 128
bytes). Behavior is different when bits is 8, 16, 32 or 64 to all other cases; see the
following subsections.

bits equal to 8, 16, 32 or 64
If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the store address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits. If the address is misaligned, the
simulator will first call any store address snap handler (wrSnapCB) defined for the
processor model. If there is no store address snap handler, or the store address snap
handler returns zero (indicating no address snap is to be performed), the simulator will
then call any store alignment exception handler (wrAlignExceptCB) defined for the
processor model.

bits not equal to 8, 16, 32 or 64
If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the store address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits; if the implied byte size is not a
power of two, then the next smallest power of two is chosen. For example, if bits is 80
(implying a 10-byte store) then the simulator will verify that the address is aligned to an

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 85 of 282

8-byte boundary. Actions for misaligned address are the same as for bits of 8, 16, 32 or
64, as described above.

Example
The OVP RISC-V model uses this function with atomic instructions to ensure a
Store/AMO exception is taken in preference to a Load exception:

static void emitAMOCommonRRR(riscvMorphStateP state, amoCB opCB) {

 vmiReg rd = getReg(state, 0);
 vmiReg rs = getReg(state, 1);
 vmiReg ra = getReg(state, 2);
 Uns32 bits = getRegBits(state, 0);
 memConstraint constraint = getLoadStoreConstraintA(state);
 vmiReg tmp1 = getTmp(state, 0);
 vmiReg tmp2 = getTmp(state, 1);

 // for this instruction, memBits is bits
 state->info.memBits = bits;

 // this is an atomic operation
 vmimtAtomic();

 // generate Store/AMO exception in preference to Load exception
 vmimtTryStoreRC(bits, 0, ra, constraint);

 // generate results using tmp1 and tmp2
 emitLoadCommon(state, tmp1, ra, constraint);
 opCB(state, bits, tmp2, tmp1, rs);
 emitStoreCommon(state, tmp2, ra, constraint);
 vmimtMoveRR(bits, rd, tmp1);

 writeReg(state, 0);
}

Notes and Restrictions

1. When the data address bus width is 32 bits or less, the appropriate type for the
address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. bits must be a multiple of 8 in the range 8 to 1024.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 86 of 282

4.6 vmimtTryLoadRC

Prototype

void vmimtTryLoadRC(
 Uns32 bits,
 Addr offset,
 vmiReg ra,
 memConstraint constraint
);

Description
Emit code to trigger any exceptions that would be generated if a load of the passed bit
size was made to the passed address. If no exceptions would be generated, the function
has no effect.

If ra has the value VMI_NOREG, the address from which to load is offset alone. If the
load address calculated by ra+offset is invalid (the platform defines no readable entity
at that address), the simulator will call the load privilege exception handler
(rdPrivExceptCB) defined for the processor model.

This function emits code that targets the current processor data domain. From VMI
version 4.3.0, it is possible to specify any target domain – see related function
vmimtTryLoadRCDomain.

Argument bits can be any multiple of eight between 8 (i.e. 1 byte) and 1024 (i.e. 128
bytes). Behavior is different when bits is 8, 16, 32 or 64 to all other cases; see the
following subsections.

bits equal to 8, 16, 32 or 64
If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the load address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits. If the address is misaligned, the
simulator will first call any load address snap handler (rdSnapCB) defined for the
processor model. If there is no load address snap handler, or the load address snap
handler returns zero (indicating no address snap is to be performed), the simulator will
then call any load alignment exception handler (rdAlignExceptCB) defined for the
processor model.

bits not equal to 8, 16, 32 or 64
If constraint does not include MEM_CONSTRAINT_ALIGNED, the simulator does not
perform alignment checking for the load address. If constraint includes
MEM_CONSTRAINT_ALIGNED, the simulator verifies that the address calculated by
ra+offset is a multiple of the byte size implied by bits; if the implied byte size is not a
power of two, then the next smallest power of two is chosen. For example, if bits is 80
(implying a 10-byte load) then the simulator will verify that the address is aligned to an

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 87 of 282

8-byte boundary. Actions for misaligned address are the same as for bits of 8, 16, 32 or
64, as described above.

Example
The OVP ARC model uses this function to ensure correct behavior when stack checking
is enabled:

void arcEmitLoadRRO(
 arcMorphStateP state,
 Uns32 destBits,
 Uns32 memBits,
 Uns32 offset,
 vmiReg rd,
 vmiReg ra,
 Bool signExtend,
 Bool checkAlign
) {
 // emit stack check prologue if required
 Bool doStackCheck = emitSCPrologue(state, offset, ra);
 memEndian endian = state->arc->endian;

 if(doStackCheck) {

 // try-load is required if stack checking is enabled (otherwise a stack
 // check error will not prevent the load from happening)
 vmimtTryLoadRC(memBits, offset, ra, checkAlign);

 // emit stack check epilogue if required
 emitSCEpilogue(state, True);
 }

 // do the load if stack check succeeds
 vmimtLoadRRO(destBits, memBits, offset, rd, ra, endian, signExtend, checkAlign);
}

Notes and Restrictions

1. When the data address bus width is 32 bits or less, the appropriate type for the
address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. bits must be a multiple of 8 in the range 8 to 1024.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 88 of 282

4.7 vmimtPreLoadRC

Prototype

void vmimtPreLoadRC(
 Addr offset,
 vmiReg ra,
 memPreloadType type
);

Description
Emit code indicate a preload of an address calculated by ra+offset. Preloads are hints
to cache and memory subsystems that data at the given address will be accessed soon and
should be moved closer to the processor in the memory hierarchy. The class of preload is
indicated by the type argument of type memPreloadType, defined in vmiTypes.h as
follows:

typedef enum memPreloadTypeE {
 MEM_PLT_LOAD, // preload for likely load
 MEM_PLT_STORE, // preload for likely store
 MEM_PLT_FETCH, // preload for likely execute
} memPreloadType;

For simulation purposes, preloads have no effect; the only observable effect is when the
instruction attributes API is being used. This API is designed for use in intercept libraries
that are intended to monitor the executed instruction stream to emulate the effects of
pipelines and memory hierarchy. See the OVP VMI Run Time Function Reference manual
for more details.

Example
The OVP ARM model uses this function to implement prefetch instructions:

ARM_MORPH_FN(armEmitPRFML) {

 vmiReg base = getTemp(state, 64);
 Uns64 offset = state->info.t - state->info.thisPC;

 // get base address for load
 vmimtMoveRSimPC(64, base);

 // do the prefetch
 vmimtPreLoadRC(offset, base, state->info.prfm);
}

Notes and Restrictions

1. When the data address bus width is 32 bits or less, the appropriate type for the
address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 89 of 282

4.8 vmimtStoreRRODomain

Prototype

void vmimtStoreRRODomain(
 memDomainP domain,
 Uns32 bits,
 Addr offset,
 vmiReg ra,
 vmiReg rb,
 memEndian endian,
 memConstraint constraint
);

Description
This function is similar to vmimtStoreRRO, except for the domain argument, which
allows the memory domain for the store to be specified.

If domain is NULL, the store is directed to the current processor data domain (in other
words, behavior is identical to vmimtStoreRRO).

If domain is non-NULL, the store is directed to the specified domain.

This function is useful in situations where stores are targeted at a different domain to the
default domain for the current processor mode. For example, the LDRT and STRT
instructions in the ARM processor perform user-level loads and stores when executing in
privileged mode.

See the description of vmimtStoreRRO for details of other arguments to this function.

Example
This example is from the OVP ARM model. This processor has translating load/store
instructions that allow the user address space to be read or written from privileged mode.
A utility functions selects either the user address space or the default address space,
depending on attributes of the decoded instruction:

inline static memDomainP getDomain(armMorphStateP state) {
 return doTranslate(state) ? state->arm->dds.vmUser : 0;
}

This domain is then specified to vmimtStoreRRODomain:

void armEmitStoreRRO(
 armMorphStateP state,
 Uns32 bits,
 Uns32 offset,
 vmiReg ra,
 vmiReg rb
) {
 memDomainP domain = getDomain(state);
 memEndian endian = getEndian(state, bits);
 memConstraint constraint = getConstraint(state, bits);
 vmimtStoreRRODomain(domain, bits, offset, ra, rb, endian, constraint);
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 90 of 282

Notes and Restrictions

1. When the the data address bus width is 32 bits or less, the appropriate type for the
address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. bits must be a multiple of 8 in the range 8 to 1024.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 91 of 282

4.9 vmimtStoreRCODomain

Prototype

void vmimtStoreRCODomain(
 memDomainP domain,
 Uns32 bits,
 Addr offset,
 vmiReg ra,
 Uns64 c,
 memEndian endian,
 memConstraint constraint
);

Description
This function is similar to vmimtStoreRCO, except for the domain argument, which
allows the memory domain for the store to be specified.

If domain is NULL, the store is directed to the current processor data domain (in other
words, behavior is identical to vmimtStoreRCO).

If domain is non-NULL, the store is directed to the specified domain.

This function is useful in situations where stores are targeted at a different domain to the
default domain for the current processor mode. For example, the LDRT and STRT
instructions in the ARM processor perform user-level loads and stores when executing in
privileged mode.

See the description of vmimtStoreRCO for details of other arguments to this function.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. When the data address bus width is 32 bits or less, the appropriate type for the
address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. bits must be a multiple of 8 in the range 8 to 1024.
5. For bits less than 64, the unused most significant bits of c are silently discarded.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 92 of 282

4.10 vmimtLoadRRODomain

Prototype

void vmimtLoadRRODomain(
 memDomainP domain,
 Uns32 destBits,
 Uns32 memBits,
 Addr offset,
 vmiReg rd,
 vmiReg ra,
 memEndian endian,
 Bool signExtend,
 memConstraint constraint
);

Description
This function is similar to vmimtLoadRRO, except for the domain argument, which allows
the memory domain for the store to be specified.

If domain is NULL, the load is directed to the current processor data domain (in other
words, behavior is identical to vmimtLoadRRO).

If domain is non-NULL, the load is directed to the specified domain.

This function is useful in situations where loads are targeted at a different domain to the
default domain for the current processor mode. For example, the LDRT and STRT
instructions in the ARM processor perform user-level loads and stores when executing in
privileged mode.

See the description of vmimtLoadRRO for details of other arguments to this function.

Example
This example is from the OVP ARM model. This processor has translating load/store
instructions that allow the user address space to be read or written from privileged mode.
A utility functions selects either the user address space or the default address space,
depending on attributes of the decoded instruction:

inline static memDomainP getDomain(armMorphStateP state) {
 return doTranslate(state) ? state->arm->dds.vmUser : 0;
}

This domain is then specified to vmimtLoadRRODomain:

void armEmitLoadRRO(
 armMorphStateP state,
 Uns32 destBits,
 Uns32 memBits,
 Uns32 offset,
 vmiReg rd,
 vmiReg ra,
 Bool signExtend,
 Bool isReturn
) {

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 93 of 282

 memDomainP domain = getDomain(state);
 memEndian endian = getEndian(state, memBits);
 memConstraint constraint = getConstraint(state, bits);

 // emit single load
 vmimtLoadRRODomain(
 domain, destBits, memBits, offset, rd, ra, endian, signExtend, constraint
);
 setVariable(state, rd, isReturn);
}

Notes and Restrictions

1. When the data address bus width is 32 bits or less, the appropriate type for the
address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. destBits and memBits bits must be a multiple of 8 in the range 8 to 1024.
5. destBits must be equal to or greater than memBits (if both are 8, 16, 32 or 64).

Both values must be equal in all other cases.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 94 of 282

4.11 vmimtTryStoreRCDomain

Prototype

void vmimtTryStoreRCDomain(
 memDomainP domain,
 Uns32 bits,
 Addr offset,
 vmiReg ra,
 memConstraint constraint
);

Description
This function is similar to vmimtTryStoreRC, except for the domain argument, which
allows the memory domain for the store to be specified.

If domain is NULL, the store is directed to the current processor data domain (in other
words, behavior is identical to vmimtTryStoreRC).

If domain is non-NULL, the store is directed to the specified domain.

This function is useful in situations where stores are targeted at a different domain to the
default domain for the current processor mode. For example, the LDRT and STRT
instructions in the ARM processor perform user-level loads and stores when executing in
privileged mode.

See the description of vmimtTryStoreRC for details of other arguments to this function.

Example
This example is from the OVP ARM model. This processor has translating load/store
instructions that allow the user address space to be read or written from privileged mode.
A utility functions selects either the user address space or the default address space,
depending on attributes of the decoded instruction:

inline static memDomainP getDomain(armMorphStateP state) {
 return doTranslate(state) ? state->arm->dds.vmUser : 0;
}

This domain is then specified to vmimtTryStoreRCDomain:

void armEmitTryStoreRC(
 armMorphStateP state,
 Uns32 bits,
 Addr offset,
 vmiReg ra
) {
 memDomainP domain = getDomain(state);
 vmimtTryStoreRCDomain(domain, bits, offset, ra, getConstraint(state, bits));
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 95 of 282

Notes and Restrictions
1. When the data address bus width is 32 bits or less, the appropriate type for the

address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. bits must be a multiple of 8 in the range 8 to 1024.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 96 of 282

4.12 vmimtTryLoadRCDomain

Prototype

void vmimtTryLoadRCDomain(
 memDomainP domain,
 Uns32 bits,
 Addr offset,
 vmiReg ra,
 memConstraint constraint
);

Description
This function is similar to vmimtTryLoadRC, except for the domain argument, which
allows the memory domain for the store to be specified.

If domain is NULL, the load is directed to the current processor data domain (in other
words, behavior is identical to vmimtTryLoadRC).

If domain is non-NULL, the load is directed to the specified domain.

This function is useful in situations where loads are targeted at a different domain to the
default domain for the current processor mode. For example, the LDRT and STRT
instructions in the ARM processor perform user-level loads and stores when executing in
privileged mode.

See the description of vmimtTryLoadRC for details of other arguments to this function.

Example
This example is from the OVP ARM model. This processor has translating load/store
instructions that allow the user address space to be read or written from privileged mode.
A utility functions selects either the user address space or the default address space,
depending on attributes of the decoded instruction:

inline static memDomainP getDomain(armMorphStateP state) {
 return doTranslate(state) ? state->arm->dds.vmUser : 0;
}

This domain is then specified to vmimtTryLoadRCDomain:

void armEmitTryLoadRC(
 armMorphStateP state,
 Uns32 bits,
 Addr offset,
 vmiReg ra
) {
 memDomainP domain = getDomain(state);
 vmimtTryLoadRCDomain(domain, bits, offset, ra, getConstraint(state, bits));
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 97 of 282

Notes and Restrictions
1. When the data address bus width is 32 bits or less, the appropriate type for the

address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.
4. bits must be a multiple of 8 in the range 8 to 1024.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 98 of 282

4.13 vmimtPreLoadRCDomain

Prototype

void vmimtPreLoadRCDomain(
 memDomainP domain,
 Addr offset,
 vmiReg ra,
 memPreloadType type
);

Description
This function is similar to vmimtPreLoadRC, except for the domain argument, which
allows the memory domain for the store to be specified.

If domain is NULL, the preload is directed to the current processor data domain (in other
words, behavior is identical to vmimtTryLoadRC).

If domain is non-NULL, the preload is directed to the specified domain.

This function is useful in situations where preloads are targeted at a different domain to
the default domain for the current processor mode.

See the description of vmimtPreLoadRC for details of other arguments to this function.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. When the data address bus width is 32 bits or less, the appropriate type for the
address register ra in the processor structure is a 32-bit unsigned (Uns32), unless
modified by a preceding vmimtSetAddressMask call.

2. When the data address bus width is 33 to 64 bits, the appropriate type for the
address register ra in the processor structure is a 64-bit unsigned (Uns64), unless
modified by a preceding vmimtSetAddressMask call.

3. Data address bus widths greater than 64 bits are not supported.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 99 of 282

5 Control Flow Operations
This section describes emission functions for control flow operations: inter-instruction
and intra-instruction unconditional and conditional jumps.

Inter-instruction jumps correspond to control transfers in the simulated processor
instruction set.

Intra-instruction jumps are required when the translation of a simulated instruction
requires loops or conditional branches (although if the control behavior is complicated, it
is usually easier and more efficient to use an embedded call instead - see
vmimtCallResultAttrs and related functions).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 100 of 282

5.1 vmimtSetAddressMask

Prototype

void vmimtSetAddressMask(Uns64 mask);

Description
This call can be used immediately prior to jump, load or store morph-time operations to
specify masking of addresses.

When used immediately prior to vmimt*Jump* calls, this specifies required masking of
target and link addresses. For example, specifying an address mask of -2 will cause the
least significant bit of target and return addresses to be ignored.

When used immediately prior to vmimt*Load* or vmimt*Store* calls, this specifies the
effective number of bits used to calculate the load/store address. Any computed address
will be modified so that all bits above the most-significant non-zero bit in the mask are
zeroed. Note that more advanced load/store address masking is also possible using run-
time function vmirtSetLoadStoreMask.

Example
The OVP ARM model uses this function to implement indirect jumps in AArch32 state.
In this state, the least-significant bit determines the execution mode at the target address
(ARM or Thumb):

void armEmitUncondJumpReg(
 armMorphStateP state,
 armJumpInfoP ji,
 vmiReg toReg
) {
 emitClearITState(state);

 vmimtSetAddressMask(-2);

 vmimtUncondJumpReg(
 ji->linkPC,
 toReg,
 ji->linkReg,
 ji->hint
);
}

Notes and Restrictions

1. If vmimtSetAddressMask is not called immediately prior to a vmimt*Jump*,
vmimt*Load* or vmimt*Store* function, it is ignored.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 101 of 282

5.2 vmimtUncondJump

Prototype

void vmimtUncondJump(
 Addr linkPC,
 Addr toAddress,
 vmiReg linkReg,
 vmiJumpHint hint
);

Description
Emit code to perform an unconditional inter-instruction branch to toAddress.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg as the branch is taken – this allows branch and link
instructions to be easily specified. If linkReg is VMI_NOREG, the value of linkPC is
ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.

Example
The OVP RISC-V model uses this function to implement jump-and-link instructions:

static RISCV_MORPH_FN(emitJAL) {

 vmiReg lr = getReg(state, 0);
 Uns64 tgt = state->info.c;
 Uns64 linkPC = getLinkPC(state);
 vmiJumpHint hint = isLR(lr) ? vmi_JH_CALL : vmi_JH_NONE;

 vmimtUncondJump(linkPC, tgt, lr, hint|vmi_JH_RELATIVE);
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 102 of 282

Notes and Restrictions
1. When the instruction address bus width is 32 bits or less, the appropriate type for

the address register linkReg in the processor structure is a 32-bit unsigned
(Uns32).

2. When the instruction address bus width is 33 to 64 bits, the appropriate type for
the address register linkReg in the processor structure is a 64-bit unsigned
(Uns64).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 103 of 282

5.3 vmimtUncondJumpDelaySlot

Prototype

void vmimtUncondJumpDelaySlot(
 Uns32 slotOps,
 Addr linkPC,
 Addr toAddress,
 vmiReg linkReg,
 vmiJumpHint hint,
 vmiPostSlotFn slotCB
);

Description
Emit code to perform an unconditional inter-instruction branch to toAddress with
slotOps subsequent delay slot instructions, which will be executed prior to taking the
branch.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg as the branch is taken – this allows branch and link
instructions to be easily specified. If linkReg is VMI_NOREG, the value of linkPC is
ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.

Argument slotCB, if non-NULL, specifies a function that is called just before the delayed
branch is taken. If the branch is not taken (if, for example, if there is a simulated
exception in the delay slot instruction) the function is not called. The callback function is
passed the processor as its only argument.

If slotOps and slotCB are 0, this function is equivalent to vmiUncondJump.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 104 of 282

Example
The OVP MIPS model uses this function to implement unconditional branch instructions.
In this processor, the link address is updated even if the branch fails (because memory at
the target address is not executable, for example) so link register update is done explicitly
before the jump:

static void emitBranchU(
 mipsInstructionInfoP info,
 Uns32 slotInsns,
 mipsP mips,
 Bool link
) {
 mipsUnsArch dst = info->c;
 vmiJumpHint hint = getBranchHint(link);

 // set up the link return address
 if(link) {
 emitSetLinkAddress(info, slotInsns, mips, MIPS_REG_RA);
 }

 // do the jump
 vmimtUncondJumpDelaySlot(slotInsns, 0, dst, VMI_NOREG, hint, 0);
}

Notes and Restrictions

1. slotOps is currently restricted to 0, 1, 2 or 3.
2. When the the instruction address bus width is 32 bits or less, the appropriate type

for the address register linkReg in the processor structure is a 32-bit unsigned
(Uns32).

3. When the the instruction address bus width is 33 to 64 bits, the appropriate type
for the address register linkReg in the processor structure is a 64-bit unsigned
(Uns64).

4. vmimtUncondJumpDelaySlot must be the last morph time call issued for a
simulated instruction. Attempting to make further vmimt calls will cause a
simulator fatal error message and terminate simulation.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 105 of 282

5.4 vmimtUncondJumpReg

Prototype

void vmimtUncondJumpReg(
 Addr linkPC,
 vmiReg toReg,
 vmiReg linkReg,
 vmiJumpHint hint
);

Description
Emit code to perform an unconditional indirect jump to the address in processor register
toReg. This function is typically used to generate code for calls through function pointers
and return instructions.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg as the branch is taken – this allows branch and link
instructions to be easily specified. If linkReg is VMI_NOREG, the value of linkPC is
ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 106 of 282

Example
The OVP RISC-V model uses this function to implement unconditional branch-and-link
instructions:

static RISCV_MORPH_FN(emitJALR) {

 vmiReg lr = getReg(state, 0);
 vmiReg ra = getReg(state, 1);
 Uns32 bits = getRegBits(state, 0);
 Uns64 offset = state->info.c;
 Uns64 linkPC = getLinkPC(state);
 vmiJumpHint hint;

 // calculate target address if required
 if(offset) {
 vmiReg tmp = getTmp(state, 0);
 vmimtBinopRRC(bits, vmi_ADD, tmp, ra, offset, 0);
 ra = tmp;
 }

 // derive jump hint
 if(isLR(ra)) {
 hint = vmi_JH_RETURN;
 } else if(isLR(lr)) {
 hint = vmi_JH_CALL;
 } else {
 hint = vmi_JH_NONE;
 }

 vmimtUncondJumpReg(linkPC, ra, lr, hint|vmi_JH_RELATIVE);
}

Notes and Restrictions

1. When the instruction address bus width is 32 bits or less, the appropriate type for
the address registers toReg and linkReg in the processor structure is a 32-bit
unsigned (Uns32).

2. When the instruction address bus width is 33 to 64 bits, the appropriate type for
the address registers toReg and linkReg in the processor structure is a 64-bit
unsigned (Uns64).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 107 of 282

5.5 vmimtUncondJumpRegDelaySlot

Prototype

void vmimtUncondJumpRegDelaySlot(
 Uns32 slotOps,
 Addr linkPC,
 vmiReg toReg,
 vmiReg linkReg,
 vmiJumpHint hint,
 vmiPostSlotFn slotCB
);

Description
Emit code to perform an unconditional indirect jump to the address in processor register
toReg with slotOps subsequent delay slot instructions, which will be executed prior to
taking the branch. This function is typically used to generate code for calls through
function pointers and return instructions.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg as the branch is taken – this allows branch and link
instructions to be easily specified. If linkReg is VMI_NOREG, the value of linkPC is
ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.

Argument slotCB, if non-NULL, specifies a function that is called just before the delayed
branch is taken. If the branch is not taken (if, for example, if there is a simulated
exception in the delay slot instruction) the function is not called. The callback function is
passed the processor as its only argument.

If slotOps and slotCB are 0, this function is equivalent to vmiUncondJumpReg.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 108 of 282

Example
The OVP ARC model uses this function to implement unconditional indirect jump
instructions:

void arcEmitUncondJumpRegDelaySlot(
 arcMorphStateP state,
 arcJumpInfoP ji,
 vmiReg toReg
) {
 Uns32 bits = ARC_GPR_BITS;
 Uns32 BTAMask = getBTAMask(state);

 if(state->info.ds) {

 // delay-slot jumps
 arcBlockStateP blockState = state->blockState;
 vmiReg bta = ARC_AUX_REG(bta);
 vmiReg de = ARC_DE;

 // set status32.DE to indicate branch is to be taken
 vmimtMoveRC(8, de, 1);

 // set BTA with target address
 vmimtBinopRRC(bits, vmi_AND, bta, toReg, BTAMask, 0);
 }

 // mask jump target to implemented bits
 vmimtSetAddressMask(BTAMask);

 // emit the jump
 vmimtUncondJumpRegDelaySlot(
 state->info.ds,
 ji->linkPC,
 toReg,
 ji->linkReg,
 ji->hint,
 0
);
}

Notes and Restrictions

1. slotOps is currently restricted to 0, 1, 2 or 3.
2. When the the instruction address bus width is 32 bits or less, the appropriate type

for the address registers toReg and linkReg in the processor structure is a 32-bit
unsigned (Uns32).

3. When the instruction address bus width is 33 to 64 bits, the appropriate type for
the address registers toReg and linkReg in the processor structure is a 64-bit
unsigned (Uns64).

4. If register toReg is updated by delay slot instructions, the target address is not
affected (it is the original value of toReg).

5. vmimtUncondJumpRegDelaySlot must be the last morph time call issued for a
simulated instruction. Attempting to make further vmimt calls will cause a
simulator fatal error message and terminate simulation.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 109 of 282

5.6 vmimtCondJump

Prototype

void vmimtCondJump(
 vmiReg flag,
 Bool jumpIfTrue,
 Addr linkPC,
 Addr toAddress,
 vmiReg linkReg,
 vmiJumpHint hint
);

Description
Emit code to perform a conditional inter-instruction branch. The processor flag register
to test to determine whether to take the branch is specified by flag: this is an 8-bit
register (declare it as an Uns8 in the processor structure).

If jumpIfTrue is True, then a jump will be taken to target address toAddress if the
value of the flag register is non-zero and execution will continue with the next vmi
operation if the flag register is zero.

If jumpIfTrue is False, then a jump will be taken to target address toAddress if the
value of the flag register is zero and execution will continue with the next vmi
operation if the flag register is non-zero.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg if the branch is taken – this allows conditional branch and
link instructions to be easily specified. If linkReg is VMI_NOREG, the value of linkPC is
ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 110 of 282

This function is often used in conjunction with vmimtCompareRR (and related functions)
as shown in the example.

Example
The OVP RISC-V model uses this function to implement conditional branch instructions:

static RISCV_MORPH_FN(emitBranchRR) {

 vmiReg rs1 = getReg(state, 0);
 vmiReg rs2 = getReg(state, 1);
 Uns32 bits = getRegBits(state, 0);
 Uns64 tgt = state->info.c;
 vmiReg tmp = getTmp(state, 0);

 vmimtCompareRR(bits, state->attrs->cond, rs1, rs2, tmp);
 vmimtCondJump(tmp, True, 0, tgt, VMI_NOREG, vmi_JH_RELATIVE);
}

Notes and Restrictions

1. When the instruction address bus width is 32 bits or less, the appropriate type for
the address register linkReg in the processor structure is a 32-bit unsigned
(Uns32).

2. When the instruction address bus width is 33 to 64 bits, the appropriate type for
the address register linkReg in the processor structure is a 64-bit unsigned
(Uns64).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 111 of 282

5.7 vmimtCondJumpDelaySlot

Prototype

void vmimtCondJumpDelaySlot(
 Uns32 slotOps,
 vmiReg flag,
 Bool jumpIfTrue,
 Addr linkPC,
 Addr toAddress,
 vmiReg linkReg,
 vmiJumpHint hint,
 vmiPostSlotFn slotCB
);

Description
Emit code to perform a conditional inter-instruction branch with slotOps subsequent
delay slot instructions. The processor flag register to test to determine whether to take the
branch is specified by flag: this is an 8-bit register (declare it as an Uns8 in the processor
structure).

If jumpIfTrue is True, then a jump will be taken to target address toAddress only if the
value of the flag register is non-zero.

If jumpIfTrue is False, then a jump will be taken to target address toAddress only if
the value of the flag register is zero.

slotOps instructions after the current instruction will be executed prior to taking the
branch. These instructions will be executed whether or not the branch is taken. If
slotOps is 0, this function is equivalent to vmiCondJump.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg if the branch is taken – this allows conditional branch and
link instructions to be easily specified. If linkReg is VMI_NOREG, the value of linkPC is
ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 112 of 282

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.
Argument slotCB, if non-NULL, specifies a function that is called just before the delayed
branch is taken. If the branch is not taken the function is not called. The callback function
is passed the processor as its only argument.

This function is often used in conjunction with vmimtCompareRR (and related functions)
as shown in the example.

Example
The OVP MIPS model uses this function to implement conditional branch instructions:

static void emitBranch(
 mipsInstructionInfoP info,
 Uns32 slotInsns,
 mipsP mips,
 vmiCondition cond,
 Bool link,
 Bool annul
) {
 Uns32 bits = MIPS_ARCH_BITS;
 vmiReg rt = getR1(info);
 vmiReg rs = getR2(info);
 mipsUnsArch dst = info->c;
 vmiJumpHint hint = getBranchHint(link);
 vmiReg tempFlag = MIPS_TEMPFLAG(0);

 // do the required comparison, setting MIPS_TEMPFLAG
 vmimtCompareRR(bits, cond, rs, rt, tempFlag);

 // set up the link return address (even if the condition is false and we
 // don't actually call the function)
 if(link) {
 emitSetLinkAddress(info, slotInsns, mips, MIPS_REG_RA);
 }

 // do the jump
 if(annul) {
 vmimtCondJumpDelaySlotAnnul(
 slotInsns, tempFlag, True, 0, dst, VMI_NOREG, hint, 0
);
 } else {
 vmimtCondJumpDelaySlot(
 slotInsns, tempFlag, True, 0, dst, VMI_NOREG, hint, 0
);
 }
}

Notes and Restrictions

1. slotOps is currently restricted to 0, 1, 2 or 3.
2. When the instruction address bus width is 32 bits or less, the appropriate type for

the address register linkReg in the processor structure is a 32-bit unsigned
(Uns32).

3. When the instruction address bus width is 33 to 64 bits, the appropriate type for
the address register linkReg in the processor structure is a 64-bit unsigned
(Uns64).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 113 of 282

4. vmimtCondJumpDelaySlot must be the last morph time call issued for a
simulated instruction. Attempting to make further vmimt calls will cause a
simulator fatal error message and terminate simulation.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 114 of 282

5.8 vmimtCondJumpDelaySlotAnnul

Prototype

void vmimtCondJumpDelaySlotAnnul(
 Int32 slotOps,
 vmiReg flag,
 Bool jumpIfTrue,
 Addr linkPC,
 Addr toAddress,
 vmiReg linkReg,
 vmiJumpHint hint,
 vmiPostSlotFn slotCB
);

Description
Emit code to perform a conditional inter-instruction branch with the absolute value of
slotOps subsequent delay slot instructions. The processor flag register to test to
determine whether to take the branch is specified by flag: this is an 8-bit register
(declare it as an Uns8 in the processor structure).

If jumpIfTrue is True, then a jump will be taken to target address toAddress only if the
value of the flag register is non-zero.

If jumpIfTrue is False, then a jump will be taken to target address toAddress only if
the value of the flag register is zero.

The absolute value of slotOps specifies the number of instructions after the current
instruction that will be executed prior to taking the branch. If slotOps is positive, then if
the branch is not taken some or all of the instruction actions may be annulled. If slotOps
is negative, then if the branch is taken some or all of the instruction actions may be
annulled. The precise actions that are annulled are identified by a call to
vmimtSkipIfAnnul, described elsewhere in this section.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg if the branch is taken – this allows conditional branch and
link instructions to be easily specified. If linkReg is VMI_NOREG, the value of linkPC is
ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 115 of 282

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.

Argument slotCB, if non-NULL, specifies a function that is called just before the delayed
branch is taken. If the branch is not taken the function is not called. The callback function
is passed the processor as its only argument.

This function is often used in conjunction with vmimtCompareRR (and related functions)
as shown in the example.

Example
The OVP MIPS model uses this function to implement conditional branch instructions:

static void emitBranch(
 mipsInstructionInfoP info,
 Int32 slotInsns,
 mipsP mips,
 vmiCondition cond,
 Bool link,
 Bool annul
) {
 Uns32 bits = MIPS_ARCH_BITS;
 vmiReg rt = getR1(info);
 vmiReg rs = getR2(info);
 mipsUnsArch dst = info->c;
 vmiJumpHint hint = getBranchHint(link);
 vmiReg tempFlag = MIPS_TEMPFLAG(0);

 // do the required comparison, setting MIPS_TEMPFLAG
 vmimtCompareRR(bits, cond, rs, rt, tempFlag);

 // set up the link return address (even if the condition is false and we
 // don't actually call the function)
 if(link) {
 emitSetLinkAddress(info, slotInsns, mips, MIPS_REG_RA);
 }

 // do the jump
 if(annul) {
 vmimtCondJumpDelaySlotAnnul(
 slotInsns, tempFlag, True, 0, dst, VMI_NOREG, hint, 0
);
 } else {
 vmimtCondJumpDelaySlot(
 slotInsns, tempFlag, True, 0, dst, VMI_NOREG, hint, 0
);
 }
}

Notes and Restrictions

1. slotOps is currently restricted to values in the range -3 to 3.
2. When the the instruction address bus width is 32 bits or less, the appropriate type

for the address register linkReg in the processor structure is a 32-bit unsigned
(Uns32).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 116 of 282

3. When the the instruction address bus width is 33 to 64 bits, the appropriate type
for the address register linkReg in the processor structure is a 64-bit unsigned
(Uns64).

4. vmimtCondJumpDelaySlotAnnul must be the last morph time call issued for a
simulated instruction. Attempting to make further vmimt calls will cause a
simulator fatal error message and terminate simulation.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 117 of 282

5.9 vmimtCondJumpReg

Prototype

void vmimtCondJumpReg(
 vmiReg flag,
 Bool jumpIfTrue,
 Addr linkPC,
 vmiReg toReg,
 vmiReg linkReg,
 vmiJumpHint hint
);

Description
Emit code to perform a conditional indirect inter-instruction branch. The processor flag
register to test to determine whether to take the branch is specified by flag: this is an 8-
bit register (declare it as an Uns8 in the processor structure).

If jumpIfTrue is True, then a jump will be taken to the address in processor register
toReg if the value of the flag register is non-zero and execution will continue with the
next vmi operation if the flag register is zero.

If jumpIfTrue is False, then a jump will be taken to the address in processor register
toReg if the value of the flag register is zero and execution will continue with the next
vmi operation if the flag register is non-zero.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg if the branch is taken – this allows indirect conditional
branch and link instructions to be easily specified. If linkReg is VMI_NOREG, the value of
linkPC is ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 118 of 282

This function is often used in conjunction with vmimtCompareRR (and related functions)
as shown in the example.

Example
The OVP ARC model uses this function to terminate zero-overhead loops:

void arcEmitEndZOL(arcMorphStateP state) {

 if(state->atZOL) {
 vmimtCondJumpReg(
 ARC_ZOL_BRANCH,
 True,
 0,
 ARC_AUX_REG(lp_start),
 VMI_NOREG,
 vmi_JH_NONE
);
 }
}

Notes and Restrictions

1. When the instruction address bus width is 32 bits or less, the appropriate type for
the address register linkReg in the processor structure is a 32-bit unsigned
(Uns32).

