
 © 2020 Imperas Software Limited www.OVPworld.org Page 1 of 19

OVP Debugging with INSIGHT User Guide

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 0.3
Filename: OVPsim_Debugging_with_INSIGHT_User_Guide.doc
Project: OVP Debugging with INSIGHT User Guide
Last Saved: January 13, 2020
Keywords: OVP insight debug

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 2 of 19
.

Copyright Notice
Copyright © 2020 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 3 of 19
.

Table of Contents

1 Preface... 4
1.1 Notation... 4
1.2 Related OVP Documents .. 4

2 Introduction... 5
2.1 Prerequisites .. 5

3 Installation and Configuration of INSIGHT ... 6
3.1 SourceForge MinGW Project ... 6
3.2 Obtain and Install INSIGHT... 6
3.3 Obtain and Install GDB .. 7
3.4 Configure the Environment... 8
3.5 Check the Install ... 8

4 Debugging a Processor Model .. 10
4.1 Introduction... 10
4.2 A Basic Platform... 10

4.2.1 Building the Platform.. 11
4.2.2 Running the platform .. 12

4.3 Starting a Debug Session .. 12
4.4 Model DLL Load .. 13
4.5 An Example Debug Session.. 15

4.5.1 The Constructor Function ... 15
4.5.2 The Code Morph Function.. 17
4.5.3 The Decode Function.. 18
4.5.4 The Disassemble Function.. 19

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 4 of 19
.

1 Preface
This document describes how to debug an OVP simulator processor model using the
INSIGHT debugger.

1.1 Notation
Code Code and command extracts

1.2 Related OVP Documents
• CpuManager and OVPsim User Guide

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 5 of 19
.

2 Introduction
The OVPsim and CpuManager User Guide describes how platforms containing any
number of processor models and peripheral models can be constructed. This document
describes how to debug models contained within a platform while it is simulating using
the freely-available OVPsim simulation environment.

The debugging of models within the OVPsim environment is by no means limited to
INSIGHT. This is one of a number of graphical user interfaces that could be used but has
been chosen here for its simplicity of use and good feature set.

2.1 Prerequisites
GCC Compiler Versions
Linux32 4.5.2 i686-nptl-linux-gnu (Crosstool-ng)
Linux64 4.4.3 x86_64-unknown-linux-gnu (Crosstool-ng)
Windows32 4.4.7 mingw-w32-bin_i686-mingw
Windows64 4.4.7 mingw-w64-bin_i686-mingw

For Windows environments, Imperas recommends using MinGW (www.mingw.org) and
MSYS.

There are two components used in the example given in this document. The processor
model uses the opencores OR1K processor model and tool chain. The peripheral model
uses a DMA Controller. Both are available to download from the www.ovpworld.org
website or as part of an Imperas installation.

http://www.mingw.org/
http://www.ovpworld.org/

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 6 of 19
.

3 Installation and Configuration of INSIGHT

3.1 SourceForge MinGW Project
To use the INSIGHT graphical debug interface on Windows with OVPsim, two modules
need to be downloaded from the mingw project on sourceforge,
http://sourceforge.net/projects/mingw

Select the MinGW download pages using the link:

3.2 Obtain and Install INSIGHT

Download the win32 installer

Execute the installer and select the base of the MSYS install for the INSIGHT install
location, for example C:/msys/1.0. This will add files into the bin and lib directories.

http://sourceforge.net/projects/mingw

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 7 of 19
.

3.3 Obtain and Install GDB

Download the bzip tar file

Uncompress the gdb tar file in the MSYS shell using bunzip2 or another equivalent
program.

The tar file should be extracted into the MINGW install directory, for example
C:/msys/1.0/mingw. This can all be done in an MSYS shell

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 8 of 19
.

3.4 Configure the Environment

The environment requires that the insight/bin directory is added to the PATH so that the
executable is found. All other libraries and binaries should be found using the standard
MSYS and MINGW environments.

3.5 Check the Install

You now have a graphical debugger that can be used to debug the processor and
peripheral models in an OVP simulation.

The Insight GUI may be started from an MSYS shell by typing ‘insight’.

The insight graphical interface should start

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 9 of 19
.

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 10 of 19
.

