
© 2020 Imperas Software Limited www.OVPworld.org Page 1 of 40

Open Virtual Platforms

VMI OS Support Function Reference

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 6.29.0
Filename: OVP_VMI_OS_Support_Function_Reference.doc
Project: OVP VMI OS Support Reference
Last Saved: Monday, 13 January 2020
Keywords:

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 2 of 40

Copyright Notice
Copyright © 2020 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 3 of 40

TABLE OF CONTENTS
1 INTRODUCTION... 4
2 QUANTUMLEAP SEMANTICS .. 6
3 INTERFACE TO PROCESSOR MODEL... 7

3.1 VMIOSGETREGDESC .. 7
3.2 VMIOSREGREAD .. 7
3.3 VMIOSREGWRITE... 7

4 FILE OPERATIONS.. 8
4.1 VMIOSOPEN.. 9
4.2 VMIOSCLOSE .. 11
4.3 VMIOSREAD ... 12
4.4 VMIOSWRITE.. 13
4.5 VMIOSUNLINK.. 14
4.6 VMIOSSTAT .. 15
4.7 VMIOSLSTAT.. 17
4.8 VMIOSFSTAT.. 18
4.9 VMIOSLSEEK.. 19

5 SIMULATION ENVIRONMENT... 20
5.1 VMIOSGETEXTENSIONNAME.. 21
5.2 VMIOSGETSTDIN, VMIOSGETSTDOUT, VMIOSGETSTDERR... 22
5.3 VMIOSGETTIMEOFDAY ... 23
5.4 VMIOSINSTALLINTERCEPTNOTIFIER... 24
5.5 VMIOSGETLICENSEFEATURE.. 26
5.6 VMIOSGETLICENSEFEATUREERRSTRING ... 27

6 SCOPE CONSTRAINTS ... 28
6.1 VMIOSUPDATESCOPE ... 29
6.2 VMIOSGETSCOPE ... 32
6.3 VMIOSMATCHSCOPE .. 34

7 RUNTIME COMMANDS.. 36
7.1 VMIOSADDCOMMAND.. 37
7.2 VMIOSADDCOMMANDPARSE ... 39

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 4 of 40

1 Introduction

This is reference documentation for the VMI OS Support function interface, defined in
ImpPublic/include/host/vmi/vmiOSLib.h. The functions in this interface are intended to
be used at run time in order to delegate low level operating system tasks, such as file IO,
to the host system. This delegation mechanism is referred to as semi-hosting.

Functions in the OS support interface have the prefix vmios.

As far as possible, the functions provided have equivalent behavior under all supported
host platforms. To achieve this, the vmios API provides its own version of certain
structure types and flag values that are passed as parameters to vmios functions. Any
unavoidable host-specific behavior is described in each individual function section.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 5 of 40

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 6 of 40

2 QuantumLeap Semantics
As of VMI version 6.0.0, Imperas Professional Simulation products implement a parallel
simulation algorithm called QuantumLeap, which enables multicore platform simulation
to be distributed over separate threads on multiple cores of the host machine for improved
performance. Refer to the OVP and CpuManager User Guide for more information about
QuantumLeap usage.

When QuantumLeap is active, some functions require the current thread to be suspended
until all other concurrent threads have been stopped so that they may safely execute.
There are three categories of function with different semantics:

Thread Safe
Thread safe functions never cause the current thread to be suspended.

Synchronizing
Synchronizing functions always cause the current thread to be suspended until all other
threads have been safely stopped.

Non-self-synchronizing
Non-self-synchronizing functions are passed a processor as an argument. They cause the
current thread to be suspended only if the processor is not the current processor.

All functions described in this manual are synchronizing.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 7 of 40

3 Interface to Processor Model

3.1 vmiosGetRegDesc
This function has been removed. vmiosGetRegDesc is now a #define targeting
vmirtGetRegByName. See the VMI Run Time Function Reference for more details.

3.2 vmiosRegRead
This function has been removed. vmiosRegRead is now a #define targeting
vmirtRegRead. See the VMI Run Time Function Reference for more details.

3.3 vmiosRegWrite
This function has been removed. vmiosRegWrite is now a #define targeting
vmirtRegWrite. See the VMI Run Time Function Reference for more details.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 8 of 40

4 File Operations
Functions in this section are useful when creating a semihost library that retargets
simulated file read or write operations to real file operations on the host machine. This is
required so that applications compiled for a target operating system can be run in a
simulation environment without requiring the target operating system to be simulated as
well.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 9 of 40

4.1 vmiosOpen

Prototype

Int32 vmiosOpen(
 vmiProcessorP processor,
 const char *path,
 Int32 flags,
 Int32 mode
);

Description
This function returns a file descriptor for the file with the specified path. If the open fails,
the invalid file descriptor value -1 is returned.