2. When the instruction address bus width is 33 to 64 bits, the appropriate type for
the address register linkReg in the processor structure is a 64-bit unsigned
(Uns64).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 119 of 282

5.10 vmimtCondJumpRegDelaySlot

Prototype

void vmimtCondJumpRegDelaySlot(
 Uns32 slotOps,
 vmiReg flag,
 Bool jumpIfTrue,
 Addr linkPC,
 vmiReg toReg,
 vmiReg linkReg,
 vmiJumpHint hint,
 vmiPostSlotFn slotCB

);

Description
Emit code to perform a conditional indirect inter-instruction branch with slotOps
subsequent delay slot instructions. The processor flag register to test to determine
whether to take the branch is specified by flag: this is an 8-bit register (declare it as an
Uns8 in the processor structure).

If jumpIfTrue is True, then a jump will be taken to the address in processor register
toReg only if the value of the flag register is non-zero.

If jumpIfTrue is False, then a jump will be taken to the address in processor register
toReg only if the value of the flag register is zero.

slotOps instructions after the current instruction will be executed prior to taking the
branch. These instructions will be executed whether or not the branch is taken. If
slotOps is 0, this function is equivalent to vmiCondJump.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg if the branch is taken – this allows indirect conditional
branch and link instructions to be easily specified. If linkReg is VMI_NOREG, the value of
linkPC is ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 120 of 282

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.
Argument slotCB, if non-NULL, specifies a function that is called just before the delayed
branch is taken. If the branch is not taken the function is not called. The callback function
is passed the processor as its only argument.

This function is often used in conjunction with vmimtCompareRR (and related functions)
as shown in the example.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. slotOps is currently restricted to 0, 1, 2 or 3.
2. When the instruction address bus width is 32 bits or less, the appropriate type for

the address register linkReg in the processor structure is a 32-bit unsigned
(Uns32).

3. When the instruction address bus width is 33 to 64 bits, the appropriate type for
the address register linkReg in the processor structure is a 64-bit unsigned
(Uns64).

4. vmimtCondJumpRegDelaySlot must be the last morph time call issued for a
simulated instruction. Attempting to make further vmimt calls will cause a
simulator fatal error message and terminate simulation.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 121 of 282

5.11 vmimtCondJumpRegDelaySlotAnnul

Prototype

void vmimtCondJumpRegDelaySlotAnnul(
 Int32 slotOps,
 vmiReg flag,
 Bool jumpIfTrue,
 Addr linkPC,
 vmiReg toReg,
 vmiReg linkReg,
 vmiJumpHint hint,
 vmiPostSlotFn slotCB

);

Description
Emit code to perform a conditional indirect inter-instruction branch with the absolute
value of slotOps subsequent delay slot instructions. The processor flag register to test
to determine whether to take the branch is specified by flag: this is an 8-bit register
(declare it as an Uns8 in the processor structure).

If jumpIfTrue is True, then a jump will be taken to the address in processor register
toReg only if the value of the flag register is non-zero.

If jumpIfTrue is False, then a jump will be taken to the address in processor register
toReg only if the value of the flag register is zero.

The absolute value of slotOps specifies the number of instructions after the current
instruction that will be executed prior to taking the branch. If slotOps is positive, then if
the branch is not taken some or all of the instruction actions may be annulled. If slotOps
is negative, then if the branch is taken some or all of the instruction actions may be
annulled. The precise actions that are annulled are identified by a call to
vmimtSkipIfAnnul, described elsewhere in this section.

If linkReg is not VMI_NOREG, then address linkPC will be loaded into the processor
register specified by linkReg if the branch is taken – this allows indirect conditional
branch and link instructions to be easily specified. If linkReg is VMI_NOREG, the value of
linkPC is ignored.

Argument hint is used to indicate to the simulator the kind of branch taking place. The
type is defined in vmiTypes.h:

typedef enum vmiJumpHintE {

 vmi_JH_NONE = 0x00, // no jump hint

 vmi_JH_CALL = 0x01, // call
 vmi_JH_RETURN = 0x02, // return
 vmi_JH_INT = 0x04, // interrupt
 vmi_JH_CALLINT = vmi_JH_INT|vmi_JH_CALL, // interrupt call
 vmi_JH_RETURNINT = vmi_JH_INT|vmi_JH_RETURN, // interrupt return

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 122 of 282

 vmi_JH_RELATIVE = 0x08 // target is relative

} vmiJumpHint;

Simulator performance is much improved if appropriate hints are given as to whether an
instruction is a call, a return, or a simple control transfer because it is then able to match
up calls and returns in much the same way as they are optimized in hardware.

Argument slotCB, if non-NULL, specifies a function that is called just before the delayed
branch is taken. If the branch is not taken the function is not called. The callback function
is passed the processor as its only argument.

This function is often used in conjunction with vmimtCompareRR (and related functions)
as shown in the example.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. slotOps is currently restricted to values in the range -3 to 3.
2. When the instruction address bus width is 32 bits or less, the appropriate type for

the address register linkReg in the processor structure is a 32-bit unsigned
(Uns32).

3. When the instruction address bus width is 33 to 64 bits, the appropriate type for
the address register linkReg in the processor structure is a 64-bit unsigned
(Uns64).

4. vmimtCondJumpRegDelaySlotAnnul must be the last morph time call issued for a
simulated instruction. Attempting to make further vmimt calls will cause a
simulator fatal error message and terminate simulation.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 123 of 282

5.12 vmimtSkipIfAnnul

Prototype

void vmimtSkipIfAnnul(void);

Description
This routine has no action unless the current instruction is a delay slot instruction of a
conditional jump specified by a call to vmimtCondJumpDelaySlotAnnul or
vmimtCondJumpRegDelaySlotAnnul, described elsewhere in this section.

If the current instruction is indeed such a delay slot instruction, this routine causes all
behavior following the call to vmimtSkipIfAnnul to be skipped if the branch is annulled
(not taken).

vmimtSkipIfAnnul is typically called once in the pre-morph callback function (defined
using the preMorphCB field in the vmiIASAttr structure).

Example
The OVP ARC model uses this function in the pre-morph callback as follows:

VMI_MORPH_FN(arcPreMorphInstruction) {

 arcP arc = (arcP)processor;
 arcMorphStateP state = instrState;

 // get instruction and instruction type
 arcDecode(arc, thisPC, &state->info);

 // get morpher attributes for the decoded instruction and initialize other
 // state fields
 state->attrs = &dispatchTable[state->info.type];
 state->arc = arc;
 state->nextPC = (state->info.thisPC + state->info.bytes) & arc->pcMask;
 state->inDelaySlot = inDelaySlot;

 // skip actions after this point if annulling
 vmimtSkipIfAnnul();
}

Notes and Restrictions

1. This function is normally used in the pre-morph callback instead of the morph
callback because it should have an effect even if the instruction is implemented in
an extension library. See the OVP Processor Modeling Guide for more
information about extension libraries.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 124 of 282

5.13 vmimtGetDelaySlotNextPC

Prototype

void vmimtGetDelaySlotNextPC(vmiReg targetReg, Bool getNextPC);

Description
This function is useful for determining an instruction address after a delay slot instruction
or the branch target of a delay slot instruction. It can be used in processor models, but is
more often used in intercept libraries that monitor program control flow.

If getNextPC is True, then register targetReg will be loaded with the address of the next
instruction to be executed after the delay slot instruction. In the case of a conditional
branch that is taken, this will be the branch address; in the case of a conditional branch
that is not taken, this will be the address of the instruction following the delay slot
instruction.

If getNextPC is False, then register targetReg will be loaded with the branch target
address irrespective of whether the branch is taken.

Example
This example is extracted from an intercept library used to monitor control flow in MIPS
processors:

typedef struct vmiosObjectS {
 Addr dsTarget;
} vmiosObject;

static VMIOS_MORPH_FN(mipsMorphCallback) {

 // record branch target address if this is a delay slot instruction
 if(inDelaySlot) {

 // get offset to intercept structure from processor
 UnsPS dstDelta = (UnsPS)object - (UnsPS)processor;

 // get VMI reg for dsTarget field in intercept structure
 vmiReg dsTarget = VMI_CPU_REG_DELTA(vmiosObjectP, dsTarget, dstDelta);

 // assign dsTarget register in intercept structure
 vmimtGetDelaySlotNextPC(dsTarget, False);
 }

 . . . lines omitted for clarity . . .
}

Notes and Restrictions

1. This function may only be used in the context of a delay slot instruction. Use
outside this context will generate an assertion:
 vmimtGetDelaySlotNextPC used outside delay slot context
The inDelaySlot parameter to the functions declared with the VMI_MORPH_FN or
VMIOS_MORPH_FN macros specifies whether the current instruction is a delay slot
instruction.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 125 of 282

2. When the instruction address bus width is 32 bits or less, the appropriate type for
the address register targetReg in the processor or intercept library structure is a
32-bit unsigned (Uns32).

3. When the instruction address bus width is 33 to 64 bits, the appropriate type for
the address register targetReg in the processor or intercept library structure is a
64-bit unsigned (Uns64).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 126 of 282

5.14 vmimtEnterDelaySlotC

Prototype

void vmimtEnterDelaySlotC(
 Uns32 slotOps,
 Addr simPC1,
 Addr simPC2,
 vmiPostSlotFn slotCB
);

Description
This function is used to implement a special form of jump. Firstly, a jump is made to
address simPC1, and address simPC2 is scheduled as a delay slot instruction address.
After slotOps instructions have been executed, control resumes at simPC2.

Argument slotCB, if non-NULL, specifies a function that is called just before the delayed
branch is taken. The callback function is passed the processor as its only argument.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. slotOps is currently restricted to 1, 2 or 3.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 127 of 282

5.15 vmimtEnterDelaySlotR

Prototype

void vmimtEnterDelaySlotR(
 Uns32 slotOps,
 vmiReg toReg,
 Addr simPC2,
 vmiPostSlotFn slotCB
);

Description
This function is used to implement a special form of jump. Firstly, a jump is made to the
address held in register toReg, and address simPC2 is scheduled as a delay slot
instruction address. After slotOps instructions have been executed, control resumes at
simPC2.

Argument slotCB, if non-NULL, specifies a function that is called just before the delayed
branch is taken. The callback function is passed the processor as its only argument.

Example
This example is taken from the OVP ARC processor model. This processor has an
execute indexed instruction (EI_S) that executes a single instruction at a computed
address before resuming execution at the instruction after the EI_S instruction. The
required target address is in register rt:

void arcEnterDelaySlotR(arcMorphStateP state, vmiReg rt) {

 Uns32 bits = ARC_GPR_BITS;

 // set BTA with target address
 vmimtMoveRC(bits, ARC_AUX_REG(bta), state->nextPC);

 // enter delay-slot block
 vmimtEnterDelaySlotR(1, rt, state->nextPC, 0);
}

Notes and Restrictions

1. slotOps is currently restricted to 1, 2 or 3.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 128 of 282

5.16 vmimtNewLabel

Prototype

vmiLabelP vmimtNewLabel(void);

Description
This function is used to define a label for use with intra-instruction jumps, described in
following sections. The label indicates a position in the JIT-translated code stream to
which execution should branch.

Example
The OVP ARM model uses this function to control whether a processor should stop in a
WFI instruction:

ARM_MORPH_FN(armEmitWFI) {

 vmiLabelP noWait = vmimtNewLabel();

 // don't stop if there are pending interrupts
 vmimtCompareRCJumpLabel(8, vmi_COND_NZ, ARM_PENDING, 0, noWait);

 // halt the processor at the end of this instruction
 armEmitWait(state, AD_WFI);

 // here if interrupt is currently pending
 vmimtInsertLabel(noWait);
}

Notes and Restrictions

1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,
use functions such as vmimtCondJump or vmimtUncondJump.

2. Only use label-based jumps if the correct branch to take is known only at run
time. If the correct branch is known at morph time, it is much more efficient to
morph alternative code sequences instead. For example:

static void emitSys(Addr thisPC, Bool interceptTrap) {
 if(interceptTrap) {
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_InterceptTrap);
 } else {
 Addr nextAddress = thisPC + 4;
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_EnterKernelMode);
 vmimtUncondJump(nextAddress, SYS_ADDRESS, CPUX_EPCR, vmi_JH_CALL);
 }
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 129 of 282

5.17 vmimtInsertLabel

Prototype

void vmimtInsertLabel(vmiLabelP label);

Description
This function is used to insert a label previously defined with vmimtNewLabel at the
current position in the NMI node list. Labels are used to implement intra-instruction
jumps.

Example
The OVP ARM model uses this function to control whether a processor should stop in a
WFI instruction:

ARM_MORPH_FN(armEmitWFI) {

 vmiLabelP noWait = vmimtNewLabel();

 // don't stop if there are pending interrupts
 vmimtCompareRCJumpLabel(8, vmi_COND_NZ, ARM_PENDING, 0, noWait);

 // halt the processor at the end of this instruction
 armEmitWait(state, AD_WFI);

 // here if interrupt is currently pending
 vmimtInsertLabel(noWait);
}

Notes and Restrictions

1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,
use functions such as vmimtCondJump or vmimtUncondJump.

2. Only use label-based jumps if the correct branch to take is known only at run
time. If the correct branch is known at morph time, it is much more efficient to
morph alternative code sequences instead. For example:

static void emitSys(Addr thisPC, Bool interceptTrap) {
 if(interceptTrap) {
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_InterceptTrap);
 } else {
 Addr nextAddress = thisPC + 4;
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_EnterKernelMode);
 vmimtUncondJump(nextAddress, SYS_ADDRESS, CPUX_EPCR, vmi_JH_CALL);
 }
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 130 of 282

5.18 vmimtUncondJumpLabel

Prototype

void vmimtUncondJumpLabel(vmiLabelP toLabel);

Description
This function is used to perform an unconditional jump to a label previously defined with
vmimtNewLabel. Labels are used to implement intra-instruction jumps.

Example
The OVP ARM model uses this function to control whether a processor should stop in a
WFE instruction:

ARM_MORPH_FN(armEmitWFE) {

 vmiLabelP wait = vmimtNewLabel();
 vmiLabelP done = vmimtNewLabel();

 // jump to wait code if no event registered
 vmimtCondJumpLabel(ARM_EVENT, False, wait);

 // clear event register and finish
 vmimtMoveRC(8, ARM_EVENT, 0);
 vmimtUncondJumpLabel(done);

 // here if halt is required
 vmimtInsertLabel(wait);

 // wait for event
 armEmitWait(state, AD_WFE);

 // here when done
 vmimtInsertLabel(done);
}

Notes and Restrictions

1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,
use functions such vmimtUncondJump.

2. The label argument to vmimtUncondJumpLabel must be inserted into the NMI list
by a call to vmimtInsertLabel at some point during translation of the current
instruction.
If the call to vmimtInsertLabel precedes the call to vmimtUncondJumpLabel,
then this is a backward jump in the node list; if the call to vmimtInsertLabel
follows the call to vmimtUncondJumpLabel (as in the above example), then this is
a forward jump in the node list.

3. Only use label-based jumps if the correct branch to take is known only at run
time. If the correct branch is known at morph time, it is much more efficient to
morph alternative code sequences instead. For example:

static void emitSys(Addr thisPC, Bool interceptTrap) {
 if(interceptTrap) {
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_InterceptTrap);
 } else {

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 131 of 282

 Addr nextAddress = thisPC + 4;
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_EnterKernelMode);
 vmimtUncondJump(nextAddress, SYS_ADDRESS, CPUX_EPCR, vmi_JH_CALL);
 }
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 132 of 282

5.19 vmimtCondJumpLabel

Prototype

void vmimtCondJumpLabel(
 vmiReg flag,
 Bool jumpIfTrue,
 vmiLabelP toLabel
);

Description
This function is used to perform a conditional jump to a label previously defined with
vmimtNewLabel. Labels are used to implement intra-instruction jumps.

The processor flag register to test to determine whether to take the branch is specified by
flag: this is an 8-bit register (declare it as an Uns8 in the processor structure).

If jumpIfTrue is True, then a jump will be taken to label toLabel if the value of the
flag register is non-zero and execution will continue with the next operation if the flag
register is zero.

If jumpIfTrue is False, then a jump will be taken to target label toLabel if the value of
the flag register is zero and execution will continue with the next operation if the flag
register is non-zero.

Example
The OVP ARM model uses this function to control whether a processor should stop in a
WFE instruction:

ARM_MORPH_FN(armEmitWFE) {

 vmiLabelP wait = vmimtNewLabel();
 vmiLabelP done = vmimtNewLabel();

 // jump to wait code if no event registered
 vmimtCondJumpLabel(ARM_EVENT, False, wait);

 // clear event register and finish
 vmimtMoveRC(8, ARM_EVENT, 0);
 vmimtUncondJumpLabel(done);

 // here if halt is required
 vmimtInsertLabel(wait);

 // wait for event
 armEmitWait(state, AD_WFE);

 // here when done
 vmimtInsertLabel(done);
}

Notes and Restrictions

1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,
use functions such as vmimtCondJump.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 133 of 282

2. The label argument to vmimtCondJumpLabel must be inserted into the NMI list
by a call to vmimtInsertLabel at some point during translation of the current
instruction. If the call to vmimtInsertLabel precedes the call to
vmimtCondJumpLabel, then this is a backward jump in the node list; if the call to
vmimtInsertLabel follows the call to vmimtCondJumpLabel (as in the above
example), then this is a forward jump in the node list.

3. Only use label-based jumps if the correct branch to take is known only at run
time. If the correct branch is known at morph time, it is much more efficient to
morph alternative code sequences instead. For example:

static void emitSys(Addr thisPC, Bool interceptTrap) {
 if(interceptTrap) {
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_InterceptTrap);
 } else {
 Addr nextAddress = thisPC + 4;
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_EnterKernelMode);
 vmimtUncondJump(nextAddress, SYS_ADDRESS, CPUX_EPCR, vmi_JH_CALL);
 }
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 134 of 282

5.20 vmimtCondJumpLabelFunctionResult

Prototype

void vmimtCondJumpLabelFunctionResult(Bool jumpIfTrue, vmiLabelP toLabel);

Description
This function is used to perform a conditional jump to a label previously defined with
vmimtNewLabel. Labels are used to implement intra-instruction jumps. Whether the
branch should be taken is determined by the value returned by an embedded function call
made immediately prior to the call to vmimtCondJumpLabelFunctionResult – see
section 7 for more information about embedded function calls.

If jumpIfTrue is True, then a jump will be taken to label toLabel if the embedded
function call returned non-zero and execution will continue with the next operation if the
embedded function call returned zero.

If jumpIfTrue is False, then a jump will be taken to target label toLabel if the
embedded function call returned zero and execution will continue with the next operation
if the embedded function call returned non-zero.

Example
The OVP MIPS model uses this function to control whether a processor should stop in a
WAIT instruction. In this model, the state of pending interrupts is returned by a function,
mipsIsIntActiveTC:

static void emitWAIT(mipsP tc) {

 mipsP vpe = GET_VPE(tc);
 vmiLabelP noWait = vmimtNewLabel();

 // if Config7.WII is set, the processor should not wait if there is an
 // active interrupt, even if it is not currently enabled
 if(COP0_FIELD(vpe, Config7, WII)) {
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)mipsIsIntActiveTC);
 vmimtCondJumpLabelFunctionResult(True, noWait);
 }

 // enter wait state
 mipsEmitHalt(tc, MD_WAIT);

 // here if a pending interrupt causes wait to be ignored
 vmimtInsertLabel(noWait);
}

Notes and Restrictions

1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,
use functions such as vmimtCondJump.

2. The label argument to vmimtCondJumpLabelFunctionResult must be inserted
into the NMI list by a call to vmimtInsertLabel at some point during translation
of the current instruction.
If the call to vmimtInsertLabel precedes the call to

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 135 of 282

vmimtCondJumpLabelFunctionResult, then this is a backward jump in the node
list; if the call to vmimtInsertLabel follows the call to
vmimtCondJumpLabelFunctionResult (as in the above example), then this is a
forward jump in the node list.

3. Only use label-based jumps if the correct branch to take is known only at run
time. If the correct branch is known at morph time, it is much more efficient to
morph alternative code sequences instead. For example:

static void emitSys(Addr thisPC, Bool interceptTrap) {
 if(interceptTrap) {
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_InterceptTrap);
 } else {
 Addr nextAddress = thisPC + 4;
 vmimtArgProcessor();
 vmimtCall((vmiCallFn)vmic_EnterKernelMode);
 vmimtUncondJump(nextAddress, SYS_ADDRESS, CPUX_EPCR, vmi_JH_CALL);
 }
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 136 of 282

5.21 vmimtTestRRJumpLabel

Prototype

void vmimtTestRRJumpLabel(
 Uns32 bits,
 vmiCondition cond,
 vmiReg ra,
 vmiReg rb,
 vmiLabelP toLabel
);

Description
This function is used to perform a conditional jump to a label previously defined with
vmimtNewLabel. Labels are used to implement intra-instruction jumps.

The function emits code to compare registers ra and rb of size bits. If the condition
cond is satisfied, control branches to toLabel; otherwise, execution continues with the
next operation. The comparison is performed by performing a bitwise AND of the two
registers.

Example
This function is not currently used in OVP models.

Notes and Restrictions

1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,
use functions such as vmimtCondJump.

2. The label argument to vmimtTestRCJumpLabel must be inserted into the NMI list
by a call to vmimtInsertLabel at some point during translation of the current
instruction. If the call to vmimtInsertLabel precedes the call to
vmimtTestRCJumpLabel, then this is a backward jump in the node list; if the call
to vmimtInsertLabel follows the call to vmimtTestRCJumpLabel (as in the
above example), then this is a forward jump in the node list.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 137 of 282

5.22 vmimtTestRCJumpLabel

Prototype

void vmimtTestRCJumpLabel(
 Uns32 bits,
 vmiCondition cond,
 vmiReg r,
 Uns64 c,
 vmiLabelP toLabel
);

Description
This function is used to perform a conditional jump to a label previously defined with
vmimtNewLabel. Labels are used to implement intra-instruction jumps.

The function emits code to compare register r of size bits with constant c. If the
condition cond is satisfied, control branches to toLabel; otherwise, execution continues
with the next operation. The comparison is performed by performing a bitwise AND of
the register and constant value.

Example
The OVP ARM model uses this function to implement a stack alignment check in
AArch64 mode:

void armEmitCheckSA(armMorphStateP state) {

 armP arm = state->arm;
 armBlockStateP blockState = state->blockState;

 // emit blockMask check of SA state
 vmimtValidateBlockMask(ARM_BM_SA);

 // determine if alignment check is required
 if(!blockState->alignedSP && (arm->blockMask & ARM_BM_SA)) {

 vmiLabelP ok = vmimtNewLabel();

 // after this instruction, the stack pointer will be aligned (otherwise
 // an exception will have been taken)
 blockState->alignedSP = True;

 // skip mode switch unless stack is misaligned
 vmimtTestRCJumpLabel(64, vmi_COND_Z, ARM_SP64(0), 0xf, ok);

 // emit call to stack alignment exception routine
 vmimtArgProcessor();
 vmimtCallAttrs((vmiCallFn)armSA, VMCA_EXCEPTION);

 // here if no stack alignment exception
 vmimtInsertLabel(ok);
 }
}

Notes and Restrictions

1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,
use functions such as vmimtCondJump.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 138 of 282

2. The label argument to vmimtTestRCJumpLabel must be inserted into the NMI list
by a call to vmimtInsertLabel at some point during translation of the current
instruction. If the call to vmimtInsertLabel precedes the call to
vmimtTestRCJumpLabel, then this is a backward jump in the node list; if the call
to vmimtInsertLabel follows the call to vmimtTestRCJumpLabel (as in the
above example), then this is a forward jump in the node list.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 139 of 282

5.23 vmimtCompareRRJumpLabel

Prototype

void vmimtCompareRCJumpLabel(
 Uns32 bits,
 vmiCondition cond,
 vmiReg ra,
 vmiReg rb,
 vmiLabelP toLabel
);

Description
This function is used to perform a conditional jump to a label previously defined with
vmimtNewLabel. Labels are used to implement intra-instruction jumps.

The function emits code to compare registers ra and rb of size bits. If the condition
cond is satisfied, control branches to toLabel; otherwise, execution continues with the
next operation. The comparison is performed by subtracting rb from ra.

Example
The OVP ARM processor model uses this in a routine to validate exclusive access
addresses, as follows:

static vmiLabelP validateEA(
 armMorphStateP state,
 Int32 offset,
 vmiReg ra,
 vmiReg rd
) {
 Uns32 memBits = state->info.sz*8;
 Uns32 eaBits = getEABits(state);
 vmiLabelP done = vmimtNewLabel();
 vmiLabelP ok = vmimtNewLabel();
 vmiReg t = getTemp(state, eaBits);

 // generate any store exception prior to exclusive access tag check
 vmimtTryStoreRC(memBits, offset, ra);

 // generate exclusive access tag for this address
 generateEATag(state, offset, t, ra);

 // do load and store tags match?
 vmimtCompareRRJumpLabel(eaBits, vmi_COND_EQ, ARM_EA_TAG, t, ok);

 // indicate store failed
 vmimtMoveRC(ARM_GPR_BITS(state), rd, 1);

 // jump to instruction end
 vmimtUncondJumpLabel(done);

 // here to commit store
 vmimtInsertLabel(ok);

 return done;
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 140 of 282

Notes and Restrictions
1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,

use functions such as vmimtCondJump.
2. The label argument to vmimtCompareRCJumpLabel must be inserted into the NMI

list by a call to vmimtInsertLabel at some point during translation of the current
instruction. If the call to vmimtInsertLabel precedes the call to
vmimtCompareRCJumpLabel, then this is a backward jump in the node list; if the
call to vmimtInsertLabel follows the call to vmimtCompareRCJumpLabel (as in
the above example), then this is a forward jump in the node list.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 141 of 282

5.24 vmimtCompareRCJumpLabel

Prototype

void vmimtCompareRCJumpLabel(
 Uns32 bits,
 vmiCondition cond,
 vmiReg r,
 Uns64 c,
 vmiLabelP toLabel
);

Description
This function is used to perform a conditional jump to a label previously defined with
vmimtNewLabel. Labels are used to implement intra-instruction jumps.

The function emits code to compare register r of size bits with constant c. If the
condition cond is satisfied, control branches to toLabel; otherwise, execution continues
with the next operation. The comparison is performed by subtracting the constant from
the register value.

Example
The OVP ARC processor model uses this to implement FFS and FLS instructions, as
follows:

static void emitFFSFLSRR(arcMorphStateP state, vmiUnop op, Uns32 zValue) {

 Uns32 bits = ARC_GPR_BITS;
 vmiReg rd = GET_RD(state, rd);
 vmiReg rs1 = GET_RS(state, rs1);
 vmiFlagsCP flags = getFlagsOrNull(state);
 vmiLabelP nonZero = vmimtNewLabel();
 vmiLabelP done = vmimtNewLabel();

 // generate flags if required (based on source value)
 emitGenerateFlagsR(state, rs1, flags);

 // go if the argument is non-zero
 vmimtCompareRCJumpLabel(bits, vmi_COND_NZ, rs1, 0, nonZero);

 // special actions for zero argument
 vmimtMoveRC(bits, rd, zValue);

 // after special code
 vmimtUncondJumpLabel(done);

 // here for non-zero argument
 vmimtInsertLabel(nonZero);

 // scan for least-significant 1
 vmimtUnopRR(bits, op, rd, rs1, 0);

 // here when done
 vmimtInsertLabel(done);
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 142 of 282

Notes and Restrictions
1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,

use functions such as vmimtCondJump.
2. The label argument to vmimtCompareRCJumpLabel must be inserted into the NMI

list by a call to vmimtInsertLabel at some point during translation of the current
instruction. If the call to vmimtInsertLabel precedes the call to
vmimtCompareRCJumpLabel, then this is a backward jump in the node list; if the
call to vmimtInsertLabel follows the call to vmimtCompareRCJumpLabel (as in
the above example), then this is a forward jump in the node list.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 143 of 282

6 Indexed and Vector Register Operations
Morph-time primitives have historically been restricted to accessing fixed register fields
in processor structures. From VMI version 7.0.0, it is possible to access indexed members
of vector registers or other similar structures.

This section describes functions designed to support indexed and vector register
operations.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 144 of 282

6.1 vmimtDJNZLabel

Prototype

void vmimtDJNZLabel(
 Uns32 bits,
 vmiReg r,
 vmiLabelP toLabel
);

Description
This function is used to perform a conditional backwards jump to a label previously
defined with vmimtNewLabel. Such jumps are intended to be used to implement vector
instructions.

The function emits code to decrement register r of size bits. If the result is non-zero,
control branches to toLabel; otherwise, execution continues with the next operation.

Example
This example shows how vmimtDJNZLabel can be used to implement a vector binary
operation on integer data:

static void emitVectorOp(
 vmiBinop op,
 Uns32 bits,
 Uns32 rd,
 Uns32 ra,
 Uns32 rb
) {
 vmiLabelP repeat = vmimtNewLabel();
 Uns32 vecSize = sizeof(vector);
 Uns32 elemSize = bits/8;
 Uns32 elemNum = vecSize/elemSize;
 vmiReg base = VR_BASE;
 vmiReg index = VR_INDEX;
 vmiReg rdE = VR(rd);
 vmiReg raE = VR(ra);
 vmiReg rbE = VR(rb);

 // prepare indexed registers
 vmimtGetIndexedRegister(&rdE, &base, vecSize);
 vmimtGetIndexedRegister(&raE, &base, vecSize);
 vmimtGetIndexedRegister(&rbE, &base, vecSize);

 // initialize repeat count
 vmimtMoveRC(32, index, elemNum);

 // loop to here
 vmimtInsertLabel(repeat);

 // do operation
 vmimtBinopRRR(bits, op, rdE, raE, rbE, 0);

 // prepare for next iteration
 vmimtAddBaseC(base, elemSize, 0);
 vmimtDJNZLabel(32, index, repeat);
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 145 of 282

Notes and Restrictions
1. Labels may only be used for intra-instruction jumps: for inter-instruction jumps,

use functions such as vmimtCondJump.
2. The label argument to vmimtDJNZLabel must be inserted into the NMI list by a

call to vmimtInsertLabel before calling vmimtDJNZLabel (these jumps may
only be used to implement backwards-loop constructs).

3. The label argument to vmimtDJNZLabel must be referenced only once: it cannot
be the target of another intra-instruction jump primitive.

4. bits can be 8, 16 or 32.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 146 of 282

6.2 vmimtGetIndexedRegister

Prototype

void vmimtGetIndexedRegister(vmiReg *r, vmiReg *base, Uns32 bytes);

Description
This function is used to specify that the vmiReg descriptor addressed by r is to be
accessed using the base register descriptor indexed by base. The full size of vector
register r is bytes. The function is typically used in combination with function
vmimtDJNZLabel to implement a vector instruction.

The full flow to use this primitive in a vector operation context is usually as follows:

1. Obtain vmiReg descriptors for all source and target vectors used by an instruction.
2. Use vmimtGetIndexedRegister to convert the vmiReg descriptors to indexed

descriptors using one or more pointer-sized artifact base registers (declared using
type UnsPS in the processor structure).

3. Initialize an artifact loop counter register with the number of vector elements.
4. Insert a loop label.
5. Emit operations to implement one vector operation.
6. Adjust to the base register or registers for the next iteration.
7. Use vmimtDJNZLabel to loop to the previously-inserted label.

It is also possible to use indexed registers in non-vector contexts. For example, they could
be used to implement registers like the x87 floating point registers in an Intel IA-32
processor model, in which the registers used by an operation are identified by an index
held in another control register.

Example
This example shows how indexed registers can be used to implement a vector binary
operation.

typedef struct vectorS {
 Uns32 elem[4];
} vector;

typedef struct cpuS {

 // architectural registers
 vector vr[16];

 // artifact registers
 UnsPS vrBase; // base pointer (must be declared as UnsPS type)
 Uns32 vrIndex; // index register

} cpu, *cpuP;

#define CPU_REG(_F) VMI_CPU_REG(cpuP, _F)
#define CPU_TEMP(_F) VMI_CPU_TEMP(cpuP, _F)
#define VR(_R) CPU_REG(vr[_R])
#define VR_BASE CPU_TEMP(vrBase)
#define VR_INDEX CPU_TEMP(vrIndex)

static void emitVectorOp(

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 147 of 282

 vmiBinop op,
 Uns32 bits,
 Uns32 rd,
 Uns32 ra,
 Uns32 rb
) {
 vmiLabelP repeat = vmimtNewLabel();
 Uns32 vecSize = sizeof(vector);
 Uns32 elemSize = bits/8;
 Uns32 elemNum = vecSize/elemSize;
 vmiReg base = VR_BASE;
 vmiReg index = VR_INDEX;
 vmiReg rdE = VR(rd);
 vmiReg raE = VR(ra);
 vmiReg rbE = VR(rb);

 // prepare indexed registers
 vmimtGetIndexedRegister(&rdE, &base, vecSize);
 vmimtGetIndexedRegister(&raE, &base, vecSize);
 vmimtGetIndexedRegister(&rbE, &base, vecSize);

 // initialize repeat count
 vmimtMoveRC(32, index, elemNum);

 // loop to here
 vmimtInsertLabel(repeat);

 // do operation
 vmimtBinopRRR(bits, op, rdE, raE, rbE, 0);

 // prepare for next iteration
 vmimtAddBaseC(base, elemSize, 0);
 vmimtDJNZLabel(32, index, repeat);
}

Notes and Restrictions

1. Be careful to ensure that that the base argument size is correct: this should be the
size of the entire target vector, in bytes. If this value is incorrect, instruction
attributes will not be generated correctly (see section 13).

2. When using indexed registers, avoid using unindexed aliases of the same registers
inside the loop for written registers. The simulator will not be able to detect that
these are aliases, which could cause incorrect code to be generated.

3. One base register is required for each size of vector operand and result. In the
example above, only one base register is required, because all operands and the
result are the same size. For an operation that (for example) takes 1-byte operands
and produces a 4-byte result, separate base registers will be required for the
operands and the result.

4. See section 9.21 for information on the use of indexed registers in combination
with compound floating point operations.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 148 of 282

6.3 vmimtAddBaseC

Prototype

void vmimtAddBaseC(vmiReg base, Int32 bytes, Uns32 vectorBytes);

Description
This function is used to add offset bytes to a vector base register, of type UnsPS,
initialized by a previous call to vmimtGetIndexedRegister. The bytes value may be
positive or negative.

If argument vectorBytes is non-zero, then any increment or decrement of the base
pointer that would take it outside this size range will result in the pointer value wrapping
round to to other end of the vector. This allows modulo vector addressing to be
implemented easily. If vectorBytes is zero, then no such range check is performed.