4 Debugging a Processor Model

4.1 Introduction

A processor model is a set of functions that define the behavior of individual instructions
using the VMI API. This generates a code morpher i.e. morphs ‘your’ processor
instructions into native x86 processor instructions. The morph code program is run just-
in-time to satisfy the requirements of the simulator.

This document deals with debugging the flow through the morph program.

4.2 A Basic Platform
A suitable single-processor platform example is available in the directory:

$IMPERAS_HOME/Examples/PlatformsICM/simple

This uses the freely-available OR1K processor (see
http://www.opencores.org/projects.cgi/web/or1k/architecture).

The test platform source is in file platform/platform.c:

// enable tracing etc. on processor model
#define MODEL_ATTRS (ICM_ATTR_DEFAULT)

//
// Create platform
//
void createPlatform() {

 // Initialize ICM
 icmInitAttrs icmAttrs = ICM_VERBOSE | ICM_STOP_ON_CTRLC;
 icmInitPlatform(ICM_VERSION, icmAttrs, 0, 0, "platform");

 // select library components
 const char *vlnvRoot = NULL; //When NULL use default library
 const char *model = icmGetVlnvString(
 vlnvRoot, "ovpworld.org", "processor", "or1k", "1.0", "model"
);
 const char *semihosting = icmGetVlnvString(
 vlnvRoot, "ovpworld.org", "modelSupport", "imperasExit", "1.0", "model"
);

 // create a processor
 icmNewProcessor(
 "cpu1", // CPU name
 "or1k", // CPU type
 0, // CPU cpuId
 0, // CPU model flags
 32, // address bits
 model, // model file
 "modelAttrs", // morpher attributes
 MODEL_ATTRS, // simulation attributes. enable tracing etc

http://www.opencores.org/projects.cgi/web/or1k/architecture

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 11 of 19
.

 0, // user-defined attributes
 semihosting, // semi-hosting file
 "modelAttrs" // semi-hosting attributes
);

 // No memory or bus connections are created in this platform
 // The simulator assumes and creates a memory connection to the
 // full memory space this processor can access.
}

//
// M A I N //
//

static Bool cmdParser(int argc, const char *argv[]);

int main(int argc, const char *argv[])
{
 // Check arguments and ensure application to load specified
 if(!cmdParser(argc, argv)) {
 icmMessage("E", "platform", "Command Line parser error");
 icmExitSimulation(1);
 }

 // the constructor
 createPlatform();

 icmSimulationStarting();

 // run simulation
 icmSimulatePlatform();

 // terminate simulation and free simulation data structures
 icmTerminate();

 icmExitSimulation(0);
}

For a full explanation of OVPsim platform construction please see the CpuManager and
OVPsim User Guide.
4.2.1 Building the Platform
The OVPsim examples are written to work with GCC and MAKE which are typically
available on Linux and can be installed on Windows as part of MinGW and MSYS (see
section 2.1.) The example commands below assume you are using a shell on Linux or
MSYS.

Take a copy of one of the processor model example files, here we are using the version
showing the addition of simple behavior:

 cp –r $IMPERAS_HOME/Examples/Models/Processor/4.or1kBehaviourSimple .

The test platform, application and processor model can be compiled to produce an
executable, platform.${IMPERAS_ARCH}.exe, an elf file, application.OR1K.elf, and a
DLL, model.dll, by using make in the example directory:

 cd 4.or1kBehaviourSimple

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 12 of 19
.

 make

NOTE: This will, by default, build a non-optimized version of the processor model for
debugging.

4.2.2 Running the platform
Start the OVP simulator with the example platform by running the native platform
executable built earlier. This simple platform takes a single argument which is OR1K
application to run on the simulated processor.

 platform/platform.${IMPERAS_ARCH}.exe \
 --program application/application.OR1K.elf

OVPsim v20080625.0 Open Virtual Platform simulator from www.OVPworld.org.
Copyright (C) 2005-2008 Imperas Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.
Visit www.imperas.com for multicore debug, verification and analysis solutions.
OVPsim started: Wed Jul 23 11:50:31 2008

Info 'cpu1' REGISTERS
CPU cpu1 (instruction 1):
 0: 00000000 00000000 deadbeef deadbeef
 16: deadbeef deadbeef deadbeef deadbeef
 32: deadbeef deadbeef deadbeef deadbeef

… etc …

 80: 00000000 00000000 00000000 00000000
 96: 00000000 00000000 00000000 00000000
 112: 00000000 00000000 00000000 00000000
Info 'cpu1', 0x0000000000000178: ??? instruction:0x1820ffff
CPU 'cpu1' 0x00000178:0x1820ffff *** undecoded instruction: exiting ***

OVPsim finished: Wed Jul 23 11:50:31 2008
Visit www.imperas.com for multicore debug, verification and analysis solutions.
OVPsim v20080625.0 Open Virtual Platform simulator from www.OVPworld.org.

