oftware Limited

eras Buildings, North Weston,
e, Oxfordshire, OX9 2HA, UK
docs@imperas.com

MULTICORE DESIGN SIMPLIFIED

mperas

Author: Imperas Software Limited

Version: 2.5

Filename: OVPsim _and CpuManager User Guide.doc
Project: OVPsim and CpuManager User Guide

Last Saved: | Monday, 08 April 2019

Keywords: ICM API

© 2019 Imperas Software Limited www.OVPworld.org

Page 1 of 168

OVPsim and CpuManager User Guide

Copyright Notice

Copyright © 2019 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of th
documentation for its internal use only. Each copy shall include all copyri
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to

United States of America. Disclosure to nationals of other ¢ S contrary to United
States law is prohibited. It is the reader’s responsibili dete e the applicable
regulations and to comply with them.

Disclaimer

IMPERAS SOFTWARE LIMITED, A ICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMP W EGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMIT , MPLIED WARRANTIES OF
MERCHANTABILITY AND FI S FOR A PARTICULAR PURPOSE.

© 2019 Imperas Software Limited www.OVPworld.org Page 2 of 168

OVPsim and CpuManager User Guide

Table of Contents

1 Superseded Document INFOrMAtIONccveiiiiiiiiiiesie e 8
I R o 111 0] =TSRSS 8

/2 111 oo L1 Tox ([0 o PP PSRPRUPPRIN 9
2.1 What are CpuManager and OVPSIM?........cccoieiiieiieeiesiese e nie e 9
2.2 Use of ICM with IMmperas toO0IS..........cooeiiiiiiiiiie e

2.3 Compiling Examples Described in this Document
3 Imperas ICM Header FIlES.........ooiiiiiiiiec e
4 Simple Single-Processor Platforms..........ccccoceviveiviiesieene e
4.1 Simple Single-Processor EXample.........ccocovveiieieninnenie e
411 INIGAHZATION ..veieiciec s
4.1.2 Selecting Models from the Libraryccccooevoviiininniciinneenn
4.1.3 Creation of a Model INStance............ccocvvvvveviereneneninn
4.1.3.1 Defining SemiHOStINGccceovvrrveiiennnnne
4.1.4 Including the Command Line Parser
4.1.5 Loading the Application Executable
4.1.6 Running the Simulationc.cccoovevvevieinennn.
417 Clean Up oo
4.2 TeXt OUIPUL ...
4.3 Running the Example.........cccoocvvviiiinnnn.
4.3.1 Compiling the CpuManager Plat
4.3.2 Creating an Executable
4.3.3 Running the SIMUIALION ..ot
4.3.4 Dynamic link library G . SRR URRORN
5 Simulation Options with IC IDULES ..
5.1 Model Tracing OperatiONnS ... 5c..oiiiieieeieiie s ere e s se et se e e sne e
5.1.1 Example: Simulatio I0Q e

5.1.3 COomMMEAN LINC...cooos et
5.2 i NG EXCOIEIONS 4. et ettt e e e

6.4 User-Defined Attribute EXamplecooveiiicieeie e
6.5 QUEIYING ALITDULESo.viiiiiiiecsi e
6.6 OVerriding AttrDULESccveie e
7 Custom Tracing using Model AcCess FUNCLIONSccoeveiirinininisieecsecsici
7.1 Reading and Writing REGISIEISccoveiviiieiieie e
7.2 Generating Disassembly OUIPULccoveiiiiiiiiiiisieee e
7.3 DUMPING REGISIEIS......eiiiiiiieeie ettt reenne e
7.4 INSEFUCTION COUNESvieiiieieeciieie ettt nre s

© 2019 Imperas Software Limited www.OVPworld.org Page 3 of 168

OVPsim and CpuManager User Guide

7.5 Simulating for One INSIUCTIONoiiiiiiiiiiie e e 33
7.6 EXAMPIE o 34

8 SEMINOSTING... et 37
8.1 EXAMPIE oo 37
8.2 Additional INtercept ODJECEScceiieeiiiie e 39

o V=10 To TV @ o= T = [0 LSS 40
9.1 Accessing Processor Model MEMOIYccoieeieeiieiienieie e 40
9.1.1 Loading OBJECt fIleS......ccuiiieiieie s 40
9.1.1.1 Supported 0bJeCt FOrMALScccveiiiieiieiiee e 41
9.1.1.2 Loading Symbols in object filescccovviirieiiiee e et 41

9.1.2 Reading and Writing Datacceviririiniiie e e s e 42
9.1.2.1 Reading and Writing Data Exampleccccccvvvevviinnnen.
9.1.3 Reading and writing memory without side-effects...................
9.2 Adding Memory Callbacks...........cccccvvvevveiiiieiiee e,
9.2.1.1 Example Adding a Memory Callback
9.3 Explicit Local and External Memory....................
94 Mapping an address region to a callback..............
9.4.1 INValid 8CCESS.....cceevvereeeieieeriesie e e
9.4.2 Debugging Bus Connections.....................
9.4.3 Processor Instruction Execution
9.44 EXample ..o
10 Simulator Scheduler..........cc.ccccovverienenne.
10.1.1 Example ..ccocooeiiiiiieiee
I O Tod o 1 SRS
11.1 Transparent or Full MMC
11.2 MMC Operation...........
11.3 Transparent Model
11.3.1 Full Model...........

114.1
1142
1143

13 DYNamiC BUS BIIAGEScouiiuiiiiriiiieieieies ettt

14 Aaching @ DEDUQGQEToovvevieieceece ettt

14.1 Example of attaching t0 GDB..........cccoiiiiiiiiieecee e,
14.2 Attaching to the remote multiprocessor debugger........cccooevveveeieiiieveerecnenn, 72
14.3 Automatic startup of remote debUGQErS.cooveiiiireiereseee e 73
14.3.1 Using the control filecccoveiiicii e 73
14.3.1.1 Integrated debDUGOENcoviieieee e 73
14.3.1.2 Remote debUGQErocviiieece e 74
14.4 Selecting the GDBccoiiiiieiee e 74

© 2019 Imperas Software Limited www.OVPworld.org Page 4 of 168

OVPsim and CpuManager User Guide

15 MUIIPIrOCESSOr SUPPOIT...c..eiiieiiiiteeieeie ettt sttt sttt sttt reesbe e e 75
151 EXAMPIE .ottt nre e nnes 75
152 VErb0SE OULPULc.viiiiiiee ettt 78

15.2.1 Simulation Time SEAtiStICSververiirieriiieireee s 78
15.3 Standard Multiprocessor Scheduling Algorithm ..o 79
15.3.1 Changing the Time SHICE SIZE......c.ccceoveiveii e 79
15.3.2 Changing Processor Nominal MIPS Rate..........cccccoviviiniinnienice 80
15.3.3 Writing Custom Scheduling Algorithms ... 80
154 Many Core EXAMPIEooviiiiieiieiee e

16 QuantumLeap Multiprocessor SUPPOIt.......cccocveverieereeieseesesie e
16.1 EXAMPIE .o e
16.2 QuantumbLeap ReSUIS.........ccoveviiieiiere e
16.3 QuantumLeap Scheduling Algorithm
16.4 QuantumbLeap OPtiONS.......cccceiierveriesiere e

16.4.1 Option -parallelopt........cccccooveiiiiiiiniienne
16.4.2 Option -parallelthreads..........c..cccccvvvverrinninn.
16.4.3 Option -parallelmaxcccocevvininiiiicnnnnn

17 Limiting Performance to Wall Clock Time..................

17.1.1 Example 2 — Wallclock Simulation

18 Interrupting Simulation............cccccvevevvervenenne,
18.1 Cntrl-C Handlerccoovivviiiiiieieeen,
18.2 Causing Processor to Yield............