Example
This example shows how indexed registers can be used to implement a vector binary
operation. Function vmimtAddBaseC is used at the loop end to prepare for the next
iteration.

typedef struct vectorS {
 Uns32 elem[4];
} vector;

typedef struct cpuS {

 // architectural registers
 vector vr[16];

 // artifact registers
 UnsPS vrBase; // base pointer (must be declared as UnsPS type)
 Uns32 vrIndex; // index register

} cpu, *cpuP;

#define CPU_REG(_F) VMI_CPU_REG(cpuP, _F)
#define CPU_TEMP(_F) VMI_CPU_TEMP(cpuP, _F)
#define VR(_R) CPU_REG(vr[_R])
#define VR_BASE CPU_TEMP(vrBase)
#define VR_INDEX CPU_TEMP(vrIndex)

static void emitVectorOp(
 vmiBinop op,
 Uns32 bits,
 Uns32 rd,
 Uns32 ra,
 Uns32 rb
) {
 vmiLabelP repeat = vmimtNewLabel();
 Uns32 vecSize = sizeof(vector);
 Uns32 elemSize = bits/8;
 Uns32 elemNum = vecSize/elemSize;
 vmiReg base = VR_BASE;
 vmiReg index = VR_INDEX;
 vmiReg rdE = VR(rd);
 vmiReg raE = VR(ra);
 vmiReg rbE = VR(rb);

 // prepare indexed registers

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 149 of 282

 vmimtGetIndexedRegister(&rdE, &base, vecSize);
 vmimtGetIndexedRegister(&raE, &base, vecSize);
 vmimtGetIndexedRegister(&rbE, &base, vecSize);

 // initialize repeat count
 vmimtMoveRC(32, index, elemNum);

 // loop to here
 vmimtInsertLabel(repeat);

 // do operation
 vmimtBinopRRR(bits, op, rdE, raE, rbE, 0);

 // prepare for next iteration
 vmimtAddBaseC(base, elemSize, 0);
 vmimtDJNZLabel(32, index, repeat);
}

Notes and Restrictions

1. The base register must be declared using type UnsPS, and must have been
previously initialized using a call to vmimtGetIndexedRegister.

2. See section 9.21 for information on the use of indexed registers in combination
with compound floating point operations.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 150 of 282

6.4 vmimtAddBaseR

Prototype

void vmimtAddBaseR(
 vmiReg base,
 vmiReg offset,
 Uns32 scale,
 Uns32 vectorBytes,
 Bool checkWrapLow,
 Bool checkWrapHigh
);

Description
This function is used to add a displacement held in register offset to a vector base
register, initialized by a previous call to vmimtGetIndexedRegister. The base register is
of type UnsPS, and the offset must be of type IntPS.

If argument vectorBytes is non-zero, then any increment or decrement of the base
pointer that would take it outside this size range will result in the pointer value wrapping
round to to other end of the vector. This allows modulo vector addressing to be
implemented easily. Depending on the value held in register offset, parameters
checkWrapLow and checkWrapHigh should be set as follows:

1. Value of offset known always to be >=0: set checkWrapLow to False and
checkWrapHigh to True.

2. Value of offset known always to be <=0: set checkWrapLow to True and
checkWrapHigh to False.

3. No known constraints on offset: set checkWrapLow to True and checkWrapHigh
to True.

Example
This example shows how indexed registers can be used to implement a vector binary
operation. Function vmimtAddBaseR is used at the loop end to prepare for the next
iteration. The example uses two base registers: the source registers use a constant index
across the vector, and the target register uses a variable offset that may either increase or
decrease. In this simple example, there is no check for overlap of source registers and
destination: typically, a vector temporary would be required in such cases.

typedef struct vectorS {
 Uns32 elem[4];
} vector;

typedef struct cpuS {

 // architectural registers
 vector vr[16];

 // artifact registers
 UnsPS vrBase[2]; // base pointers (must be declared as UnsPS type)
 IntPS vrOffset; // byte offset (must be declared as IntPS type)
 Uns32 vrIndex; // index register

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 151 of 282

} cpu, *cpuP;

#define CPU_REG(_F) VMI_CPU_REG(cpuP, _F)
#define CPU_TEMP(_F) VMI_CPU_TEMP(cpuP, _F)
#define VR(_R) CPU_REG(vr[_R])
#define VR_BASE(_I) CPU_TEMP(vrBase[_I])
#define VR_OFFSET CPU_TEMP(vrOffset)
#define VR_INDEX CPU_TEMP(vrIndex)

static void emitVectorOp(
 vmiBinop op,
 Uns32 bits,
 Uns32 rd,
 Uns32 ra,
 Uns32 rb,
 Uns32 offset,
 IntPS stride
) {
 vmiLabelP repeat = vmimtNewLabel();
 Uns32 vecSize = sizeof(vector);
 Uns32 elemSize = bits/8;
 Uns32 elemNum = vecSize/elemSize;
 vmiReg baseS = VR_BASE(0);
 vmiReg baseD = VR_BASE(1);
 vmiReg index = VR_INDEX;
 vmiReg strideR = VR_OFFSET;
 vmiReg rdE = VR(rd);
 vmiReg raE = VR(ra);
 vmiReg rbE = VR(rb);
 Uns32 strideBits = IMPERAS_POINTER_BITS;

 // use scale instead of stride
 Int32 scale = (stride>0) ? stride : -stride;
 stride = stride/scale;

 // prepare indexed registers
 vmimtGetIndexedRegister(&rdE, &baseD, vecSize);
 vmimtGetIndexedRegister(&raE, &baseS, vecSize);
 vmimtGetIndexedRegister(&rbE, &baseS, vecSize);

 // initialize pseudo-variable stride
 vmimtMoveRC(strideBits, strideR, elemSize*stride);

 // arbitrary base offset
 vmimtAddBaseC(baseS, offset, 0);

 // initialize repeat count
 vmimtMoveRC(32, index, elemNum);

 // loop to here
 vmimtInsertLabel(repeat);

 // do operation
 vmimtBinopRRR(bits, op, rdE, raE, rbE, 0);

 // prepare for next iteration
 vmimtAddBaseC(baseD, elemSize, 0);
 vmimtAddBaseR(baseS, strideR, scale, vecSize, stride<0, stride>0);

 vmimtDJNZLabel(32, index, repeat);
}

Notes and Restrictions

1. The base register must be declared using type UnsPS, and must have been
previously initialized using a call to vmimtGetIndexedRegister.

2. See section 9.21 for information on the use of indexed registers in combination
with compound floating point operations.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 152 of 282

6.5 vmimtGetBaseOffset

Prototype

void vmimtGetBaseOffset(Uns32 bits, vmiReg offset, vmiReg base);

Description
Given a base register previously configured using vmimtGetIndexedRegister, this
function fills register offset of size bits with the current displacement of the base
register, in bytes. In other words, offset is filled with the cumulative total of all the
offsets added to the base by functions vmimtAddBaseC and vmimtAddBaseR, allowing for
any wrapping.

Example
The OVP ARM model uses this function to implement SVE comparison operations. For
these operations, a bit is set in a result register corresponding to the offset of the elements
being compared from the vector base.

static ARM_SVE_PER_ELEM_FN(emitSVE_CMP_IV) {

 vmiLabelP zero = vmimtNewLabel();
 vmiCondition cond = state->attrs->cond ^ 1;
 Uns32 pBits = getPBits(state->arm);
 vmiReg t1 = getTemp(state, 32);

 // skip bit update if condition is False
 if(VMI_ISNOREG(elem[1])) {

 // immediate variant
 Int32 imm = state->info.c;
 vmimtCompareRCJumpLabel(elemBits, cond, elem[0], imm, zero);

 } else {

 // vectors variant
 vmimtCompareRRJumpLabel(elemBits, cond, elem[0], elem[1], zero);
 }

 // get iteration index
 vmimtGetBaseOffset(32, t1, info->base[0]);

 // set bit in result
 vmimtBitopVR(pBits, 32, vmi_BTS, ARM_Z_TMP, t1, VMI_NOREG);

 // here if condition False
 emitLabel(zero);
}

Notes and Restrictions

1. The base register must be declared using type UnsPS, and must have been
previously initialized using a call to vmimtGetIndexedRegister.

2. bits must be 8, 16, 32 or 64.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 153 of 282

6.6 vmimtZeroRV

Prototype

void vmimtZeroRV(
 Uns32 destMaxBits,
 vmiReg rd,
 Uns32 countBits,
 vmiReg count,
 Int32 countInc,
 Uns32 countScale,
 vmiCheckCount checkCount
);

Description
Emit code to write zeros to part of a variable-sized register rd. The maximum size of rd is
given by destMaxBits. The effective size of rd, in bytes, is given by:

 (count + countInc) * countScale

Where the contents of register count (of size countBits) can vary at run time. As an
example, if the current value of count is 3, countInc is -1 and countScale is 16 then
the operation will fill the first (3-1)*16 = 32 bytes of rd with zeros, leaving remaining
bytes of rd unchanged.

Argument checkCount indicates constraints on the initial value of the effective size (the
result of the expression above):

typedef enum vmiCheckCountE {
 vmi_CC_NONE, // no count check required
 vmi_CC_EQ_ZERO, // count check for zero required
 vmi_CC_LE_ZERO, // count check for zero or negative required
} vmiCheckCount;

Value vmi_CC_NONE indicates that the initial value will always be non-zero and positive;
this option generates the most efficient JIT-compiled code. Value vmi_CC_EQ_ZERO
indicates that the initial value will always be either positive or zero, but the operation
should only have effect for non-zero values. Value vmi_CC_LE_ZERO indicates that the
initial value could have any value, including zero or negative, but the operation should
only have effect for positive non-zero values.

This function is typically used when implementing vector instructions. Often, these will
force to zero parts of registers in a way that depends on the current effective vector size,
which can vary dynamically.

Example
The OVP ARM model uses this function to zero-extend SVE Z registers after an SIMD
instruction:

static void extendVToZ(armMorphStateP state, vmiReg rd) {

 armP arm = state->arm;

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 154 of 282

 if(arm->checkSVEVL) {

 // start extension after V register
 Uns32 zBits = getZBits(arm);
 Uns32 vBits = 128;
 Uns32 vBytes = vBits/8;

 // start extension after V register
 rd = VMI_REG_DELTA(rd,vBytes);

 vmimtZeroRV(zBits-vBits, rd, 32, ARM_VLM1, 0, vBytes, vmi_CC_EQ_ZERO);
 }
}

Notes and Restrictions

1. destMaxBits must be a multiple of 8.
2. countBits must be 8, 16 or 32.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 155 of 282

6.7 vmimtMoveRRV

Prototype

void vmimtMoveRRV(
 Uns32 destMaxBits,
 vmiReg rd,
 vmiReg ra,
 Uns32 countBits,
 vmiReg count,
 Int32 countInc,
 Uns32 countScale,
 vmiCheckCount checkCount
);

Description
Emit code to move the first part of variable-sized register ra to the first part of variable-
sized register rd. The maximum size of rd and ra is given by destMaxBits. The effective
size of rd and ra, in bytes, is given by:

 (count + countInc) * countScale

Where the contents of register count (of size countBits) can vary at run time. As an
example, if the current value of count is 3, countInc is -1 and countScale is 16 then
the operation will copy the first (3-1)*16 = 32 bytes of ra to the first 32 bytes of rd,
leaving remaining bytes of rd unchanged.

Argument checkCount indicates constraints on the initial value of the effective size (the
result of the expression above):

typedef enum vmiCheckCountE {
 vmi_CC_NONE, // no count check required
 vmi_CC_EQ_ZERO, // count check for zero required
 vmi_CC_LE_ZERO, // count check for zero or negative required
} vmiCheckCount;

Value vmi_CC_NONE indicates that the initial value will always be non-zero and positive;
this option generates the most efficient JIT-compiled code. Value vmi_CC_EQ_ZERO
indicates that the initial value will always be either positive or zero, but the operation
should only have effect for non-zero values. Value vmi_CC_LE_ZERO indicates that the
initial value could have any value, including zero or negative, but the operation should
only have effect for positive non-zero values.

This function is typically used when implementing vector instructions. Often, these will
copy parts of registers in a way that depends on the current effective vector size, which
can vary dynamically.

Example
The OVP ARM model uses this function to commit results of SVE instructions:

static void emitSVE_LDR(armMorphStateP state, vmiReg rd, Uns32 elemBytes) {

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 156 of 282

 Uns32 bits = ARM_GPR_BITS(state);
 Uns32 elemBits = elemBytes*8;
 Uns32 rdBits = Z_REG_SIZE(state->arm)*elemBits;
 vmiReg ra = emitAddressMulXL(state, elemBytes);
 vmiReg result = ARM_Z_TMP;
 sveIterInfo info;

 // start SVE iteration (VLx1, size elemBytes)
 startSVEIter1(state, &info, 0,1, elemBytes);

 // prepare indexed registers
 vmiReg rdI = getIndexedP(result, &info, 0);

 // insert repeat label
 vmimtInsertLabel(info.repeat);

 // do element load
 vmimtLoadRRO(elemBits, elemBits, 0, rdI, ra, False, False);

 // prepare for next iteration
 vmimtBinopRC(bits, vmi_ADD, ra, elemBytes, 0);

 // end SVE iteration
 endSVEIter(state, &info);

 // commit result (if no exception)
 vmimtMoveRRV(rdBits, rd, result, 32, ARM_VL, 0, elemBytes, vmi_CC_EQ_ZERO);

 // free temporaries
 freeTemp(state, bits);
}

Notes and Restrictions

1. destMaxBits must be a multiple of 8.
2. countBits must be 8, 16 or 32.
3. Registers ra and rd must not overlap.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 157 of 282

6.8 vmimtBitopVR

Prototype

void vmimtBitopVR(
 Uns32 vBits,
 Uns32 iBits,
 vmiBitop op,
 vmiReg rv,
 vmiReg ri,
 vmiReg set
);

Description
Given a vector register rv of size vBits, this function emits code to operate on bit ri of
that vector. The operation is defined by the vmiBitop enumeration in vmiTypes.h:

typedef enum vmiBitopE {
 vmi_BT = OCL_BIT_BT, // bit test
 vmi_BTR = OCL_BIT_BTR, // bit test and reset
 vmi_BTS = OCL_BIT_BTS, // bit test and set
 vmi_BTC = OCL_BIT_BTC, // bit test and complement
 vmi_BITOP_LAST = OCL_BIT_LAST, // KEEP LAST
} vmiBitop;

Operation vmi_BT tests bit ri in rv, and writes the current value of that bit to the byte-
sized result register set.

Operation vmi_BTR resets bit ri in rv, and writes the previous value of that bit to the
byte-sized result register set.

Operation vmi_BTS sets bit ri in rv, and writes the previous value of that bit to the byte-
sized result register set.

Operation vmi_BTC toggles the value of bit ri in rv, and writes the previous value of that
bit to the byte-sized result register set.

The vector register rv can be of any size that is a multiple of 8 bits. Bits selected by ri
are numbered increasing from the least-significant bit of the first byte of the vector. For
example, an index of 100 selects bit 4 of byte 12 of the vector (where the least-significant
byte is byte 0).

This function is typically used when implementing vector instructions, to set bits in
predicate registers based on the result of a test on vector registers.

Example
The OVP ARM model uses this function to implement SVE comparison instructions:

static ARM_SVE_PER_ELEM_FN(emitSVE_CMP_I) {

 vmiLabelP zero = vmimtNewLabel();
 vmiCondition cond = state->attrs->cond ^ 1;

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 158 of 282

 Int32 imm = state->info.c;
 Uns32 pBits = getPBits(state->arm);
 vmiReg iterNum = getTemp(state, IMPERAS_POINTER_BITS);

 // skip bit update if condition is False
 vmimtCompareRCJumpLabel(elemBits, cond, elem[0], imm, zero);

 // get iteration index
 getSVEElemOffset(state, info, iterNum);

 // set bit in result
 vmimtBitopVR(pBits, 32, vmi_BTS, ARM_Z_TMP, iterNum, VMI_NOREG);

 // here if condition False
 emitLabel(zero);
}

Notes and Restrictions

1. vBits must be a multiple of 8.
2. iBits must be 8, 16 or 32.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 159 of 282

6.9 vmimtTestBitVRJumpLabel

Prototype

void vmimtTestBitVRJumpLabel (
 Uns32 vBits,
 Uns32 iBits,
 Bool jumpIfSet,
 vmiReg rv,
 vmiReg ri,
 vmiLabelP toLabel
);

Description
Given a vector register rv of size vBits, this function emits code to test bit ri of that
vector. If jumpIfSet is True, it will emit code to jump to label toLabel if the bit is 1. If
jumpIfSet is False, it will emit code to jump to label toLabel if the bit is 0.

The vector register rv can be of any size that is a multiple of 8 bits. Bits selected by ri
are numbered increasing from the least-significant bit of the first byte of the vector. For
example, an index of 100 selects bit 4 of byte 12 of the vector (where the least-significant
byte is byte 0).

This function is typically used when implementing vector instructions. Often, these have
some form of predication, in which operations are only applied to particular members of
a data register in a corresponding bit in a predicate register is set or clear.

Example
The OVP ARM model uses this function to enable predicated instructions:

static void doPTest(armMorphStateP state, svePSelInfoP info) {

 Uns32 pBits = getPBits(state->arm);

 vmimtTestBitVRJumpLabel(
 pBits, 32, False, GET_P(state, r2), info->pindex, info->pbit0
);
}

Notes and Restrictions

1. vBits must be a multiple of 8.
2. iBits must be 8, 16 or 32.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 160 of 282

7 Embedded Native Call Operations

This section describes emission functions for embedding model function calls within
translated native code. This technique is especially useful when there are no suitable
vmimt-prefixed routines to implement required functionality: it provides a generic
extension capability.

To embed a call to a model function:

1. Use the functions with the vmimtArg prefix to specify the arguments to the
embedded call;

2. Use function vmimtCallResultAttrs to specify the function to call (and possibly
what should happen to any function result).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 161 of 282

7.1 vmimtArgProcessor

Prototype

void vmimtArgProcessor(void);

Description
vmimtArgProcessor specifies that the current processor handle should be passed as an
argument to an embedded function call. Processor fields can then be accessed directly
within the callback.

Example
The OVP ARM model uses this function to implement a stack alignment check in
AArch64 mode:

void armSA(armP arm) {

 Uns64 thisPC = getPC(arm);

 // fill exception details
 doMisalignedSP(arm, thisPC);
}

void armEmitCheckSA(armMorphStateP state) {

 armP arm = state->arm;
 armBlockStateP blockState = state->blockState;

 // emit blockMask check of SA state
 vmimtValidateBlockMask(ARM_BM_SA);

 // determine if alignment check is required
 if(!blockState->alignedSP && (arm->blockMask & ARM_BM_SA)) {

 vmiLabelP ok = vmimtNewLabel();

 // after this instruction, the stack pointer will be aligned (otherwise
 // an exception will have been taken)
 blockState->alignedSP = True;

 // skip mode switch unless stack is misaligned
 vmimtTestRCJumpLabel(64, vmi_COND_Z, ARM_SP64(0), 0xf, ok);

 // emit call to stack alignment exception routine
 vmimtArgProcessor();
 vmimtCallAttrs((vmiCallFn)armSA, VMCA_EXCEPTION);

 // here if no stack alignment exception
 vmimtInsertLabel(ok);
 }
}

Notes and Restrictions

1. There is no automatic verification that the arguments supplied to the function
match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype (armSA, in
the above example).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 162 of 282

7.2 vmimtArgUns32

Prototype

void vmimtArgUns32(Uns32 arg);

Description
vmimtArgUns32 specifies that a 32-bit unsigned value (Uns32) should be passed as an
argument to an embedded function call.

Example
The OVP ARMM model uses this function to implement the VMSR instruction:

void armWriteFPSCR(armP arm, Uns32 newValue, Uns32 writeMask) {

 Uns32 oldValue = FPSCR_REG(arm);

 // update raw register
 FPSCR_REG(arm) = ((oldValue & ~writeMask) | (newValue & writeMask));

 . . . lines omitted for clarity . . .
}

ARM_MORPH_FN(armEmitVMSR) {

 Uns32 bits = ARM_GPR_BITS;

 if(executeFPCheck(state)) {

 vmimtArgProcessor(state);
 vmimtArgReg(bits, GET_RS(state, r1));
 vmimtArgUns32(FPSCR_MASK);
 vmimtCall((vmiCallFn)armWriteFPSCR);

 // terminate the code block (block masks or floating point
 // mode may have changed)
 vmimtEndBlock();
 }
}

Notes and Restrictions

1. There is no automatic verification that the arguments supplied to the function
match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype
(armWriteFPSCR, in the above example).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 163 of 282

7.3 vmimtArgUns64

Prototype

void vmimtArgUns64(Uns64 arg);

Description
vmimtArgUns64 specifies that a 64-bit unsigned value (Uns64) should be passed as an
argument to an embedded function call.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions
1. There is no automatic verification that the arguments supplied to the function

match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 164 of 282

7.4 vmimtArgFlt64

Prototype

void vmimtArgFlt64(Flt64 arg);

Description
vmimtArgFlt64 specifies that an Flt64 (64-bit floating point) should be passed as an
argument to an embedded function call.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. There is no automatic verification that the arguments supplied to the function
match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype
(vmic_TestCall, in the above example).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 165 of 282

7.5 vmimtArgReg

Prototype

void vmimtArgReg(vmiRegArgType argType, vmiReg r);

Description
vmimtArgReg specifies that the value of a processor register r should be passed as an
argument to an embedded function call. The type of the register is given by the argType
argument, defined in vmiTypes.h as follows:

typedef enum vmiRegArgTypeE {

 VPRRAT_8 = 8, // 8-bit register argument
 VPRRAT_16 = 16, // 16-bit register argument
 VPRRAT_32 = 32, // 32-bit register argument
 VPRRAT_64 = 64, // 64-bit register argument

 VPRRAT_FLT = 0x80000000, // floating-point argument identifier
 VPRRAT_FLT32 = 32|VPRRAT_FLT, // 32-bit floating point
 VPRRAT_FLT64 = 64|VPRRAT_FLT // 64-bit floating point

} vmiRegArgType;

The argument type can be an 8-bit, 16-bit, 32-bit or 64-bit integer register or a floating-
point register in single-precision or double-precision format. Other parameter types can
be passed by reference using function vmimtArgRegP if required.

Example
The OVP ARMM model uses this function to implement the VMSR instruction:

void armWriteFPSCR(armP arm, Uns32 newValue, Uns32 writeMask) {

 Uns32 oldValue = FPSCR_REG(arm);

 // update raw register
 FPSCR_REG(arm) = ((oldValue & ~writeMask) | (newValue & writeMask));

 . . . lines omitted for clarity . . .
}

ARM_MORPH_FN(armEmitVMSR) {

 Uns32 bits = ARM_GPR_BITS;

 if(executeFPCheck(state)) {

 vmimtArgProcessor(state);
 vmimtArgReg(bits, GET_RS(state, r1));
 vmimtArgUns32(FPSCR_MASK);
 vmimtCall((vmiCallFn)armWriteFPSCR);

 // terminate the code block (block masks or floating point
 // mode may have changed)
 vmimtEndBlock();
 }
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 166 of 282

Notes and Restrictions
1. In versions of the VMI API prior to 4.2.0, the first argument to this function was a

number of bits (8, 16, 32 or 64). The function prototype has been enhanced to
allow floating point operands to be explicitly identified, required for 64-bit host
support.

2. Argument types other than those listed above can be passed by reference using
function vmimtArgRegP if required.

3. There is no automatic verification that the arguments supplied to the function
match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype
(armWriteFPSCR, in the above example).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 167 of 282

7.6 vmimtArgRegP

Prototype

void vmimtArgRegP(vmiRegPArgUsage usage, Uns32 bits, vmiReg r);

Description
vmimtArgRegP specifies that processor register r should be passed by reference as an
argument to an embedded function call – in other words, the embedded call is passed a
pointer to processor register r. This is useful when, for example, the register argument is
wider than the maximum width supported by function vmimtArgReg (64 bits), or when an
embedded call writes more than one result register.

The size of the register being accessed is given by the bits argument, which can be any
multiple of 8. How the register is used in the embedded call is described by the usage
argument, defined in vmiTypes.h as follows:

typedef enum vmiRegPArgUsageE {
 VPRAU_R = 0x1, // argument is read
 VPRAU_W = 0x2, // argument is written
 VPRAU_RW = (VPRAU_R|VPRAU_W), // argument is read and written
} vmiRegPArgUsage;

A usage of VPRAU_R should be used for any argument that is a pure input (read by the
embedded call, but not written).

A usage of VPRAU_W should be used for any argument that is a pure output (written in its
entirety by the embedded call, but not read).

A usage of VPRAU_RW should be used for any argument that is not a pure input or pure
output – this includes any argument that is both read and written, and also any argument
that is only partially written (some bytes of the register are written, but others are left
untouched).

It is important for correct operation that the usage of each argument is correctly
described.

Example
Some AES cryptographic functions operate on 128-bit data; for example, the AES
ShiftRows operation permutes the columns of a 128-bit argument in a fixed pattern. The
prototype of this function could be written in one of two ways:

typedef struct {
 Uns8 bytes[16];
} AES128;

static void AESShiftRows1(AES128 *rd, AES128 *rs) {
 // assign rd with shifted rows of rs
}

static void AESShiftRows2(AES128 *r) {

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 168 of 282

 // modify r in place (r is both read and written)
}

For each of these functions, embedded calls could be created like this:

static void emitAESShiftRows1(vmiReg rd, vmiReg rs) {
 vmimtArgRegP(VPRAU_W, 128, rd);
 vmimtArgRegP(VPRAU_R, 128, rs);
 vmimtCall((vmiCallFn)AESShiftRows1);
}

static void emitAESShiftRows2(vmiReg r) {
 vmimtArgRegP(VPRAU_RW, 128, r);
 vmimtCall((vmiCallFn)AESShiftRows2);
}

Notes and Restrictions

1. See also function vmimtArgReg which allows passing of 8, 16, 32 and 64-bit
arguments directly.

2. There is no automatic verification that the arguments supplied to the function
match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 169 of 282

7.7 vmimtArgRegSimAddress

Prototype

void vmimtArgRegSimAddress(Uns32 bits, vmiReg r);

Description
vmimtArgRegSimAddress specifies that the value of a processor register r should be
passed as an argument to an embedded function call. The register is of size bits, but it
should be zero-extended to the size of the Addr type when passed as a function argument.
This function is useful because many of the run time callbacks (defined in vmiRt.h) take
generic Addr arguments to specify an address. The Addr type is 64-bit, but addresses in
processor registers may well be less than this (32-bits or less).

The function may also be used to specify a register argument that should be extended to
64 bits even if that argument is not an address – see the example below.

Example
The OVP RISC-V model uses this function to implement the CSR write callbacks. All
such callbacks take a 64-bit value argument, even if the processor is only operating in 32-
bit mode:

riscvArchitecture riscvEmitCSRWrite(
 riscvCSRId id,
 riscvP riscv,
 vmiReg rs,
 vmiReg tmp
) {
 riscvArchitecture arch = riscv->currentArch;
 csrAttrsCP attrs = &csrs[id];
 Uns32 bits = riscvGetXlenMode(riscv);
 riscvCSRWriteFn writeCB = getCSRWriteCB(id, riscv, bits);
 vmiReg raw = getRawArch(attrs, arch);
 Uns64 mask = getCSRWriteMask(attrs, riscv);

 // indicate that this register has been written
 vmimtRegWriteImpl(attrs->name);

 if(writeCB) {

 // if CSR is implemented externally, mirror the result into any raw
 // register in the model (otherwise discard the result)
 if(!csrImplementExternalWrite(id, riscv)) {
 raw = VMI_NOREG;
 }

 // emit code to call the write function (NOTE: argument is always 64
 // bits, irrespective of the architecture size)
 vmimtArgUns32(id);
 vmimtArgProcessor();
 vmimtArgRegSimAddress(bits, rs);
 vmimtCallResult((vmiCallFn)writeCB, bits, raw);

 // terminate the current block if required
 if(attrs->wEndBlock) {
 vmimtEndBlock();
 }

 } else if(VMI_ISNOREG(raw)) {

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 170 of 282

 // emit warning for unimplemented CSR
 emitWarnUnimplementedCSR(id, riscv);

 } else if(mask==-1) {

 // new value is written unmasked
 vmimtMoveRR(bits, raw, rs);

 } else if(mask) {

 // apparent reads of register below are artifacts only
 vmimtRegNotReadR(bits, raw);

 // new value is written masked
 vmimtBinopRC(bits, vmi_ANDN, raw, mask, 0);
 vmimtBinopRRC(bits, vmi_AND, tmp, rs, mask, 0);
 vmimtBinopRR(bits, vmi_OR, raw, tmp, 0);
 }

 // return architectural constraints that apply to this register
 return attrs->arch;
}

Notes and Restrictions

1. bits may be 8, 16, 32 or 64.
2. There is no automatic verification that the arguments supplied to the function

match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 171 of 282

7.8 vmimtArgSimAddress

Prototype

void vmimtArgSimAddress(Addr arg);

Description
vmimtArgSimAddress specifies that the address arg should be passed as an argument to
an embedded function call. The Addr type is 64 bits wide.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. There is no automatic verification that the arguments supplied to the function
match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 172 of 282

7.9 vmimtArgSimPC

Prototype

void vmimtArgSimPC(Uns32 bits);

Description
vmimtArgSimPC specifies that the current simulated program counter should be passed as
an argument to an embedded function call.

If a processor model does not use physically-mapped code dictionaries, then this is
equivalent to using vmimtArgUns32 or vmimtArgUns64, specifying the current program
counter as the constant argument. However, when processor models do use physically-
mapped code dictionaries, vmimtArgSimPC must be used to obtain the current simulated
address, because the same JIT-compiled code block can be mapped at different simulated
addresses.

See the description of vmirtAliasMemoryVM in the VMI Run Time Function Reference
and also the Imperas Processor Modeling Guide for more information about physically-
mapped code dictionaries.

Example
The OVP ARM model uses this function when emitting an embedded call implementing
the HVT instruction:

void armEmitHVT(armMorphStateP state, const char *reason, Uns32 syndrome) {
 vmimtArgProcessor();
 vmimtArgSimPC(64);
 vmimtArgUns32(syndrome);
 vmimtArgNatAddress(reason);
 vmimtCallAttrs((vmiCallFn)armHVT, VMCA_EXCEPTION);
}

Notes and Restrictions

1. bits must be 8, 16, 32 or 64.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 173 of 282

7.10 vmimtArgNatAddress

Prototype

void vmimtArgNatAddress(void *arg);

Description
vmimtArgNatAddress specifies that the void pointer arg should be passed as an
argument to an embedded function call.

Example
The OVP ARM model uses this function when emitting an embedded call implementing
the HVT instruction:

void armEmitHVT(armMorphStateP state, const char *reason, Uns32 syndrome) {
 vmimtArgProcessor();
 vmimtArgSimPC(64);
 vmimtArgUns32(syndrome);
 vmimtArgNatAddress(reason);
 vmimtCallAttrs((vmiCallFn)armHVT, VMCA_EXCEPTION);
}

Notes and Restrictions
1. There is no automatic verification that the arguments supplied to the function

match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype (armHVT, in
the above example).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 174 of 282

7.11 vmimtCall, vmimtCallResult, vmimtCallAttrs,
vmimtCallResultAttrs

Prototype

void vmimtCallResultAttrs(
 vmiCallFn arg,
 Uns32 bits,
 vmiReg rd,
 vmiCallAttrs attrs
);

#define vmimtCall(_ARG) \
 vmimtCallResultAttrs(_ARG, 0, VMI_NOREG, VMCA_NA)

#define vmimtCallResult(_ARG, _BITS, _RD) \
 vmimtCallResultAttrs(_ARG, _BITS, _RD, VMCA_NA)

#define vmimtCallAttrs(_ARG, _ATTRS) \
 vmimtCallResultAttrs(_ARG, 0, VMI_NOREG, _ATTRS)

Description
vmimtCallResultAttrs emits an embedded call to the function specified as an
argument. The argument arg has type vmiCallFn:

typedef void (*vmiCallFn)(void);

In reality, the argument can be any function type that matches the arguments previously
created by calls to functions with the vmimtArg prefix, and it will be necessary to cast the
function to type vmiCallFn.

The return value from the embedded function is stored in processor register rd which has
size bits. If rd is VMI_NOREG, any function result is discarded and argument bits is
ignored. If more than one result register is updated, function vmimtArgRegP can be used
to specify by-reference result registers if required.

The attrs argument is used to provide information to the JIT code translation engine
about the called function, enabling it to emit better code in some circumstances. The
vmiCallAttrs type is defined in vmiTypes.h as follows:

typedef enum vmiCallAttrsE {
 VMCA_NA = 0x00, // no attributes
 VMCA_PURE = 0x01, // this call is to a pure function
 VMCA_EXCEPTION = 0x02, // this call causes a simulated exception
 VMCA_NO_INVALIDATE = 0x04, // this call cannot invalidate this block
 VMCA_FP_RESTORE = 0x08, // restore floating point state before call
 VMCA_FLT32_RESULT = 0x10, // function result is of type Flt32
 VMCA_FLT64_RESULT = 0x20, // function result is of type Flt64
} vmiCallAttrs;

Members of the enumeration have the following meaning:

VMCA_NA
This value indicates that the code generator can make no assumptions about the called

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 175 of 282

function: it could update any system state. Consequently, the code generator must ensure
that all simulated processor state is consistent before making the call (with the exception
of floating point control state, which must be explicitly restored if required - see
VMCA_FP_RESTORE below).

VMCA_PURE
This value indicates that the function is a pure function: this means that all inputs are
defined by preceding vmimtArg* calls and that the function returns a calculated value
with no other side effects. The JIT code generator is free to optimize around a pure
function call because it knows what state is used and affected by that call.

VMCA_EXCEPTION
This value indicates that the called function causes a simulated exception to be
immediately taken so that the function does not return (within the called function, there is
a call to a function such as vmirtSetPCException). The JIT code generator can safely
eliminate any operations following the embedded call because they are unreachable.

VMCA_NO_INVALIDATE
This value indicates that the called function cannot cause the current code block to be
invalidated. This typically means that it does not call virtual memory manipulation
functions (for example, vmirtAliasMemory) or any other functions that could flush
processor code dictionaries (for example, vmirtFlushDict).

VMCA_FP_RESTORE
This value indicates that native floating point control state should be restored to its
default value prior to making the call (usually, all interrupts disabled and rounding mode
nearest). For performance reasons, the JIT code generator emits code that modifies the
default native floating point control state as it runs. If control state is not restored, any
floating point operations performed by the called function will use the currently-active
floating point state, which may not be what is required. Restoration of floating point state
in this way is only necessary for function calls emitted by vmimtCallResultAttrs in a
processor model: floating point state is automatically restored before function calls
emitted by intercept libraries. Note that restoration of floating point state is relatively
expensive, so should only be done if it is known that the called function requires the
default floating point state in order to run correctly.

VMCA_FLT32_RESULT
This value indicates that the called function returns a result of type Flt32.

VMCA_FLT64_RESULT
This value indicates that the called function returns a result of type Flt64.

Macros vmimtCall, vmimtCallResult and vmimtCallAttrs are wrappers for
vmimtCallResultAttrs which allow attributes or result to be omitted.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 176 of 282

Example
The OVP ARM model uses this function when emitting an embedded call implementing
CRC operations, each of which is modeled using an embedded call. These functions are
pure, because the calls can be eliminated entirely if the operation results are not required
(they have no side effects):

static void emitCRC32Common(armMorphStateP state, vmiCallFn cb, Uns32 argBits) {

 Uns32 accBits = 32;
 vmiReg rd = GET_RD(state, r1);
 vmiReg rn = GET_RS(state, r2);
 vmiReg rm = GET_RS(state, r3);

 // emit embedded call to perform operation
 vmimtArgReg(accBits, rn);
 vmimtArgReg(argBits, rm);
 vmimtCallResultAttrs(cb, accBits, rd, VMCA_PURE);
}

Notes and Restrictions

1. bits may be 8, 16, 32 or 64.
2. There is no automatic verification that the arguments supplied to the function

match the prototype of that function: take great care that the sequence of
vmimtArg-prefixed functions exactly matches the function prototype.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 177 of 282

8 Connection Operations
Processor models may have connections associated with them. Connections are used to
implement direct communication channels between processors. These communication
channels allow the processors to communicate without sharing memory. Currently, the
only form of connection object supported is a FIFO queue.