The flags value should be one of the following values:

VMIOS_O_RDONLY
 VMIOS_O_WRONLY

VMIOS_O_RDWR

bitwise-or’d with any number of the following:

VMIOS_O_CREAT
VMIOS_O_TRUNC
VMIOS_O_APPEND

The parameter mode is only applicable when VMIOS_O_CREAT is included in the flag value
and the file does not already exist (that is, when a new file will actually be created), and
is ignored in all other cases. The mode value is a bit-mask of file permissions read, write,
and execute for each of user, group, and other (i.e. standard Unix file permissions).

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

//
// open (const char *buf, int flags, int mode)
//
static void doOpen(
 vmiProcessorP processor,
 vmiosObjectP object,
 const char *context,
 UnsArch reent,
 UnsArch pathnameAddr,
 IntArch flags,
 IntArch mode
) {
 // get file name from data domain
 memDomainP domain = vmirtGetProcessorDataDomain(processor);
 const char *pathname = vmirtGetString(domain, pathnameAddr);

 // implement open
 Int32 vmiosFlags = (flags & 0x003)
 | ((flags & TARGET_O_CREAT) ? VMIOS_O_CREAT : 0)

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 10 of 40

 | ((flags & TARGET_O_APPEND) ? VMIOS_O_APPEND : 0)
 | ((flags & TARGET_O_TRUNC) ? VMIOS_O_TRUNC : 0);

 Int32 result = vmiosOpen(processor, pathname, vmiosFlags, mode);

 if(result != -1) {

 // save file descriptor in simulated descriptor table
 Int32 fdMap = newFileDescriptor(object, context);
 if (fdMap != -1) {
 object->fileDescriptors[fdMap] = result;
 }

 // Return the fileDescriptor (or error)
 result = fdMap;
 }

 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
If the host is Windows, then only the user permissions of the mode value are used when a
new file is created, and the remaining bits are ignored.

The simulator and the OS support functions share the same file descriptors. In some cases
this may lead to artifacts where the simulator logging and semi-hosting functions using
the OS support functions interfere. This is particularly likely when stdout or stderr are
closed (simulator logging may be suppressed), or reopened (simulator logging may be
redirected to unexpected places).

It is recommended that semi-hosting functions that use file descriptors avoid these
situations by mapping file descriptors used by the semi-hosting functions to host file
descriptors that are not shared by the simulator itself. For example, simulated stdout or
stderr should be redirected to files on the host, not to host stdout or stderr.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 11 of 40

4.2 vmiosClose

Prototype

Int32 vmiosClose(
 vmiProcessorP processor,
 Int32 fd
);

Description
This function closes specified file descriptor, and it will no longer be associated with any
file. The same file descriptor may be reused by a subsequent call to vmiosOpen().

If the operation succeeds 0 is returned, and if it fails -1 is returned.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

static void doClose(
 vmiProcessorP processor,
 vmiosObjectP object,
 UnsArch reent,
 IntArch fd
) {
 // implement close
 Int32 fdMap = mapFileDescriptor(processor, object, fd);
 Int32 result = fdMap != -1 ? vmiosClose(processor, fdMap) : -1;

 // close out the semihosted file descriptor if success
 if(result != -1) {
 object->fileDescriptors[fd] = -1;
 }

 // return result
 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 12 of 40

4.3 vmiosRead

Prototype

Int32 vmiosRead(
 vmiProcessorP processor,
 Int32 fd,
 memDomainP domain,
 Addr buf,
 Uns32 count
);

Description
This function attempts to read the number of bytes specified by count from file
descriptor fd into the buffer in simulated memory starting at the address specified by
buf.

If the operation fails, -1 is returned. Otherwise the actual number of bytes read is returned
– this will be 0 if the end of file is encountered before any bytes are read.

If count is 0, then no bytes are read, and 0 is returned.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

static void doRead(
 vmiProcessorP processor,
 vmiosObjectP object,
 UnsArch reent,
 IntArch fd,
 UnsArch buf,
 UnsArch count
) {
 memDomainP domain = vmirtGetProcessorDataDomain(processor);
 Int32 fdMap = mapFileDescriptor(processor, object, fd);
 Int32 result = (fdMap != -1) ?
 vmiosRead(processor, fdMap, domain, buf, count) :
 -1;

 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 13 of 40

4.4 vmiosWrite

Prototype

Int32 vmiosWrite(
 vmiProcessorP processor,
 Int32 fd,
 memDomainP domain,
 Addr buf,
 Uns32 count
);

Description
This function attempts to write count bytes from the buffer within simulated memory
starting at buf to the file referenced by file descriptor fd.