18.3 Exampleccocviiiiiiiiiiiee
18.4 IMPOITANT NOTESooiiiiiiiiie ekttt e s
18.4.1 ICM API Usage in Ctrl
18.4.2 icminterrupt Usag
19 Interrupting a Specific Proc

19.1 Example ..o,
19.1.1 RESEL PIOCESSON ..iv.. it
19.1.2 SHAMMUP RESEL ...
19.1.3 RESELWIIE (NEL) .oiuviiiieiii e
20 i 110 [0 o [T £

XCEPLION StAte QUETY ...vviiiiie ettt

: BSSOF FIBEZING ...ttt

20.7 Address BreakpOintSccvcveiieieoieiieie et se s s sre e

20.8 Instruction Count BreakKpoiNtScoeiveiiniienininieieee e
20.9 Memory, Bus and Processor WatChpoints...........cccocveieiieiieve e 106
20.9.1 Watchpoint Creation and Deletion............c.cocviriinieieneneneeceseeee 106
20.9.2 Watchpoint Attribute QUETYccceevvieiiiieiecc e 109
20.9.3 Handling Triggered WatChpOINts...........ccceoeiiienineiiiieeiesesc e 110
20.10 Handling Simultaneous Debug EVENtSccccceiieiiiic i 110
20.11 Debugger EXamMPIESooiiiiiiiiieieeiee e 110

© 2019 Imperas Software Limited www.OVPworld.org Page 5 of 168

OVPsim and CpuManager User Guide

20.11.1 Debugger Integration Example 1........cccoooiiiiiiiinnienee e 111
20.11.1.1 Establishing WatChpoints...........ccccooveveiiieneiie e 111
20.11.1.2 Running the SIMUIALOr ..o 113
20.11.1.3 Compiling and Running the Example..........ccccooeviviiiiienecicseene, 116

20.11.2 Semantics of Physical and Virtual Watchpoints...........cccoccevveieiininenne. 118
20.11.2.1 Physical WatChpoints..........ccceoviiieiieeiecie e
20.11.2.2 Virtual WatChpoiNtS.........ccooiiiiiieiiie e

20.11.3 Debugger Integration EXample 2.........ccoccveveiievieiie e
20.11.3.1 Establishing WatChpoints...........ccccooiiiiiiiniie e
20.11.3.2 Running the SIMulatorc.cccevvvieiieeiese e
20.11.3.3 Compiling and Running the Example

20.12 Scheduler NOtIFICAtIONcoevveriiiiieieeee e
21 PerIPREralS.....ccoviiii i
21.1 Adding a Peripheralccccooveiiiiieiieececeee e

21.1.1 Instantiating a Peripheralccccccovvennens

21.1.2 Attach a peripheral to a Bus
21.1.21 FiXed BUScooiiiiiieeeee s
21.1.2.2 DynamiC BUS.......cccccevvvevvrieieee i

21.2 Enabling DiagnostiCsccoovvvrieerienieennnn.

21.2.1 Model DiagnostiCsccccvveruvrvennns

21.2.2 Intercept Library Diagnostics

21.2.3 PSE Debugger Support..........

21.3 Passing Attributescccoveruennens
21.4 Simulating a Platformccciosiioecc i
21.4.1 Default Scheduling Al
21.4.2 Custom Scheduling
21.5 Adding an Extension |
21.5.1 Adding more Inte
21.5.2 Example platform..........c.ooo i

24.2 PACKEINEL POITS ..ottt

0 B = Tor U [£ o] o TR
244 PACKEL SIZB....ciceviie ettt ettt e e e e e e st e e s e et e e e s e b n e e s abran e e
24.5 PaCKEtNet fUNCLIONSueiieiie ittt sbb e s sba e baeean
24.6 EXAMPIE oo
25 SIMUIAtOr CONrOl FIlES......ccvvieiceiie et
26 Encapsulating Models for use in other EnVironments...........ccocvevvveieenesieseenee 140
26.1 SYSEEIMC ..ot 140
26.1.1 Create ProCesSOr INSTANCEeeevieeiiiiitireiiiee et e e 141

© 2019 Imperas Software Limited www.OVPworld.org Page 6 of 168

OVPsim and CpuManager User Guide

26.1.2 External SystemC MEemMOIYccocoiieiiiieiiieiesee e 143
26.1.3 Example Platform ... 145
26.1.3.1 Running the SystemC EXamplecoceviinnieiineneeee e 146
26.1.3.2 Platform with local Memoryc.ccccoveiieiieie e 147
26.1.3.3 Platform with SystemC Memorycccoceiiiiniiininiene e 148
27 USING NALIVE IMEBMOIYviiiiciiecie ettt te e ra et e e steenaeanaesnaeeas 150
27.1 EXAMPIE oo e 150
27.2 Combining External and Native MemOry.........ccccovveveiieeiieie e 151
28 SIMUIAtioN OPLIMIZALIONocuiiiiiie e e
28.1 EXAMPIE oo
29 Plugin ComMmMANGS........coiiiiiiieiieie ettt e
29.1 Discovering Installed Commands
30 Multicore (SMP) SUPPOITccviiieeiiiie e
30.1.1 Controlling an SMPccccoviveiiiieii e
31 Processor INformation..........coccocereeninieiienenieseeins
31.1 Processor Documentationccccoccevevenvneneniinn,
31.1.1 Documentation NOCES.........cccceevurrveruesennnnnn.

31.1.2 Processor Simulation Information
31.2 Processor Parameters
31.3 Processor POrS........cccoceeviieiiiien i

31.3.1 BUSPOIS .oooeiiiiieiieiiieeeeeee

31.3.2 Netports......cccovevevviieniiennnn

31.3.3 FIFO POItS....covveeieiiieieeee

31.3.4 Fetching information fro

32 Custom Object Readers............... :
32.1 Writing a custom reader.
33 Command LiNe ParSiNg......ic...ueisireaiie e see st ese et raesre e staenae e e
33.1 SIMUIALON FIAGS ...t s
33.2 User-specCified FIagS...i......ccoioriiieie e e
34 Differences betwee

© 2019 Imperas Software Limited www.OVPworld.org Page 7 of 168

OVPsim and CpuManager User Guide

1 Superseded Document Information

This document provides some simulation background but describes the use of the ICM
API that is deprecated and replaced by the OP API. Detailed information for the OP API
is found in a release in the API documentation doc/api/op/html/index.html

This document has been superseded by the following documents that are found in a
release in the directory doc/ovp

The iGen_Platform_and_Module_Creation_User _Guide document describes how to
use the iGen Model Generator to generate the virtual platform definition of the hardware.
This definition can be in the form of a platform or a module. A platform is/a otion
of a hardware design that becomes a stand-alone executable. A module is a
a hardware design that is loaded by a harness or another module. A

The Writing_Platforms_and_Modules_in_C_User_Guic
introduction to using the OP API (which replaces the
this document) to create virtual platform definition rdware in the form of platforms
and modules. The document also shows how to control the simulator with test harnesses

also written in C.