Section 4.4 in the VMI Run Time Function Reference describes functions that are used to
create FIFO connections between processors and set the values of cpux->inputConn and
cpux->outputConn. This section describes routines that are used to send and receive data
using connection objects.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 178 of 282

8.1 vmimtConnGetRB

Prototype

void vmimtConnGetRB(
 Uns32 bits,
 vmiReg rd,
 vmiReg connReg,
 Bool peek,
 vmiConnUpdateFn updateCB
);

Description
This function emits code to perform a blocking read from a connection container object
specified by the processor pseudo-register connReg, which must previously have been
initialized. The data value to read has width bits and should be assigned to register rd. If
peek is False, the value will be removed from the container; otherwise, it will be copied
from the container.

In the case that the input connection container is empty prior to the attempted read, the
processor will stop executing. It will remain stopped until some other processor writes to
the container object using vmimtConnPutRB (or a related function). When this happens,
the callback function updateCB is called, which determines how the waiting processor
should respond: typically, the response should be to restart the waiting processor using
either vmirtRestartNow or vmirtRestartNext. Upon restart, the current simulated
instruction will be restarted, with the effect that the processor will retry the connection
read.

Parameter updateCB may be NULL. In this case, behavior on restart will be as if function
vmirtRestartNow has been called.

Example
The OVP OR1K training model uses this function. See the Imperas Processor Modeling
Guide for more details.

static void morphConnGetOrBlock(vmiReg rd, Bool peek) {
 vmimtMoveRC(8, OR1K_BLOCK_STATE, OR1K_BS_INPUT);
 vmimtConnGetRB(OR1K_BITS, rd, OR1K_CPU_REG(inputConn), peek, 0);
 vmimtMoveRC(8, OR1K_BLOCK_STATE, OR1K_BS_NONE);
}

Notes and Restrictions

1. See also section 14 in the VMI Run Time Function Reference which describes a
run time read from a connection object.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 179 of 282

8.2 vmimtConnGetRNB

Prototype

void vmimtConnGetRNB(
 Uns32 bits,
 vmiReg rd,
 vmiReg connReg,
 Bool peek,
 vmiReg flag
);

Description
This function emits code to perform a nonblocking read from a connection container
object specified by the processor pseudo-register connReg, which must previously have
been initialized. The data value to read has width bits and should be assigned to register
rd. If peek is False, the value will be removed from the container; otherwise, it will be
copied from the container.

In the case that the input connection container is empty prior to the attempted read, the 8-
bit processor register flag is assigned the value 0 and rd is unchanged; otherwise, flag
is assigned the value 1.

Example
The OVP OR1K training model uses this function. See the Imperas Processor Modeling
Guide for more details.

static void morphConnGet(vmiReg rd, Bool peek) {
 vmimtConnGetRNB(
 OR1K_BITS, rd, OR1K_CPU_REG(inputConn), peek, OR1K_CARRY
);
}

Notes and Restrictions

1. See also Section 14 in VMI Run Time Function Reference which describes a run
time read from a connection object.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 180 of 282

8.3 vmimtConnPutRB

Prototype

void vmimtConnPutRB(
 Uns32 bits,
 vmiReg connReg,
 vmiReg ra,
 vmiConnUpdateFn updateCB
);

Description
This function emits code to perform a blocking write to a connection container object
specified by the processor pseudo-register connReg, which must previously have been
initialized. The data value to write has width bits and should obtained from register ra.

In the case that the input connection container is full prior to the attempted write, the
processor will stop executing. It will remain stopped until some other processor reads
from the container object using vmimtConnGetRB (or a related function) to make space in
the container. When this happens, the callback function updateCB is called, which
determines how the waiting processor should respond: typically, the response should be
to restart the waiting processor using either vmirtRestartNow or vmirtRestartNext.
Upon restart, the current simulated instruction will be restarted, with the effect that the
processor will retry the connection write.

Parameter updateCB may be NULL. In this case, behavior on restart will be as if function
vmirtRestartNow has been called.

Example
The OVP OR1K training model uses this function. See the Imperas Processor Modeling
Guide for more details.

static void morphConnPutOrBlock(vmiReg rb) {
 vmimtMoveRC(8, OR1K_BLOCK_STATE, OR1K_BS_OUTPUT);
 vmimtConnPutRB(OR1K_BITS, OR1K_CPU_REG(outputConn), rb, 0);
 vmimtMoveRC(8, OR1K_BLOCK_STATE, OR1K_BS_NONE);
}

Notes and Restrictions

1. See also section 14 in the VMI Run Time Function Reference which describes a
run time write to a connection object.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 181 of 282

8.4 vmimtConnPutRNB

Prototype

void vmimtConnPutRNB(
 Uns32 bits,
 vmiReg connReg,
 vmiReg ra,
 vmiReg flag
);

Description
This function emits code to perform a nonblocking write to a connection container object
specified by the processor pseudo-register connReg, which must previously have been
initialized. The data value to write has width bits and should obtained from register ra.

In the case that the output connection container is full prior to the attempted write, the 8-
bit processor register flag is assigned the value 0 and the value is not written; otherwise,
flag is assigned the value 1.

Example

static void morphConnPut(vmiReg rb) {
 vmimtConnPutRNB(
 OR1K_BITS, OR1K_CPU_REG(outputConn), rb, OR1K_CARRY
);
}

Notes and Restrictions

1. See also section 14 in the VMI Run Time Function Reference which describes a
run time write to a connection object.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 182 of 282

9 Floating Point Operations
In general, modeling of floating point operations is hard. Although many processors
claim to be IEEE Standard 754 compliant, there are usually implementation details that
deviate from the Standard in some respects; for example, many processors implement
variants of flush-to-zero mode (FZ) or denormals-are-zero mode (DAZ) which are not
covered in the Standard and are inconsistently implemented in different hardware.

The VMI API has been designed so that a spectrum of implementation approaches is
available for a particular instruction, depending on how closely the VMI primitives match
the required behavior. For example:

1. It is possible to use VMI floating point primitives without modification. This
provides fastest-possible simulation as floating point operations are efficiently
mapped to native floating point instructions.

2. It is possible to use VMI floating point primitives directly with some result
adjustment in cases where NaN or integer/unsigned indeterminate results are
generated. This result adjustment is efficiently done using handler functions.

3. It is possible to use VMI floating point primitives directly with result adjustment
applied to every result, whether a NaN or not.

4. It is possible to specify user-defined operation primitives, which are callback
functions executed within the scope of a (possibly SIMD) floating point
instruction.

5. If no other approach is possible, the instruction can be implemented using non-
floating-point VMI primitives (usually an embedded call). From VMI version
7.20.0, there are a set of VMI run-time floating point primitives available that
exactly match the behavior of the morph-time primitives. See the VMI Run Time
Function Reference manual for more information.

The VMI Morph Time Function API implements functions allowing many floating point
operations to be implemented natively. Every API function is available in both a simple
and a SIMD form. In the SIMD form, a number of operations are performed in parallel,
with the results committed only if no operation raises an enabled exception. Unless
otherwise stated, floating point operations comply with IEEE Standard 754 - 2008.

The VMI Run Time Function Reference manual describes how general characteristics of a
floating point unit can be configured, and also describes functions to query and update
the simulated floating point control word. It also describes run-time floating point
primitives that exactly match the behavior of the morph-time primitives.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 183 of 282

9.1 General Floating Point Operation Flow
The floating point operation primitives described later in this section all use a similar
flow, outlined below in full SIMD form, as pseudo-code:

for each SIMD operation do
 for each operand do
 switch QNaN/SNaN polarity
 handle denormal inputs (DAZ)
 done
 do operation
 handle flush-to-zero (FZ)
 adjust intermediate result
 switch QNaN/SNaN polarity
 adjust QNaN/indeterminate result
 save intermediate result
done

take enabled exceptions

for each SIMD operation do
 commit intermediate result to result
done

Whether stages in the flow are present or absent depends on FPU configuration settings,
described below.

9.2 vmiFPConfig Structure
Every floating point operation is executed with a configuration that specifies
implementation-specific details of its implementation. There is a default configuration,
defined using the VMI Run Time function vmirtConfigureFPU. In addition, any floating
point operation can specify an operation-specific configuration, which takes priority over
the default configuration. Normally, a default configuration is set up when the model is
initialized, and operation-specific configurations used only for those instructions which
require different behavior.

Configuration information is given in a static constant structure of type vmiFPConfig,
defined in vmiTypes.h as follows:

typedef enum vmiFPFlagForceE {
 vmi_FF_None, // no force (use value in vmiFPControlWord)
 vmi_FF_0, // force to 0 (ignore value in vmiFPControlWord)
 vmi_FF_1, // force to 1 (ignore value in vmiFPControlWord)
} vmiFPFlagForce;

typedef struct vmiFPConfigS {
 Uns16 QNaN16;
 Uns32 QNaN32;
 Uns64 QNaN64;
 Uns8 indeterminateUns8;
 Uns16 indeterminateUns16;
 Uns32 indeterminateUns32;
 Uns64 indeterminateUns64;
 vmiFPQNaN16ResultFn QNaN16ResultCB;
 vmiFPQNaN32ResultFn QNaN32ResultCB;
 vmiFPQNaN64ResultFn QNaN64ResultCB;
 vmiFPInd8ResultFn indeterminate8ResultCB;
 vmiFPInd16ResultFn indeterminate16ResultCB;
 vmiFPInd32ResultFn indeterminate32ResultCB;

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 184 of 282

 vmiFPInd64ResultFn indeterminate64ResultCB;
 vmiFPTinyResultFn tinyResultCB;
 vmiFPTinyArgumentFn tinyArgumentCB;
 vmiFP8ResultFn fp8ResultCB;
 vmiFP16ResultFn fp16ResultCB;
 vmiFP32ResultFn fp32ResultCB;
 vmiFP64ResultFn fp64ResultCB;
 vmiFPArithExceptFn fpArithExceptCB;
 vmiFPFlags suppressFlags;
 Bool stickyFlags;
 Bool fzClearsPF;
 Bool tininessBeforeRounding;
 Bool perElementFlags;
 vmiFPFlagForce forceAHP : 2;
 vmiFPFlagForce forceFZ16 : 2;
 vmiFPFlagForce forceDAZ16 : 2;
} vmiFPConfig;

The structure fields are as follows:

1. QNaN16 specifies the bit pattern produced when a floating point operation
generates a 16-bit QNaN result. Normally this should be 0x7e00, but older versions
of IEEE Standard 754 permit the most significant bit of the significand to be
reversed for QNaN and SNaN. On a processor where QNaN and SNaN values are
indeed reversed, a different value should be specified (for example, 0x7dff).

2. QNaN32 specifies the bit pattern produced when a floating point operation
generates a 32-bit QNaN result. Normally this should be 0x7fc00000, but older
versions of IEEE Standard 754 permit the most significant bit of the significand to
be reversed for QNaN and SNaN. On a processor such as the MIPS where QNaN and
SNaN values are indeed reversed, a different value should be specified (for
example, 0x7fbfffff for MIPS).

3. QNaN64 specifies the bit pattern produced when a floating point operation
generates a 64-bit QNaN result. Normally this should be 0x7ff8000000000000ULL,
but a processor such as the MIPS where QNaN and SNaN values are reversed, a
different value should be specified (for example, 0x7ff7ffffffffffffULL for
MIPS).

4. QNaN16ResultCB is a callback function which, if given, is called whenever a 16-
bit QNaN result is generated to give the processor model the opportunity to modify
the resulting QNaN value.

5. QNaN32ResultCB is a callback function which, if given, is called whenever a 32-
bit QNaN result is generated to give the processor model the opportunity to modify
the resulting QNaN value.

6. QNaN64ResultCB is a callback function which, if given, is called whenever a 64-
bit QNaN result is generated to give the processor model the opportunity to modify
the resulting QNaN value.

7. indeterminateUns8 specifies the bit pattern produced when a floating point
operation generates an 8-bit indeterminate integer result. For processors compliant
with IEEE Standard 754, this should be 0x80.

8. indeterminateUns16 specifies the bit pattern produced when a floating point
operation generates a 16-bit indeterminate integer result. For processors compliant
with IEEE Standard 754, this should be 0x8000.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 185 of 282

9. indeterminateUns32 specifies the bit pattern produced when a floating point
operation generates a 32-bit indeterminate integer result. For processors compliant
with IEEE Standard 754, this should be 0x80000000.

10. indeterminateUns64 specifies the bit pattern produced when a floating point
operation generates a 64-bit indeterminate integer result. For processors compliant
with IEEE Standard 754, this should be 0x8000000000000000ULL.

11. indeterminate8ResultCB is a callback function which, if given, is called
whenever an 8-bit indeterminate result is generated to allow the processor model
to provide the required indeterminate value.

12. indeterminate16ResultCB is a callback function which, if given, is called
whenever a 16-bit indeterminate result is generated to allow the processor model
to provide the required indeterminate value.

13. indeterminate32ResultCB is a callback function which, if given, is called
whenever a 32-bit indeterminate result is generated to allow the processor model
to provide the required indeterminate value.

14. indeterminate64ResultCB is a callback function which, if given, is called
whenever a 64-bit indeterminate result is generated to allow the processor model
to provide the required indeterminate value.

15. tinyResultCB is a callback function which, if given, is called whenever a tiny
(denormalized) result is generated to give the processor model the opportunity to
modify the resulting tiny value (or take any other action).

16. tinyArgumentCB is a callback function which, if given, is called whenever a
denormalized argument is detected to give the processor model the opportunity to
modify the argument value (or take any other action).

17. fp8ResultCB is a callback function which, if given, is called whenever an 8-bit
result is generated to allow the processor model to modify the result value or
flags. Result callbacks are typically specified only for instruction-specific
configurations, so this field should usually be NULL for a configuration used with
vmirtConfigureFPU.

18. fp16ResultCB is a callback function which, if given, is called whenever a 16-bit
result is generated to allow the processor model to modify the result value or
flags. Result callbacks are typically specified only for instruction-specific
configurations, so this field should usually be NULL for a configuration used with
vmirtConfigureFPU.

19. fp32ResultCB is a callback function which, if given, is called whenever a 32-bit
result is generated to allow the processor model to modify the result value or
flags. Result callbacks are typically specified only for instruction-specific
configurations, so this field should usually be NULL for a configuration used with
vmirtConfigureFPU.

20. fp64ResultCB is a callback function which, if given, is called whenever a 64-bit
result is generated to allow the processor model to modify the result value or
flags. Result callbacks are typically specified only for instruction-specific
configurations, so this field should usually be NULL for a configuration used with
vmirtConfigureFPU.

21. fpArithExceptCB is an exception handler callback function which is called
whenever a floating point operation generates unmasked exceptions. The

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 186 of 282

exception handler callback will typically update processor state and cause a jump
to a vector address.

22. suppressFlags is a field if type vmiFPFlags which enables flags generated by a
floating point operation to be suppressed: any flag set to 1 in the bitmask will be
masked out of the operation result flags.

23. stickyFlags is a boolean field which specifies whether the operation result flags
should replace any current value of the output flags (if False) or whether
operation flags should be combined with existing flags using bitwise-or (if True).

24. fzClearsPF is a boolean field that should be True if the processor implements
flush-to-zero mode and when denormal results are flushed to zero the precision
flag in the floating point status word is not set. If the processor does not
implement flush-to-zero mode, or if the precision flag should be set when results
are flushed to zero, then the argument should be False. Most floating point
implementations set the precision flag when a denormal result is flushed to zero
(e.g. x86, MIPS) but some do not (e.g. ARM).

25. tininessBeforeRounding3 is a boolean field that indicates whether tininess
should be detected before rounding a result or afterwards. This affects behavior
for intermediate results that round to a minimum normal value of greater absolute
magnitude. The boolean affects all floating point operations using IEEE types.

26. perElementFlags is a boolean field that indicates whether for a SIMD operation
the exception flags for each operation should be reported separately or
aggregated. If perElementFlags is False, then exception flags for all parallel
operations will be aggregated (using bitwise-or) and the result stored in the flags
register specified for a floating point operation (see vmimtFUnopRR for an
example of how the flags register is specified). If perElementFlags is True, then
flags for each operation will instead be stored in an array of flag bytes
immediately following the flags specified for a floating point operation. For
example, flags for operation 0 will be stored at the flags register location+1, flags
for operation 1 will be stored at the flags register location+2 and so on. These flag
bytes will typically be used in the floating point exception handler (specified
using the fpArithExceptCB field) to determine the final flags that should be
reported using simulated floating point control registers.

27. forceAHP is a field of type vmiFPFlagForce which causes the apparent value of
the AHP field in the current vmiFPControlWord to be forced to a particular value
irrespective of the actual value of the field.

28. forceFZ16 is a field of type vmiFPFlagForce which causes the apparent value of
the FZ16 field in the current vmiFPControlWord to be forced to a particular value
irrespective of the actual value of the field.

29. forceDAZ16 is a field of type vmiFPFlagForce which causes the apparent value
of the DAZ16 field in the current vmiFPControlWord to be forced to a particular
value irrespective of the actual value of the field.

3 Note that prior to VMI version 7.20.0, this field was called tininessAfterRounding and had the opposite
sense. The field name and sense have been changed to match the host architecture.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 187 of 282

9.3 vmiFPControlWord Structure
The dynamic behavior of a processor simulated FPU is specified by a
vmiFPControlWord structure, defined in vmiTypes.h:

typedef struct vmiFPControlWordS {

 // INTERRUPT MASKS
 Uns32 IM : 1; // invalid operation mask
 Uns32 DM : 1; // denormal mask
 Uns32 ZM : 1; // divide-by-zero mask
 Uns32 OM : 1; // overflow mask
 Uns32 UM : 1; // underflow mask
 Uns32 PM : 1; // precision mask
 Uns32 UD1M : 1; // user-defined flag 1 mask
 Uns32 UD2M : 1; // user-defined flag 2 mask

 // ROUNDING AND PRECISION
 Uns32 RC : 3; // rounding control
 Uns32 FZ : 1; // flush to zero
 Uns32 DAZ : 1; // denormals are zeros flag

 // HALF-PRECISION
 Uns32 AHP : 1; // use ARM AHP format
 Uns32 FZ16 : 1; // flush to zero
 Uns32 DAZ16 : 1; // denormals-are-zeros flag

} vmiFPControlWord;

The first eight fields are interrupt masks that specify whether a floating-point arithmetic
exception of the indicated type should by masked. If the exception is masked (the bit is
1), the exception will be ignored. If the exception is unmasked (the bit is 0), any
exception of the indicated type will be signaled by calling the processor arithmetic
exception handler (defined with the VMI_ARITH_EXCEPT_FN macro in vmiAttrs.h and
passed as the arithExceptCB field of the processor vmiIASAttr structure). Masks other
than DM, UD1M and UD2M are the IEEE Standard 754 exception masks. DM is a non-standard
mask indicating denormal operands. Mask bits UD1M and UD2M are available for user-
defined purposes. Each mask corresponds to a flag described in the next section.

The RC field specifies the rounding control to use when arithmetic results cannot be
exactly represented and precision exceptions are masked. The field value should be one
of the first six members of the vmiFPRC enumeration:

typedef enum vmiFPRCE {

 // these values are valid in both conversion functions and in the rounding
 // control field of vmiFPControlWord, below
 vmi_FPR_NEAREST = 0, // round towards nearest (even)
 vmi_FPR_NEG_INF = 1, // round towards negative infinity
 vmi_FPR_POS_INF = 2, // round towards positive infinity
 vmi_FPR_ZERO = 3, // round towards zero
 vmi_FPR_AWAY = 4, // round towards nearest, tie away
 vmi_FPR_ODD = 5, // round to odd (Von Neumann rounding)

 // these values are valid in conversion functions only
 vmi_FPR_CURRENT = 6, // use currently-active rounding control
 vmi_FPR_USER = 0x10 // bitmask implying user-defined (implemented with
 // result handler functions)
} vmiFPRC;

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 188 of 282

The FZ field specifies that denormal results should be flushed to zero. The DAZ field
specifies that denormal arguments should be treated as zero. Neither of these modes are
IEEE 754 compliant, but many processors support variants of them.

Fields AHP, FZ16 and DAZ16 control the behavior of operations using 16-bit floating point
types. If AHP is 1, then operations using 16-bit floating point numbers will use ARM AHP
semantics: these specify a modified version of half-precision floating point in which
values that would normally encode infinity and NaN values are instead used to extend the
range of normalized numbers. Fields FZ16 and DAZ16 are equivalent to FZ and DAZ but
apply to 16-bit floating point numbers.

The floating point control word in use for a processor can be set and fetched using two
functions from the VMI Run Time Function API:

//
// Get the processor floating point control word
//
vmiFPControlWord vmirtGetFPControlWord(vmiProcessorP processor);

//
// Set the processor floating point control word
//
void vmirtSetFPControlWord(vmiProcessorP processor, vmiFPControlWord fpcw);

9.4 vmiFPFlags Structure
The exception flags generated by a floating point instruction are specified by a
vmiFPFlags union, defined in vmiTypes.h:

typedef union vmiFPFlagsU {
 Uns8 bits; // all flags
 struct {
 Uns32 I : 1; // invalid operation flag
 Uns32 D : 1; // denormal flag
 Uns32 Z : 1; // divide-by-zero flag
 Uns32 O : 1; // overflow flag
 Uns32 U : 1; // underflow flag
 Uns32 P : 1; // precision flag
 Uns32 UD1 : 1; // user-defined flag 1
 Uns32 UD2 : 1; // user-defined flag 2
 } f;
} vmiFPFlags;

The bits field allows all flags to be accessed together as an Uns8 type; alternatively,
flags may be accessed individually using the structure members. A brief description of
each flag follows: refer to the IEEE 754 Standard for more information on all flags
except the non-standard D, UD1 and UD2 flags.

I: invalid operation flag
This flag is set whenever an operation is considered invalid by the FPU. Examples are 0
divided by 0, subtracting infinity from infinity, NaN inputs to some instructions, or
attempting to find the square root of a negative number. If the exception is masked by the
IM bit in the control word, the result of the floating point operation is a NaN. The floating

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 189 of 282

point configuration may specify a NaN handler to configure the exact NaN that is returned
in these circumstances.

Z: divide-by-zero flag
This flag is set whenever division of a finite non-zero is attempted. If the exception is
masked by the ZM bit in the control word, a properly-signed infinity is generated.

O: overflow flag
This flag is set whenever a value is too large to be represented. For example,
multiplication of two very large numbers can generate an overflow. If the exception is
masked by the OM bit in the control word, a properly-signed infinity is generated.

U: underflow flag
The behavior of this flag depends on the corresponding mask bit (UM) in the control word.
If the underflow exception is masked, the flag is set only if a result is both tiny and
inexact; if the underflow exception is unmasked, the flag is set for any tiny result. As an
example, dividing a very small number by a large number can generate an underflow. If
the exception is masked by the UM bit in the control word, a denormal or zero result is
produced, as appropriate.

P: precision flag
This flag is set whenever some precision is lost by a floating point operation. For
example, dividing 1.0 by 10.0 does not generate an exact result and causes the precision
flag to be set. If the exception is masked by the PM bit in the control word, the result is
rounded according to the rounding control specified by the RC field of the control word or
the rounding control specified for the instruction (see above).

D: denormal operand flag
This flag is set whenever the input to a floating point operation is denormalized (also
known as subnormal). If exceptions are enabled, this causes an exception before the
floating point operation starts. If the exception is masked by the DM bit in the control
word, the current floating point operation continues normally. If the DAZ bit is set in the
control word, then denormal operands are rounded to zero. The floating point
configuration may specify a tiny operand handler to configure the exact model behavior
under which this happens.

UD1 and UD2: user-defined flags
These flags are not used by the simulator but are available for signaling user-defined
exceptions – see following sections for more information.

Note that arithmetic instructions can signal more than one exception: for example, it is
possible to get both an underflow and precision exception signalled by a single floating
point instruction.

All floating point arithmetic instructions have a vmiReg target register that is assigned the
instruction exception flags, provided that the floating point exception handler is not

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 190 of 282

called. If the floating point exception handler is called (at least one of the exceptions
raised by the instruction is not masked) the target flags register is not updated and the
generated flags are instead passed as the flags argument of the vmiFPArithExceptFn
handler function (see below).

9.5 vmiFType Enumeration
The type of the arguments for floating point instructions is specified by the vmiFType
enumeration, defined in vmiTypes.h:

typedef enum {

 // these values specify that evaluation should be performed using IEEE 754
 // semantics (intermediates are the same type)
 vmi_FT_16_IEEE_754 = 16 | VMI_FT_IEEE_754, // 16-bit floating point
 vmi_FT_32_IEEE_754 = 32 | VMI_FT_IEEE_754, // 32-bit floating point
 vmi_FT_64_IEEE_754 = 64 | VMI_FT_IEEE_754, // 64-bit floating point

 // these values specify that evaluation should be performed using Intel x87
 // semantics (intermediates are promoted to 80-bit long double format)
 vmi_FT_32_X87 = 32 | VMI_FT_X87, // 32-bit floating point
 vmi_FT_64_X87 = 64 | VMI_FT_X87, // 64-bit floating point
 vmi_FT_80_X87 = 80 | VMI_FT_X87, // 80-bit floating point

 // these values are valid in conversion operations only
 vmi_FT_8_INT = 8 | VMI_FT_INT, // 8-bit signed integer
 vmi_FT_16_INT = 16 | VMI_FT_INT, // 16-bit signed integer
 vmi_FT_32_INT = 32 | VMI_FT_INT, // 32-bit signed integer
 vmi_FT_64_INT = 64 | VMI_FT_INT, // 64-bit signed integer
 vmi_FT_8_UNS = 8 | VMI_FT_UNS, // 8-bit unsigned integer
 vmi_FT_16_UNS = 16 | VMI_FT_UNS, // 16-bit unsigned integer
 vmi_FT_32_UNS = 32 | VMI_FT_UNS, // 32-bit unsigned integer
 vmi_FT_64_UNS = 64 | VMI_FT_UNS, // 64-bit unsigned integer

 // this value specifies BFLOAT16 type, which is vmi_FT_32_IEEE_754 with
 // fraction truncated to 7 bits, giving a storage size of 16 bits
 vmi_FT_BFLOAT16 = 16 | VMI_FT_IEEE_754 | VMI_FT_OP1

} vmiFType;

Members vmi_FT_16_IEEE_7544, vmi_FT_32_IEEE_754 and vmi_FT_64_IEEE_754
specify IEEE-compliant 16, 32 and 64 bit floating point values and semantics,
respectively (see below for semantic differences between IEEE and x87 modes).

Members vmi_FT_32_X87, vmi_FT_64_X87, and vmi_FT_80_X87 specify x87 32, 64 and
80 bit values and semantics, respectively (see below for semantic differences between
IEEE and x87 modes).

Members vmi_FT_8_INT, vmi_FT_16_INT, vmi_FT_32_INT and vmi_FT_64_INT specify
8, 16, 32 and 64 bit signed integer values and are valid as the source or target of floating
point conversion functions only.

4 Type vmi_FT_16_IEEE_754 can be used for all floating point operations from VMI version 6.44.0. Prior to
this, it could only be used for conversion operations.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 191 of 282

Members vmi_FT_8_UNS, vmi_FT_16_UNS, vmi_FT_32_UNS and vmi_FT_64_UNS specify
8, 16, 32 and 64 bit unsigned integer values and are valid as the source or target of
floating point conversion functions only.

Member vmi_FT_BFLOAT16 specifies 16 bit brain floating point values and semantics.
This format is a truncated version of IEEE-compliant 32-bit floating point format,
typically of use in machine learning applications.

9.6 IEEE and x87 Semantic Differences
IEEE and x87 semantics differ in these ways.

Operand and Intermediate Size
When using IEEE semantics, calculations are performed using the operand size (32-bit
float or 64-bit double). When using x87 semantics, operands are first converted to 80-bit
long doubles and the result is rounded to float or double length on operation completion,
if required. Note that x87 semantics can therefore cause two rounding events, firstly when
an intermediate result is rounded to 80-bit precision, and a secondly when the final result
is rounded to 32-bit or 64-bit precision from 80-bit precision.

For IEEE ternary floating point operations which are specified not to round intermediates
(argument roundInt is False) the intermediate result of the multiply is represented using
infinite precision. This means that such operations correspond to the IEEE definition of
fused-multiply-add operations. When using x87 semantics with roundInt specified as
False, the intermediate result is rounded to 80-bit precision. When roundInt is True,
intermediate results of a ternary operation are rounded to the operand size in both cases.

NaN Operands
When operations have more than one NaN operand and a NaN result is generated, the
results differ when using IEEE and x87 semantics, as follows:

Source Operands Result
SNaN and QNaN,
QNaN and SNaN

x87: QNaN source operand
IEEE: First NaN operand, converted to QNaN

SNaN and SNaN x87: SNaN operand with largest significand, converted
to QNaN
IEEE: First SNaN operand, converted to QNaN

QNaN and QNaN x87: QNaN operand with largest significand
IEEE: First QNaN operand

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 192 of 282

9.7 QNaN/SNaN Polarity Switch
This section describes how to control QNaN/SNaN polarity using a floating point
configuration. This affects the highlighted stages in the pseudo-code description below.

for each SIMD operation do
 for each operand do
 switch QNaN/SNaN polarity
 handle denormal inputs (DAZ)
 done
 do operation
 handle flush-to-zero (FZ)
 adjust intermediate result
 switch QNaN/SNaN polarity
 adjust QNaN/indeterminate result
 save intermediate result
done

take enabled exceptions

for each SIMD operation do
 commit intermediate result to result
done

Older versions of IEEE Standard 754 permit the most significant bit of the significand to
be of either polarity to represent QNaN and SNaN. For most processors, a QNaN is indicated
by the most significant bit being 1, and SNaN is indicated by the most significant bit being
0 (this allows any SNaN to be efficiently converted to a QNaN by setting the significand
msb). Some processor architectures (e.g. legacy MIPS) define the values to be the other
way round.

The QNaN/SNaN polarity is controlled by three fields in the configuration structure.
QNaN32 specifies the bit pattern produced when a floating point operation generates a 32-
bit QNaN result, and also implicitly the polarity of the signaling bit. Fields QNaN16 and
QNaN64 define analogous values for a 16-bit QNaN and a 64-bit QNaN, respectively

If the default QNaN values imply a reversed signaling bit polarity, NaN values are
automatically switched from reversed format as arguments are processed, and QNaN
results are switched to reversed format on operation completion. Stages between the two
highlighted lines in the above description always operate on NaN values with standard
polarity.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 193 of 282

9.8 Denormalized Argument Handler
This section describes how to control denormals-are-zeros mode (DAZ mode) using a
floating point configuration. This affects the highlighted stage in the pseudo-code
description below.

for each SIMD operation do
 for each operand do
 switch QNaN/SNaN polarity
 handle denormal inputs (DAZ)
 done
 do operation
 handle flush-to-zero (FZ)
 adjust intermediate result
 switch QNaN/SNaN polarity
 adjust QNaN/indeterminate result
 save intermediate result
done

take enabled exceptions

for each SIMD operation do
 commit intermediate result to result
done

Whenever a denormalized argument is detected for a floating point operation and the
denormals-are-zero (DAZ or DAZ16) bit is set in the current floating point control word5,
the tiny argument handler is called (specified using field tinyArgumentCB in the active
configuration). The handler function is defined using the VMI_FP_TINY_ARGUMENT_FN
macro from vmiTypes.h:

#define VMI_FP_TINY_ARGUMENT_FN(_NAME) vmiFP80Arg _NAME(\
 vmiProcessorP processor, \
 vmiFP80Arg value, \
 vmiFPFlagsP setFlags \
)

The handler is passed the following arguments:

1. The current processor;
2. The tiny argument value, represented as a vmiFP80Arg;
3. An argument of setFlags of type vmiFPFlagsP, in which bits can be set to 1 to

indicate a floating point exception caused by handling the tiny result.

It must return an appropriately-signed zero value as a vmiFP80Arg and may perform
other updates to processor state.

The vmiFP80Arg type is defined as follows, and holds a floating point value in the Intel
x87 80-bit format:

#define VMI_FP_80_BYTES 10
typedef union vmiFP80ArgU {
 Flt80 f80;
 Flt80Parts f80Parts;
 Uns8 bytes[VMI_FP_80_BYTES];

5 The DAZ16 bit is used for 16-bit floating point operands, and the DAZ bit for 32, 64 and 80 bit operands.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 194 of 282

} vmiFP80Arg;

Type Flt80Parts is one of a set of types used to decode components of floating point
numbers:

typedef struct Flt16PartsS {
 Uns32 fraction : 10;
 Uns32 exponent : 5;
 Bool sign : 1;
} Flt16Parts;

typedef struct Flt32PartsS {
 Uns32 fraction : 23;
 Uns32 exponent : 8;
 Bool sign : 1;
} Flt32Parts;

typedef struct Flt64PartsS {
 Uns64 fraction : 52;
 Uns32 exponent : 11;
 Bool sign : 1;
} Flt64Parts;

typedef struct Flt80PartsS {
 Uns64 fraction : 64;
 Uns32 exponent : 15;
 Bool sign : 1;
} Flt80Parts;

Example
This example is derived from the standard MIPS model.

static VMI_FP_TINY_ARGUMENT_FN(handleTinyArgument) {

 mipsP tc = (mipsP)processor;

 // when denormal arguments are flushed to zero, set Precision flag unless
 // attribute FA_DONT_SET_I_FLAG is also specified (floating point compare)
 if(!(tc->fopAttrs & FA_DONT_SET_I_FLAG)) {
 setFlags->f.P = 1;
 }

 // return appropriately-signed zero
 value.f80Parts.fraction = 0;
 value.f80Parts.exponent = 0;

 return value;
}

This returns an appropriately-signed zero value and updates processor state to force the
precision (P) flag to be set on instruction completion.

If the DAZ or DAZ16 bit is set in the current floating point control word and no tiny
argument handler is specified in the configuration, denormal inputs are flushed to an
appropriately-signed zero and the precision flag is set in all cases. Default behavior
cannot be used for the MIPS model because some operations do not set the precision flag,
even though they flush their arguments to zero.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 195 of 282

9.9 Tiny Result Handler
This section describes how to control flush-to-zero mode (FZ mode) using a floating point
configuration. This affects the highlighted stage in the pseudo-code description below.

for each SIMD operation do
 for each operand do
 switch QNaN/SNaN polarity
 handle denormal inputs (DAZ)
 done
 do operation
 handle flush-to-zero (FZ)
 adjust intermediate result
 switch QNaN/SNaN polarity
 adjust QNaN/indeterminate result
 save intermediate result
done

take enabled exceptions

for each SIMD operation do
 commit intermediate result to result
done

Whenever an underflow exception is generated by a floating point operation and the
flush-to-zero (FZ or FZ16) bit is set in the current floating point control word6, the tiny
result handler is called (specified using field tinyResultCB in the active configuration).
The handler function is defined using the VMI_FP_TINY_RESULT_FN macro from
vmiTypes.h:

#define VMI_FP_TINY_RESULT_FN(_NAME) vmiFP80Arg _NAME(\
 vmiProcessorP processor, \
 vmiFP80Arg value, \
 Uns32 bits, \
 Bool isIntermediate, \
 vmiFPFlagsP setFlags \
)

The handler function is passed the following arguments:

1. The processor;
2. The result value, represented as a vmiFP80Arg;
3. An Uns32 indicating the result size, in bits;
4. A Boolean indicating whether the result is the final result from a VMI floating

point operation (if False, it is an intermediate result of a ternary operation);
5. An argument of setFlags of type vmiFPFlagsP, in which bits can be set to 1 to

indicate a floating point exception caused by handling the tiny result.