4.3 Starting a Debug Session

Ensure that the processor model has been built with debug enabled, i.e. using –g –
gdwarf2

Invoke insight on the platform executable.

 insight --args platform/platform.${IMPERAS_ARCH}.exe \
 --program application/application.OR1K.elf

By using the ‘--args’ argument we pass the command line parameters from this command
line directly through to the execution on GDB.

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 13 of 19
.

As with all GDB a breakpoint will be created on main so we can immediately run and the
simulation will stop at main. Select run from the pull down menu.

The simulation will start, a shell will be created and the simulation will stop at main in
the platform.c file.

At this stage the processor model DLL has not been loaded. We can only view the source
for the processor model once loaded so we must run the simulation until the point at
which the DLL has been loaded. This will be shown in the next sections

4.4 Model DLL Load

The model DLL is loaded when the icmNewProcessor API call is made. After this call
has completed we can use the view->Function Browser option to select the source files
for the processor model and set breakpoints. However, once this call has completed the
processor model constructor will also have completed. If we wish to examine the
execution of the processor model execution we need a way of stopping the simulation
after the model is loaded but before anything is executed. This is done by setting a
breakpoint the symbol icmLoadModelHook. This breakpoint will have to be set from the
console, view->Console.

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 14 of 19
.

We can now continue the simulation to the breakpoint.

Once we have reached this point all the model source code is available to view in the
Function Browser. We are now able to set breakpoints and debug the model.

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 15 of 19
.

4.5 An Example Debug Session

This section takes a look at some of the aspects in the debug of the processor model.

4.5.1 The Constructor Function

The very first function called by the simulator is called the constructor. This is used for
carrying out initialization or other configuration of the model. These may be based on
attributes passed to the model when the processor is instantiated.

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 16 of 19
.

The view->Function Browser can be used to set a breakpoint in the constructor; but only
after the model is loaded.

Using the view->Local Variables window we can see how the processor state is effected
as the constructor executes.

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 17 of 19
.

4.5.2 The Code Morph Function

The code morphing function describes on an instruction by instruction basis how to create
its behavior using the VMI API.

The morph function is called for each address the simulator reaches to create the code to
be executed. A complete code block 1is created.

A breakpoint may be set on the code morphing function. This uses the common
instruction decoder and passes a table of morph functions in the dispatchTable.

By stepping into the decode table we can follow the flow through into the leaf function
that provide the behavior for the instruction.

1 A code block is a set of instructions that reside in contiguous memory locations. The code block may be
terminated by API calls, by instructions causing a change in the flow (jumps, branches, calls etc), by
memory paging etc

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 18 of 19
.

Integral to the morph function is the decode function.

4.5.3 The Decode Function
The decode function parses the instructions loaded from memory and then on finding a
match calls into one of the entries in the table that it is passed.

OVP Debugging with INSIGHT User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 19 of 19
.

4.5.4 The Disassemble Function

Finally the disassembler also calls through the decode function to a dispatch table that
will display the disassembler output of the instruction at the passed address.

	1 Preface
	1.1 Notation
	1.2 Related OVP Documents

	2 Introduction
	2.1 Prerequisites

	3 Installation and Configuration of INSIGHT
	3.1 SourceForge MinGW Project
	3.2 Obtain and Install INSIGHT
	3.3 Obtain and Install GDB
	3.4 Configure the Environment
	3.5 Check the Install

	4 Debugging a Processor Model
	4.1 Introduction
	4.2 A Basic Platform
	4.2.1 Building the Platform
	4.2.2 Running the platform

	4.3 Starting a Debug Session
	4.4 Model DLL Load
	4.5 An Example Debug Session
	4.5.1 The Constructor Function
	4.5.2 The Code Morph Function
	4.5.3 The Decode Function
	4.5.4 The Disassemble Function