1.1 Examples &

This document describes examples that can be found in a release under the directory

This docu has been updated to provide the details of the equivalent OP API
examples to the ICM API examples described in this document.

© 2019 Imperas Software Limited www.OVPworld.org Page 8 of 168

OVPsim and CpuManager User Guide

2 Introduction

This document describes use of the Innovative CpuManager Interface (ICM) API to
implement simulation models of platforms containing any number of processor models
communicating using shared memory. Platforms created using the ICM interface can be
simulated using either the freely-available OVPsim simulation environment or the
Imperas commercial CpuManager product.

2.1 What are CpuManager and OVPsim?

CpuManager and OVPsim are dynamic linked libraries (.so suffix on Linu
on Windows) implementing Imperas simulation technology. The shared obje
implementations of the ICM interface functions described later in this doc
ICM functions enable instantiation, interconnection and simulation of.¢

multiprocessor platforms containing arbitrary shared memo

d11 suffix

Processor models for use with CpuManager and OVPsim ar
the OVP Virtual Machine Interface (VMI) API, also availa
www.ovpworld.org website. This API enables processor mode pe created that run at
very high simulation speeds (typically hundreds of s of simulated instructions per
second). This is described in the OVP Processor Madeling Guide, also available for

download from the www.ovpworld.org website.

CpuManager is the commercial product
available (for Non-Commercial usage)
determined at runtime by the IMP
or is set to OVPsim then the OV
dynamically linked at runtime. |

I from Imperas. OVPsim is the freely-
ion of'this product. Which one to use is

IME environment variable. If it is not set
hich requires an OVP license) is
CpuManager then the CpuManager library

e used. To see the differences, refer to section
33.

A C++ version of s available as source, which can be compiled using your

. cated in
clude/host/icm/icmCpuManager -hpp

use of these models in SystemC TLM2.0 platforms.

2.2 Use of ICM with Imperas tools

A program using ICM can be linked with the ICM RuntimeLoader to perform runtime
dynamic loading of either the CpuManager or OVPsim dynamic linked libraries, to
produce a stand-alone executable. Alternatively, it can be linked to create a dynamic link
library, which can itself be loaded into the Imperas simulator (imperas.exe) or the

© 2019 Imperas Software Limited www.OVPworld.org Page 9 of 168

http://www.ovpworld.org/
http://www.ovpworld.org/

OVPsim and CpuManager User Guide

Imperas debug and verification environment. The Imperas simulator provides many
benefits in addition to the basic OVP features, including:

e Multiprocessor debug — the simulator’s extended GDB control allows
simultaneous debug of all processor and PSE models in the platform, including
processor specific stepping and breakpoints, temporary freezing of selected
processors, and all the usual features of GDB.

e External control of simulation features. Even if you can’t recompile the platform,
the Imperas simulator can turn on tracing, diagnostics and other simulation
features, many during a simulation run.

e Loading of extension libraries for analysis and verification. Even if you can’t
recompile the platform, the Imperas simulator can load additional in pt
objects from its command line.

2.3 Compiling Examples Described in this
This documentation is supported by C code samples in an ples directory, available
either to download from the www.ovpworld.org website or a to eras

b

installation.
The examples use processor models and tool chains, wnload from the

www.ovpworld.org website or as part of an Impera allation.

r on Windows with
C 8.0. It is assumed that users of
2.0 and will have obtained this

SystemC TLM2.0 models can be used on Li
MinGW/MSYSS (since SystemC release v
this environment will be familiar with
software from www.systemc.org or si

© 2019 Imperas Software Limited www.OVPworld.org Page 10 of 168

http://www.ovpworld.org/
http://www.ovpworld.org/
http://www.systemc.org/

OVPsim and CpuManager User Guide

3 Imperas ICM Header Files

The ICM API, used by both CpuManager and OVPsim, is defined by several header files
within the Imperas tool release tree or freely-available download from
www.ovpworld.org :

Common Definitions
Standard types Imperas/ImpPublic/include/impTypes.h

ICM API Definitions

Formatted output & C API function
Imperas/ImpPublic/include/host/icm/icmCpuManager.h

For clarity this file now includes several headers which can be incl c o the
functionality required:

icmConstruct.h Platform construction.

icmDebugger.h Functions for use by an integ

icmDestruct.h Functions for clean up .
icmObjectfiles.h Reading and loading & ocessor object files.
icmQuery.h Interrogation and exploration.of an existing platform.

icmRuntime.h Interacting wit during simulation.
icmSimulatorSession.h Changing t mulator runs.

icmText.h Writing t t stream, redirection of text.
icmTrace.h Instructi
icmTypes.h Ty i all icm functions.
icmversion.h T M interface version.

C++ API functions
Imperas/ImpPublic/i st/icm/icmCpuManager . hpp

TLM2.0 Interfaces

ource/ovpworld.org/modelSupport/<>/1.0/tIm2.0/*.h

Lib/source/<v>/<1>/<n>/<v>/tIm2.0/* _hpp

<v>/<1>/<n>/<v> are the vendor, library, name and version of the model, and are the
same references used to locate the model in the library.

© 2019 Imperas Software Limited www.OVPworld.org Page 11 of 168

http://www.ovpworld.org/

OVPsim and CpuManager User Guide

4 Simple Single-Processor Platforms

A simple program can be made that runs a single-processor platform using just five calls
from the ICM API:

e icminitPlatform
icmInitPlatform initializes the simulation environment prior to a simulation
run: it should be the first ICM routine called in any application. It names the
platform, specifies attributes to control some aspects of the simulation to be
performed, and also specifies how a debugger should be connected to the
application if required.

e icmNewProcessor
icmNewProcessor is used to create a new processor instance.

e icmLoadProcessorMemory
Once a processor has been instantiated by icmNewProcess r IS used
to load an object file into the processor memory. ntly accepted formats are
ELF and TI-COFF.

e icmSimulatePlatform
icmSimulatePlatform is used to run simulation o essor and program,
for a specified duration.

e icmTerminate
icmTerminate must be called at the

0 Free memory.

isti
CpuManager installs an @ handler which checks that icmTerminate has been
called but does not call it atically.

$IMPERAS_HOME/Examples/PlatformsICM/simple

NOTE
OP API equivalent example is available as PlatformConstruction/simpleCpuMemory

This uses the freely-available OR1K processor (see
http://www.opencores.org/projects.cgi/web/orlk/architecture).

The following sections describe the main operations being performed

© 2019 Imperas Software Limited www.OVPworld.org Page 12 of 168

http://www.opencores.org/projects.cgi/web/or1k/architecture

OVPsim and CpuManager User Guide

4.1.1 Initialization
The simulator is initialized by calling icminitPlatform:

icmlnitPlatform(ICM_VERSION, 0, 0, 0, “platform”);

This function takes five arguments. The first argument is the version string from the ICM
header files, which should be supplied as shown, simAttrs, is a bitmask controlling
aspects of simulation behavior (for example, whether to emit verbose output giving
simulated MIPS rate). Arguments 3 & 4 are used when processor debug is required,
discussed in a later section. Argument 5 is an optional name for the platfo

4.1.2 Selecting Models from the Library

The components, including processors, peripherals and memories, pl
Vendor, Library, Name and Version (VLNV) format library structure”/An API function
icmGetVInvString is available to help construct the path to SS dels.