If the operation fails, -1 is returned. Otherwise the number of bytes actually written is
returned. If count is 0, then no bytes will be written and 0 is returned.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

static void doWrite(
 vmiProcessorP processor,
 vmiosObjectP object,
 UnsArch reent,
 IntArch fd,
 UnsArch buf,
 UnsArch count
) {
 memDomainP domain = vmirtGetProcessorDataDomain(processor);
 Int32 fdMap = mapFileDescriptor(processor, object, fd);
 Int32 result = (fdMap != -)1 ?
 vmiosWrite(processor, fdMap, domain, buf, count) :
 -1;

 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 14 of 40

4.5 vmiosUnlink

Prototype

Int32 vmiosUnlink(
 vmiProcessorP processor,
 const char *path
);

Description
This function attempts to delete the file specified by path.

If the delete operation succeeds, 0 is returned. If the operation fails, -1 is returned.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

static void doUnlink(
 vmiProcessorP processor,
 vmiosObjectP object,
 UnsArch reent,
 UnsArch pathnameAddr
) {
 // get file name from data domain
 memDomainP domain = vmirtGetProcessorDataDomain(processor);
 const char *pathname = vmirtGetString(domain, pathnameAddr);

 // implement unlink
 Int32 result = vmiosUnlink(processor, pathname);

 // return result
 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 15 of 40

4.6 vmiosStat

Prototype

Int32 vmiosStat(
 vmiProcessorP processor,
 const char *path,
 vmiosStatBufP buf
);

Description
This function populates the buffer buf with information about the file specified by path.
The vmiosStatBuf structure type contains the following fields:

Type Name Description
Uns32 mode The mode of the file given as a bit-mask:

• the low order 9 bits indicates read/write/execute
permissions for user/group/other (group/other are not
applicable for a Windows host)

• VMIOS_S_IFREG indicates a regular file
• VMIOS_S_IFDIR indicates a directory

Uns64 size The size of the file in bytes.
Uns32 blksize The blocksize used by the device containing the file. A value of 1

will be used for devices that don’t report a blocksize.
Uns32 blocks The number of blocks occupied by the file. Note that blksize *

vmios_blocks may be significantly larger than size.
Uns32 atime The time of the most recent access of the file as seconds since the

Epoch (00:00:00 UTC, January 1, 1970)
Uns32 ctime The time of the most recent status change of the file as seconds

since the Epoch.
Uns32 mtime The time of the most recent modification of the file as seconds

since the Epoch.

The value returned is 0 if the operation succeeded and -1 if it failed.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

static void doStat(
 vmiProcessorP processor,
 vmiosObjectP object,
 UnsArch reent,
 UnsArch file_nameAddr,
 UnsArch bufAddr
) {
 // get file name from data domain
 memDomainP domain = vmirtGetProcessorDataDomain(processor);
 const char *file_name = vmirtGetString(domain, file_nameAddr);

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 16 of 40

 // implement stat
 vmiosStatBuf statBuf = {0};
 Int32 result = vmiosStat(processor, file_name, &statBuf);

 // write back results
 if (result != -1) {
 transcribeStatData(processor, bufAddr, &statBuf);
 }

 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 17 of 40

4.7 vmiosLStat

Prototype

Int32 vmiosLStat(
 vmiProcessorP processor,
 const char *path,
 vmiosStatBufP buf
);

Description
This function returns information about the file specified by path.

If path refers to a symbolic link, then information about the link itself (rather than the
file to which the link refers) is returned. If the host is Windows, this function behaves
exactly like vmiosStat since symbolic-links are not available

The value returned is 0 if the operation succeeded and -1 if it failed.

See section 4.6 for a description of the format of the vmiosStatBuf structure.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

static void doLstat(
 vmiProcessorP processor,
 vmiosObjectP object,
 UnsArch reent,
 UnsArch file_nameAddr,
 UnsArch bufAddr
) {
 // get file name from data domain
 memDomainP domain = vmirtGetProcessorDataDomain(processor);
 const char *file_name = vmirtGetString(domain, file_nameAddr);

 // implement stat
 vmiosStatBuf statBuf = {0};
 Int32 result = vmiosLStat(processor, file_name, &statBuf);

 // write back results
 if (result != -1) {
 transcribeStatData(processor, bufAddr, &statBuf);
 }
 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 18 of 40

4.8 vmiosFStat

Prototype

Int32 vmiosFstat(
 vmiProcessorP processor,
 Int32 fd,
 vmiosStatBufP buf
);

Description
This function returns information about the file referenced by file descriptor fd.