The handler function should return the desired result, encoded as a vmiFP80Arg.

Example
This example is derived from the standard MIPS model.

static VMI_FP_TINY_RESULT_FN(handleTinyResult) {

6 The FZ16 bit is used for 16-bit floating point results, and the FZ bit for 32, 64 and 80 bit results.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 196 of 282

 mipsP tc = (mipsP)processor;
 Bool isNegative = value.bytes[VMI_FP_80_BYTES-1] & 0x80;
 tinyValue tv;

 GET_VPE;

 // get FPU control bits
 Bool FS = COP1_FIELD(vpe, FENR, FS);
 Bool FN = COP1_FIELD(vpe, FCSR, FN);
 Bool FO = COP1_FIELD(vpe, FCSR, FO);

 // expect either FS or FN to be set if we get here
 VMI_ASSERT(
 FS || FN,
 "expected FS or FN to be set"
);

 // should not be called for intermediates if FO is set
 VMI_ASSERT(
 !(isIntermediate && FO),
 "unexpected intermediate with FO bit set"
);

 // when results are flushed to zero, set Underflow and Precision flags
 setFlags->f.U = 1;
 setFlags->f.P = 1;

 // indicate that tiny results are allowed for this function
 tc->fopAttrs |= FA_ALLOW_O_DENORMALS;

 // get current rounding mode
 vmiFPRC rc = getCurrentRoundingMode(tc);

 if(FN && !isIntermediate && (rc==vmi_FPR_NEAREST)) {

 // get minnorm/2 for the result
 vmiFP80Arg minNormDiv2 = (
 isFlt32 ?
 tinyValues32[TV_PLUS_MINNORM_DIV_2] :
 tinyValues64[TV_PLUS_MINNORM_DIV_2]
);

 // is value >= minnorm/2?
 Bool geThanMinNormDiv2 = (
 ((value.bytes[9]&0x7f) >= minNormDiv2.bytes[9]) &&
 (value.bytes[8] >= minNormDiv2.bytes[8]) &&
 (value.bytes[7] >= minNormDiv2.bytes[7])
);

 // here if FN should be applied
 if(isNegative) {
 tv = geThanMinNormDiv2 ? TV_MINUS_MINNORM : TV_MINUS_0;
 } else {
 tv = geThanMinNormDiv2 ? TV_PLUS_MINNORM : TV_PLUS_0;
 }

 } else {

 // here if FS should be applied
 if(isNegative) {
 tv = (rc==vmi_FPR_NEG_INF) ? TV_MINUS_MINNORM : TV_MINUS_0;
 } else {
 tv = (rc==vmi_FPR_POS_INF) ? TV_PLUS_MINNORM : TV_PLUS_0;
 }
 }

 return isFlt32 ? tinyValues32[tv] : tinyValues64[tv];
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 197 of 282

The MIPS processor does not generate denormalized results in the normal case – usually,
operations producing such results generate Unimplemented Operation exceptions instead.
However, it has three special mode bits (FS, FO and FN) that cause denormalized results
to be flushed either to zero or to the smallest normalized value, depending on the
rounding mode (among other things).

The example tiny result handler examines the offending tiny result value and returns
either zero or the smallest normalized value (appropriately signed) depending on the
processor state. It also updates processor state to force the precision and underflow flags
to be set on instruction completion.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 198 of 282

9.10 General Result Handlers
This section describes how to control handling of general operation results using a
floating point configuration. This affects the highlighted stage in the pseudo-code
description below.

for each SIMD operation do
 for each operand do
 switch QNaN/SNaN polarity
 handle denormal inputs (DAZ)
 done
 do operation
 handle flush-to-zero (FZ)
 adjust intermediate result
 switch QNaN/SNaN polarity
 adjust QNaN/indeterminate result
 save intermediate result
done

take enabled exceptions

for each SIMD operation do
 commit intermediate result to result
done

Whenever an operation result is produced, a result handler can be supplied which can
modify the resulting value if required (specified using fp8ResultCB, fp16ResultCB,
fp32ResultCB and fp64ResultCB fields in the active configuration). Unlike QNaN result
handlers (described next), general result handlers are called for every generated result, not
just QNaN results. The 32-bit general handler function is defined using the
VMI_FP_32_RESULT_FN macro from vmiTypes.h:

#define VMI_FP_32_RESULT_FN(_NAME) Uns32 _NAME(\
 vmiProcessorP processor, \
 Uns32 result32, \
 Uns32 argNum, \
 vmiFPArgP args, \
 vmiFPFlagsP setFlags \
)
typedef VMI_FP_32_RESULT_FN((*vmiFP32ResultFn));

The handler function is passed the following:

1. The processor generating the result;
2. The result value, represented as an Uns32;
3. A count of the number arguments to the operation;
4. An array of argNum arguments to the operation;
5. An argument of setFlags of type vmiFPFlagsP, in which bits can be set to 1 to

indicate a floating point exception caused by handling the result.

The handler function should return the desired 32-bit result, encoded as an Uns32. It is
passed an ordered list of all arguments to the operation in the args array, which holds
argNum values. Each value is a vmiFPArg structure, defined as follows:

#define VMI_FP_80_BYTES 10
typedef struct vmiFPArgS {
 vmiFType type;

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 199 of 282

 union {
 // use these for 8-bit types
 Uns8 u8;
 Int8 i8;
 // use these for 16-bit types
 Uns16 u16;
 Int16 i16;
 Flt16Parts f16Parts;
 // use these for 32-bit types
 Uns32 u32;
 Int32 i32;
 Flt32 f32;
 Flt32Parts f32Parts;
 // use these for 64-bit types
 Uns64 u64;
 Int64 i64;
 Flt64 f64;
 Flt64Parts f64Parts;
 // use these for 80-bit types
 Flt80 f80;
 Flt80Parts f80Parts;
 Uns8 bytes[VMI_FP_80_BYTES];
 };
} vmiFPArg;

Field type specifies the argument type – note that floating point conversion operations
may take argument values of different size and class to the required result, so the handler
must cope with such cases.

There will be 1, 2 or 3 values in the args list, depending on whether the floating point
operation is a conversion, unary, binary or ternary.

There is a similar handler for 64-bit general results, defined using the
VMI_FP_64_RESULT_FN macro from vmiTypes.h:

#define VMI_FP_64_RESULT_FN(_NAME) Uns64 _NAME(\
 vmiProcessorP processor, \
 Uns64 result64, \
 Uns32 argNum, \
 vmiFPArgP args, \
 vmiFPFlagsP setFlags \
)
typedef VMI_FP_64_RESULT_FN((*vmiFP64ResultFn));

The handler works in identical fashion to the 32-bit general result handler, the only
difference being that it takes and returns values represented as an Uns64.

A similar handler for 16-bit general results is defined using the VMI_FP_16_RESULT_FN
macro from vmiTypes.h:

#define VMI_FP_16_RESULT_FN(_NAME) Uns16 _NAME(\
 vmiProcessorP processor, \
 Uns16 result16, \
 Uns32 argNum, \
 vmiFPArgP args, \
 vmiFPFlagsP setFlags \
)
typedef VMI_FP_16_RESULT_FN((*vmiFP16ResultFn));

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 200 of 282

The handler works in identical fashion to the 32-bit general result handler, the only
difference being that it takes and returns values represented as an Uns16.

From VMI version 6.28.0, there is also an 8-bit general result handler, defined using the
VMI_FP_8_RESULT_FN macro from vmiTypes.h:

#define VMI_FP_8_RESULT_FN(_NAME) Uns8 _NAME(\
 vmiProcessorP processor, \
 Uns8 result8, \
 Uns32 argNum, \
 vmiFPArgP args, \
 vmiFPFlagsP setFlags \
)
typedef VMI_FP_8_RESULT_FN((*vmiFP8ResultFn));

Again, the only difference between this and the 32-bit general result handler is the type of
the second argument and result. It is used for conversions to vmi_FT_8_INT and
vmi_FT_8_INT types only.

For function results in brain float format (specified as type vmi_FT_BFLOAT16) the 32-bit
result handler is called. The argument result32 is composed of the 16-bit brain float
result, shifted left by 16 bits (i.e. with least significant fraction bits filled with zeros). The
function should return an adjusted 32-bit floating point result also with the least-
significant 16 bits filled with zeros.

Example
This example is derived from the OVP MIPS model. In the MIPS processor, floating
point RECIP and RSQRT instructions always set the precision (inexact) flag, unless the
result is zero, a QNaN or infinity.

static VMI_FP_32_RESULT_FN(recipRsqrtResult32) {

 if(!(result32 & ~MIPS_SIGN_32)) {
 // no action if (signed) zero result
 } else if((result32 & MIPS_EXP_32) != MIPS_EXP_32) {
 // not a QNaN or infinite result - force the inexact flag
 setFlags->f.P = 1;
 }

 // return unmodified result
 return result32;
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 201 of 282

9.11 QNaN Handlers
This section describes how to control handling of QNaN operation results using a floating
point configuration. This affects the highlighted stage in the pseudo-code description
below.

for each SIMD operation do
 for each operand do
 switch QNaN/SNaN polarity
 handle denormal inputs (DAZ)
 done
 do operation
 handle flush-to-zero (FZ)
 adjust intermediate result
 switch QNaN/SNaN polarity
 adjust QNaN/indeterminate result
 save intermediate result
done

take enabled exceptions

for each SIMD operation do
 commit intermediate result to result
done

Whenever a QNaN value is produced as a result, a QNaN handler can be supplied which can
modify the resulting value if required (specified using QNaN16ResultCB,
QNaN32ResultCB and QNaN64ResultCB fields in the active configuration). The 32-bit
QNaN handler function is defined using the VMI_FP_QNAN32_RESULT_FN macro from
vmiTypes.h:

#define VMI_FP_QNAN32_RESULT_FN(_NAME) Uns32 _NAME(\
 vmiProcessorP processor, \
 Uns32 QNaN32, \
 Uns32 NaNArgNum, \
 vmiFPArgP NaNArgs, \
 Uns32 allArgNum, \
 vmiFPArgP allArgs \
)

The handler function is passed the following:

1. The processor generating the QNaN result;
2. The QNaN value, represented as an Uns32;
3. A count of the number of NaN arguments to the operation;
4. An array of NaNArgNum NaN arguments to the operation;
5. A count of all arguments to the operation;
6. An array of allArgNum arguments to the operation.

The handler function should return the desired 32-bit result, encoded as an Uns32.

If the operation had any NaN inputs (NaNArgNum is non-zero), then the handler can obtain
an ordered list of those values from the NaNArgs array, which holds NaNArgNum values.
Each value is a vmiFPArg structure, defined as follows:

#define VMI_FP_80_BYTES 10

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 202 of 282

typedef struct vmiFPArgS {
 vmiFType type;
 union {
 // use these for 8-bit types
 Uns8 u8;
 Int8 i8;
 // use these for 16-bit types
 Uns16 u16;
 Int16 i16;
 Flt16Parts f16Parts;
 // use these for 32-bit types
 Uns32 u32;
 Int32 i32;
 Flt32 f32;
 Flt32Parts f32Parts;
 // use these for 64-bit types
 Uns64 u64;
 Int64 i64;
 Flt64 f64;
 Flt64Parts f64Parts;
 // use these for 80-bit types
 Flt80 f80;
 Flt80Parts f80Parts;
 Uns8 bytes[VMI_FP_80_BYTES];
 };
} vmiFPArg;

Field type specifies the argument type – note that floating point conversion operations
may take argument values of different size and class to the required result, so the handler
must cope with such cases.

The handler is also passed an ordered list of all arguments to the operation in the allArgs
array, which holds allArgNum values. Each value is a vmiFPArg structure, as described
above. There will be 1, 2 or 3 values in this list, depending on whether the floating point
operation is a unary, binary or ternary.

The QNaN handler usually returns a result which is a NaN. However, it is also legal to
return a non-NaN result. In this case, any Invalid Operation exception signalled for the
current floating point operation is cleared. This is typically useful when modeling
instructions with special behavior when multiplying infinity and zero: the default
behavior is to produce a QNaN in these cases, but some processors instead produce a non-
QNaN result.

There is a similar handler for 64-bit QNaN results, defined using the
VMI_FP_QNAN64_RESULT_FN macro from vmiTypes.h:

#define VMI_FP_QNAN64_RESULT_FN(_NAME) Uns64 _NAME(\
 vmiProcessorP processor, \
 Uns64 QNaN64, \
 Uns32 NaNArgNum, \
 vmiFPArgP NaNArgs, \
 Uns32 allArgNum, \
 vmiFPArgP allArgs \
)

The handler works in identical fashion to the 32-bit QNaN handler, the only difference
being that it takes and returns QNaN values represented as an Uns64.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 203 of 282

There is also a 16-bit QNaN handler, defined using the VMI_FP_QNAN16_RESULT_FN macro
from vmiTypes.h:

#define VMI_FP_QNAN16_RESULT_FN(_NAME) Uns16 _NAME(\
 vmiProcessorP processor, \
 Uns16 QNaN16, \
 Uns32 NaNArgNum, \
 vmiFPArgP NaNArgs, \
 Uns32 allArgNum, \
 vmiFPArgP allArgs \
)

The handler works in identical fashion to the 32-bit QNaN handler, the only difference
being that it takes and returns QNaN values represented as an Uns16.

For function results in brain float format (specified as type vmi_FT_BFLOAT16) the 32-bit
QNaN handler is called. The argument QNaN32 is composed of the 16-bit brain float
result, shifted left by 16 bits (i.e. with least significant fraction bits filled with zeros). The
function should return an adjusted 32-bit floating point result also with the least-
significant 16 bits filled with zeros.

Example
This example is derived from the OVP MIPS model.

inline static Bool is32BitSNaN(vmiFPArgP arg, Bool standardNaN) {
 return (
 (arg->type==vmi_FT_32_IEEE_754) &&
 !(arg->u32 & MIPS_SBIT_32) == standardNaN
);
}

inline static Bool is64BitSNaN(vmiFPArgP arg, Bool standardNaN) {
 return (
 (arg->type==vmi_FT_64_IEEE_754) &&
 !(arg->u64 & MIPS_SBIT_64) == standardNaN
);
}

inline static Bool isSNaN(vmiFPArgP arg, Bool standardNaN) {
 return is32BitSNaN(arg, standardNaN) || is64BitSNaN(arg, standardNaN);
}

static VMI_FP_QNAN32_RESULT_FN(handleQNaN32) {

 mipsP tc = (mipsP)processor;
 Bool standardNaN = cfgStandardNaN(tc);
 Uns32 i;

 // PASS 1: if any argument is a 32-bit SNaN, return that (as a QNaN) in
 // standard NaN mode, or if it is any SNaN, return the canonical QNaN (in
 // legacy mode)
 for(i=0; i<NaNArgNum; i++) {
 if(standardNaN && is32BitSNaN(&NaNArgs[i], standardNaN)) {
 return NaNArgs[i].u32 | MIPS_SBIT_32;
 } else if(!standardNaN && isSNaN(&NaNArgs[i], standardNaN)) {
 return MIPS_QNAN_32;
 }
 }

 // PASS 2: if any argument is a 32-bit QNaN, return that
 for(i=0; i<NaNArgNum; i++) {
 if(is32BitQNaN(&NaNArgs[i], standardNaN)) {

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 204 of 282

 return NaNArgs[i].u32;
 }
 }

 // otherwise, return positive canonical QNaN or the calculated result
 return standardNaN ? IEEE_QNAN_32 : QNaN32;
}

The MIPS floating point unit differs from IEEE 754 semantics because, if a QNaN result is
generated, the pattern for this is based upon QNaN operands only and not SNaN operands.
The QNaN handler above selects and returns the first QNaN from the argument list, or, if no
QNaN is found, it returns the default QNaN pattern.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 205 of 282

9.12 8-bit, 16-Bit, 32-Bit and 64-Bit Indeterminate Handlers
This section describes how to control handling of integer/unsigned indeterminate
operation results using a floating point configuration. This affects the highlighted stage in
the pseudo-code description below.

for each SIMD operation do
 for each operand do
 switch QNaN/SNaN polarity
 handle denormal inputs (DAZ)
 done
 do operation
 handle flush-to-zero (FZ)
 adjust intermediate result
 switch QNaN/SNaN polarity
 adjust QNaN/indeterminate result
 save intermediate result
done

take enabled exceptions

for each SIMD operation do
 commit intermediate result to result
done

Whenever an indeterminate value is produced as a result of a conversion, an
indeterminate handler can be supplied which can provide the required result (specified
using indeterminate8ResultCB, indeterminate16ResultCB,
indeterminate32ResultCB or indeterminate64ResultCB fields in the active
configuration). The 32-bit handler function is defined using the
VMI_FP_IND32_RESULT_FN macro from vmiTypes.h:

#define VMI_FP_IND32_RESULT_FN(_NAME) Uns32 _NAME(\
 vmiProcessorP processor, \
 vmiFPArg value, \
 Bool isSigned \
)

The handler function is passed the following:

1. The processor generating the indeterminate result;
2. The argument prior to conversion, represented as a vmiFPArg;
3. A Boolean indicating whether a signed conversion was performed.

The handler function should return the desired result as an Uns32.

There are similar handlers for 8-bit, 16-bit and 64-bit indeterminate value handling,
defined using the VMI_FP_IND8_RESULT_FN, VMI_FP_IND16_RESULT_FN and
VMI_FP_IND64_RESULT_FN macros from vmiTypes.h:

#define VMI_FP_IND8_RESULT_FN(_NAME) Uns8 _NAME(\
 vmiProcessorP processor, \
 vmiFPArg value, \
 Bool isSigned \
)
#define VMI_FP_IND16_RESULT_FN(_NAME) Uns16 _NAME(\
 vmiProcessorP processor, \
 vmiFPArg value, \
 Bool isSigned \

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 206 of 282

)
#define VMI_FP_IND64_RESULT_FN(_NAME) Uns64 _NAME(\
 vmiProcessorP processor, \
 vmiFPArg value, \
 Bool isSigned \
)

The handlers work in identical fashion to the 32-bit indeterminate handler, the only
difference being that they return an Uns8, Uns16 and Uns64 result, respectively.

Example
This example is extracted from the standard ARM model.

static Bool isNegative(vmiFPArg value) {

 if(value.type==vmi_FT_32_IEEE_754) {
 return value.f32Parts.sign;
 } else if(value.type==vmi_FT_64_IEEE_754) {
 return value.f64Parts.sign;
 } else if(value.type==vmi_FT_80_X87) {
 return value.f80Parts.sign;
 } else {
 return False;
 }
}

static VMI_FP_IND32_RESULT_FN(handleIndeterminate32) {

 Uns32 result;

 if(isNaN(value)) {
 result = 0;
 } else if(isNegative(value)) {
 result = isSigned ? ARM_MIN_INT32 : ARM_MIN_UNS32;
 } else {
 result = isSigned ? ARM_MAX_INT32 : ARM_MAX_UNS32;
 }

 return result;
}

In the ARM processor, out-of-range values are clamped to the minimum and maximum
bounds, and NaN inputs are clamped to zero. The ARM processor supports both signed
and unsigned conversion.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 207 of 282

9.13 Floating Point Exceptions
This section describes how to control floating point exceptions using a floating point
configuration. This affects the highlighted stage in the pseudo-code description below.

for each SIMD operation do
 for each operand do
 switch QNaN/SNaN polarity
 handle denormal inputs (DAZ)
 done
 do operation
 handle flush-to-zero (FZ)
 adjust intermediate result
 switch QNaN/SNaN polarity
 adjust QNaN/indeterminate result
 save intermediate result
done

take enabled exceptions

for each SIMD operation do
 commit intermediate result to result
done

Any unmasked floating point exceptions cause the configured floating point arithmetic
exception handler to be called. The floating point arithmetic exception handler is of type
vmiFPArithExceptFn and is specified as the fpArithExceptCB field of the active
configuration:

#define VMI_FP_ARITH_EXCEPT_FN(_NAME) vmiFloatExceptionResult _NAME(\
 vmiProcessorP processor, \
 vmiFPFlagsP flags \
)
typedef VMI_FP_ARITH_EXCEPT_FN((*vmiFPArithExceptFn));

The flags argument to the arithmetic exception handler indicates the exception flags set
by the faulting instruction. The handler may modify the processor state to reflect the
exception conditions (for example, by changing simulated register state, or using
vmirtSetPCException to jump to a simulated exception vector). It may also modify
fields in the by-ref flags structure to simulate flag behavior that diverges from the IEEE
standard. It should return VMI_FLOAT_CONTINUE to indicate that simulation should
continue or VMI_FLOAT_UNHANDLED to indicate that an irrecoverable model error has
occurred and simulation should terminate.

Example
This example is derived from the OVP MIPS model. Various implementation-specific
adjustments are made to the flag settings, and then function mipsTakeException is
called to enable execution at the exception vector address if required.

static VMI_FP_ARITH_EXCEPT_FN(handleFPException) {

 mipsP tc = (mipsP)processor;
 vmiFPFlags enables = {getEnabledExceptions(tc)};
 mipsFPOpAttr fopAttrs = tc->fopAttrs;

 // handle denormal arguments
 if(!flags->f.D) {

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 208 of 282

 // not a denormal argument
 } else if(fopAttrs & FA_ALLOW_I_DENORMALS) {
 // denormal arguments valid for this instruction
 flags->f.D = 0;
 } else {
 // take Unimplemented Operation exception
 FORCE_UNIMPLEMENTED_OPERATION(flags);
 }

 // handle tiny results
 if(!flags->f.U) {
 // not a tiny result
 } else if(fopAttrs & FA_ALLOW_O_DENORMALS) {
 // tiny results valid for this instruction
 } else {
 // take Unimplemented Operation exception
 FORCE_UNIMPLEMENTED_OPERATION(flags);
 }

 // clear underflow if this instruction requires it
 if(fopAttrs & FA_CLEAR_U_FLAG) {
 flags->f.U = 0;
 }

 // take any pending exception
 if((flags->bits & enables.bits)) {
 GET_FPU;
 fpu->cop1Cause = flags->bits;
 mipsTakeException(tc, excCode_FPE, 0, False);
 }

 return VMI_FLOAT_CONTINUE;
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 209 of 282

9.14 vmimtFSetRounding

Prototype

void vmimtFSetRounding(vmiFPRC rc);

Description
This function should be called immediately before a call to vmimtFUnopRR,
vmimtFBinopRRR, vmimtFTernopRRRR, vmimtFUnopSimdRR, vmimtFBinopSimdRRR or
vmimtFTernopSimdRRRR to modify the rounding mode that should apply to that
operation. The specified mode, rc, should be one of the following:

 vmi_FPR_NEAREST = 0, // round towards nearest (even)
 vmi_FPR_NEG_INF = 1, // round towards negative infinity
 vmi_FPR_POS_INF = 2, // round towards positive infinity
 vmi_FPR_ZERO = 3, // round towards zero
 vmi_FPR_AWAY = 4, // round towards nearest, tie away
 vmi_FPR_ODD = 5, // round to odd (Von Neumann rounding)

The effect is to modify the rounding mode, for that operation only, to the given mode
instead of the processor’s current rounding mode.

Example
The OVP RISC-V model uses this function to implement instruction-specified rounding
modes for unary operations as follows:

static Bool emitSetOperationRM(riscvMorphStateP state) {

 riscvP riscv = state->riscv;
 riscvRMDesc rm = state->info.rm;
 Bool validRM = emitCheckLegalRM(riscv, rm);

 if(validRM) {
 vmimtFSetRounding(mapRMDescToRC(rm));
 }

 return validRM;
}

static RISCV_MORPH_FN(emitFUnop) {

 riscvP riscv = state->riscv;
 riscvRegDesc fdA = getRVReg(state, 0);
 riscvRegDesc fs1A = getRVReg(state, 1);
 vmiReg fd = getVMIReg(riscv, fdA);
 vmiReg fs1 = getVMIRegFS(riscv, fs1A, getTmp(1));
 vmiFType type = getRegFType(fdA);
 vmiFUnop op = state->attrs->fpUnop;
 vmiFPConfigCP ctrl = getFPControl(state);

 if(emitSetOperationRM(state)) {
 vmimtFUnopRR(type, op, fd, fs1, RISCV_FP_FLAGS, ctrl);
 writeReg(riscv, fdA);
 }
}

Notes and Restrictions

None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 210 of 282

9.15 vmimtFConvertRR, vmimtFConvertSimdRR

Prototypes

void vmimtFConvertRR(
 vmiFType destType,
 vmiReg fd,
 vmiFType srcType,
 vmiReg fa,
 vmiFPRC rc,
 vmiReg flags,
 vmiFPConfigCP config
);

void vmimtFConvertSimdRR(
 Uns32 num,
 vmiFType destType,
 vmiReg fd,
 vmiFType srcType,
 vmiReg fa,
 vmiFPRC rc,
 vmiReg flags,
 vmiFPConfigCP config
);

Description
These functions emit code to convert a value in register ra that is in format srcType,
placing the result in register fd in format destType. srcType and destType can be any
members of the vmiFType enumeration, so this function allows conversion between any
pair of floating point or integral types. For the SIMD variant, argument num specifies the
number of parallel operations (in the range 1 to 16) and arguments fd and fa indicate the
first register in a contiguous vector.

If the result cannot be exactly represented using the target type, rounding to that type is
controlled by the rc argument of type vmiFPRC, defined as follows:

typedef enum vmiFPRCE {

 // these values are valid in both conversion functions and in the rounding
 // control field of vmiFPControlWord, below
 vmi_FPR_NEAREST = 0, // round towards nearest (even)
 vmi_FPR_NEG_INF = 1, // round towards negative infinity
 vmi_FPR_POS_INF = 2, // round towards positive infinity
 vmi_FPR_ZERO = 3, // round towards zero
 vmi_FPR_AWAY = 4, // round towards nearest, tie away
 vmi_FPR_ODD = 5, // round to odd (Von Neumann rounding)

 // these values are valid in conversion functions only
 vmi_FPR_CURRENT = 6, // use currently-active rounding control
 vmi_FPR_USER = 0x10 // bitmask implying user-defined (implemented with
 // result handler functions)
} vmiFPRC;

Values vmi_FPR_NEAREST, vmi_FPR_NEG_INF, vmi_FPR_POS_INF and vmi_FPR_ZERO are
standard rounding modes specified in IEEE 754-2008. vmi_FPR_AWAY specifies round-to-
nearest, ties-away rounding, as defined in IEEE 754-2008. vmi_FPR_ODD specifies round-

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 211 of 282

to-odd (or Von Neumann) rounding, where inexact results always have the least
significant fraction bit set.

A user-defined conversion operation may be implemented by combining value
vmi_FPR_USER with one of the other rounding control values, and using a configuration
with fp16ResultCB and/or fp32ResultCB and/or fp64ResultCB callbacks. In this case,
the value to convert will be passed as the first argument of the result handler function and
the rounding mode as the second argument (see example 2 below).

If non-NULL, argument config specifies an operation-specific configuration that
overrides the default FPU configuration for this operation.

It is possible for the conversion to generate exceptions: for example, converting from a
non-integral floating point source to an integer result will always generate a precision
exception. If generated exceptions are not masked, the configured floating point
exception handler will be called; otherwise, fd and flags will be updated with the
conversion result and flags. For the SIMD variant, the flags are a bitwise-or of flags
resulting from each individual operation.

Example
The OVP ARMM model uses vmimtFConvertRR for single precision to half precision
conversion:

ARM_MORPH_FN(armEmitVCVT_HS_VFP) {

 if(executeFPCheck(state)) {

 vmiReg rd = GET_VFP_SREG(state, r1);
 vmiReg rm = GET_VFP_SREG(state, r2);
 vmiReg flags = GET_FLAGS(state);

 // point to top half of register when VCVTT
 if(state->attrs->highhalf) {
 rm = VMI_REG_DELTA(rm, 2);
 }

 vmimtFConvertRR(
 vmi_FT_16_IEEE_754, rd, vmi_FT_32_IEEE_754, rm, vmi_FPR_CURRENT,
 flags, 0
);
 }
}

Notes and Restrictions

1. See the descriptions of functions vmirtGetFConvertRRDesc and
vmirtFConvertSimdRR in the VMI Run Time Function Reference which allow
equivalent functionality to be implemented in an embedded call.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 212 of 282

9.16 vmimtFUnopRR, vmimtFUnopSimdRR

Prototypes

void vmimtFUnopRR(
 vmiFType type,
 vmiFUnop op,
 vmiReg fd,
 vmiReg fa,
 vmiReg flags,
 vmiFPConfigCP config
);

void vmimtFUnopSimdRR(
 vmiFType type,
 Uns32 num,
 vmiFUnop op,
 vmiReg fd,
 vmiReg fa,
 vmiReg flags,
 vmiFPConfigCP config
);

Description
These functions emit code to perform a floating point unary operation on an argument in
register fa, writing the result in register fd, both of type type. For the SIMD variant,
argument num specifies the number of parallel operations (in the range 1 to 16) and
arguments fd and fa indicate the first register in a contiguous vector.

It is possible for the operation to generate exceptions. If generated exceptions are not
masked, the configured floating point exception handler will be called; otherwise, fd and
flags will be updated with the operation result and flags. For the SIMD variant, the flags
are a bitwise-or of flags resulting from each individual operation.

If non-NULL, argument config specifies an operation-specific configuration that
overrides the default FPU configuration for this operation.

Argument op is the unary operation to perform. The available unary floating point
operations are specified using the vmiFUnop enumeration in vmiTypes.h:

typedef enum {
 // BASIC ARITHMETIC OPERATIONS
 vmi_FMOV, // d <- a
 vmi_FABS, // d <- abs(a), signalling
 vmi_FQABS, // d <- abs(a), IEEE 754-2008 (clear sign bit only)
 vmi_FNEG, // d <- -a, signalling
 vmi_FQNEG, // d <- -a, IEEE 754-2008 (toggle sign bit only)
 vmi_FRECIP, // d <- 1/a
 vmi_FSQRT, // d <- sqrt(a)
 vmi_FRSQRT, // d <- 1/sqrt(a)

 // ROUNDING OPERATIONS
 vmi_FCEIL, // d <- roundTowardsPositiveInfinity(a)
 vmi_FFLOOR, // d <- roundTowardsNegativeInfinity(a)
 vmi_FNEAREST, // d <- roundToNearest(a)
 vmi_FTRUNC, // d <- roundTowardsZero(a)
 vmi_FROUNDC, // d <- roundUsingCurrentRoundingMode(a)

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 213 of 282

 vmi_FAWAY, // d <- roundToNearestTiesToAway(a)

 // TRIGONOMETRIC OPERATIONS
 vmi_FSIN, // d <- sin(a)
 vmi_FCOS, // d <- cos(a)

 // LOGARITHMIC OPERATIONS
 vmi_FLOG2, // d <- log2(a)

 // USER-DEFINED OPERATIONS
 vmi_FUNUD, // (implemented with result handler functions)

 vmi_FUNOP_LAST // KEEP LAST

 } vmiFUnop;

A user-defined operation may be implemented by specifying an operation of vmi_FUNUD
and a configuration with fp32ResultCB and/or fp64ResultCB callbacks (see example 2
below).

By default, the operation uses the currently active processor rounding mode. For
operations other than vmi_FCEIL, vmi_FFLOOR, vmi_FNEAREST, vmi_FTRUNC and
vmi_FAWAY (which have fixed rounding modes) a different fixed rounding mode may be
specified by prefixing the operation with a call to function vmimtFSetRounding; for
example, this sequence specifies a square root operation with rounding towards zero:

 vmimtFSetRounding(vmi_FPR_ZERO);
 vmimtFUnopRR(vmi_FT_32_IEEE_754, vmi_FSQRT, r1, r2, flags, 0);

Example 1
The OVP ARM model uses vmimtFUnopRR for vector unary floating point operations:

ARM_MORPH_FN(armEmitVUnop_F) {

 if(checkStateSDFPEnabled(state)) {

 Uns32 ebytes1 = SIMD_ELBYTES(state->info.r1);
 Uns32 ebytes2 = getVFPResultSize(state, ebytes1);
 Uns32 nels = SIMD_NUM_ELS(state->info.r1);
 vmiFBinop op = state->attrs->funop;

 vmiReg r1 = GET_SIMD_RD(state, r1, 0, 0, ebytes2);
 vmiReg r2 = GET_SIMD_RS(state, r2, 0, 0, ebytes2);
 vmiReg flags = GET_FLAGS(state);

 vmimtFUnopSimdRR(bytesToFType(ebytes1), nels, op, r1, r2, flags, 0);

 // extend result if required
 emitVFPExtend(state, r1, ebytes1, ebytes2);
 }
}

Example 2
The OVP RISC-V model implements user-defined vmimtFUnopRR operations for some
operations using RMM rounding mode. For example, single-precision square root
operations use a result handler shown below, which implement an interface to the
SoftFloat IEEE Floating-Point Arithmetic Package. This is necessary because the RISC-
V model allows the RMM rounding mode to be used for general operations (it is not
restricted to conversions to integral values).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 214 of 282

static void beforeFPInt(riscvP riscv, riscvRMDesc rm) {

 // map from RISC-V rounding mode to riscvRMDesc
 static const riscvRMDesc mapRM[] = {
 [0] = RV_RM_RTE,
 [1] = RV_RM_RTZ,
 [2] = RV_RM_RDN,
 [3] = RV_RM_RUP,
 [4] = RV_RM_RMM,
 };

 // if rounding mode is RV_RM_CURRENT, get the current value
 if(rm==RV_RM_CURRENT) {
 rm = mapRM[RD_CSR_FIELD(riscv, fcsr, frm)];
 }

 // set SoftFloat controls
 softfloat_roundingMode = rm;
 softfloat_exceptionFlags = 0;
}

inline static void beforeFP(vmiProcessorP processor) {

 riscvP riscv = (riscvP)processor;

 beforeFPInt(riscv, riscv->fpActiveRM);
}

inline static void afterFP(vmiFPFlagsP setFlags) {
 setFlags->bits |= softfloat_exceptionFlags;
}

VMI_FP_32_RESULT_FN(riscvFSQRT32) {

 float32_t a = {args[0].u32};

 beforeFP(processor);
 float32_t result = f32_sqrt(a);
 afterFP(setFlags);

 return result.v;
}

Notes and Restrictions

1. See the descriptions of functions vmirtGetFUnopRRDesc and vmirtFUnopSimdRR
in the VMI Run Time Function Reference which allow equivalent functionality to
be implemented in an embedded call.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 215 of 282

9.17 vmimtFBinopRRR, vmimtFBinopSimdRRR

Prototypes

void vmimtFBinopRRR(
 vmiFType type,
 vmiFBinop op,
 vmiReg fd,
 vmiReg fa,
 vmiReg fb,
 vmiReg flags,
 vmiFPConfigCP config
);

void vmimtFBinopSimdRRR(
 vmiFType type,
 Uns32 num,
 vmiFBinop op,
 vmiReg fd,
 vmiReg fa,
 vmiReg fb,
 vmiReg flags,
 vmiFPConfigCP config
);

Description
These functions emit code to perform a floating point binary operation on arguments in
registers fa and fb, writing the result to register fd, all of type type (except when op is
vmi_FSCALEI, in which case the second argument is an integer). For the SIMD variant,
argument num specifies the number of parallel operations (in the range 1 to 16) and
arguments fd, fa and fb indicate the first register in a contiguous vector.