&
// select library components

const char *vInvRoot = 0; // when null, use the default library
const char *model = icmGetVInvString(
vinvRoot, "ovpworld.org", "processor", "orlk', "1.0", "model"

const char *semihosting = icmGetVInvString(

vinvRoot, "ovpworld.org", "modelSupport’, "imperasExit"™, "1.0", "model"
)
With the first argument set to NULL t fault Qras library is used. This is specified
by the environment variable IMPE V and by default would point to
$IMPERAS_HOME/lib/$IMPE perasLib

4.1.3 Creation of a
A single instance of a prc

A,

icmProcessorP processor = icmNewProcessor(

ance
s defined by calling icmNewProcessor:

"cpul®™, // CPU name

“orlk™”, // CPU type

o, // CPU cpuld

o, // CPU model flags
32, // address bits
model, // model file

0, // not used

o, // enable tracing etc
o, // user-defined attributes
semihosting, // semi-hosting file
0 // not used

)

The arguments to icmNewProcessor are as follows:
e name: this is an instance name to give the instance, which must be unique in the
design.
e type: this is a type name for the instance, in this case specified as ““or1k’ in the
makefile.

© 2019 Imperas Software Limited www.OVPworld.org Page 13 of 168

OVPsim and CpuManager User Guide

e cpuld: every processor has an id number, specified by this argument.

e cpuFlags: this is a bitmask that can be accessed from within the processor model
to change its behavior (for example, to turn on debug modes). In normal usage,
pass 0.

e addressBits: this specifies the default data and instruction bus widths for the
model (typically 32, though ICM supports addresses up to 64 bits wide).

e modelFile: this is the path to the dynamic load library (.dl1 or .so)
implementing the processor model. The file extension can be ignored. If the path
is a directory rather than a file, the file model.so or model.dll is assumed. For this
example, the path is specified in the Makefile as follows (relative Imperas

installation):
ImperasLib/ovpworld.org/processor/orlk/1.0/model .dl1

e (unused argument)
e procAttrs: this is a bitmask controlling some aspects of pr r. The
options available here will be covered in later sections of th cument.

e userAttrs: this argument specifies a list of applicatia
processor. In this example, the instance has no attrib

e semiHostFile specify the semihosting library for
described in the next subsection.
e Unused argument

If a platform has many processors, it is someti enient to record user-data on
the processor instance. This data can then ed.
Y, t of icmN

sor instance; this is

icmNewProcessorWithHandle | ewProcessor with and extra
argument 'handle’
icmGetProcessorHandle re s the handle.

4.1.3.1 Defining Se
Imperas semihosti efault behavior of specified functions or instructions to
be modified usi i ared object library that is loaded by the simulator in

.global _start

_start:
1.addi ri,r2,0
1. muli ri,r2,0

.global exit
exit:
1._addi ri,r2,0

This label can be used in conjunction with a standard Imperas semihosting shared object
library, located at the following location in the Imperas installation:

ImperasLib/ovpworld.org/modelSupport/imperasexit/1.0/model .dl1

© 2019 Imperas Software Limited www.OVPworld.org Page 14 of 168

OVPsim and CpuManager User Guide

This semihosting library terminates simulation immediately after any instruction labeled
exit. To use the semihosting library, platform/platform.c includes the semihosting
object file name, specified by semihosting, defined in the platform makefile.

semihosting refers to the name of the .so or .dll file implementing the semihosting.

= This simple example makes no specific mention of any processor memory
configuration, other than to say that the processor address bus width is 32 bits. In
the absence of any other specific information about memory configuration,
CpuManager / OVPsim will create a single fully-populated RAM me
attached to both the processor data and instruction busses.

4.1.4 Including the Command Line Parser

By including the Command Line Parser access is given to a a latform
arguments.

the commonly used arguments for this example are
--program to specify the program elf file to
--gdbconsole to start debugging the a ti g on the processor

This is the same set of arguments that are available using the Control File. Please see the
document 'OVP_Control_File User ' for er information.

S

static Bool cmdParser(int argc, const char *argv[]):

int main(int argc, const char *argv[])
{
// Check arguments and ensure application to load specified
if(lcmdParser(argc, argv)) {
icmMessage('E", "platform', ""Command Line parser error');
icmExitSimulation(l);
return 1;

A 4

static Bool cmdParser(int argc, const char *argv[]) {
icmCLPP parser = icmCLParser(“platform", ICM_AC_ALL);
char message[1024];
sprintf(message, "Basic Usage\n platform.IMPERAS_ARCH.exe
--program <elf file>\n");
icmCLParserUsageMessage(parser, (const char *)message);

Bool ok = icmCLParseArgs(parser, argc, argv);
if (MicmCLParseArgUsed (parser,'program™)) {
icmMessage("'E", "‘program",
"Argument "--program®" must be used to specify application elf file to load™);
ok = False;

return ok;

© 2019 Imperas Software Limited www.OVPworld.org Page 15 of 168

OVPsim and CpuManager User Guide

As well as adding the standard set of command line arguments, it is possible for the user
to add their own, for example the following shows the addition of a new Boolean type of
argument that can be used in the platform to change some operation.

icmCLParserAdd(parser, "enable™, 0 , 0, "user platform config”, ICM_AT_BOOLVAL,
&options.enable, “enable my option™, 0x0, 0, 1);

4.1.5 Loading the Application Executable
Once a processor instance has been created, an object file can be loaded into the
processor memory using icmLoadProcessorMemory:

icmLoadProcessorMemory(processor, argv[1l], ICM_LOAD_DEFAULT, False, True);
The first argument is the processor for which to load memory.

The second argument is the application object file name. In this ex e the application
file name is passed as the first argument to the program whe I run. note
that ELF and T1 COFF format files are accepted.

The third argument is an enumerated type allowing
loaded. This allows:

the program is

a) The use of physical rather than virtual addre loading.
b) Verbose output that reports each section | .

c) The zeroing of the BSS section.

d) Set the processor initial PC to the entry s of the file.

e) Only load the symbols and ot modify memory.

See the definition of the icmLoa ttrs type in impTypes.h for the values to be used.

The fourth argument enable 0se output showing the location of sections in the
loaded object file. This‘a verrides the setting of argument 3.

her the processor should start execution from the start

performs the same operation as the icmLoadProcessorMemory() function shown
above.

4.1.6 Running the Simulation
Once the processor has been instantiated and an application program loaded, the program
can be simulated to completion using:

icmSimulatePlatform();

© 2019 Imperas Software Limited www.OVPworld.org Page 16 of 168

OVPsim and CpuManager User Guide

This routine simulates the entire platform using the CpuManager / OVPsim default
scheduler, which (for multiprocessor platforms) runs each processor for a number of
instructions in a time slice before advancing time to run the next time slice.

There is also a routine available, icmSimulate, which can be used to simulate a specific
processor for a precise number of instructions. This second function is useful in situations
when CpuManager / OVPsim are being used as a subsystem of a larger simulation
implemented in another environment (for example, SystemC).

4.1.7 Clean Up
Finally, icmTerminate is used to clean up simulation data structures and d %
simulation objects created since the previous icminitPlatform call.

ulation?
destructors.

y print processor-
ertain execution units

= Why should icmTerminate always be called at the end.of s
Some platform components may perform significant
For example, processor models may have a mode i
specific information about the simulation run (e.g.
were used or not). If you don’t call icmTerm

performed.