The value returned is 0 if the operation succeeded and -1 if it failed.

See section 4.6 for a description of the format of the vmiosStatBuf structure.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

static void doFstat(
 vmiProcessorP processor,
 vmiosObjectP object,
 UnsArch reent,
 IntArch filedes,
 UnsArch bufAddr
) {
 // implement fstat
 vmiosStatBuf statBuf = {0};
 Int32 fdMap = mapFileDescriptor(processor, object, filedes);
 Int32 result = (fdMap != -1) ?
 vmiosFStat(processor, fdMap, &statBuf) :
 -1;

 // write back results
 if (result != -1) {
 transcribeStatData(processor, bufAddr, &statBuf);
 }

 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 19 of 40

4.9 vmiosLSeek

Prototype

Int32 vmiosLSeek(
 vmiProcessorP processor,
 Int32 fd,
 Int32 offset
 Int32 whence
);

Description
This function repositions the position of the file descriptor fd to the specified signed
offset from a position indicated by the value of whence.

Whence must be one of the following constants:
 VMIOS_SEEK_SET offset is from the start of the file

VMIOS_SEEK_CUR offset is from the current position within the file
VMIOS_SEEK_END offset is from the end of the file

If the operation succeeds, the resulting offset in bytes from the start of the file is returned.
If the operation fails, -1 is returned.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

static void doLseek(
 vmiProcessorP processor,
 vmiosObjectP object,
 UnsArch reent,
 IntArch fd,
 IntArch offset,
 IntArch whence
) {
 // implement lseek
 Int32 fdMap = mapFileDescriptor(processor, object, fd);
 Int32 result = fdMap != -1 ? vmiosLSeek(processor, fdMap, offset, whence) : 1;

 // return result
 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 20 of 40

5 Simulation Environment
Functions in this section are used to obtain resources and settings from the simulator, and
to control some aspects of interaction with the simulator.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 21 of 40

5.1 vmiosGetExtensionName

Prototype

const char *vmiosGetExtensionName(vmiosObjectP object);

Description
This function returns the name of a plugin. It is typically used in error messages.

Example

#include “vmi/vmiOSLib.h”
#include “vmi/vmiMessage.h”

#define LICENSE_NAME "OS_FEATURE"

static void licenseCheck(vmiosObjectP object) {
 if(!vmiosGetLicenseFeature(LICENSE_NAME)) {
 vmiMessage(
 "F", PLUGIN_PREFIX,
 "%s: Unable to obtain tool license:\n%s\n",
 vmiosGetExtensionName(object),
 vmiosGetLicenseFeatureErrString(LICENSE_NAME)
);
 }
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 22 of 40

5.2 vmiosGetStdin, vmiosGetStdout, vmiosGetStderr

Prototypes

Int32 vmiosGetStdin(vmiProcessorP processor);
Int32 vmiosGetStdout(vmiProcessorP processor);
Int32 vmiosGetStderr(vmiProcessorP processor);

Description
These functions return suitable file descriptors to use for stdin, stdout and stderr in a
semihost library. They will typically be used in the intercept library constructor.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

//
// Intercept library object
//
typedef struct vmiosObjectS {

 Int32 fileDescriptors[FILE_DES_NUM];

} vmiosObject

//
// Intercept library initialization
//
static void setupNewlib(vmiosObjectP object, vmiProcessorP processor) {

 . . .

 // initialize stdin, stderr and stdout
 object->fileDescriptors[0] = vmiosGetStdin(processor);
 object->fileDescriptors[1] = vmiosGetStdout(processor);
 object->fileDescriptors[2] = vmiosGetStderr(processor);

 . . .
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 23 of 40

5.3 vmiosGetTimeOfDay

Prototype

Int32 vmiosGetTimeOfDay(vmiProcessorP processor, vmiosTimeBufP timebuf);

Description
This function populates the buffer pointed to by timebuf with the approximate number
of seconds and microseconds since the Epoch (00:00:00 UTC, January 1970). The
vmiosTimeBuf structure type contains the following fields:

Type Name Description
Uns32 sec Seconds since the epoch
Uns32 usec Microseconds in addition to seconds

The time since the Epoch is the sum of seconds and microseconds.

The value returned is 0 if the operation succeeded and -1 if it failed.

Example
This example is taken from the standard Newlib semihost library implementation.