It is possible for the operation to generate exceptions. If generated exceptions are not
masked, the configured floating point exception handler will be called; otherwise, fd and
flags will be updated with the operation result and flags. For the SIMD variant, the flags
are a bitwise-or of flags resulting from each individual operation.

If non-NULL, argument config specifies an operation-specific configuration that
overrides the default FPU configuration for this operation.

Argument op is the binary operation to perform. The available binary floating point
operations are specified using the vmiFBinop enumeration in vmiTypes.h:

typedef enum {
 // BASIC ARITHMETIC OPERATIONS
 vmi_FADD, // d <- a + b
 vmi_FSUB, // d <- a - b
 vmi_FMUL, // d <- a * b
 vmi_FDIV, // d <- a / b

 // MIN/MAX OPERATIONS
 vmi_FMIN, // d <- min(a, b)
 vmi_FMAX, // d <- max(a, b)

 // SCALE OPERATIONS
 vmi_FSCALEF, // d <- a * 2^b (floating point b)

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 216 of 282

 vmi_FSCALEI, // d <- a * 2^b (integer b)

 // QUIET COMPARISON OPERATIONS
 vmi_FQCMPEQ, // d <- (a == b) ? all_ones : all_zeros
 vmi_FQCMPNEQ, // d <- !(a == b) ? all_ones : all_zeros
 vmi_FQCMPLT, // d <- (a < b) ? all_ones : all_zeros
 vmi_FQCMPNLT, // d <- !(a < b) ? all_ones : all_zeros
 vmi_FQCMPLE, // d <- (a <= b) ? all_ones : all_zeros
 vmi_FQCMPNLE, // d <- !(a <= b) ? all_ones : all_zeros
 vmi_FQCMPGT, // d <- (a > b) ? all_ones : all_zeros
 vmi_FQCMPNGT, // d <- !(a > b) ? all_ones : all_zeros
 vmi_FQCMPGE, // d <- (a >= b) ? all_ones : all_zeros
 vmi_FQCMPNGE, // d <- !(a >= b) ? all_ones : all_zeros
 vmi_FQCMPOR, // d <- ordered(a,b) ? all_ones : all_zeros
 vmi_FQCMPNOR, // d <- !ordered(a,b) ? all_ones : all_zeros

 // SIGNALLING COMPARISON OPERATIONS
 vmi_FSCMPEQ, // d <- (a == b) ? all_ones : all_zeros
 vmi_FSCMPNEQ, // d <- !(a == b) ? all_ones : all_zeros
 vmi_FSCMPLT, // d <- (a < b) ? all_ones : all_zeros
 vmi_FSCMPNLT, // d <- !(a < b) ? all_ones : all_zeros
 vmi_FSCMPLE, // d <- (a <= b) ? all_ones : all_zeros
 vmi_FSCMPNLE, // d <- !(a <= b) ? all_ones : all_zeros
 vmi_FSCMPGT, // d <- (a > b) ? all_ones : all_zeros
 vmi_FSCMPNGT, // d <- !(a > b) ? all_ones : all_zeros
 vmi_FSCMPGE, // d <- (a >= b) ? all_ones : all_zeros
 vmi_FSCMPNGE, // d <- !(a >= b) ? all_ones : all_zeros
 vmi_FSCMPOR, // d <- ordered(a,b) ? all_ones : all_zeros
 vmi_FSCMPNOR, // d <- !ordered(a,b) ? all_ones : all_zeros

 // USER-DEFINED OPERATIONS
 vmi_FBINUD, // (implemented with result handler functions)

 vmi_FBINOP_LAST // KEEP LAST

} vmiFBinop;

Operations vmi_FMIN and vmi_FMAX differ from the IEEE definitions of minNum and
maxNum in that if either argument is a NaN then the result is a QNaN. This difference is
intentional: it allows an operation-specific QNaN handler to configure the precise result in
this case (the IEEE 754 Specification allows alternative implementations in this case).

Unlike other binary operations, the second argument for operation vmi_FSCALEI is a
signed integer, 2 bytes in size for 16-bit floating point types, 4 bytes in size for 32-bit
floating point types and 8 bytes in size for 64-bit and 80-bit floating point types. If this
instruction is being used in a SIMD context, then the integer vector alignment must
match the floating point vector; in other words, the integers need to have 2-byte
alignment for 16-bit floating point operands, 4-byte alignment for 32-bit floating point
operands, 8-byte alignment for 64-bit floating point operands, and 10-byte alignment for
80-bit floating point operands.

Operations vmi_FQCMPEQ . . . vmi_FQCMPNOR implement the IEEE 754 compareQuiet
operations. Operations vmi_FSCMPEQ . . . vmi_FSCMPNOR implement the IEEE 754
compareSignalling operations.

A user-defined operation may be implemented by specifying an operation of vmi_FBINUD
and a configuration with fp16ResultCB and/or fp32ResultCB and/or fp64ResultCB
callbacks (see example 2 below).

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 217 of 282

By default, the operation uses the currently active processor rounding mode. A different
fixed rounding mode may be specified by prefixing the operation with a call to function
vmimtFSetRounding; for example, this sequence specifies an add operation with
rounding towards zero:

 vmimtFSetRounding(vmi_FPR_ZERO);
 vmimtFBinopRRR(vmi_FT_32_IEEE_754, vmi_FADD, r1, r2, r3, flags, 0);

Example 1
The OVP ARM model uses vmimtFBinopSimdRRR for vector binary floating point
operations:

ARM_MORPH_FN(armEmitVBinop_F) {

 if(checkStateSDFPEnabled(state)) {

 Uns32 ebytes1 = SIMD_ELBYTES(state->info.r1);
 Uns32 ebytes2 = getVFPResultSize(state, ebytes1);
 Uns32 nels = SIMD_NUM_ELS(state->info.r1);
 vmiFBinop op = state->attrs->fbinop;
 Bool negate = state->attrs->negate;

 vmiReg r1 = GET_SIMD_RD(state, r1, 0, 0, ebytes2);
 vmiReg r2 = GET_SIMD_RS(state, r2, 0, 0, ebytes2);
 vmiReg r3 = GET_SIMD_RS(state, r3, 0, 0, ebytes2);
 vmiReg flags = GET_FLAGS(state);

 vmimtFBinopSimdRRR(bytesToFType(ebytes1), nels, op, r1, r2, r3, flags, 0);

 // If negate attribute is selected negate the result
 if(negate) {
 vmimtFUnopSimdRR(
 bytesToFType(ebytes1), nels, vmi_FQNEG, r1, r1, flags, 0
);
 }

 // extend result if required
 emitVFPExtend(state, r1, ebytes1, ebytes2);
 }
}

Example 2
The OVP RISC-V model implements user-defined vmimtFBinopRRR operations for some
operations using RMM rounding mode. For example, single-precision add operations use
a result handler shown below, which implement an interface to the SoftFloat IEEE
Floating-Point Arithmetic Package. This is necessary because the RISC-V model allows
the RMM rounding mode to be used for general operations (it is not restricted to
conversions to integral values).

static void beforeFPInt(riscvP riscv, riscvRMDesc rm) {

 // map from RISC-V rounding mode to riscvRMDesc
 static const riscvRMDesc mapRM[] = {
 [0] = RV_RM_RTE,
 [1] = RV_RM_RTZ,
 [2] = RV_RM_RDN,
 [3] = RV_RM_RUP,
 [4] = RV_RM_RMM,
 };

 // if rounding mode is RV_RM_CURRENT, get the current value

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 218 of 282

 if(rm==RV_RM_CURRENT) {
 rm = mapRM[RD_CSR_FIELD(riscv, fcsr, frm)];
 }

 // set SoftFloat controls
 softfloat_roundingMode = rm;
 softfloat_exceptionFlags = 0;
}

inline static void beforeFP(vmiProcessorP processor) {

 riscvP riscv = (riscvP)processor;

 beforeFPInt(riscv, riscv->fpActiveRM);
}

inline static void afterFP(vmiFPFlagsP setFlags) {
 setFlags->bits |= softfloat_exceptionFlags;
}

VMI_FP_32_RESULT_FN(riscvFADD32) {

 float32_t a = {args[0].u32};
 float32_t b = {args[1].u32};

 beforeFP(processor);
 float32_t result = f32_add(a, b);
 afterFP(setFlags);

 return result.v;
}

Notes and Restrictions

1. See the descriptions of functions vmirtGetFBinopRRRDesc and
vmirtFBinopSimdRRR in the VMI Run Time Function Reference which allow
equivalent functionality to be implemented in an embedded call.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 219 of 282

9.18 vmimtFTernopRRRR, vmimtFTernopSimdRRRR

Prototypes

void vmimtFTernopRRRR(
 vmiFType type,
 vmiFTernop op,
 vmiReg fd,
 vmiReg fa,
 vmiReg fb,
 vmiReg fc,
 vmiReg flags,
 Bool roundInt,
 vmiFPConfigCP config
);

void vmimtFTernopSimdRRRR(
 vmiFType type,
 Uns32 num,
 vmiFTernop op,
 vmiReg fd,
 vmiReg fa,
 vmiReg fb,
 vmiReg fc,
 vmiReg flags,
 Bool roundInt,
 vmiFPConfigCP config
);

Description
These functions emit code to perform a floating point ternary operation on arguments in
registers fa, fb and fc, writing the result in register fd, all of type type. For the SIMD
variant, argument num specifies the number of parallel operations (in the range 1 to 16)
and arguments fd, fa, fb and fc indicate the first register in a contiguous vector.

It is possible for the operation to generate exceptions. If generated exceptions are not
masked, the configured floating point exception handler will be called; otherwise, fd and
flags will be updated with the operation result and flags. The flags are a bitwise-or of
flags resulting from each individual operation.

Argument op is the ternary operation to perform. The available ternary floating point
operations are specified using the vmiFTernop enumeration in vmiTypes.h:

typedef enum {
 // UNFUSED OPERATION FUSED OPERATION
 vmi_FMADD, // d <- (a * b) + c d <- (a * b) + c
 vmi_FMSUB, // d <- (a * b) - c d <- (a * b) - c
 vmi_FNMADD, // d <- -((a * b) + c) d <- (-a * b) + c
 vmi_FNMSUB, // d <- -((a * b) - c) d <- (-a * b) - c
 vmi_FMSUBR, // d <- c - (a * b) d <- (-a * b) + c
 vmi_FMADDH, // d <- ((a * b) + c) / 2.0 d <- ((a * b) + c) / 2.0
 vmi_FMSUBH, // d <- ((a * b) - c) / 2.0 d <- ((a * b) - c) / 2.0
 vmi_FMSUBRH, // d <- (c - (a * b)) / 2.0 d <- ((-a * b) + c) / 2.0

 // USER-DEFINED OPERATIONS
 vmi_FTERNUD, // (implemented with result handler functions)

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 220 of 282

 vmi_FTERNOP_LAST// KEEP LAST

} vmiFTernop;

If roundInt is True, then each intermediate result will be rounded to the result type
before being used as an operand to the next operation (in other words, the operation is
unfused). The operations are carried out strictly in the precedence order implied by the
UNFUSED OPERATION column in the table above: for example, vmi_FMADDH will first
multiply a and b, then round the result, then add c, then round the result, then divide by 2.
Unfused operations can therefore generate multiple rounding events.

If roundInt is False, then for x87 argument types intermediates are represented in the
Intel x87 80-bit format, and for IEEE argument types intermediates are represented using
infinite precision. This means that, for IEEE types, such operations correspond to the
IEEE fused-multiply-add definition. In each case, the operations are carried out as
indicated in the FUSED OPERATION column in the table above.

If non-NULL, argument config specifies an operation-specific configuration that
overrides the default FPU configuration for this operation.

A user-defined operation may be implemented by specifying an operation of
vmi_FTERNUD and a configuration with fp16ResultCB and/or fp32ResultCB and/or
fp64ResultCB callbacks (see example 2 below).

By default, the operation uses the currently active processor rounding mode. A different
fixed rounding mode may be specified by prefixing the operation with a call to function
vmimtFSetRounding; for example, this sequence specifies an fused-multiply-add
operation with rounding towards zero:

 vmimtFSetRounding(vmi_FPR_ZERO);
 vmimtFTernopRRRR(
 vmi_FT_32_IEEE_754, vmi_FMADD, r1, r2, r3, r4, flags, round, 0
);

Example 1
The OVP ARM model uses vmimtFTernopSimdRRRR for vector ternary floating point
operations:

ARM_MORPH_FN(armEmitVTernop_F) {

 if(checkStateSDFPEnabled(state)) {

 Uns32 ebytes1 = SIMD_ELBYTES(state->info.r1);
 Uns32 ebytes2 = getVFPResultSize(state, ebytes1);
 Uns32 nels = SIMD_NUM_ELS(state->info.r1);
 Bool round = state->attrs->round;
 Bool r4Used = state->attrs->r4Used;
 vmiFTernop op = state->attrs->fternop;

 vmiReg r1 = GET_SIMD_RD(state, r1, 0, 0, ebytes2);
 vmiReg r2 = GET_SIMD_RS(state, r2, 0, 0, ebytes2);
 vmiReg r3 = GET_SIMD_RS(state, r3, 0, 0, ebytes2);
 vmiReg r4 = r4Used ? GET_SIMD_RS(state, r4, 0, 0, ebytes2) : r1;
 vmiReg flags = GET_FLAGS(state);

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 221 of 282

 vmimtFTernopSimdRRRR(
 bytesToFType(ebytes1), nels, op, r1, r2, r3, r4, flags, round, 0
);

 // extend result if required
 emitVFPExtend(state, r1, ebytes1, ebytes2);
 }
}

Example 2
The OVP RISC-V model implements user-defined vmimtFTernopRRRR operations for
some operations using RMM rounding mode. For example, single-precision fused-
multiply-add operations use a result handler shown below, which implement an interface
to the SoftFloat IEEE Floating-Point Arithmetic Package. This is necessary because the
RISC-V model allows the RMM rounding mode to be used for general operations (it is
not restricted to conversions to integral values).

static void beforeFPInt(riscvP riscv, riscvRMDesc rm) {

 // map from RISC-V rounding mode to riscvRMDesc
 static const riscvRMDesc mapRM[] = {
 [0] = RV_RM_RTE,
 [1] = RV_RM_RTZ,
 [2] = RV_RM_RDN,
 [3] = RV_RM_RUP,
 [4] = RV_RM_RMM,
 };

 // if rounding mode is RV_RM_CURRENT, get the current value
 if(rm==RV_RM_CURRENT) {
 rm = mapRM[RD_CSR_FIELD(riscv, fcsr, frm)];
 }

 // set SoftFloat controls
 softfloat_roundingMode = rm;
 softfloat_exceptionFlags = 0;
}

inline static void beforeFP(vmiProcessorP processor) {

 riscvP riscv = (riscvP)processor;

 beforeFPInt(riscv, riscv->fpActiveRM);
}

inline static void afterFP(vmiFPFlagsP setFlags) {
 setFlags->bits |= softfloat_exceptionFlags;
}

VMI_FP_32_RESULT_FN(riscvFMADD32) {

 float32_t a = {args[0].u32};
 float32_t b = {args[1].u32};
 float32_t c = {args[2].u32};

 beforeFP(processor);
 float32_t result = f32_mulAdd(a, b, c);
 afterFP(setFlags);

 return result.v;
}

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 222 of 282

Notes and Restrictions
1. See the descriptions of functions vmirtGetFTernopRRRRDesc and

vmirtFTernopSimdRRRR in the VMI Run Time Function Reference which allow
equivalent functionality to be implemented in an embedded call.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 223 of 282

9.19 vmimtFCompareRR, vmimtFCompareSimdRR

Prototypes

void vmimtFCompareRR(
 vmiFType type,
 vmiReg relation,
 vmiReg fa,
 vmiReg fb,
 vmiReg flags,
 Bool allowQNaN,
 vmiFPConfigCP config
);

void vmimtFCompareSimdRR(
 vmiFType type,
 Uns32 num,
 vmiReg relation,
 vmiReg fa,
 vmiReg fb,
 vmiReg flags,
 Bool allowQNaN,
 vmiFPConfigCP config
);

Description
These functions emit code to perform a floating point comparison operation on arguments
in register fa and fb, writing the result in register relation. The argument registers are
of type type; output register relation is an 8-bit value of type vmiFPRelation, which
enumerates the four exclusive relations in IEEE Standard 754:

typedef enum {
 vmi_FPRL_UNORDERED = 0x1, // unordered
 vmi_FPRL_EQUAL = 0x2, // equal
 vmi_FPRL_LESS = 0x4, // less than
 vmi_FPRL_GREATER = 0x8 // greater than
} vmiFPRelation;

For the SIMD variant, argument num specifies the number of parallel operations (in the
range 1 to 16) and arguments fa, fb and relation indicate the first register in a
contiguous vector (of byte size, in the case of relation).

It is possible for the comparison to generate exceptions. If generated exceptions are not
masked, the configured floating point exception handler will be called; otherwise,
relation and flags will be updated with the comparison result and flags. For the SIMD
variant, the flags are a bitwise-or of flags resulting from each individual comparison.

Argument allowQNaN specifies the behavior for IEEE QNaN inputs. If allowQNaN is True,
QNaN inputs will not cause exceptions and the vmi_FPRL_UNORDERED relation will result
from comparisons containing these operands. Otherwise, if allowQNaN is False, QNaN
inputs will be treated as an error and the invalid operation exception will be raised.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 224 of 282

Example
The OVP ARM model uses vmimtFCompareRR for per-element vector compare
operations:

static SIMD_EL_OP_FN(simdVCmpSelBool_F) {

 vmiFPRelation cond = state->attrs->fpRelation;
 Bool allowQNaN = state->attrs->allowQNaN;
 Uns64 ones = allOnes(resultSize);
 vmiReg relation = getTemp(state, 32);
 vmiFlags flags = getZFFlags(VMI_REG_DELTA(relation, 1));

 // Compare the floating point operands
 vmimtFCompareRR(bytesToFType(opSize/8), relation, r2, r3, flags, allowQNaN, 0);

 // Move zeros/ones to result depending on whether any bits are set in relation
 vmimtBinopRRC(8, vmi_AND, VMI_NOREG, relation, cond, &flags);
 vmimtCondMoveRCC(resultSize, flags.f[vmi_ZF], False, result, ones, 0);
}

Notes and Restrictions

1. See also functions vmimtFCompareRRC and vmimtFCompareSimdRRC which allow
result values to be specified in a more general form.

2. See the descriptions of functions vmirtGetFCompareRRDesc and
vmirtFCompareSimdRR in the VMI Run Time Function Reference which allow
equivalent functionality to be implemented in an embedded call.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 225 of 282

9.20 vmimtFCompareRRC, vmimtFCompareSimdRRC

Prototypes

void vmimtFCompareRRC(
 Uns8 rdBits,
 vmiFType type,
 vmiReg rd,
 vmiReg fa,
 vmiReg fb,
 vmiReg flags,
 Bool allowQNaN,
 Uns32 valueUN,
 Uns32 valueEQ,
 Uns32 valueLT,
 Uns32 valueGT,
 vmiFPConfigCP config
);

void vmimtFCompareSimdRRC(
 Uns8 rdBits,
 vmiFType type,
 Uns32 num,
 vmiReg rd,
 vmiReg fa,
 vmiReg fb,
 vmiReg flags,
 Bool allowQNaN,
 Uns32 valueUN,
 Uns32 valueEQ,
 Uns32 valueLT,
 Uns32 valueGT,
 vmiFPConfigCP config
);

Description
These functions emit code to perform a floating point comparison operation on arguments
in registers fa and fb, writing the result in register rd. The argument registers are of type
type; output register rd is of size rdBits. The value assigned to rd is selected as
follows:

1. If the comparison between fa and fb produces an unordered result, valueUN is
assigned to rd.

2. Otherwise, if fa is equal to fb, valueEQ is assigned to rd.
3. Otherwise, if fa is less than fb, valueLT is assigned to rd.
4. Otherwise (fa is greater than fb), valueGT is assigned to rd.

For the SIMD variant, argument num specifies the number of parallel operations (in the
range 1 to 16) and arguments fa, fb and rd indicate the first register in a contiguous
vector (of size rdBits, in the case of rd).

It is possible for the comparison to generate exceptions. If generated exceptions are not
masked, the configured floating point exception handler will be called; otherwise, rd and

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 226 of 282

flags will be updated with the comparison result and flags. For the SIMD variant, the
flags are a bitwise-or of flags resulting from each individual comparison.

Argument allowQNaN specifies the behavior for IEEE QNaN inputs. If allowQNaN is True,
QNaN inputs will not cause exceptions and an unordered result will generated for
comparisons containing these operands. Otherwise, if allowQNaN is False, QNaN inputs
will be treated as an error and the invalid operation exception will be raised.

These functions generalize the behavior of vmimtFCompareRR and
vmimtFCompareSimdRR. For example,

vmimtFCompareRR(
 type, relation, fa, fb, flags, allowQNaN, 0
);

is exactly equivalent to:

vmimtFCompareRRC(
 8, type, relation, fa, fb, flags, allowQNaN,
 vmi_FPRL_UNORDERED, vmi_FPRL_EQUAL, vmi_FPRL_LESS, vmi_FPRL_GREATER,
 0
);

Example
This example is derived from the OVP ARM model. The comparison is designed to
directly assign to a value of type armArithFlags in the ARM processor structure.

#include “vmi/vmiMt.h”
#include “vmi/vmiTypes.h”

// arithmetic flag indices
typedef enum armAFIE {
 AFI_Z, // zero flag
 AFI_N, // sign flag
 AFI_C, // carry flag
 AFI_V, // overflow flag
 AFI_LAST, // KEEP LAST: for sizing
} armAFI;

// arithmetic flags
typedef struct armArithFlagsS {
 Uns8 f[AFI_LAST];
} armArithFlags, *armArithFlagsP;

//
// Return a mask bit that sets the given flag in an armArithFlags structure
//
#define FLAG_MASK(_ID) (1<<(_ID*8))

//
// Compare fa to fb, setting armFlags and flags
//
void armEmitFCompareRRF(
 armMorphStateP state,
 vmiFType type,
 vmiReg armFlags,
 vmiReg fa,
 vmiReg fb,
 Bool allowQNaN
) {
 // do prologue actions

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 227 of 282

 armStartFPOperation(state);

 // do the compare
 vmimtFCompareRRC(
 32,
 type,
 armFlags,
 fa,
 fb,
 ARM_FP_STICKY,
 allowQNaN,
 FLAG_MASK(AFI_C) | FLAG_MASK(AFI_V), // unordered
 FLAG_MASK(AFI_Z) | FLAG_MASK(AFI_C), // equal
 FLAG_MASK(AFI_N), // less
 FLAG_MASK(AFI_C), // greater
 armGetOpConfig(state)
);
}

// processor structure
typedef struct armS {
 . . .
 armArithFlags aflags; // arithmetic flags
 armArithFlags sdfpAFlagsAA32; // FPU comparison flags (AArch32 state)
 . . .
} arm;

//
// morph-time macros to calculate variable offsets to flags in an arm structure
//
#define ARM_AFLAGS ARM_CPU_REG(aflags)
#define ARM_AFLAGS_AA32 ARM_CPU_REG(sdfpAFlagsAA32)

//
// Common code to execute VFP VCMP instructions
//
static void emitVCmpVFP(armMorphStateP state, vmiReg rd, vmiReg rm, Uns32 ebytes) {

 Bool allowQNaN = state->attrs->allowQNaN;
 vmiReg armFlags = IS_AARCH64(state) ? ARM_AFLAGS : ARM_AFLAGS_AA32;

 armEmitFCompareRRF(state, bytesToFType(ebytes), armFlags, rd, rm, allowQNaN);
}

Notes and Restrictions

1. See the descriptions of functions vmirtGetFCompareRRCDesc and
vmirtFCompareSimdRR in the VMI Run Time Function Reference which allow
equivalent functionality to be implemented in an embedded call.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 228 of 282

9.21 vmimtFStart, vmimtFEnd

Prototypes

void vmimtFStart(void);
void vmimtFEnd(vmiReg flags, vmiFPConfigCP config);

Description
These functions enable definition of compound floating point operations, which are
composed of a number of other floating point or general morph-time primitives. They
provide a very powerful mechanism allowing the standard floating point primitives to be
extended in a natural way with user-defined emulated instructions.

The general flow is as follows:

1. vmimtFStart is called to indicate the start of a compound operation.
2. A series of general vmimt primitives is used, which can operate on true processor

registers or processor temporaries.
3. vmimtFEnd is called to indicate the end of the compound operation.

Function vmimtFEnd takes a flags register and a floating point configuration structure as
arguments. Within the floating point compound operation block, any updates to true
processor registers in the processor structure described by the morph-time primitives do
not take effect immediately: instead, updates are recorded in a scratch structure. Then,
when the end of the floating point block is encountered, the simulator first checks for any
enabled floating point exceptions. If there are such exceptions, the model floating point
exception handler is called. Otherwise, changes in the scratch structure are written back
to the processor structure. This allows compound operations to be described in a natural
way without perturbing the processor state if an enabled exception is taken.

If floating point primitives are used within the compound operation block, then any
floating point exception handler associated with the configuration of those instructions is
ignored: the exception handler associated with the configuration given as an argument to
vmimtFEnd is used instead. Configurations for multiple floating point operations used
within a compound block will normally indicate that result flags are sticky (stickyFlags
is True).

The only fields used from the floating point configuration passed to vmimtFEnd are
fpArithExceptCB (defining the floating point exception handler), stickyFlags
(indicating whether the composite operation result flags are sticky or not) and
perElementFlags (indicating whether operation result flags should be aggregated or
reported separately for each SIMD operation). When perElementFlags is True, the
separately-recorded operation flags are not written to the scratch structure but are instead
written to the true processor structure, which means that they are easily available in the
floating point exception handler. This is the only part of the processor structure that is
modified before exceptions are taken.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 229 of 282

Examples
This example shows how a standard VMI SIMD floating point operation could be
recoded as a compound operation. In practice it would always be better to use available
SIMD primitives if possible - this example is therefore for API clarification only and not
a recommended modeling style.

Original SIMD Code

// floating-point configuration with non-sticky flags result
static vmiFPConfig opConfig = {
 . . .
 .stickyFlags = False,
 .fpArithExceptCB = handleFPExceptions
};

// fd = fa + fb, setting non-sticky flags CPU_FFLAGS
static void emitSIMDFAdd32(vmiReg fd, vmiReg fa, vmiReg fb, Uns32 num) {
 vmimtFBinopSimdRRR(
 vmi_FT_32_IEEE_754,
 num,
 vmi_FADD,
 fd,
 fa,
 fb,
 CPU_FFLAGS,
 &opConfig
);
}

Equivalent Compound Operation

// floating-point configuration with non-sticky flags result
static vmiFPConfig opConfig = {
 . . .
 .stickyFlags = False,
 .fpArithExceptCB = handleFPExceptions
};

// floating-point configuration with sticky flags result used within
// compound floating point operation
static vmiFPConfig innerConfig = {
 . . .
 .stickyFlags = True
};

// fd = fa + fb, setting non-sticky flags CPU_FFLAGS
static void emitSIMDFAdd32(vmiReg fd, vmiReg fa, vmiReg fb, Uns32 num) {

 // start compound operation
 vmimtFStart();

 // perform individual adds accumulating sticky flags
 Uns32 i;
 for(i=0; i<num; i++) {
 vmimtFBinopRRR(
 vmi_FT_32_IEEE_754,
 vmi_FADD,
 VMI_REG_DELTA(fd, i*4),
 VMI_REG_DELTA(fa, i*4),
 VMI_REG_DELTA(fb, i*4),
 CPU_FFLAGS,
 &innerConfig
);
 }

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 230 of 282

 // complete operation, committing results if required
 vmimtFEnd(CPU_FFLAGS, &opConfig);
}

Loops in Compound Floating Point Operations
It is possible to use compound operations in combination with vmimtDJNZLabel loops
and indexed registers. This example shows such a loop, assuming per-element operation
flags are not required:

static void emitVectorFOp(
 vmiFBinop op,
 Uns32 bits,
 Uns32 rd,
 Uns32 ra,
 Uns32 rb
) {
 vmiLabelP repeat = vmimtNewLabel();
 Uns32 vecSize = sizeof(cpuVec);
 Uns32 elemSize = bits/8;
 Uns32 elemNum = vecSize/elemSize;
 vmiReg base = CPU_VR_BASE;
 vmiReg index = CPU_VR_INDEX(0);
 vmiReg fdE = CPU_VR(rd);
 vmiReg faE = CPU_VR(ra);
 vmiReg fbE = CPU_VR(rb);
 vmiReg flags = CPU_FR(1);

 // prepare indexed registers
 vmimtGetIndexedRegister(&fdE, &base, vecSize);
 vmimtGetIndexedRegister(&faE, &base, vecSize);
 vmimtGetIndexedRegister(&fbE, &base, vecSize);

 // initialize repeat count
 vmimtMoveRC(32, index, elemNum);

 // start compound operation
 vmimtFStart();

 // loop to here
 vmimtInsertLabel(repeat);

 // do operation
 vmimtFBinopRRR(vmi_FT_32_IEEE_754, op, fdE, faE, fbE, flags, &config);

 // prepare for next iteration
 vmimtAddBaseC(base, elemSize, 0);
 vmimtDJNZLabel(32, index, repeat);

 // end compound operation
 vmimtFEnd(elemNum, flags, &config);
}

If per-element floating point flags are required, a separate base register must be used to
iterate across the operation flag members. In addition, separate vmiReg structures are
required to identify indexed members of the operation flags array within the loop and the
composite result flag outside the loop:

static void emitVectorFOp(
 vmiFBinop op,
 Uns32 bits,
 Uns32 rd,
 Uns32 ra,
 Uns32 rb
) {
 vmiLabelP repeat = vmimtNewLabel();

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 231 of 282

 Uns32 vecSize = sizeof(cpuVec);
 Uns32 elemSize = bits/8;
 Uns32 elemNum = vecSize/elemSize;
 Uns32 flagSize = 1;
 vmiReg base = CPU_VR_BASE(0);
 vmiReg baseF = CPU_VR_BASE(1);
 vmiReg index = CPU_VR_INDEX(0);
 vmiReg fdE = CPU_VR(rd);
 vmiReg faE = CPU_VR(ra);
 vmiReg fbE = CPU_VR(rb);
 vmiReg loopFlags = CPU_FR(rd);
 vmiReg cumFlags = CPU_FR(rd);

 // prepare indexed registers
 vmimtGetIndexedRegister(&fdE, &base, vecSize);
 vmimtGetIndexedRegister(&faE, &base, vecSize);
 vmimtGetIndexedRegister(&fbE, &base, vecSize);
 vmimtGetIndexedRegister(&loopFlags, &baseF, flagSize);

 // initialize repeat count
 vmimtMoveRC(32, index, elemNum);

 // start compound operation
 vmimtFStart();

 // loop to here
 vmimtInsertLabel(repeat);

 // do operation
 vmimtFBinopRRR(vmi_FT_32_IEEE_754, op, fdE, faE, fbE, loopFlags, &config);

 // prepare for next iteration
 vmimtAddBaseC(base, elemSize, 0);
 vmimtAddBaseC(baseF, flagSize, 0);
 vmimtDJNZLabel(32, index, repeat);

 // end compound operation
 vmimtFEnd(elemNum, cumFlags, &config);
}

If any operation within the compound operation block targets a true processor register
(not a temporary) then the only control flow operations allowed within the block are
vmimtDJNZLabel loops. In addition, the simulator will always assume that the entire
target register must be copied back from the scratch structure at the end of the compound
operation, so care must be taken to ensure that the vector size is correctly specified in the
vmimtGetIndexedRegister calls and that all SIMD elements are updated in the loop.

Sometimes, more flexibility than this is required: for example, when defining vector
operations, it may be the case that the vector size is not static (it is determined by a
control register) or that updated vector members are not in a contiguous range, or that
different operations should apply to different vector members (requiring control flow
operations other than vmimtDJNZLabel loops). To implement such operations, use a
modified flow, as follows:

1. vmimtFStart is called to indicate the start of the compound operation.
2. A series of general vmimt primitives within a loop is used, which can operate on

true processor registers or processor temporaries but target only processor
temporaries (with the exception of flags, which may be true registers).

3. vmimtFEnd is called to indicate the end of the compound operation, and cause any
enabled exceptions to be taken.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 232 of 282

4. General vmimtMoveRR primitives are called within a second loop to commit
results from temporaries to true processor registers.

When operations within a compound block target only temporaries as described above, it
is permitted to use labeled branches and jumps within those compound blocks (so
members can be treated differently). Because the commit of results is performed
explicitly, any subset of vector members can be updated (the only requirement being that
the members addressed in the commit phase match those written in the operation phase).

Notes and Restrictions

1. A call to vmimtFStart is illegal within a compound floating point operation block
(blocks may not be nested).

2. With the exception of vmimtDJNZLabel loops, calls to any control-flow
modifying primitives are illegal within compound floating point operation blocks,
if operations in those blocks target true processor registers (see above).
Specifically, inter-instruction jump primitives (e.g. vmimtCondJump) and intra-
instruction primitives (e.g. vmimtCondJumpLabel) may not be used.

3. Calls to memory load/store primitives are are illegal within compound floating
point operation blocks.

4. It is possible to call embedded functions within compound blocks, but care must
be taken to ensure that the called functions do not directly modify processor state
or directly refer to processor state that has already been modified within the
compound block. This will result either in the embedded function updating state
when it should not (if an exception is taken) or referencing a stale register value
(because the correct value is pending in a scratch area).

5. When used in combination with vmimtDJNZLabel loops, code is generated
assuming that entire target registers of the size specified in the
vmimtGetIndexedRegister call are updated. Be careful to ensure the specified
register size is correct and fully written inside the loop.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 233 of 282

10 Miscellaneous Operations
This section describes miscellaneous emission functions for simulator control and
instruction counting.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 234 of 282

10.1 vmimtHalt

Prototype

void vmimtHalt(void);

Description
This function emits code that halts execution for the current processor. It is used to
simulate hardware halt instructions.

A processor that has been halted may be restarted by a call to the run time functions
vmirtRestartNow or vmirtRestartNext (defined in vmiRt.h). This call will typically
be made within an event handler routine or as a call made by the implementation of a
special instruction executed by another processor in the simulated platform.

Example
The OVP ARM model uses this function for halt, WFI and WFE operations. A field on the
processor called disable is used to hold the current reason why the processor is not
executing:

void armEmitHalt(armDisableReason reason) {
 vmimtMoveRC(8, ARM_DISABLE, reason);
 vmimtHalt();
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 235 of 282

10.2 vmimtYield

Prototype

void vmimtYield(void);

Description
This function emits code that explicitly suspends execution of the current processor on
completion of the current simulated instruction to allow other processors in a
multiprocessor simulation to run. The processor will run again when all other runnable
processors have executed. Unlike related function vmimtIdle, the processor will resume
execution in the current time slice.