4.2 Text Output

Use icmPrintf and icmMessage 10 cCOM
icmPrintf (const char *format, ..
output to the simulator output st and log file (if one is active).

icmMessage(const char *se onst char *prefix, const char *format, ...) also sends

its output to the simulator o ream and log file (if one is active). The severity String

should be one of:
= 1" fori

"MY_CCT". Prefix strings make post-processing the log file easier.

4.3 Running the Example

Take a copy of the example:

cp —r $IMPERAS_HOME/Examples/PlatformsICM/simple .

© 2019 Imperas Software Limited www.OVPworld.org Page 17 of 168

OVPsim and CpuManager User Guide

4.3.1 Compiling the CpuManager Platform
The test platform can be compiled to produce an executable,
platform.${IMPERAS_ARCH}.exe, by using this command in the platform directory:

make —C platform

4.3.2 Creating an Executable
A test case must be created using the processor tool chain. Because the OR1K processor

is supported by Imperas tools and shipped as an example, there is already an encapsulated
tool chain that you can use to compile test cases for it.

Within the platform directory is a simple assembler test, application/a
which simply performs a few instructions and exits. The application can be
using the following command in the platform directory:

make —C application

The result is an ELF format file for the OR1K called asmte

= The target make all is also present in the e e makefile that creates both the
application and the platform in a single step.

4.3.3 Running the Simulatio
Having compiled the test platform an

ication, you are now ready to run a
simulation. Do this by running th wing i

he platform directory:

Platform/platform.<ARCH!>_exe --program application/asmtest.OR1K.elf

= The environme
(OVPsim or

MPERAS_RUNT IME determines the simulation library

) that is used at runtime. If not specified, it will to

e CpuManager instead (which requires a license for the
s) do;|

_RUNT IME=CpuManager

You should see the following output:

Processor “cpul’ terminated at “exit’, address 0x10000bc

This message is printed by the imperasExit semihosting library as the processor executes
the first instruction at exit in the application.

! ARCH is the Host machine architecture, for example Windows32, Linux32

© 2019 Imperas Software Limited www.OVPworld.org Page 18 of 168

OVPsim and CpuManager User Guide

4.3.4 Dynamic link library
Also built is a dynamic link library, a .dll or .so version of the platform for use in the
Imperas simulator (see section 1)

The dynamic library can now be simulated in the Imperas simulator:

linux> imperas.exe --icmobject platform/model.so

If your platform has a main() which accepts arguments e.g.:

A
int main(char *argv[], int argc) {
char *executable = argv[1];
char *options = argv[2];
X -
The Imperas simulator can pass arguments to the platform: o

»

linux> imperas.exe --icmobject platform/model.so \
--icmargv --program application/asmtest.OR1K.elf optionl option2

See the Imperas Simulation Guide for more details.

© 2019 Imperas Software Limited www.OVPworld.org Page 19 of 168

OVPsim and CpuManager User Guide

5 Simulation Options with ICM Attributes

Predefined attributes can be applied to the platform using the simAttrs argument to
icmInitPlatform() function. This is a bitwise-or of any of the following:

Attribute Definition
ICM_STOP_ON_CTRLC Install a Ctrl-C signal handler
ICM_NO_OPTIMIZE Turn off aggressive JIT code optimization.
ICM_GDB_CONSOLE Start a gdb console
ICM_MPD_CONSOLE Start an MPD console
ICM_SUPPRESS_BANNER Suppress the banner
ICM_VERBOSE Output more information
ICM_ENABLE_IMPERAS_INTERCEPTS | |ntercept special Imperas functi
1CM_WALLCLOCK Prevent the simulator. runnin

time when it is inac
ICM_NO_RSP_WAIT Do not wait for a deb .
ICM_PRINT_USER_ATTRIBUTES Print list of model defi ibutes then exit
ICM_PRINT_COMMANDS Print a list of mo then exit

Predefined attributes can be applied to a processor

el when it is instantiated, using the
procAttrs argument to icmNewProcessor(). i

e-or of any of the following:

Attribute Defi

on tracing

tion count with trace

ite changed registers with trace

ICM_ATTR_TRACE e
registers with trace before execution

ICM_ATTR_TRACE_ICOUNT q
r
p registers with trace after execution

ICM_ATTR_TRACE_CHANGE
maintain 256-instruction trace buffer

ICM_ATTR_TRACE_REGS_BEFORE
simulate exceptions

ICM_ATTR_TRACE_REGS .
ICM_ATTR_TRACE_BUFF

validate the address of each instruction fetch
(processor model validation)

ICM_ATTR_SIMEX
don't trace annulled instructions.

In this section, t
other attri

attributes controlling instruction tracing will be covered. Details of
re given later in this document.

5.1 Model Tracing Operations

Using the ICM_ATTR_TRACE attribute enables instruction-by-instruction tracing for that
processor instance using the disassembler built in to the processor model.

The 1CM_ATTR_TRACE_CHANGE attribute writes the value of all modified registers when
tracing is enabled by 1CM_ATTR_TRACE. Changed values are detected by maintaining a
record of all values readable using the register access API (see icmGetNextReg and
related functions) at the completion of every instruction.

© 2019 Imperas Software Limited www.OVPworld.org Page 20 of 168

OVPsim and CpuManager User Guide

The 1CM_ATTR_TRACE_REGS_BEFORE attribute dumps the current processor register state,
again using the model-specific register dump format, when tracing is enabled by
ICM_ATTR_TRACE. The order of events for each instruction is:

1. The register state of the processor is dumped;

2. The instruction about to be executed is shown in disassembled form;

3. The instruction is executed.

The ICM_ATTR_TRACE_REGS_AFTER attribute dumps the current processor register state,
again using the model-specific register dump format, when tracing is ena by
ICM_ATTR_TRACE. The order of events for each instruction is:

1. The instruction about to be executed is shown in disassembled for

2. The instruction is executed;

3. The register state of the processor is dumped.

5.1.1 Example: Simulation Tracing

The test platform for this example is in the tracing direct

$IMPERAS_HOME/Examples/PlatformsICM/tracing

File platform/platform.c has been changed as follo
@&

#define SIM_FLAGS (ICM_ATTR_TRACE | ICM_ATTR TRACE_REGS_AFTER)

// create a processor
icmProcessorP processor = icmNewProcessor(

“cpul™, // CPU name
“orlk™, // CPU type
o, // CPU cpuld
o, // CPU model flags
32, // address bits
model, // model file
o, // not used
SIM_FLAGS, // enable tracing of register values
0, // user-defined attributes
semihosting, // semi-hosting file
0 // not used
):
e——
We have e value ICM_ATTR_TRACE and ICM_ATTR_TRACE_REGS to the procAttrs

argument of icmNewProcessor. This enables dumping of the processor state and registers
before each instruction is executed.

= Note that in a multiprocessor system, processor instances do not all have to have
the same attributes. This means that you can enable tracing only for specific
processors, for example.