#include “vmi/vmiOSLib.h”

static void doGettimeofday(
 vmiProcessorP processor,
 vmiosObjectP object,
 UnsArch reent,
 UnsArch tvAddr
) {
 // implement gettimeofday
 vmiosTimeBuf timeBuf = {0};
 Int32 result = vmiosGetTimeOfDay(processor, &timeBuf);

 // write back results
 if (result != -1 && tvAddr) {
 transcribeTimeData(processor, tvAddr, &timeBuf);
 }

 setErrnoAndResult(processor, object, result, reent);
}

Notes and Restrictions
On a Windows host the microseconds value is only given to millisecond precision.

Since the value returned is based on the host system’s clock, time within a simulation
determined using this function may appear to advance at an unrealistic rate.

In a multi-processor simulation, there is the possibility of times returned by this function
to appear out of sequence due to the size of the quanta by which each processor is
advanced.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 24 of 40

5.4 vmiosInstallInterceptNotifier

Prototype

void vmiosInstallInterceptNotifier (
 vmiosObjectP object,
 vmiosNotifierFn notifierCB,
 void *userData
);

Description
This function installs an opaque intercept notifier for the intercept library. This is called
whenever an opaque function intercept is performed, even if the intercept is implemented
by a different intercept library.

Intercept notifiers are useful when writing plugins that analyze call/return addresses as an
application runs. When a called function is intercepted (by a semihost library, for
example) the body of that function will not be executed: the simulator will behave as if
there was an implicit return from the function after a single instruction. This can confuse
a plugin tool that is decoding instructions to understand the call/return flow though a
program. By installing a notifier, the plugin can make sure it is informed about this
behavior and take appropriate action.

The intercept notifier function is defined using the VMIOS_INTERCEPT_NOTIFIER_FN
macro (defined in vmiTypes.h):

#define VMIOS_INTERCEPT_NOTIFIER_FN(_NAME) void _NAME(\
 vmiProcessorP processor, \
 vmiosObjectP object, \
 const char *context, \
 void *userData \
)

The callback is passed the processor object and the intercept library that installed the
notifier as arguments, and a client data pointer (userData). Argument context is the
name of the intercepted function.

Example
This example is extracted from a tool that may record stack depth by intercepting paired
call and return instructions as an application runs. When a function is intercepted, there
will be a call with no apparent return; to allow for this, the call count is decremented
implicitly whenever an opaque intercept occurs.

#include “vmi/vmiOSLib.h”

static VMIOS_INTERCEPT_NOTIFIER_FN(opaqueInterceptCalled) {
 object->callCount--;
}

static VMIOS_CONSTRUCTOR_FN(constructor) {

 object->callCount = 0;

 . . .

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 25 of 40

 // install callback whenever an opaque intercept occurs
 // (to ensure stack push is cancelled)
 vmiosInstallInterceptNotifier(object, opaqueInterceptCalled, NULL);
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 26 of 40

5.5 vmiosGetLicenseFeature

Prototype

Bool vmiosGetLicenseFeature(const char *feature);

Description
This routine attempts to check out a license feature with the passed name. The return
code indicates whether the license was successfully checked out. This function will
typically be called from within the plugin constructor.

Example

#include “vmi/vmiOSLib.h”
#include “vmi/vmiMessage.h”

#define LICENSE_NAME "OS_FEATURE"

static void licenseCheck(vmiosObjectP object) {
 if(!vmiosGetLicenseFeature(LICENSE_NAME)) {
 vmiMessage(
 "F", PLUGIN_PREFIX,
 "%s: Unable to obtain tool license:\n%s\n",
 vmiosGetExtensionName(object),
 vmiosGetLicenseFeatureErrString(LICENSE_NAME)
);
 }
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 27 of 40

5.6 vmiosGetLicenseFeatureErrString

Prototype

const char *vmiosGetLicenseFeatureErrString(const char *feature);

Description
When function vmiosGetLicenseFeature fails, this function can be called to get an
error string indicating why the checkout failed. Typically, the result should be used in a
call to vmiMessage with the fatal message identifier “F”: this will cause a fatal message
to be printed and terminate simulation.

Example

#include “vmi/vmiOSLib.h”
#include “vmi/vmiMessage.h”

#define LICENSE_NAME "OS_FEATURE"

static void licenseCheck(vmiosObjectP object) {
 if(!vmiosGetLicenseFeature(LICENSE_NAME)) {
 vmiMessage(
 "F", PLUGIN_PREFIX,
 "%s: Unable to obtain tool license:\n%s\n",
 vmiosGetExtensionName(object),
 vmiosGetLicenseFeatureErrString(LICENSE_NAME)
);
 }
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 28 of 40

6 Scope Constraints
It is sometimes desirable to restrict a semihost library or plugin so that it is activated only
when a processor is in a particular state, indicated by a combination of processor
operating mode (e.g. user or kernel) and virtual address state (typically defined by ASID
or VMID). For example, when writing a tool to analyze the behavior of a user application
running under a simulated Linux operating system it will be necessary to ensure the tool
is only activated when that particular user process is running.