This function is useful only for modeling artifact behavior that requires processors to run
in a particular order. It should not normally be required or used in processor models, but
may be useful in binary intercept libraries.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. See related function vmimtIdle which causes the processor to execute in the next
time slice.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 236 of 282

10.3 vmimtIdle

Prototype

void vmimtIdle(void);

Description
This function emits code that explicitly suspends execution of the current processor on
completion of the current simulated instruction, and advances processor time
immediately to the end of the scheduled time slot or until the next timer event for that
processor, as if it had executed nop instructions in the interim.

This function is useful only for modeling artifact behavior that requires processors to run
in a particular order. It should not normally be required or used in processor models, but
may be useful in binary intercept libraries.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. See related function vmimtYield which causes the processor to execute in the
same time slice.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 237 of 282

10.4 vmimtInterrupt

Prototype

void vmimtInterrupt(void);

Description
This function causes simulation to stop on completion of the current simulated instruction
and return from the calling context. It is intended for use in intercept libraries.

When using the OP interface, the function will cause a return from
opProcessorSimulate or opRootModuleSimulate with a stop reason of
OP_SR_INTERRUPT.

When using the legacy ICM interface, the function will cause a return from icmSimulate
or icmSimulatePlatform with a stop reason of ICM_SR_INTERRUPT.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 238 of 282

10.5 vmimtExit

Prototype

void vmimtExit(void);

Description
This simulation control function emits code that ends execution for the current processor.
In a multiprocessor simulation, remaining processors will continue execution. If the
current processor is the only running processor, then the simulation run will end.

If the processor is a member of a cluster or SMP group, then behavior is determined by
the leaf-level exitmode parameter on the group. If exitmode is first (the default), then
the first group member that exits will cause all members of the group to exit. If exitmode
is all, then exit will affect only the current processor; other members of the cluster or
SMP group will continue to run.

This function is typically used to model special trap operations intended to cause
simulation termination, or to handle situations such as decoded but unimplemented
instructions while processor models are under development.

Example
The OVP ARM model uses this function to exit simulation for a decoded but
unimplemented instruction:

static void emitUnimplemented(armMorphStateP state) {
 vmimtArgProcessor();
 vmimtArgSimPC(ARM_GPR_BITS);
 vmimtCall((vmiCallFn)unimplemented);
 vmimtExit();
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 239 of 282

10.6 vmimtFinish

Prototype

void vmimtFinish(void);

Description
This simulation control function emits code that ends simulation. Note that this is
different to vmimtExit because simulation will end even if other processors in a
multiprocessor platform are still running.

This function is typically used to model special trap operations intended to cause
simulation termination, or to handle situations such as decoded but unimplemented
instructions while processor models are under development.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 240 of 282

10.7 vmimtEndBlock

Prototype

void vmimtEndBlock(void);

Description
This simulation control function forces the current native code block to be terminated
after the current simulated instruction – the next simulated instruction is guaranteed to be
in a different code block. The circumstances in which this might be useful are described
below.

As explained in the section Interaction with Imperas Simulators, the simulator maintains
native translations of simulated instructions in code blocks in a dictionary. The bounds of
each code block are determined as follows:

1. Any instruction targeted by a jump instruction starts a code block.
2. Any jump instruction terminates a code block.
3. Large code blocks are also restricted to a maximum of 256 bytes.

The simulator automatically determines the bounds of code blocks as it executes, and
usually the rules described above are adequate. There are, however, some circumstances
that cause problems:

1. Mode changes within a code block
The simulator can maintain many dictionaries for each simulated processor. This
is useful because often instructions have different behavior depending on
processor mode: for example, an instruction that writes to a status register may
succeed in kernel mode but cause a privileged instruction trap in user mode. By
maintaining separate dictionaries for user and kernel modes, the decision about
the instruction behavior can be made at morph time instead of run time, which
means the native code is much more efficient.
If an instruction is executed that causes a mode change, then the next instruction
must by definition be in a different code block (because it must be in a different
dictionary). In this case, vmimtEndBlock should be called to force the current
code block to be terminated.

2. Block mask or polymorphic key changes within a code block

The simulator can also maintain alternative translations for particular instruction
patterns. In some cases, the choice is made statically using a block mask idiom
(see section 10.11); in other cases, the choice is made dynamically using a
polymorphic key idiom (see section 10.14). In either case, when any operation is
performed that changes the active block mask or polymorphic key,
vmimtEndBlock should be called to force the current code block to be terminated.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 241 of 282

3. Bogus instruction patterns
A simulation may set unused memory to a specific pattern, for example
0xdeadbeef. This pattern usually coincides with a possibly legal but highly
unlikely instruction (although the simulator has no way of knowing this).
If during simulation a branch is made to uninitialized memory (because of an
application program error), the simulator will start translation of instructions with
the unused memory pattern.
If the pattern corresponds to an instruction that is not a branch, then the effect will
be to create a very large code block consisting of very many repetitions of the
translated unused pattern, which can cause an apparent simulator freeze while the
code block is processed.
For performance reasons, it is therefore sensible to terminate the current code
block whenever the unlikely-but-legal instruction is encountered.

Example
The OVP RISC-V model uses this function when code is emitted to write a CSR. For
example, a write to the misa CSR ends the current code block:

riscvArchitecture riscvEmitCSRWrite(
 riscvCSRId id,
 riscvP riscv,
 vmiReg rs,
 vmiReg tmp
) {
 riscvArchitecture arch = riscv->currentArch;
 csrAttrsCP attrs = &csrs[id];
 Uns32 bits = riscvGetXlenMode(riscv);
 riscvCSRWriteFn writeCB = getCSRWriteCB(id, riscv, bits);
 vmiReg raw = getRawArch(attrs, arch);
 Uns64 mask = getCSRWriteMask(attrs, riscv);

 // indicate that this register has been written
 vmimtRegWriteImpl(attrs->name);

 if(writeCB) {

 // if CSR is implemented externally, mirror the result into any raw
 // register in the model (otherwise discard the result)
 if(!csrImplementExternalWrite(id, riscv)) {
 raw = VMI_NOREG;
 }

 // emit code to call the write function (NOTE: argument is always 64
 // bits, irrespective of the architecture size)
 vmimtArgUns32(id);
 vmimtArgProcessor();
 vmimtArgRegSimAddress(bits, rs);
 vmimtCallResult((vmiCallFn)writeCB, bits, raw);

 // terminate the current block if required
 if(attrs->wEndBlock) {
 vmimtEndBlock();
 }

 } else if(VMI_ISNOREG(raw)) {

 // emit warning for unimplemented CSR
 emitWarnUnimplementedCSR(id, riscv);

 } else if(mask==-1) {

 // new value is written unmasked

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 242 of 282

 vmimtMoveRR(bits, raw, rs);

 } else if(mask) {

 // apparent reads of register below are artifacts only
 vmimtRegNotReadR(bits, raw);

 // new value is written masked
 vmimtBinopRC(bits, vmi_ANDN, raw, mask, 0);
 vmimtBinopRRC(bits, vmi_AND, tmp, rs, mask, 0);
 vmimtBinopRR(bits, vmi_OR, raw, tmp, 0);
 }

 // return architectural constraints that apply to this register
 return attrs->arch;
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 243 of 282

10.8 vmimtGetBlockMask

Prototype

void vmimtGetBlockMask(vmiReg blockMask);

Description
This simulation control function copies the current processor block mask to the 32-bit
register blockMask. The block mask is used to validate that assumptions made when the
current block was translated still apply when it is executed. If the assumptions no longer
apply, the code block is automatically deleted and remorphed. The assumptions for the
current block are specified using vmimtValidateBlockMask.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. See the description of vmirtSetBlockMask in the VMI Run Time Function
Reference for extensive details and an example of the use of this function.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 244 of 282

10.9 vmimtSetBlockMaskC

Prototype

void vmimtSetBlockMaskC(Uns32 blockMask);

Description
This simulation control function sets the current processor block mask to the value
blockMask. The block mask is used to validate that assumptions made when the current
block was translated still apply when it is executed. If the assumptions no longer apply,
the code block is automatically deleted and remorphed. The assumptions for the current
block are specified using vmimtValidateBlockMask.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. See the description of vmirtSetBlockMask in the VMI Run Time Function
Reference for extensive details and an example of the use of this function.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 245 of 282

10.10 vmimtSetBlockMaskR

Prototype

void vmimtSetBlockMaskR(vmiReg blockMask);

Description
This simulation control function sets the current processor block mask to the value of the
32-bit register blockMask. The block mask is used to validate that assumptions made
when the current block was translated still apply when it is executed. If the assumptions
no longer apply, the code block is automatically deleted and remorphed. The assumptions
for the current block are specified using vmimtValidateBlockMask.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions

1. See the description of vmirtSetBlockMask in the VMI Run Time Function
Reference for extensive details and an example of the use of this function.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 246 of 282

10.11 vmimtValidateBlockMask

Prototype

void vmimtValidateBlockMask(Uns32 modeMask);

Description
This simulation control function is used in combination with the VMI Run Time API
function vmirtSetBlockMask to validate that assumptions made when the block was
translated still apply when it is executed. If the assumptions no longer apply, the code
block is automatically deleted and remorphed. Block mask behavior is implemented in
two parts:

1. At morph time, the current value of bits in the built-in 32-bit block mask selected
using a bitwise-and with modeMask are recorded with the code block.

2. At run time, bits in the built-in 32-bit block mask are again selected using a
bitwise-and with modeMask. These selected bits are then compared with the
morph-time value saved with the block. If these values differ, the block is deleted
and retranslated; otherwise, the block is executed.

Block masks are typically used to efficiently implement instructions whose behavior
differs based on enable bits that are likely to have a constant value when a block is
executed. For example, floating point instructions are typically enabled by a processor
configuration bit: if enabled, the instruction executes normally; if disabled, an exception
is taken. By encoding the enable bit in a blockmask that is checked using
vmirtValidateBlockMask, morph time code can create either the floating point
instruction code or code to take an exception, not both. This results in much more
compact JIT code with fewer branches.

Example
The OVP ARM model uses this function to implement a stack alignment check in
AArch64 mode:

void armEmitCheckSA(armMorphStateP state) {

 armP arm = state->arm;
 armBlockStateP blockState = state->blockState;

 // emit blockMask check of SA state
 vmimtValidateBlockMask(ARM_BM_SA);

 // determine if alignment check is required
 if(!blockState->alignedSP && (arm->blockMask & ARM_BM_SA)) {

 vmiLabelP ok = vmimtNewLabel();

 // after this instruction, the stack pointer will be aligned (otherwise
 // an exception will have been taken)
 blockState->alignedSP = True;

 // skip mode switch unless stack is misaligned
 vmimtTestRCJumpLabel(64, vmi_COND_Z, ARM_SP64(0), 0xf, ok);

 // emit call to stack alignment exception routine

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 247 of 282

 vmimtArgProcessor();
 vmimtCallAttrs((vmiCallFn)armSA, VMCA_EXCEPTION);

 // here if no stack alignment exception
 vmimtInsertLabel(ok);
 }
}

Notes and Restrictions

1. See the description of vmirtSetBlockMask in the VMI Run Time Function
Reference for extensive details and an example of the use of this function.

2. See related function vmimtValidateBlockMaskR, which allows block masks to be
validated using any processor register instead of the built-in 32-bit block mask.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 248 of 282

10.12 vmimtValidateBlockMaskR

Prototype

void vmimtValidateBlockMaskR(
 Uns32 bits,
 vmiReg r,
 Uns64 modeMask
);

Description
This simulation control function is used to validate that assumptions made when a block
was translated still apply when it is executed. If the assumptions no longer apply, the
code block is automatically deleted and remorphed. Block mask behavior is implemented
in two parts:

1. At morph time, the current value of bits in register r selected using a bitwise-and
with modeMask are recorded with the code block.

2. At run time, bits in register r are again selected using a bitwise-and with
modeMask. These selected bits are then compared with the morph-time value
saved with the block. If these values differ, the block is deleted and retranslated;
otherwise, the block is executed.

Block masks are typically used to efficiently implement instructions whose behavior
differs based on enable bits that are likely to have a constant value when a block is
executed. For example, floating point instructions are typically enabled by a processor
configuration bit: if enabled, the instruction executes normally; if disabled, an exception
is taken. By encoding the enable bit in a blockmask that is checked using
vmirtValidateBlockMaskR, morph time code can create either the floating point
instruction code or code to take an exception, not both. This results in much more
compact JIT code with fewer branches.

This function differs from vmimtValidateBlockMask in two ways:

1. The block mask is held in a general processor register, not the built-in processor
block mask; and

2. The block mask can be up to 64 bits (not 32 bits, like the built-in block mask).

Example
The OVP ARC model uses this function to implement zero-overhead loop instructions
efficiently. These instructions loop based on an end address held in a register, and for
efficiency the JIC-compiled code assumes the end address is the same each time the loop
is executed. The block mask is used to validate this assumption:

void arcEmitStartZOL(arcMorphStateP state) {

 Uns32 bits = ARC_GPR_BITS;
 vmiLabelP noLPUpdate = vmimtNewLabel();
 Uns32 lpcMask = state->arc->lpcMask;

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 249 of 282

 // when executing this block, validate that lp_end has the same value
 // that it has when code for the block was generated
 vmimtValidateBlockMaskR(ARC_GPR_BITS, ARC_AUX_REG(lp_end), -1);

 // tag this block to avoid unnecessary deletion when lp_end changes
 vmimtTagBlock(VBT_1);

 // ARC700 and ARCv2 implement STATUS32.L flag, disabling zero-overhead loops
 if(isARC700v2(state->arc)) {

 // assume zero-overhead loop is disabled
 vmimtMoveRC(8, ARC_ZOL_BRANCH, 0);

 // go to the label if L bit is set
 vmimtCondJumpLabel(ARC_L, True, noLPUpdate);
 }

 // define flags to detect non-zero condition, when loop count is decremented
 vmiFlags flags = {
 VMI_NOFLAG,
 {
 [vmi_CF] = VMI_NOFLAG,
 [vmi_PF] = VMI_NOFLAG,
 [vmi_ZF] = ARC_ZOL_BRANCH,
 [vmi_SF] = VMI_NOFLAG,
 [vmi_OF] = VMI_NOFLAG
 },
 vmi_FN_ZF
 };

 // decrement loop count and perhaps mask it, generating non-zero flag
 if(state->arc->lpcMask==-1) {
 vmimtBinopRC(bits, vmi_SUB, ARC_LP_COUNT, 1, &flags);
 } else {
 vmimtBinopRC(bits, vmi_SUB, ARC_LP_COUNT, 1, 0);
 vmimtBinopRC(bits, vmi_AND, ARC_LP_COUNT, lpcMask, &flags);
 }

 if(isARC600(state->arc)) {

 // ARC600 loop terminates if pre-decrement value is either 0 or 1, so
 // include detection of *post-decrement* value -1
 vmiReg tf = ARC_TEMP(state->tempIdx+1);
 vmimtCompareRC(bits, vmi_COND_NE, ARC_LP_COUNT, lpcMask, tf);
 vmimtBinopRR(bits, vmi_AND, ARC_ZOL_BRANCH, tf, 0);

 } else if(state->inDelaySlot) {

 // on ARC700 and ARCv2, if in a delay slot, only branch if STATUS32.DE
 // is zero
 vmimtBinopRR(8, vmi_ANDN, ARC_ZOL_BRANCH, ARC_DE, 0);
 }

 // here if zero-overhead loops are disabled
 vmimtInsertLabel(noLPUpdate);
}

Notes and Restrictions
1. bits must be 8, 16, 32 or 64.
2. If a simulated instruction modifies register r, ensure that the current code block is

terminated using vmimtEndBlock. If this is not done, then subsequent simulated
instructions in the code block may operate incorrectly if their behavior depends on
modified bits in the block mask register.

3. See the description of vmirtSetBlockMask in the VMI Run Time Function Reference
for extensive details on the behavior of block masks.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 250 of 282

10.13 vmimtTagBlock

Prototype

void vmimtTagBlock(vmiBlockTag tag);

Description
This simulation control function is used to tag a block at morph time to enable it to be
conditionally preserved or deleted by a later call to VMI run time function
vmirtFlushTargetModeTagged. The tag argument is an enumerated type defined in
vmiTypes.h:

typedef enum vmiBlockTagE {
 VBT_NA = 0, // no tag
 VBT_1 = (1<<0), // tag 1
 VBT_2 = (1<<1), // tag 2
 VBT_3 = (1<<2), // tag 3
 VBT_4 = (1<<3), // tag 4
 VBT_5 = (1<<4), // tag 5
 VBT_6 = (1<<5), // tag 6
 VBT_7 = (1<<6), // tag 7
 VBT_8 = (1<<7), // tag 8
} vmiBlockTag;

When a block is tagged, the tag value is combined with any existing tags for that block
using bitwise-or. This means that multiple calls to vmimtTagBlock add tags cumulatively
to the current code block, with up to eight distinct tags supported.

Example
This example is from the OVP ARC processor model. The ARC processor implements a
zero-overhead loop construct in which a code block can only be reused if a limiting
address held in a register holds a certain value. Setting the register to a new address must
invalidate any blocks at that address unless they implement zero-overhead loop behavior,
in which case they can be preserved.

Unnecessary block flushes are suppressed by using tagged blocks as follows:

void arcEmitStartZOL(arcMorphStateP state) {

 Uns32 bits = ARC_GPR_BITS;
 vmiLabelP noLPUpdate = vmimtNewLabel();
 Uns32 lpcMask = state->arc->lpcMask;

 // when executing this block, validate that lp_end has the same value
 // that it has when code for the block was generated
 vmimtValidateBlockMaskR(ARC_GPR_BITS, ARC_AUX_REG(lp_end), -1);

 // tag this block to avoid unnecessary deletion when lp_end changes
 vmimtTagBlock(VBT_1);

 // ARC700 and ARCv2 implement STATUS32.L flag, disabling zero-overhead loops
 if(isARC700v2(state->arc)) {

 // assume zero-overhead loop is disabled
 vmimtMoveRC(8, ARC_ZOL_BRANCH, 0);

 // go to the label if L bit is set

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 251 of 282

 vmimtCondJumpLabel(ARC_L, True, noLPUpdate);
 }

 // define flags to detect non-zero condition, when loop count is decremented
 vmiFlags flags = {
 VMI_NOFLAG,
 {
 [vmi_CF] = VMI_NOFLAG,
 [vmi_PF] = VMI_NOFLAG,
 [vmi_ZF] = ARC_ZOL_BRANCH,
 [vmi_SF] = VMI_NOFLAG,
 [vmi_OF] = VMI_NOFLAG
 },
 vmi_FN_ZF
 };

 // decrement loop count and perhaps mask it, generating non-zero flag
 if(state->arc->lpcMask==-1) {
 vmimtBinopRC(bits, vmi_SUB, ARC_LP_COUNT, 1, &flags);
 } else {
 vmimtBinopRC(bits, vmi_SUB, ARC_LP_COUNT, 1, 0);
 vmimtBinopRC(bits, vmi_AND, ARC_LP_COUNT, lpcMask, &flags);
 }

 if(isARC600(state->arc)) {

 // ARC600 loop terminates if pre-decrement value is either 0 or 1, so
 // include detection of *post-decrement* value -1
 vmiReg tf = ARC_TEMP(state->tempIdx+1);
 vmimtCompareRC(bits, vmi_COND_NE, ARC_LP_COUNT, lpcMask, tf);
 vmimtBinopRR(bits, vmi_AND, ARC_ZOL_BRANCH, tf, 0);

 } else if(state->inDelaySlot) {

 // on ARC700 and ARCv2, if in a delay slot, only branch if STATUS32.DE
 // is zero
 vmimtBinopRR(8, vmi_ANDN, ARC_ZOL_BRANCH, ARC_DE, 0);
 }

 // here if zero-overhead loops are disabled
 vmimtInsertLabel(noLPUpdate);
}

In a callback that is activated when the lp_end register changes, code blocks at the end
address implied by the new value of the lp_end register are flushed using this idiom:

static void flushTargetZOL(arcP arc, Uns32 lpEnd) {

 for(mode=0; mode<ARC_MODE_LAST; mode++) {
 vmirtFlushTargetModeTagged(
 (vmiProcessorP)arc, lpEnd, mode, VBT_1, VBT_1, False
);
 }
}

The call to vmirtFlushTargetModeTagged in this case will flush any code block at
address lpEnd for which the expression

((block->tag & VBT_1) == VBT_1)

is False. This flushes any code block that was not tagged as a zero-overhead loop block
when it was constructed.

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 252 of 282

10.14 vmimtPolymorphicBlock

Prototype

vmimtPolymorphicBlock(Uns32 bits, vmiReg key);

Description
This simulation control function is used to indicate that the current code block is
polymorphic, with variants selected based on the current value of the key register. When
blocks are polymorphic, the simulator can maintain a number of different JIT translated
blocks for the same address and select from them dynamically at run time based on the
key. The key register can be either 8 bits (allowing up to 254 alternative block
translations) or 16 bits (allowing up to 65534 alternative block translations). Key value 0
is reserved and indicates that a block is not polymorphic, which is the default simulator
behavior.

Polymorphic blocks should be used when alternative versions of a block are likely to
occur at run time and therefore maintaining these alternative versions using block masks
is not practical (because switching between versions requires deletion and retranslation of
the block, which is slow when done frequently). Polymorphic blocks have a run time
penalty compared to non-polymorphic blocks because extra work is required to select the
appropriate block at run time, but this is small compared to the cost of frequent
retranslations.

Example
This example is from the OVP RISC-V processor model. The RISC-V processor vector
extension implements instructions which are polymorphic. Their behavior depends on:

1. The active standard element width (8, 16, 32 or 64 bits); and
2. The active vector length; and
3. The active vector length multiplier.

All three controls can be varied independently. The behavior of a particular vector
instruction is dynamically dependent on the current settings, meaning that the same
instruction can behave differently as a program runs.

The processor model has a 16-bit field, pmKey, which holds the current polymorphic key:

//
// Processor model structure
//
typedef struct riscvS {
 . . . lines omitted for clarity . . .
 Uns16 pmKey; // polymorphic key
 . . . lines omitted for clarity . . .
} riscv;

This field is updated when the processor vl or vtype control registers change. Register
vl is the current vector length, while register vtype contains fields vsew (the standard
element width) and vlmul (the vector length multiplier):

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 253 of 282

void riscvRefreshVectorPMKey(riscvP riscv) {

 Uns32 vl = RD_CSR(riscv, vl);
 Uns32 SEW = 8<<RD_CSR_FIELD(riscv, vtype, vsew);
 Uns32 VLMUL = 1<<RD_CSR_FIELD(riscv, vtype, vlmul);
 Uns32 vlMax = riscv->configInfo.VLEN*VLMUL/SEW;
 Uns32 vtypeKey = RD_CSR(riscv, vtype)<<2;
 Uns32 villKey = RD_CSR_FIELD(riscv, vtype, vill)<<2;
 Uns32 pmKey;

 // set current maximum vl for SEW/VLMUL combination
 riscv->vlMax = (vl>vlMax) ? vlMax : vl;

 // compose key
 if(villKey) {
 pmKey = VLCLASSMT_UNKNOWN | villKey;
 } else if(!vl) {
 pmKey = VLCLASSMT_ZERO;
 } else if(riscv->vlMax==vlMax) {
 pmKey = VLCLASSMT_MAX | vtypeKey;
 } else {
 pmKey = VLCLASSMT_NONZERO | vtypeKey;
 }

 // update polymorphic key
 riscv->pmKey = (riscv->pmKey & ~PMK_VECTOR) | pmKey;
}

When RISC-V vector instructions are translated, the model checks the current value of
the pmKey field using vmimtPolymorphicBlock and is then able to treat the current
values of vector length, standard element width and vector multiplier as constants. All
vector instructions are wrapped by a call to function checkVectorOp, as follows:

static void checkVectorOp(riscvMorphStateP state, iterDescP id) {

 riscvP riscv = state->riscv;
 Uns32 VLEN = riscv->configInfo.VLEN;

 // fill operation-specific data
 id->VLMUL = getVLMULMt(riscv);
 id->SEW = getSEWMt(riscv);
 id->MLEN = id->SEW/id->VLMUL;
 id->vBytesMax = VLEN * id->VLMUL / 8;

 dispatchVector(state, state->attrs->checkCB, id);
}

As an example, the constant vector length multiplier is obtained by a call to function
getVLMULMt, defined as follows:

inline static void emitCheckPolymorphic(void) {
 vmimtPolymorphicBlock(16, RISCV_PM_KEY);
}

static riscvVLMULMt getVLMULMt(riscvP riscv) {

 riscvBlockStateP blockState = riscv->blockState;
 riscvVLMULMt VLMUL = blockState->VLMULMt;

 if(VLMUL==VLMULMT_UNKNOWN) {

 emitCheckPolymorphic();

 blockState->VLMULMt = VLMUL =
 vlmulToVLMUL(RD_CSR_FIELD(riscv, vtype, vlmul));

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 254 of 282

 }

 return VLMUL;
}

A similar idiom is used to obtain the standard element width and vector length. Code is
then generated for the current block assuming that these three values are constant. If they
change, the simulator will call the RISC-V model code translation function again to
create a new block for the new settings. It will then automatically select between the
blocks using the current value of the pmKey field in the processor structure.

Notes and Restrictions
1. The bits parameter must be 8 or 16.
2. If a simulated instruction modifies or could modify register key, ensure that the

current code block is terminated using vmimtEndBlock. If this is not done, then
subsequent simulated instructions in the code block may operate incorrectly if
their behavior depends on the key state.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 255 of 282

10.15 vmimtICount

Prototype

void vmimtICount(Uns32 bits, vmiReg rd);

Description
This function assigns the nominal cycle count for a processor to the given register. It is
designed for use with timer functions (for example, vmirtSetModelTimer) and intercept
libraries implementing timing tools.

The nominal cycle count is the sum of executed instructions, halted cycles and skipped
cycles. Halted cycles are those for which the processor is not executing because it has
been stopped by vmirtHalt. Skipped cycles are those that have been explicitly skipped
(by a call to vmirtAddSkipCount) or implicitly skipped because the processor has been
derated (see vmirtSetDerateFactor).

Example
The Imperas VAP tools include a tool for generation of basic block vector (BBV) files.
This tool requires the least-significant 32 bits of the nominal cycle count to be recorded at
the start of each block so that the cycles taken in the block can be calculated as
simulation progresses. This is implemented in the tool as follows:

VMIOS_MORPH_FN(bbvMorph) {

 if(firstInBlock) {

 bbvDataP bbvData = object->bbvData;

 if (bbvData->started) {

 // record start-of-block ICount
 vmimtICount(32, bbvData->thisICountReg);

 // update BBV state
 vmimtArgNatAddress(object);
 vmimtCall((vmiCallFn)bbvStartBlock);

 // update previous block index
 vmimtMoveRC(32, bbvData->prevIndexReg, getBBVIndex(object, thisPC));
 }
 }

 // no callback function is required
 return 0;
}

Notes and Restrictions
1. The bits argument must be 8, 16, 32 or 64.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 256 of 282

11 QuantumLeap Parallel Simulation Support
As of VMI version 6.0.0, Imperas Professional Simulation products implement a parallel
simulation algorithm called QuantumLeap, which enables multicore platform simulation
to be distributed over separate threads on multiple cores of the host machine for improved
performance. Refer to the OVP and CpuManager User Guide for more information about
QuantumLeap usage.

This section describes functions required to make processor models compatible with
QuantumLeap.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 257 of 282

11.1 vmimtAtomic

Prototype

void vmimtAtomic(void);

Description
This function indicates that the current instruction requires synchronization and that all
other processor threads must be suspended while the instruction executes. vmimtAtomic
should be used in three cases:

1. In a test-and-set instruction that reads, modifies and writes memory.
2. In the first instruction of a load/store exclusive or speculate/commit instruction

pair.
3. When emitting code for any instruction which also emits an embedded call to a

function which accesses shared data in an uncontrolled manner.

Example
The OVP ARM model uses this function in atomic loads:

static void emitAtomicLoadRR(
 armMorphStateP state,
 Uns32 regBits,
 Uns32 memBits,
 vmiReg rd,
 vmiReg ra
) {
 // indicate instruction is atomic
 armEmitAtomic();

 // do load in atomic context
 vmimtMoveRC(8, ARM_SI_TYPE, ASIT_ATOMIC);
 vmimtLoadRRO(regBits, memBits, 0, rd, ra, False, False);
 vmimtMoveRC(8, ARM_SI_TYPE, ASIT_NONE);
}

Notes and Restrictions
1. Refer to the OVP Processor Modeling Guide for a detailed explanation of when
vmimtAtomic should be used.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 258 of 282

12 Extension Library Support
An extension library is a special case of a binary intercept library that is used to add new
instructions, registers, ports or other behavior to an existing processor model without
requiring access to the source of that model. This provides a powerful method of
modeling user-defined processor extensions.

This section gives information about functions that are specifically intended for use in
extension libraries.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 259 of 282

12.1 vmimtGetR

Prototype

void vmimtGetR(
 vmiProcessorP processor,
 Uns32 bits,
 vmiReg rd,
 vmiRegInfoCP ra
);

Description
Emit code to copy a value from processor source register ra to extension library target
register rd. The source register is described using a vmiRegInfoCP structure; the target
register is described using a vmiReg structure (usually created using function
vmimtGetExtReg or vmimtGetExtTemp).

Argument bits specifies the register size; this must match the size specified in the
vmiRegInfoCP structure.

If register ra does not have read access, a zero value is written to rd.

Example
This example shows how the function is used in an extension library implementing an
exchange instruction for the OR1K processor (see the OVP Processor Modeling Guide
for more information).

#include “vmi/vmiMt.h”
#include “vmi/vmiTypes.h”

typedef struct vmiosObjectS {

 vmiRegInfoCP or1kRegs[OR1K_GPR_NUM];

 // new 32-bit registers implemented by this extension library
 Uns32 exchCount;
 Uns32 exchAddress;
 Uns32 exchRDValue;
 Uns32 exchWRValue;

 // 32-bit temporaries implemented by this extension library
 Uns32 exchTmp

} vmiosObject;

static void emitExchange(
 vmiProcessorP processor,
 vmiosObjectP object,
 Uns32 instruction
) {
 // get processor endianness for loads and stores
 memEndian endian = vmirtGetProcessorDataEndian(processor);
 memConstraint constraint = MEM_CONSTRAINT_ALIGNED;

 // extract instruction fields
 Uns32 ra = OPEX_A(instruction);
 Uns32 rb = OPEX_B(instruction);
 Int16 i = OPEX_I(instruction);

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 260 of 282

 // create vmiReg objects addressing extension registers and temporaries
 // from processor context
 vmiReg exchCount = vmimtGetExtReg (processor, &object->exchCount);
 vmiReg exchAddress = vmimtGetExtReg (processor, &object->exchAddress);
 vmiReg exchRDValue = vmimtGetExtReg (processor, &object->exchRDValue);
 vmiReg exchWRValue = vmimtGetExtReg (processor, &object->exchWRValue);
 vmiReg exchTmp = vmimtGetExtTemp(processor, &object->exchTmp);

 // increment count of exchange instructions executed
 vmimtBinopRC(32, vmi_ADD, exchCount, 1, 0);

 // copy rb and ra processor GPRs to exchWRValue and exchAddress
 vmimtGetR(processor, 32, exchWRValue, object->or1kRegs[rb]);
 vmimtGetR(processor, 32, exchAddress, object->or1kRegs[ra]);

 // adjust address, including constant offset
 vmimtBinopRC(32, vmi_ADD, exchAddress, i, 0);

 // load exchTmp from exchAddress
 vmimtLoadRRO(32, 32, 0, exchTmp, exchAddress, endian, False, constraint);

 // store exchWRValue to exchAddress
 vmimtStoreRRO(32, 0, exchAddress, exchWRValue, endian, constraint);

 // copy exchTmp to exchRDValue
 vmimtMoveRR(32, exchRDValue, exchTmp);

 // copy exchTmp to processor GPR
 vmimtSetR(processor, 32, object->or1kRegs[rb], exchTmp);
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 261 of 282

12.2 vmimtSetR

Prototype

void vmimtSetR(
 vmiProcessorP processor,
 Uns32 bits,
 vmiRegInfoCP rd,
 vmiReg ra
);

Description
Emit code to copy a value from extension library source register ra to processor target
register rd. The target register is described using a vmiRegInfoCP structure; the source
register is described using a vmiReg structure (usually created using function
vmimtGetExtReg or vmimtGetExtTemp).

Argument bits specifies the register size; this must match the size specified in the
vmiRegInfoCP structure.

If register rd does not have write access, it is not updated.

Example
This example shows how the function is used in an extension library implementing an
exchange instruction for the OR1K processor (see the OVP Processor Modeling Guide
for more information).

#include “vmi/vmiMt.h”
#include “vmi/vmiTypes.h”

typedef struct vmiosObjectS {

 vmiRegInfoCP or1kRegs[OR1K_GPR_NUM];

 // new 32-bit registers implemented by this extension library
 Uns32 exchCount;
 Uns32 exchAddress;
 Uns32 exchRDValue;
 Uns32 exchWRValue;

 // 32-bit temporaries implemented by this extension library
 Uns32 exchTmp

} vmiosObject;

static void emitExchange(
 vmiProcessorP processor,
 vmiosObjectP object,
 Uns32 instruction
) {
 // get processor endianness for loads and stores
 memEndian endian = vmirtGetProcessorDataEndian(processor);
 memConstraint constraint = MEM_CONSTRAINT_ALIGNED;

 // extract instruction fields
 Uns32 ra = OPEX_A(instruction);
 Uns32 rb = OPEX_B(instruction);
 Int16 i = OPEX_I(instruction);

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 262 of 282

 // create vmiReg objects addressing extension registers and temporaries
 // from processor context
 vmiReg exchCount = vmimtGetExtReg (processor, &object->exchCount);
 vmiReg exchAddress = vmimtGetExtReg (processor, &object->exchAddress);
 vmiReg exchRDValue = vmimtGetExtReg (processor, &object->exchRDValue);
 vmiReg exchWRValue = vmimtGetExtReg (processor, &object->exchWRValue);
 vmiReg exchTmp = vmimtGetExtTemp(processor, &object->exchTmp);

 // increment count of exchange instructions executed
 vmimtBinopRC(32, vmi_ADD, exchCount, 1, 0);

 // copy rb and ra processor GPRs to exchWRValue and exchAddress
 vmimtGetR(processor, 32, exchWRValue, object->or1kRegs[rb]);
 vmimtGetR(processor, 32, exchAddress, object->or1kRegs[ra]);

 // adjust address, including constant offset
 vmimtBinopRC(32, vmi_ADD, exchAddress, i, 0);

 // load exchTmp from exchAddress
 vmimtLoadRRO(32, 32, 0, exchTmp, exchAddress, endian, False, constraint);

 // store exchWRValue to exchAddress
 vmimtStoreRRO(32, 0, exchAddress, exchWRValue, endian, constraint);

 // copy exchTmp to exchRDValue
 vmimtMoveRR(32, exchRDValue, exchTmp);

 // copy exchTmp to processor GPR
 vmimtSetR(processor, 32, object->or1kRegs[rb], exchTmp);
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 263 of 282

12.3 vmimtGetExtReg

Prototype

vmiReg vmimtGetExtReg(vmiProcessorP processor, void *pointer);

Description
Return a vmiReg descriptor that will access the data at pointer in the context of the
given processor. The descriptor can be used as an argument to any of the morph-time API
calls described in this document, enabling registers in extension libraries to be efficiently
read and written.