© 2019 Imperas Software Limited www.OVPworld.org Page 21 of 168

OVPsim and CpuManager User Guide

Compile the test platform and application as before using the following commands in the
tracing directory:

make

-C platform

make —C application

To run the simulation, in the tracing directory, do:

-/platform/platform.${IMPERAS_ARCH} .exe --program application/asmtest.OR1K.elf

You should see the following output:

Info
Info

R2 : deadbeef R3 :
R6 : deadbeef R7 :
R10: deadbeef R11:
R14: deadbeef R15:
R18: deadbeef R19:
R22: deadbeef R23:
R26: deadbeef R27:
R30: deadbeef R31:
ESR: deadbeef EPC:
PSR: 00000000 PMR:

“cpul®, 0x0000000001000074:

“cpul® REGISTERS

- 00000000 R1 :
: deadbeef R5 :
: deadbeef R9 :
: deadbeef R13:
: deadbeef R17:
: deadbeef R21:
: deadbeef R25:
: deadbeef R29:
: 01000078 SR :
- 00000000 TMR:

BF:0 CF:0 OF:0

Info "cpul®, 0x0000000001000078:

Info

- 00000000 R1
R4 :
R8 :
R12:
R16:
R20:
R24:
R28:
PC :
TCR:

RO

"cpul® REGISTERS

deadbeef R5 :
deadbeef R9 :
deadbeef R13:
deadbeef R17:
deadbeef R21:
deadbeef R25:
deadbeef R29:
0100007c SR :
00000000 TMR:

BF:0 CF:0 OF:0

R2 : 00000001 R3 :
R6 : deadbeef R7 :
R10: deadbeef R11:
R14: deadbeef R15:
R18: deadbeef R19:
R22: deadbeef R23:
R26: deadbeef R27:
R30: deadbeef R31:
ESR: deadbeef EPC:
PSR: 00000000 PMR:

"cpul®, 0x000000000100007c:

“cpul® REGISTERS

- 00000000 R1 :
: deadbeef R5 :
: deadbeef R9 :
: deadbeef R13:
: deadbeef R17:
: deadbeef R21:
: deadbeef R25:
: deadbeef R29:
: 01000080 SR :
- 00000000 TMR:

BF:0 CF:0 OF:0

Info "cpul®, 0x0000000001000080:

Info

R2 : 00000001 R3 :
R6 : deadbeef R7 :

RO :
R4 :

“cpul® REGISTERS

00000000 R1 :
00000800 R5 :

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00008001
00000000

= 00000000

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00008001
00000000

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00008001
00000000

00000000
deadbeef

1._addi rl,r0,0x0

1._addi r2,r0,0x1

R2 : 00000001 R3

R6 : deadbeef R7 :
R10: deadbeef R11:
R14: deadbeef R15:
R18: deadbeef R19:
R22: deadbeef R23:
R26: deadbeef R27:
R30: deadbeef R31:
ESR: deadbeef EPC:
PSR: 00000000 PMR:

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00000000

: deadbeef

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00000000

1.addi r3,r0,OxFFfrfffff

I.addi r4,r0,0x800

FFEFFfff
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00000000

FFFFFFff
deadbeef

© 2019 Imperas Software Limited www.OVPworld.org

Page 22 of 168

OVPsim and CpuManager User Guide

R8 : deadbeef R9 : deadbeef R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: deadbeef R31: deadbeef
PC : 01000084 SR : 00008001 ESR: deadbeef EPC: deadbeef
TCR: 00000000 TMR: 00000000 PSR: 00000000 PMR: 00000000
BF:0 CF:0 OF:0

etc ...

Info "cpul®, 0x00000000010000ac: I.addi rl,r2,0x0

Processor “cpul® terminated at "exit", address 0x10000ac

Info "cpul®™ REGISTERS

RO : 00000000 R1 : 00000001 R2 : 00000001 R3 : FFFfffff
R4 : 00000800 R5 : 00400000 R6 : 00100000 R7 : 000007ff
R8 : FFFFFFFF RO : 00000000 R10: 00000000 R11: 00000000
R12: 00000000 R13: 00000000 R14: 00000000 R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: deadbeef R31: deadbeef
PC : 010000b0O SR : 00008001 ESR: deadbeef EPC: deadbeef
TCR: 00000000 TMR: 00000000 PSR: 00000000 PMR: 00000000
BF:0 CF:0 OF:0

L 4
ers R1-R14 of the OR1K

, We see each register value
uctor) to 0x00000000.

The initial instructions of the application initialize r
processor, mostly using I.addi instructions. is
change from oxdeadbeef (set in the proces

There is a line of trace output for ever
the instruction address (starting wi , the start address specified in the ELF
file) and the instruction disasse
model.

5.1.2 Controllingtra during simulation
These functions ¢ used to.control tracing when the simulator is stopped during a
session:

€

functi

Turn tracing on after this many more instructions

Turn tracing off after this many more instructions

Keep rolling record of last 254 instructions (slight speed
penalty)

icmDisableTraceBuffer | Stop the rolling record.

icmDumpTraceBuffer | Dump the contents of the rolling record.

Due to the amount of data produced, tracing has a heavy speed penalty. The trace buffer
has a lesser cost so can be used to record a short history which can be printed out when
desired, typically when a breakpoint or watchpoint has been hit.

© 2019 Imperas Software Limited www.OVPworld.org Page 23 of 168

OVPsim and CpuManager User Guide

5.1.3 Command Line
The same tracing operations can also be controlled from the command line when the
command line parser is included into the platform.

5.2 Simulating Exceptions

By default, simulation will stop (icmSimulatePlatform will return) if a processor
exception occurs. Some examples of processor exceptions are:

e Executing from memory with no execute permission;

e Read, write or fetch at unaligned address (for processors that requir d
access);

e Attempting to read or write from an address where there is no.me
memory has insufficient permissions.

= When icmSimulatePlatform returns for any reaso
simulation, it returns an icmProcessorP object that
that was executing when the termination conditi

reason why simulation stopped, use:
icmStopReason icmGetStopReason(i

The icmStopReason type returned by
the possible reasons why simulation

dle of the processor

ocessorP processor);
an enumeration encoding

ion, it is possible to specify that the
ions instead (typically, enter kernel mode

Instead of stopping simulation on a si
processor should perform its usua
and jump to a kernel exception h
processor instance attribute.

5.2.1 Example: g an Unaligned Access Exception

This example isqn the directory.

$IMPERAS_HOME/Examples/PlatformsICM/exceptions

The test platform file platform/platform.c, has been changed as follows:

#ifdef SIMEXCEPTIONS

#define SIM_FLAGS (ICM_ATTR_SIMEX | ICM_ATTR_TRACE)
#else

#define SIM_FLAGS (ICM_ATTR_TRACE)
#endif

// create a processor
icmProcessorP processor = icmNewProcessor(

“cpul™, // CPU name
“orilk™, // CPU type

o, // CPU cpuld

o, // CPU model flags
32, // address bits
model, // model File

© 2019 Imperas Software Limited www.OVPworld.org Page 24 of 168

OVPsim and CpuManager User Guide

o, // not used

SIM_FLAGS, // instance attributes

0, // user-defined attributes
semihosting, // semi-hosting file

0 // not used

We have added the value 1CM_ATTR_SIMEX to the attributes passed to the processor
instance under control of the makefile.

Compile the test platform and application as before using the following commands in the
exception directory: &

make —C platform EXCEPTIONS=0
make —C application

To run the simulation, in the exception directory, run: ' V)Vv

-/platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf
. 4

You should see the following output:

D

Info "cpul®, 0x0000000000010000: I.addi rl,r0,0x0

Info "cpul®, 0x0000000000010004: I.addi r2,r0,0x1

Info "cpul®, 0x0000000000010008: 1.lIwz r3,0x0(r2)

Processor Exception (PC_PRX) Processor "cpul® 0x10008: I.lwz r3,0x0(r2)
Processor Exception (PC_RAX) Misaligned 4-byte read from Ox1

The two lines:

N .
Processor Exception (PC_PRX) Processor "cpul® 0x10008: I.lwz r3,0x0(r2)

Processor Exception (PC_RAX) Misaligned 4-byte read from Ox1

show that the load from addre 001 has been detected as an unaligned load.