To facilitate implementation of this kind of analysis tool, it is possible to set a scope on a
plugin or intercept library, and use this to control operations of that tool.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 29 of 40

6.1 vmiosUpdateScope

Prototype

Bool vmiosUpdateScope(vmiosObjectP object, const char *scope);

Description
This function modifies the effective scope of an intercept library, to restrict its activity to
a particular simulated processor state. The argument scope specifies the new effective
scope, and must be a string in one of these forms:

clear
[<mode>][:<ASID>]
+[<mode>][:<ASID>]
-[<mode>][:<ASID>]

The value clear indicates that all scope constraints should be removed. The value
<mode>:<ASID> indicates that the intercept library should be activated only when the
processor is operating with that particular mode/ASID combination. The value
+<mode>:<ASID> indicates that the intercept library should be activated when the
processor is operating with that particular mode/ASID combination in addition to any
previously-specified scope constraints. The value -<mode>:<ASID> indicates that the
intercept library should not be activated when the processor is operating with that
particular mode/ASID combination, but any other previously-specified scope constraints
specified should be preserved. Either mode or ASID may be omitted – see the examples
below.

The values of mode and ASID are processor dependent, but both are 32-bit unsigned
values. The currently-effective scope of a processor can be found by
vmirtGetProcessorScope.

In the simplest case, mode and ASID values will be unsigned 32-bit numbers and will
therefore specify a precise operating mode and ASID. It is also possible to specify a mask
with either value, using the following syntax:

 value&mask

where both value and mask are 32-bit numbers. When a mask is specified, the scope is
deemed to match if:

 (current_processor_value & mask) == value

Scope String Examples
This section gives some examples of scope strings to clarify the allowed syntax.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 30 of 40

1. vmiosUpdateScope(object, “clear”);
Remove all scope constraints on the semihost library or plugin.

2. vmiosUpdateScope(object, “3:24”);
Indicate the plugin is active only when operating in processor mode 3 with ASID 24.
Mode and ASID specifications are processor-specific.

3. vmiosUpdateScope(object, “3”);
Indicate the plugin is active only when operating in processor mode 3, with any ASID.

4. vmiosUpdateScope(object, “:24”);
Indicate the plugin is active only when operating with ASID 24, in any mode.

5. vmiosUpdateScope(object, “+3:30”);
Indicate the plugin is should be active when operating in processor mode 3 with ASID
30, in addition to any previously-specified scope.

6. vmiosUpdateScope(object, “-3:12”);
Indicate the plugin is should be not be active when operating in processor mode 3 with
ASID 12, but preserve any other active scope.

7. vmiosUpdateScope(object, “3:12&0xff”);
Indicate the plugin is should be active when operating in processor mode 3 when the
processor ASID masked to 8 bits is 12 (in other words, ignore the top 24 bits of the
ASID).

Example
This example shows how scopes might be used to constrain an intercept library callback
that monitors a function in a Linux user application so that it is activated only when one
particular process runs. The example is somewhat contrived because it constrains the
intercept library so that it is tied to the first user process that executes at the intercepted
function address, whether or not this is in fact running the target application. In reality,
the scope constraint would be specified by an OS-aware helper library that monitored the
creation and deletion of user tasks.

#include “vmi/vmiOSLib.h”

static VMIOS_INTERCEPT_FN(doFib) {

 Uns32 index;

 getArg(processor, object, 0, &index);

 if(index>=30) {

 const char *context = vmirtGetProcessorScope(processor);

 // constrain intercept library to one scope
 if(!object->initialized) {
 object->initialized = True;
 vmiosUpdateScope(object, context);
 vmiMessage(
 "I", CPU_PREFIX "_SCOPE",

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 31 of 40

 "set intercept scope %s",
 vmiosGetScope(object)
);
 }

 if(vmiosMatchScope(processor, object)) {

 // matching scope
 vmiMessage(
 "I", CPU_PREFIX "_MATCH",
 "(scope %s): index=%u",
 context,
 index
);

 } else {

 // mismatched scope
 vmiMessage(
 "I", CPU_PREFIX "_IGNRE",
 "(scope %s ignored)",
 Context
);
 }
 }
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 32 of 40

6.2 vmiosGetScope

Prototype

const char *vmiosGetScope(vmiosObjectP object);

Description
This function returns the current effective scope of an intercept library or plugin. This is a
string of the form:

clear
[!]mode:ASID ([and|or] [!]mode:ASID)*

(where mode:ASID follows the description given in section 6.1).