Example
This example shows how the function is used in an extension library implementing an
exchange instruction for the OR1K processor (see the OVP Processor Modeling Guide
for more information).

#include “vmi/vmiMt.h”
#include “vmi/vmiTypes.h”

typedef struct vmiosObjectS {

 vmiRegInfoCP or1kRegs[OR1K_GPR_NUM];

 // new 32-bit registers implemented by this extension library
 Uns32 exchCount;
 Uns32 exchAddress;
 Uns32 exchRDValue;
 Uns32 exchWRValue;

 // 32-bit temporaries implemented by this extension library
 Uns32 exchTmp

} vmiosObject;

static void emitExchange(
 vmiProcessorP processor,
 vmiosObjectP object,
 Uns32 instruction
) {
 // get processor endianness for loads and stores
 memEndian endian = vmirtGetProcessorDataEndian(processor);
 memConstraint constraint = MEM_CONSTRAINT_ALIGNED;

 // extract instruction fields
 Uns32 ra = OPEX_A(instruction);
 Uns32 rb = OPEX_B(instruction);
 Int16 i = OPEX_I(instruction);

 // create vmiReg objects addressing extension registers and temporaries
 // from processor context
 vmiReg exchCount = vmimtGetExtReg (processor, &object->exchCount);
 vmiReg exchAddress = vmimtGetExtReg (processor, &object->exchAddress);
 vmiReg exchRDValue = vmimtGetExtReg (processor, &object->exchRDValue);
 vmiReg exchWRValue = vmimtGetExtReg (processor, &object->exchWRValue);
 vmiReg exchTmp = vmimtGetExtTemp(processor, &object->exchTmp);

 // increment count of exchange instructions executed
 vmimtBinopRC(32, vmi_ADD, exchCount, 1, 0);

 // copy rb and ra processor GPRs to exchWRValue and exchAddress
 vmimtGetR(processor, 32, exchWRValue, object->or1kRegs[rb]);

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 264 of 282

 vmimtGetR(processor, 32, exchAddress, object->or1kRegs[ra]);

 // adjust address, including constant offset
 vmimtBinopRC(32, vmi_ADD, exchAddress, i, 0);

 // load exchTmp from exchAddress
 vmimtLoadRRO(32, 32, 0, exchTmp, exchAddress, endian, False, constraint);

 // store exchWRValue to exchAddress
 vmimtStoreRRO(32, 0, exchAddress, exchWRValue, endian, constraint);

 // copy exchTmp to exchRDValue
 vmimtMoveRR(32, exchRDValue, exchTmp);

 // copy exchTmp to processor GPR
 vmimtSetR(processor, 32, object->or1kRegs[rb], exchTmp);
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 265 of 282

12.4 vmimtGetExtTemp

Prototype

vmiReg vmimtGetExtTemp(vmiProcessorP processor, void *pointer);

Description
Return a vmiReg descriptor that will access the data at pointer in the context of the
given processor. The descriptor can be used as an argument to any of the morph-time API
calls described in this document, enabling registers in extension libraries to be efficiently
read and written. The vmiReg descriptor is for a temporary (used only for intermediate
calculations).

Example
This example shows how the function is used in an extension library implementing an
exchange instruction for the OR1K processor (see the OVP Processor Modeling Guide
for more information).

#include “vmi/vmiMt.h”
#include “vmi/vmiTypes.h”

typedef struct vmiosObjectS {

 vmiRegInfoCP or1kRegs[OR1K_GPR_NUM];

 // new 32-bit registers implemented by this extension library
 Uns32 exchCount;
 Uns32 exchAddress;
 Uns32 exchRDValue;
 Uns32 exchWRValue;

 // 32-bit temporaries implemented by this extension library
 Uns32 exchTmp

} vmiosObject;

static void emitExchange(
 vmiProcessorP processor,
 vmiosObjectP object,
 Uns32 instruction
) {
 // get processor endianness for loads and stores
 memEndian endian = vmirtGetProcessorDataEndian(processor);
 memConstraint constraint = MEM_CONSTRAINT_ALIGNED;

 // extract instruction fields
 Uns32 ra = OPEX_A(instruction);
 Uns32 rb = OPEX_B(instruction);
 Int16 i = OPEX_I(instruction);

 // create vmiReg objects addressing extension registers and temporaries
 // from processor context
 vmiReg exchCount = vmimtGetExtReg (processor, &object->exchCount);
 vmiReg exchAddress = vmimtGetExtReg (processor, &object->exchAddress);
 vmiReg exchRDValue = vmimtGetExtReg (processor, &object->exchRDValue);
 vmiReg exchWRValue = vmimtGetExtReg (processor, &object->exchWRValue);
 vmiReg exchTmp = vmimtGetExtTemp(processor, &object->exchTmp);

 // increment count of exchange instructions executed
 vmimtBinopRC(32, vmi_ADD, exchCount, 1, 0);

 // copy rb and ra processor GPRs to exchWRValue and exchAddress

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 266 of 282

 vmimtGetR(processor, 32, exchWRValue, object->or1kRegs[rb]);
 vmimtGetR(processor, 32, exchAddress, object->or1kRegs[ra]);

 // adjust address, including constant offset
 vmimtBinopRC(32, vmi_ADD, exchAddress, i, 0);

 // load exchTmp from exchAddress
 vmimtLoadRRO(32, 32, 0, exchTmp, exchAddress, endian, False, constraint);

 // store exchWRValue to exchAddress
 vmimtStoreRRO(32, 0, exchAddress, exchWRValue, endian, constraint);

 // copy exchTmp to exchRDValue
 vmimtMoveRR(32, exchRDValue, exchTmp);

 // copy exchTmp to processor GPR
 vmimtSetR(processor, 32, object->or1kRegs[rb], exchTmp);
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 267 of 282

13 Instruction Attributes Support
The Imperas Professional Simulation products implement an Instruction Attributes API,
allowing introspection of the details of an executing instruction stream. Using this API, it
is possible for tools, typically written using intercept library technology, to obtain
information about each instruction as it executes, including:

1. The instruction address;
2. The instruction size, in bytes;
3. The instruction disassembly;
4. Any registers read or written by the instruction;
5. Any memory locations read or written by the instruction;
6. The instruction class (e.g. integer, floating point or branch);
7. Any condition associated with the instruction.

Most information visible through this API is automatically generated by the simulator.
However, in some cases it is necessary for models to provide extra information or modify
the automatically-generated information in some way. This section gives information on
simulator functions designed for this purpose.

Note that instruction classes are specified by a bitfield of type octiaInstructionClass,
defined in file ocliaTypes.h as follows:

typedef enum octiaInstructionClassE {
 OCL_IC_NONE = 0x0, ///< no class information
 OCL_IC_NOP = 1ULL<<0, ///< explicit NOP
 OCL_IC_INTEGER = 1ULL<<1, ///< instruction uses integer ALU
 OCL_IC_FLOAT = 1ULL<<2, ///< instruction uses FPU
 OCL_IC_DSP = 1ULL<<3, ///< instruction uses DSP
 OCL_IC_MULTIPLY = 1ULL<<4, ///< instruction implements multiply
 OCL_IC_DIVIDE = 1ULL<<5, ///< instruction implements divide
 OCL_IC_FMA = 1ULL<<6, ///< instruction implements
 /// fused-multiply-add
 OCL_IC_SIMD = 1ULL<<7, ///< instruction implements SIMD operation
 OCL_IC_TRIG = 1ULL<<8, ///< instruction implements trigonometric
 /// operation
 OCL_IC_LOG = 1ULL<<9, ///< instruction implements logarithmic
 /// operation
 OCL_IC_RECIP = 1ULL<<10, ///< instruction implements reciprocal
 /// operation
 OCL_IC_SQRT = 1ULL<<11, ///< instruction implements square root
 /// operation
 OCL_IC_SYSREG = 1ULL<<12, ///< instruction accesses system register
 /// state
 OCL_IC_IBARRIER = 1ULL<<13, ///< instruction barrier
 OCL_IC_DBARRIER = 1ULL<<14, ///< data barrier
 OCL_IC_ABARRIER = 1ULL<<15, ///< artifact barrier
 OCL_IC_ICACHE = 1ULL<<16, ///< instruction cache maintenance
 OCL_IC_DCACHE = 1ULL<<17, ///< data cache maintenance
 OCL_IC_MMU = 1ULL<<18, ///< memory management unit operation
 OCL_IC_ATOMIC = 1ULL<<19, ///< instruction implements atomic operation
 OCL_IC_EXCLUSIVE = 1ULL<<20, ///< instruction implements exclusive
 /// operation
 OCL_IC_HINT = 1ULL<<21, ///< hint instruction
 OCL_IC_SYSTEM = 1ULL<<22, ///< system instruction
 OCL_IC_FCONVERT = 1ULL<<23, ///< instruction implements floating
 /// point conversion
 OCL_IC_FCOMPARE = 1ULL<<24, ///< instruction implements floating

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 268 of 282

 /// point comparison
 OCL_IC_BRANCH = 1ULL<<25, ///< instruction implements branch operation
 OCL_IC_BRANCH_DS = 1ULL<<26, ///< instruction implements branch operation
 /// with delay slot
 OCL_IC_BRANCH_DSA = 1ULL<<27, ///< instruction implements branch operation
 /// with annulled delay slot (if not taken)
 OCL_IC_OPAQUE_INT = 1ULL<<28, ///< instruction is subject to opaque
 /// intercept
 OCL_IC_RESERVED1 = 1ULL<<29, ///< start range for future class
 /// extensions
 OCL_IC_RESERVEDN = 1ULL<<47, ///< end range for future class extensions
 OCL_IC_CUSTOM1 = 1ULL<<48, ///< custom class 1
 OCL_IC_CUSTOM2 = 1ULL<<49, ///< custom class 2
 OCL_IC_CUSTOM3 = 1ULL<<50, ///< custom class 3
 OCL_IC_CUSTOM4 = 1ULL<<51, ///< custom class 4
 OCL_IC_CUSTOM5 = 1ULL<<52, ///< custom class 5
 OCL_IC_CUSTOM6 = 1ULL<<53, ///< custom class 6
 OCL_IC_CUSTOM7 = 1ULL<<54, ///< custom class 7
 OCL_IC_CUSTOM8 = 1ULL<<55, ///< custom class 8
 OCL_IC_CUSTOM9 = 1ULL<<56, ///< custom class 9
 OCL_IC_CUSTOM10 = 1ULL<<57, ///< custom class 10
 OCL_IC_CUSTOM11 = 1ULL<<58, ///< custom class 11
 OCL_IC_CUSTOM12 = 1ULL<<59, ///< custom class 12
 OCL_IC_CUSTOM13 = 1ULL<<60, ///< custom class 13
 OCL_IC_CUSTOM14 = 1ULL<<61, ///< custom class 14
 OCL_IC_CUSTOM15 = 1ULL<<62, ///< custom class 15
 OCL_IC_CUSTOM16 = 1ULL<<63 ///< custom class 16
} octiaInstructionClass;

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 269 of 282

13.1 vmimtRegNotReadR

Prototype

void vmimtRegNotReadR(Uns32 bits, vmiReg r);

Description
By default, information about the registers read and written by an instruction is
automatically derived by examination of usage of vmiReg objects in each instruction, and
cross-referencing this with the registers defined in the processor debug interface.

Sometimes, the automatic derivation incorrectly marks a register as read when it is not: a
typical case is update of a system register, where only some bits are writable. In JIT-
compiled code, this could be implemented by:

1. Reading the old register value;
2. Masking-in writable bits given in the new value;
3. Writing the new register value.

The sequence above suggests that the system register has been read and written by the
instruction, whereas it was in fact only written (the read was a simulation artifact).
Function vmimtRegNotReadR can be used to indicate that a register has not been written
by any vmiReg references after the position of the function in the NMI node list.

Example
The OVP RISC-V model uses this function to indicate that masked writes as described
above are not reads, as follows:

riscvArchitecture riscvEmitCSRWrite(
 riscvCSRId id,
 riscvP riscv,
 vmiReg rs,
 vmiReg tmp
) {
 riscvArchitecture arch = riscv->currentArch;
 csrAttrsCP attrs = &csrs[id];
 Uns32 bits = riscvGetXlenMode(riscv);
 riscvCSRWriteFn writeCB = getCSRWriteCB(id, riscv, bits);
 vmiReg raw = getRawArch(attrs, arch);
 Uns64 mask = getCSRWriteMask(attrs, riscv);

 // indicate that this register has been written
 vmimtRegWriteImpl(attrs->name);

 if(writeCB) {

 // if CSR is implemented externally, mirror the result into any raw
 // register in the model (otherwise discard the result)
 if(!csrImplementExternalWrite(id, riscv)) {
 raw = VMI_NOREG;
 }

 // emit code to call the write function (NOTE: argument is always 64
 // bits, irrespective of the architecture size)
 vmimtArgUns32(id);
 vmimtArgProcessor();

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 270 of 282

 vmimtArgRegSimAddress(bits, rs);
 vmimtCallResult((vmiCallFn)writeCB, bits, raw);

 // terminate the current block if required
 if(attrs->wEndBlock) {
 vmimtEndBlock();
 }

 } else if(VMI_ISNOREG(raw)) {

 // emit warning for unimplemented CSR
 emitWarnUnimplementedCSR(id, riscv);

 } else if(mask==-1) {

 // new value is written unmasked
 vmimtMoveRR(bits, raw, rs);

 } else if(mask) {

 // apparent reads of register below are artifacts only
 vmimtRegNotReadR(bits, raw);

 // new value is written masked
 vmimtBinopRC(bits, vmi_ANDN, raw, mask, 0);
 vmimtBinopRRC(bits, vmi_AND, tmp, rs, mask, 0);
 vmimtBinopRR(bits, vmi_OR, raw, tmp, 0);
 }

 // return architectural constraints that apply to this register
 return attrs->arch;
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 271 of 282

13.2 vmimtRegReadImpl

Prototype

void vmimtRegReadImpl(const char *name);

Description
By default, information about the registers read and written by an instruction is
automatically derived by examination of usage of vmiReg objects in that instruction, and
cross-referencing this with the registers defined in the processor debug interface.

Sometimes, the automatic derivation cannot determine that a register has been read.
There are two common reasons for this:

1. The register defined in the debug interface (using a vmiRegInfo structure) does
not specify a corresponding processor register (the raw field has value
VMI_NOREG) because its value is instead implemented with a callback function.

2. The register is updated by an embedded call in the JIT-compiled code, instead of
using VMI morph-time API primitives.

Function vmimtRegReadImpl can be used to indicate that a named processor register has
been read, even if that is not apparent from the JIT-compiled code because of reasons
specified above.

Example
The OVP RISC-V model uses this function to indicate that CSR registers are being read,
as follows:

void riscvEmitCSRRead(riscvCSRId id, riscvP riscv, vmiReg rd, Bool isWrite) {

 riscvArchitecture arch = riscv->currentArch;
 csrAttrsCP attrs = &csrs[id];
 Uns32 bits = riscvGetXlenMode(riscv);
 riscvCSRReadFn readCB = getCSRReadCB(id, riscv, bits, isWrite);
 vmiReg raw = getRawArch(attrs, arch);

 // indicate that this register has been read
 vmimtRegReadImpl(attrs->name);

 if(readCB) {

 // if CSR is implemented externally, mirror the result into any raw
 // register in the model (otherwise discard the result)
 if(!csrImplementExternalRead(id, riscv)) {
 raw = VMI_NOREG;
 }

 // emit code to call the write function
 vmimtArgUns32(id);
 vmimtArgProcessor();
 vmimtCallResult((vmiCallFn)readCB, bits, rd);
 vmimtMoveRR(bits, raw, rd);

 } else if(VMI_ISNOREG(raw)) {

 // emit warning for unimplemented CSR

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 272 of 282

 emitWarnUnimplementedCSR(id, riscv);
 vmimtMoveRC(bits, rd, 0);

 } else {

 // simple register read
 vmimtMoveRR(bits, rd, raw);
 }
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 273 of 282

13.3 vmimtRegWriteImpl

Prototype

void vmimtRegWriteImpl(const char *name);

Description
By default, information about the registers read and written by an instruction is
automatically derived by examination of usage of vmiReg objects in that instruction, and
cross-referencing this with the registers defined in the processor debug interface.

Sometimes, the automatic derivation cannot determine that a register has been read.
There are two common reasons for this:

1. The register defined in the debug interface (using a vmiRegInfo structure) does
not specify a corresponding processor register (the raw field has value
VMI_NOREG) because its value is instead implemented with a callback function.

2. The register is updated by an embedded call in the JIT-compiled code, instead of
using VMI morph-time API primitives.

Function vmimtRegWriteImpl can be used to indicate that a named processor register has
been written, even if that is not apparent from the JIT-compiled code because of reasons
specified above.

Example
The OVP RISC-V model uses this function to indicate that CSR registers are being
written, as follows:

riscvArchitecture riscvEmitCSRWrite(
 riscvCSRId id,
 riscvP riscv,
 vmiReg rs,
 vmiReg tmp
) {
 riscvArchitecture arch = riscv->currentArch;
 csrAttrsCP attrs = &csrs[id];
 Uns32 bits = riscvGetXlenMode(riscv);
 riscvCSRWriteFn writeCB = getCSRWriteCB(id, riscv, bits);
 vmiReg raw = getRawArch(attrs, arch);
 Uns64 mask = getCSRWriteMask(attrs, riscv);

 // indicate that this register has been written
 vmimtRegWriteImpl(attrs->name);

 if(writeCB) {

 // if CSR is implemented externally, mirror the result into any raw
 // register in the model (otherwise discard the result)
 if(!csrImplementExternalWrite(id, riscv)) {
 raw = VMI_NOREG;
 }

 // emit code to call the write function (NOTE: argument is always 64
 // bits, irrespective of the architecture size)
 vmimtArgUns32(id);
 vmimtArgProcessor();

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 274 of 282

 vmimtArgRegSimAddress(bits, rs);
 vmimtCallResult((vmiCallFn)writeCB, bits, raw);

 // terminate the current block if required
 if(attrs->wEndBlock) {
 vmimtEndBlock();
 }

 } else if(VMI_ISNOREG(raw)) {

 // emit warning for unimplemented CSR
 emitWarnUnimplementedCSR(id, riscv);

 } else if(mask==-1) {

 // new value is written unmasked
 vmimtMoveRR(bits, raw, rs);

 } else if(mask) {

 // apparent reads of register below are artifacts only
 vmimtRegNotReadR(bits, raw);

 // new value is written masked
 vmimtBinopRC(bits, vmi_ANDN, raw, mask, 0);
 vmimtBinopRRC(bits, vmi_AND, tmp, rs, mask, 0);
 vmimtBinopRR(bits, vmi_OR, raw, tmp, 0);
 }

 // return architectural constraints that apply to this register
 return attrs->arch;
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 275 of 282

13.4 vmimtInstructionClassAdd

Prototype

void vmimtInstructionClassAdd(octiaInstructionClass value);

Description
By default, information about the class of an instruction is automatically derived by
examination of usage of vmiReg objects in that instruction. Sometimes, the automatic
derivation cannot determine the class correctly. There are two common reasons for this:

1. The instruction implementation contains VMI primitives that are used for artifact
purposes (for example, manufacturing an address using a multiply operation). In
this case, the instruction class may contain unwanted extra information.

2. The instruction might be implemented by an embedded call. In this case, no
information can be derived about the class of the instruction from morph-time
primitives alone.

Function vmimtInstructionClassAdd can be used to add additional class information to
the current instruction.

Example
The OVP RISC-V model uses this function in the main JIT callback to add extra
information about each instruction, as follows:

VMI_MORPH_FN(riscvMorph) {

 riscvP riscv = (riscvP)processor;
 riscvMorphState state;

 // get instruction and instruction type
 riscvDecode(riscv, thisPC, &state.info);

 state.attrs = &dispatchTable[state.info.type];
 state.riscv = riscv;
 state.blockState = blockState;

 if(disableMorph(&state)) {

 // no action if in disassembly mode

 } else if(state.info.type==RV_IT_LAST) {

 // take Illegal Instruction exception
 emitIllegalInstruction();

 } else if(!instructionEnabled(riscv, &state)) {

 // instruction not enabled

 } else if(state.attrs->morph) {

 // translate the instruction
 vmimtInstructionClassAdd(state.attrs->iClass);
 state.attrs->morph(&state);

 } else {

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 276 of 282

 // here if no morph callback specified
 vmiMessage("F", CPU_PREFIX "_UIMP", // LCOV_EXCL_LINE
 SRCREF_FMT "unimplemented",
 SRCREF_ARGS(riscv, thisPC)
);
 }
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 277 of 282

13.5 vmimtInstructionClassSub

Prototype

void vmimtInstructionClassSub(octiaInstructionClass value);

Description
By default, information about the class of an instruction is automatically derived by
examination of usage of vmiReg objects in that instruction. Sometimes, the automatic
derivation cannot determine the class correctly. There are two common reasons for this:

1. The instruction implementation contains VMI primitives that are used for artifact
purposes (for example, manufacturing an address using a multiply operation). In
this case, the instruction class may contain unwanted extra information.

2. The instruction might be implemented by an embedded call. In this case, no
information can be derived about the class of the instruction from morph-time
primitives alone.

Function vmimtInstructionClassAdd can be used to add additional class information to
the current instruction.

Example
The OVP RISC-V model uses this function in the function that generates an exclusive
address for AMO operations. This function is automatically determined to be of class
OCL_IC_ATOMIC (because it uses the vmimtAtomic primitive) but is in fact more usefully
categorized as OCL_IC_EXCLUSIVE. vmimtInstructionClassSub is therefore used to
remove OCL_IC_ATOMIC from the automatically-derived current instruction class:

static void startEA(riscvMorphStateP state, vmiReg ra) {

 // instruction must execute atomically but should not be classed as atomic
 // by instruction attributes (it is OCL_IC_EXCLUSIVE)
 vmimtAtomic();
 vmimtInstructionClassSub(OCL_IC_ATOMIC);

 // generate exclusive access tag for this address
 generateEATag(state, RISCV_EA_TAG, ra);
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 278 of 282

13.6 vmimtSetInstructionCondition

Prototype

void vmimtSetInstructionCondition(Uns32 condition);

Description
Most processors implement conditional instructions, which have an effect only if a
particular flag condition is satisfied. Usually such instructions are conditional branches,
but some processors (for example, ARM variants) allow conditional execution of other
instruction types as well.

Function vmimtSetInstructionCondition can be used to specify that the instruction
that is currently being translated is conditional. An argument of 0 indicates the instruction
is unconditional; other values specify a model-specific condition. The specified condition
can be found later using function ocliaGetInstructionCondition from the Instruction
Attributes API, and function ocliaEvaluateInstructionCondition can be used to
evaluate the condition using the current processor state, returning a Boolean result.
Function vmirtEvaluateCondition in the VMI Run Time Function API can also be
used to evaluate a model-specific condition code. See the VMI Run Time Function
Reference manual for more information about these functions.

Example
The OVP ARM model uses this function to indicate the condition for conditional
instructions, inside a routine that returns a label used to skip the instruction action if the
condition is False:

static vmiLabelP emitStartSkip(armMorphStateP state, armCondition cond) {

 armCond entry = armEmitPrepareCondition(state, cond, False);
 vmiLabelP doSkip = 0;

 if(entry.op!=ACO_ALWAYS) {
 doSkip = vmimtNewLabel();
 vmimtCondJumpLabel(entry.flag, entry.op==ACO_FALSE, doSkip);
 vmimtSetInstructionCondition(cond+1); // convert to non-zero condition
 }

 return doSkip;
}

To support conditional evaluation by ocliaEvaluateInstructionCondition and
vmirtEvaluateCondition, the processor must have a condition evaluation callback
specified. The prototype for this is defined in file vmiAttrs.h as follows:

#define VMI_EVALUATE_CONDITION_FN(_NAME) Bool _NAME (\
 vmiProcessorP processor, \
 Uns32 condition \
)
typedef VMI_EVALUATE_CONDITION_FN((*vmiEvaluateConditionFn));

For the ARM model, the condition evaluation callback is implemented like this:

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 279 of 282

VMI_EVALUATE_CONDITION_FN(armEvaluateConditionCB) {

 armP arm = (armP)processor;
 armCondition cond = condition-1; // convert from non-zero condition
 Bool Z = arm->aflags.f[AFI_Z];
 Bool N = arm->aflags.f[AFI_N];
 Bool C = arm->aflags.f[AFI_C];
 Bool V = arm->aflags.f[AFI_V];
 Bool result = False;

 switch(cond) {
 case ARM_C_EQ: result = Z; break;
 case ARM_C_NE: result = !Z; break;
 case ARM_C_CS: result = C; break;
 case ARM_C_CC: result = !C; break;
 case ARM_C_MI: result = N; break;
 case ARM_C_PL: result = !N; break;
 case ARM_C_VS: result = V; break;
 case ARM_C_VC: result = !V; break;
 case ARM_C_HI: result = (C && !Z); break;
 case ARM_C_LS: result = !(C && !Z); break;
 case ARM_C_GE: result = (N == V); break;
 case ARM_C_LT: result = !(N == V); break;
 case ARM_C_GT: result = (!Z && (N == V)); break;
 case ARM_C_LE: result = !(!Z && (N == V)); break;
 default:
 VMI_ABORT("unimplemented condition %u", cond); // LCOV_EXCL_LINE
 }

 return result;
}

This function extracts the current value of the processor condition flags and uses these in
combination with the condition argument to determine whether the condition is
currently True or False. The condition evaluation callback is specified as the
evalConditionCB argument in the instruction attributes structure:

const vmiIASAttr modelAttrs = {

 . . . lines omitted for clarity . . .

 //
 // INSTRUCTION ATTRIBUTES SUPPORT
 //

 .evalConditionCB = armEvaluateConditionCB,
};

Notes and Restrictions
1. A condition value of 0 is special and means unconditional. If the condition recorded

with an instruction is 0, calls to ocliaEvaluateInstructionCondition and
vmirtEvaluateCondition will return True without calling the model-specific
condition evaluation callback.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 280 of 282

14 Timing Estimation
Functions in this section are designed to allow timing models to feed back delays into a
simulation so that application performance can be estimated. They are typically used in
intercept libraries.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 281 of 282

14.1 vmimtAddSkipCountC

Prototype

void vmimtAddSkipCountC(Uns64 skipCount);

Description
Emit code to add skipCount instructions to the pending skipped instruction count for this
processor. The accumulated skipped cycles will typically be committed at the start of the
next quantum. See the VMI Run Time Function Reference manual for more detailed
information.

Example
This example shows how this function could be used in a performance estimation library
that adds cycles for memory delays. In this example, one cycle is added for each read
access, and two cycles for each write access.

static VMIOS_MORPH_FN(morphCallback) {

 // get instruction attributes
 octiaAttrP attrs = vmiiaGetAttrs(processor, thisPC, OCL_DS_ADDRESS, False);

 if(attrs) {

 Uns32 delay = 0;
 octiaMemAccessP ma;

 // calculate extra delay for this instruction based on loads and stores
 for(
 ma = ocliaGetFirstMemAccess(attrs);
 ma;
 ma = ocliaGetNextMemAccess(ma)
) {
 switch(ocliaGetMemAccessType(ma)) {
 case OCL_MAT_LOAD:
 delay += 1;
 break;
 case OCL_MAT_STORE:
 delay += 2;
 break;
 default:
 break;
 }
 }

 // annotate extra delay
 if(delay) {
 vmimtAddSkipCountC(delay);
 }

 // free attributes
 ocliaFreeAttrs(attrs);
 }

 // indicate that normal instruction translation should be done
 return 0;
}

Notes and Restrictions
None.

OVP VMI Morph Time Function Reference

© 2021 Imperas Software Limited www.OVPworld.org Page 282 of 282

14.2 vmimtAddSkipCountR

Prototype

void vmimtAddSkipCountR(Uns32 bits, vmiReg skipCount);

Description
Emit code to add the 64-bit skipCount register to the pending skipped instruction count
for this processor. The accumulated skipped cycles will typically be committed at the
start of the next quantum. See the VMI Run Time Function Reference manual for more
detailed information.

Example
This function is not currently used in any public OVP models.

Notes and Restrictions
1. The bits argument must be 64.

	1 Introduction
	2 Interaction with Imperas Simulators
	3 Instruction Fetch and Decode Support Routines
	3.1 vmicxtFetch[1248]Byte
	3.2 vmicxtFetch
	3.3 vmidNewDecodeTable
	3.4 vmidNewEntry
	3.5 vmidNewEntryFmtBin
	3.6 vmidDecode

	 Basic Register Operations
	3.7 Simulated Register Specification Using vmiReg
	3.8 Unary Operation Types
	3.9 Binary Operation Types
	3.10 Handling Instruction Flags
	3.10.1 Carry In Flag
	3.10.2 Carry Out Flag
	3.10.3 Parity Flag
	3.10.4 Zero Flag
	3.10.5 Sign Flag
	3.10.6 Overflow Flag
	3.10.7 vmiFlags Structure Usage

	3.11 Handling Exceptions
	3.11.1 Arithmetic Result Handler
	3.11.2 Arithmetic Exception Handler

	3.12 vmimtGetSMPParentRegister
	3.13 vmimtMoveRC
	3.14 vmimtMoveRSimPC
	3.15 vmimtMoveRR
	3.16 vmimtMoveExtendRR
	3.17 vmimtCondMoveRRR
	3.18 vmimtCondMoveRRC
	3.19 vmimtCondMoveRCR
	3.20 vmimtCondMoveRCC
	3.21 vmimtUnopR
	3.22 vmimtUnopRR
	3.23 vmimtUnopRC
	3.24 vmimtBinopRR
	3.25 vmimtBinopRRR
	3.26 vmimtBinopRC
	3.27 vmimtBinopRCR
	3.28 vmimtBinopRCC
	3.29 vmimtBinopRRC
	3.30 vmimtMulopRRR
	3.31 vmimtDivopRRR
	3.32 vmimtCompareRR
	3.33 vmimtCompareCR
	3.34 vmimtCompareRC
	3.35 vmimtTestRR
	3.36 vmimtTestCR
	3.37 vmimtTestRC
	3.38 vmimtSetShiftMask

	4 Memory Operations
	4.1 Memory Constraints
	4.2 vmimtStoreRRO
	4.3 vmimtStoreRCO
	4.4 vmimtLoadRRO
	4.5 vmimtTryStoreRC
	4.6 vmimtTryLoadRC
	4.7 vmimtPreLoadRC
	4.8 vmimtStoreRRODomain
	4.9 vmimtStoreRCODomain
	4.10 vmimtLoadRRODomain
	4.11 vmimtTryStoreRCDomain
	4.12 vmimtTryLoadRCDomain
	4.13 vmimtPreLoadRCDomain

	5 Control Flow Operations
	5.1 vmimtSetAddressMask
	5.2 vmimtUncondJump
	5.3 vmimtUncondJumpDelaySlot
	5.4 vmimtUncondJumpReg
	5.5 vmimtUncondJumpRegDelaySlot
	5.6 vmimtCondJump
	5.7 vmimtCondJumpDelaySlot
	5.8 vmimtCondJumpDelaySlotAnnul
	5.9 vmimtCondJumpReg
	5.10 vmimtCondJumpRegDelaySlot
	5.11 vmimtCondJumpRegDelaySlotAnnul
	5.12 vmimtSkipIfAnnul
	5.13 vmimtGetDelaySlotNextPC
	5.14 vmimtEnterDelaySlotC
	5.15 vmimtEnterDelaySlotR
	5.16 vmimtNewLabel
	5.17 vmimtInsertLabel
	5.18 vmimtUncondJumpLabel
	5.19 vmimtCondJumpLabel
	5.20 vmimtCondJumpLabelFunctionResult
	5.21 vmimtTestRRJumpLabel
	5.22 vmimtTestRCJumpLabel
	5.23 vmimtCompareRRJumpLabel
	5.24 vmimtCompareRCJumpLabel

	6 Indexed and Vector Register Operations
	6.1 vmimtDJNZLabel
	6.2 vmimtGetIndexedRegister
	6.3 vmimtAddBaseC
	6.4 vmimtAddBaseR
	6.5 vmimtGetBaseOffset
	6.6 vmimtZeroRV
	6.7 vmimtMoveRRV
	6.8 vmimtBitopVR
	6.9 vmimtTestBitVRJumpLabel

	7 Embedded Native Call Operations
	7.1 vmimtArgProcessor
	7.2 vmimtArgUns32
	7.3 vmimtArgUns64
	7.4 vmimtArgFlt64
	7.5 vmimtArgReg
	7.6 vmimtArgRegP
	7.7 vmimtArgRegSimAddress
	7.8 vmimtArgSimAddress
	7.9 vmimtArgSimPC
	7.10 vmimtArgNatAddress
	7.11 vmimtCall, vmimtCallResult, vmimtCallAttrs, vmimtCallResultAttrs

	8 Connection Operations
	8.1 vmimtConnGetRB
	8.2 vmimtConnGetRNB
	8.3 vmimtConnPutRB
	8.4 vmimtConnPutRNB

	9 Floating Point Operations
	9.1 General Floating Point Operation Flow
	9.2 vmiFPConfig Structure
	9.3 vmiFPControlWord Structure
	9.4 vmiFPFlags Structure
	9.5 vmiFType Enumeration
	9.6 IEEE and x87 Semantic Differences
	9.7 QNaN/SNaN Polarity Switch
	9.8 Denormalized Argument Handler
	9.9 Tiny Result Handler
	9.10 General Result Handlers
	9.11 QNaN Handlers
	9.12 8-bit, 16-Bit, 32-Bit and 64-Bit Indeterminate Handlers
	9.13 Floating Point Exceptions
	9.14 vmimtFSetRounding
	9.15 vmimtFConvertRR, vmimtFConvertSimdRR
	9.16 vmimtFUnopRR, vmimtFUnopSimdRR
	9.17 vmimtFBinopRRR, vmimtFBinopSimdRRR
	9.18 vmimtFTernopRRRR, vmimtFTernopSimdRRRR
	9.19 vmimtFCompareRR, vmimtFCompareSimdRR
	9.20 vmimtFCompareRRC, vmimtFCompareSimdRRC
	9.21 vmimtFStart, vmimtFEnd

	10 Miscellaneous Operations
	10.1 vmimtHalt
	10.2 vmimtYield
	10.3 vmimtIdle
	10.4 vmimtInterrupt
	10.5 vmimtExit
	10.6 vmimtFinish
	10.7 vmimtEndBlock
	10.8 vmimtGetBlockMask
	10.9 vmimtSetBlockMaskC
	10.10 vmimtSetBlockMaskR
	10.11 vmimtValidateBlockMask
	10.12 vmimtValidateBlockMaskR
	10.13 vmimtTagBlock
	10.14 vmimtPolymorphicBlock
	10.15 vmimtICount

	11 QuantumLeap Parallel Simulation Support
	11.1 vmimtAtomic

	12 Extension Library Support
	12.1 vmimtGetR
	12.2 vmimtSetR
	12.3 vmimtGetExtReg
	12.4 vmimtGetExtTemp

	13 Instruction Attributes Support
	13.1 vmimtRegNotReadR
	13.2 vmimtRegReadImpl
	13.3 vmimtRegWriteImpl
	13.4 vmimtInstructionClassAdd
	13.5 vmimtInstructionClassSub
	13.6 vmimtSetInstructionCondition

	14 Timing Estimation
	14.1 vmimtAddSkipCountC
	14.2 vmimtAddSkipCountR