Now recompile
commandi

platform with simulation of exceptions enabled using the following
exception directory:

make —C platform clean
make —C platform EXCEPTIONS=1

To run the simulation, in the exception directory, run :

-/platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf

You should see the following output:

© 2019 Imperas Software Limited www.OVPworld.org Page 25 of 168

OVPsim and CpuManager User Guide

Info "cpul®, 0x0000000000010000: I.addi rl,r0,0x0
Info "cpul®, 0x0000000000010004: 1.addi r2,r0,0x1
Info “"cpul®, 0x0000000000010008: 1I.lwz r3,0x0(r2)
Info "cpul®, 0x0000000000000200: 1.j 0x00010024
Info "cpul®, 0x0000000000000204: 1.nop 0x0

Info "cpul®, 0x0000000000010024: 1.addi rl,r2,0x0
Processor "cpul® terminated at "exit", address 0x10024

In this example we see the load instruction is executed:

Info “"cpul®, 0x0000000000010008: I.1lwz r3,0x0(r2)

This causes the address of the next instruction executed to be at a process ception

address, 0x00000200, which is the address of the alignment exception handler in the
OR1K processor:
Info "cpul®, 0x0000000000000200: 1.j 0x00010024

A 4

In this example, the code at the exception vector simply br es to the exit label, which
exits simulation.

© 2019 Imperas Software Limited www.OVPworld.org Page 26 of 168

OVPsim and CpuManager User Guide

6 Attributes

Model instances may be configured by user-defined attributes to control any
implementation-dependent details of the model, such as the endianness or the number of
processors in a multi-core CPU. Attributes in the platform are referred to as parameters in
a model.

6.1 Setting Attributes

Each processor instance can be given a list of attributes. This list is create the
function icmNewAttrList:

icmAttrListP icmNewAttrList(void);

Once a list has been created, named attributes can be added to the IWMG%:

void icmAddBoolAttr (icmAttrListP attrs, const char *name, Bool value);

void icmAddDoubleAttr(icmAttrListP attrs, const char *name, double value);

void icmAddPtrAttr (icmAttrListP attrs, const char *name, void *value);

void icmAddStringAttr(icmAttrListP attrs, const char *name, const char *value);
void icmAddUns32Attr (icmAttrListP attrs, const char *name, Uns32 value);

void icmAddUns64Attr (icmAttrListP attrs, const char *name, Uns64 value);

These functions allow the addition of a 64-bit ig@ute, a double attribute, a
string attribute or a native host pointer to a previously- ed attribute list. This attribute
list is then passed as one of the argument | instantiation call (e.g.
icmNewProcessor). See section 6.3.1 for an exa

processor model vary. For models provided with
butes supported for each model may be found in the
ectory in the VLNV tree that contains the model file.

6.2 Attribute Definitic

: RAS ARCH/ ImperasLib

6.3.1 MIPS Attribute

All processors support a double attribute called mips, used to specify the nominal
processor speed in millions of instructions per second. This nominal mips rate is used to
apportion run time between processors in a multiprocessor simulation. The default
nominal mips rate for each processor is 100. Section 6.4 shows an example of
instantiating a processor with a nominal mips rate of 200 MIPS instead.

© 2019 Imperas Software Limited www.OVPworld.org Page 27 of 168

OVPsim and CpuManager User Guide

6.3.2 Endian Attribute
The model documentation for processors includes a definition of the endianness
supported by that processor. This may be big, little or either.

If the endian is defined as either then the model will accept a user string attribute called
endian, used to specify the endianness of the processor. The endian attribute may take the
values big or little.

Some processors allow the endianness to be changed dynamically by software. The
endian attribute only sets the initial value for the endianness at the start of'simulation in
this case.

See Section 6.4 for an example of setting the endian attribute on a process
instantiation..

6.4 User-Defined Attribute Example

The following is an example of code that overrides the mips
attributes when instantiating an instance of a processor:

user-defined

// create a user attribute object
icmAttrListP userAttrs = icmNewAttrList();

// add a double attribute to set mips to 200
icmAddDoubleAttr(userAttrs, "mips'™, 200.0);

// add a string attribute to set endian to big
icmAddStringAttr(userAttrs, "endian", “big”);

// add a native host pointer attribute
icmAddPtrAttr(userAttrs, "dataPtr', &data);

// create a processor
icmProcessorP processor = icmNewProcessor(

“cpul™, // CPU name

“orilk™, // CPU type

o, // CPU cpuld

o, // CPU model flags

32, // address bits

model, // model File

0, // not used

0, // simulation attributes
userAttrs, // user-defined attributes
semihosting, // semi-hosting file

0 // not used

6.5 Querying Attributes

The function icmiterAllUserAttributes Wwill iterate over all user-defined attributes in
the platform. If it is called after loading all processor models and loading and initializing
all PSEs, it will include all attributes set by the platform AND all attributes tested for by

models.

© 2019 Imperas Software Limited www.OVPworld.org Page 28 of 168

OVPsim and CpuManager User Guide

6.6 Overriding Attributes

Attributes can be overridden by several mechanisms:
e The -override command line argument to the Imperas simulator imperas.exe.
e The -override command line argument in an Imperas control file.
e The icmOverride() function.

icmOverride(const char *path, const char *value)

The icmOverride() function can be used repeatedly to create a list of overrides in the
simulator before constructing the platform. This list is then consulted during platform

construction and entries are applied to model instances if they match. This me i
allows the separation of platform construction from command line parsinga
configuration. The path argument is the hierarchical path to a model para
argument is a string representation of the value and will be convert d type.

int main(int argc, char ** argv) {
// parse the command line, or read configuration data

// The override must be set before the platform is constructed
icmOverride(“platl/cpul/variant”, “VARIANT_A");

// Start the platform
icmlnitPlatform(ICM_VERSION, O, 0, O, “platl™);
// create a processor

icmProcessorP processor = icmNewProcessor(
"cpul™, // CPU name

)

// load the processor object file
icmLoadProcessorMemory(processor, argv[1l], ICM_LOAD_DEFAULT, False, True);

icmSimulatePlatform();
icmTerminate();

VA4

return O;

© 2019 Imperas Software Limited www.OVPworld.org Page 29 of 168

OVPsim and CpuManager User Guide

7 Custom Tracing using Model Access Functions

In section 5.1, we saw an example which used standard instantiation attributes to enable
tracing. The trace file output was generated in a fixed order. Occasionally, it might be
necessary to generate trace information in a different format: for example, if an ICM
platform program is being used to generate trace output to compare with the output from
another tool, comparison is much easier if the format from the ICM platform can be made
to exactly match the other tool.

The ICM API contains a number of functions allowing processor instance
read and written. These can be used to construct test platforms that generat
from a simulation run in whatever format required. These access function
e Access to instance program counter;

Access to any processor register by name;
Dump of processor registers;
Disassembly of the current instruction;
Access to the count of instructions executed by the

e r

There is also a function available that allows a proc 00 be stepped by a single
instruction, icmSimulate, which will be used in this examp

7.1 Reading and Writing Re

There are a set of functions that allow s to the current program counter and to access
the program counter while determinin e current instruction is being executed in the
delay slot (for processors that sup la instructions).