The value clear indicates that no scope constraint is active.

An exclamation mark in front of a scope implies negation: foe example, the value:
 “!3:12”
indicates that the scope is active when a processor is not in mode 3 with ASID 12.

Multiple active scopes are shown concatenated by and and or primitives. Foe example,
the value:
 “3:12 or 3:15”
indicates that the scope is active when a processor is in mode 3 with ASID 12 or 15.

Example
This example shows how scopes might be used to constrain an intercept library callback
that monitors a function in a Linux user application so that it is activated only when one
particular process runs. The example is somewhat contrived because it constrains the
intercept library so that it is tied to the first user process that executes at the intercepted
function address, whether or not this is in fact running the target application. In reality,
the scope constraint would be specified by an OS-aware helper library that monitored the
creation and deletion of user tasks.

#include “vmi/vmiOSLib.h”

static VMIOS_INTERCEPT_FN(doFib) {

 Uns32 index;

 getArg(processor, object, 0, &index);

 if(index>=30) {

 const char *context = vmirtGetProcessorScope(processor);

 // constrain intercept library to one scope
 if(!object->initialized) {
 object->initialized = True;
 vmiosUpdateScope(object, context);
 vmiMessage(
 "I", CPU_PREFIX "_SCOPE",

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 33 of 40

 "set intercept scope %s",
 vmiosGetScope(object)
);
 }

 if(vmiosMatchScope(processor, object)) {

 // matching scope
 vmiMessage(
 "I", CPU_PREFIX "_MATCH",
 "(scope %s): index=%u",
 context,
 index
);

 } else {

 // mismatched scope
 vmiMessage(
 "I", CPU_PREFIX "_IGNRE",
 "(scope %s ignored)",
 Context
);
 }
 }
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 34 of 40

6.3 vmiosMatchScope

Prototype

Bool vmiosMatchScope(vmiProcessorP processor, vmiosObjectP object);

Description
This function returns a Boolean indicating whether the current processor scope matches
the active intercept or plugin scope. This can be used to modify the control flow of the
intercept library so that it is activated only when scopes match.

Example
This example shows how scopes might be used to constrain an intercept library callback
that monitors a function in a Linux user application so that it is activated only when one
particular process runs. The example is somewhat contrived because it constrains the
intercept library so that it is tied to the first user process that executes at the intercepted
function address, whether or not this is in fact running the target application. In reality,
the scope constraint would be specified by an OS-aware helper library that monitored the
creation and deletion of user tasks.

#include “vmi/vmiOSLib.h”

static VMIOS_INTERCEPT_FN(doFib) {

 Uns32 index;

 getArg(processor, object, 0, &index);

 if(index>=30) {

 const char *context = vmirtGetProcessorScope(processor);

 // constrain intercept library to one scope
 if(!object->initialized) {
 object->initialized = True;
 vmiosUpdateScope(object, context);
 vmiMessage(
 "I", CPU_PREFIX "_SCOPE",
 "set intercept scope %s",
 vmiosGetScope(object)
);
 }

 if(vmiosMatchScope(processor, object)) {

 // matching scope
 vmiMessage(
 "I", CPU_PREFIX "_MATCH",
 "(scope %s): index=%u",
 context,
 index
);

 } else {

 // mismatched scope
 vmiMessage(
 "I", CPU_PREFIX "_IGNRE",
 "(scope %s ignored)",
 Context
);

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 35 of 40

 }
 }
}

Notes and Restrictions
None.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 36 of 40

7 Runtime Commands
A runtime command is part of a plugin which can be executed by the simulator. Its
typical use is to change the mode of operation of the plugin or to print information from
inside it. The functions vmiosAddCommand and vmiosAddCommandParse are similar to the
functions vmirtAddCommand and vmirtAddCommandParse which are comprehensively
documented in OVP_VMI_Run_Time_Function_Reference.doc. Please refer to that
manual for more detail.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 37 of 40

7.1 vmiosAddCommand

Prototype

void vmiosAddCommand(
 vmiosObjectP object,
 const char *name,
 const char *exampleArguments,
 vmiosCommandFn commandCB,
 vmiCommandAttrs attrs
);

Description
This function adds a command with the specified name to the passed vmiosObject.
When the command is executed, the function commandCB will be called. The argument
exampleArguments is used by the help system and should list the arguments required by
the command. Function commandCB should be defined using the VMIOS_COMMAND_FN
macro (defined in file vmiCommand.h):

#define VMIOS_COMMAND_FN(_NAME) const char *_NAME(\
 vmiosObjectP object, \
 Int32 argc, \
 const char *argv[] \
)

The installed function is passed the object context, the number of arguments (argc) and
an array of string arguments argv. argv[0] is the command name.

Argument attrs may be used to control how the command appears in a graphical
interface. See the VMI Run Time Reference Manual for information on the values that
may be passed.

Example

#include “vmi/vmiOSLib.h”

static VMIOS_COMMAND_FN(myCommand) {

 vmiPrintf("command %s was called, with args...\n", argv[0]);

 int i;
 for(i= 1; i < argc) {
 vmiPrintf(" arg %d=%s\n", i, argv[i]);
 }
 ...
}

VMIOS_CONSTRUCTOR_FN(constructor) {
 ...
 vmiosAddCommand(
 object, “myCommand”, "-myArg <string>", myCommand, VMI_CT_DEFAULT
);
 ...
}

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 38 of 40

Notes and Restrictions
The arguments passed in argv do not persist after the function call is complete.

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 39 of 40

7.2 vmiosAddCommandParse

Prototype

vmiCommandP vmiosAddCommandParse(
 vmiosObjectPP object,
 const char *name,
 const char *exampleArguments,
 vmiosCommandParseFn commandCB,
 vmiCommandAttrs attrs
);

Description
This function adds a command with the specified name to the passed vmiosObject. When
the command is called, the arguments will first be parsed according to the argument
specifications provided by vmirtAddArg() and then the function commandCB will be
called in the model. The argument exampleArguments is used by the help system and
should list the arguments required by the command.

The called function is passed the object context, the number of arguments specified with
vmirtAddArg() and an array of argument value structures filled with the parsed values,
in the order they were originally specified. See vmirtAddArg() in the VMI Run Time
Reference Manual.

Argument attrs may be used to control how the command appears in a graphical
interface. See the VMI Run Time Reference Manual for information on the values that
may be passed.

Example
This example shows how to add a command logtofile with parsed arguments on, off
and filename to a plugin. The command is created first and then arguments are added to it
by repeatedly calling vmirtAddArg.

void constructParser(vmiosObjectP object, cmdArgValuesP argValues) {

 vmiCommandP cmd;

 cmd = vmiosAddCommandParse(
 object,
 "logtofile",
 "Enable/disable writing messages from this library to its own log file",
 logtofileCB,
 VMI_CT_QUERY|VMI_CO_CPU|VMI_CA_TRACE
);

 vmirtAddArg(
 cmd,
 "on",
 "Turns on trace output to the log file (default)",
 VMI_CA_FLAG,
 VMI_CAA_MENU,
 0,
 &(argValues->logtofileStr.on)
);

 vmirtAddArg(

OVP VMI OS Support Reference

© 2020 Imperas Software Limited www.OVPworld.org Page 40 of 40

 cmd,
 "off",
 "Turns off trace output to the log file (initial)",
 VMI_CA_FLAG,
 VMI_CAA_DEFAULT,
 0,
 &(argValues->logtofileStr.off)
);

 vmirtAddArg(
 cmd,
 "filename",
 "Filename for logfile for this library (default is name based on library
instance name)",
 VMI_CA_STRING,
 VMI_CAA_MENU,
 0,
 &(argValues->logtofileStr.filename)
);
}

Notes and Restrictions
The arguments passed in argv do not persist after the function call is complete.

	1 Introduction
	2 QuantumLeap Semantics
	3 Interface to Processor Model
	3.1 vmiosGetRegDesc
	3.2 vmiosRegRead
	3.3 vmiosRegWrite

	4 File Operations
	4.1 vmiosOpen
	4.2 vmiosClose
	4.3 vmiosRead
	4.4 vmiosWrite
	4.5 vmiosUnlink
	4.6 vmiosStat
	4.7 vmiosLStat
	4.8 vmiosFStat
	4.9 vmiosLSeek

	5 Simulation Environment
	5.1 vmiosGetExtensionName
	5.2 vmiosGetStdin, vmiosGetStdout, vmiosGetStderr
	5.3 vmiosGetTimeOfDay
	5.4 vmiosInstallInterceptNotifier
	5.5 vmiosGetLicenseFeature
	5.6 vmiosGetLicenseFeatureErrString

	6 Scope Constraints
	6.1 vmiosUpdateScope
	6.2 vmiosGetScope
	6.3 vmiosMatchScope

	7 Runtime Commands
	7.1 vmiosAddCommand
	7.2 vmiosAddCommandParse