To access the current progN icmGetPC:
Addr currentpc = icmGetPe(processor); // get current PC

is of type Addr, which is a 64-bit unsigned integer. For
than 64 bits, this value should be cast to an
e used subsequently in an arithmetic expression; for

Uns32 currentpc = (Uns32)icmGetPC(processor); // get current PC as 32-bit value

For processo!s with delay slot instructions, it is sometimes useful to know whether the
current instruction is a delay slot instruction. To do this, use icmGetPCDS:

Uns8 delaySlotOffset;
Uns32 branchPC = icmGetPCDS(processor, &delaySlotOffset);

icmGetPCDS behaves as follows:
1. If the current instruction is not a delay slot instruction, it returns the current
program counter and sets the byref value delaySlotOffset to 0;

© 2019 Imperas Software Limited www.OVPworld.org Page 30 of 168

OVPsim and CpuManager User Guide

2. If the current instruction is a delay slot instruction, it returns the address of the
preceding branch instruction and sets the byref value delaySlotOffset to the
current instruction byte offset from the branch instruction. For example, if there is
a branch instruction at 0x1000 with a delay slot instruction at 0x1004, then if
icmGetPCDS is called when the processor is executing the delay slot instruction at
0x1004, it will return 0x1000 and set delaySlotOffset to 4.

The current value of any processor register can be found using icmReadReg, which fills a
byref argument buffer with the current value of a named register:

Bool icmReadReg(icmProcessorP processor, const char *name, void *buffer);

To write a processor register, there is a similar function icmWriteReg:

Bool icmWriteReg(icmProcessorP processor, const char *name, void *buffer);

The following code snippet shows how a processor register ¢ R masked with
a bitmask REG_FLAG_MASK in an ICM platform:

Uns32 regR1;

icmReadReg(processor, “R1”, regRl);
regR1l = regRl & REG_FLAG_MASK;
icmWriteReg(processor, “R1”, regRl);

h.

= It is the responsibility of the ICM ensure that the buffer value is the
correct size to hold the register data. For ple, the above example implicitly
requires that register R1 is a 32- ister which will fit in a value of type Uns32.

The function icmSetPC can be u
the name of the PC in the

0 set the processor's start-address without knowing
being used (not everyone calls it 'PC").

atform to iterate over all the registers in a processor
and sizes (in bits) using three functions:
me and icmGetReglInfoBits.

It is also possible withi

an opaque pointer of type icmRegInfoP, which describes a single
It takes as an argument the previously-returned icmRegInfoP value;
when passed a NULL pointer, it returns the first icmReg InfoP pointer for a processor

mode. Itc refore be used to iterate over all register descriptions for a processor in a
simple loop:
icmRegInfoP info = 0; // initiate loop with NULL pointer

while((info=icmGetNextReg(info))) {

}

© 2019 Imperas Software Limited www.OVPworld.org Page 31 of 168

OVPsim and CpuManager User Guide

Given an icmRegInfoP pointer, the name of the register it corresponds to can be found
using icmGetReglInfoName and the register size in bits can be found using
icmGetRegInfoBits:

icmRegInfoP info = O; // initiate loop with NULL pointer

while((info=icmGetNextReg(info))) {

const char *name = icmGetReglnfoName(info);
Uns32 bits = icmGetReglnfoBits(info);

icmPrintf(“Found %u-bit register %s\n”, name, bits);
} &
The name returned by icmGetRegInfoName can be used if required to ide egister

to read or write using icmReadReg Or icmWriteReg.

icmGetReg InfoUsage returns an enumeration describing if'the reg as'special use.

7.2 Generating Disassembly Output

Processor models contain instruction disassembly functiona
an ICM platform using icmDisassemble, which ret
instruction at a passed address. For example, to pri
current program counter:

disassembled instruction at the

N
icmPrintf(“%s”, icmDisassemble(processor, icmGetPC(processor)));

7.3 Dumping Registers

Processor models also contain fu ality to dump all processor register values in a
standard format. This can done using icmbumpRegisters:

icmDumpRegisters(processor);

7.4 Instructi

Every processo unt of the number of instructions that it has executed
(asa r). This can be accessed using the ICM function
icmGetProcessor t; for example, to print the number of instructions executed at

icmPrintf(
“Simulation finished, “FMT_64u” instructions executed...\n",
icmGetProcessorICount(processor)

= The macro FMT_64u defines a format string that will correctly print a 64-bit
unsigned integer on both Linux and Windows hosts. It is defined with other
similar macros in ImpPublic/include/host/impTypes.h.

© 2019 Imperas Software Limited www.OVPworld.org Page 32 of 168

OVPsim and CpuManager User Guide

7.5 Simulating for One Instruction

Previous examples have used the function icmSimulatePlatform, which simulates a
platform using a built-in scheduling algorithm that simulates each processor for many
instructions before returning to the ICM platform?. For this example, we instead want to
simulate a processor one instruction at a time, performing custom instruction tracing after
each one completes. To do this, use icmSimulate:

icmStopReason icmSimulate(processorP processor, Uns64 instructions);

icmSimulate runs the passed processor for up to instructions more instru s and then
returns. The precise reason why simulation stopped is indicated by the retur e:

typedef enum icmStopReasonE {
ICM_SR_SCHED 0x00, ///< Scheduler expired.
ICM_SR_YIELD 0x01, ///< Yield encountered.
ICM_SR_HALT 0x02, ///< CPU is halted.
ICM_SR_EXIT 0x03, ///< CPU has exited.
ICM_SR_FINISH 0x04, ///< Simulation finish.
ICM_SR_RD_PRIV 0x05, ///< Read privilege exception.
ICM_SR_WR_PRIV 0x06, ///< Write privilege exception.
ICM_SR_RD_ALIGN 0x07, ///< Read align exception.
ICM_SR_WR_ALIGN 0x08, ///< Write align exception.
ICM_SR_FE_PRIV 0x09, ///< Fetch privilege exception.
ICM_SR_ARITH Ox0a, ///< Arithmetic exception.
ICM_SR_INTERRUPT O0x0b, ///< Interrupt simulation.
ICM_SR_FREEZE 0x0c, ///< Frozen (by icmFreeze).
ICM_SR_WATCHPOINT = 0x0d, ///< Memory watchpoint is pending.
ICM_SR_BP_ICOUNT O0x0e, ///< Instruction count breakpoint is pending.
ICM_SR_BP_ADDRESS Ox0f, ///< Address breakpoint is pending.
ICM_SR_RD_ABORT 0x10, ///< Read abort exception.
ICM_SR_WR_ABORT 0x11, ///< Write abort exception.
ICM_SR_FE_ABORT 0x12, ///< Fetch abort exception.
ICM_SR_INVALID 0x13 ///< (invalid entry).

} icmStopReason;

lated the required number of instructions and returned

The three most common r
e ICM_SR_SCHED
Processor success

(b a multiprocessor platform, other processors may still

ation has finished

In practice, it is usually sufficient to continue simulation while the return code from
icmSimulate iS ICM_SR_SCHED, for example:

while(icmSimulate(processor, 1)==ICM_SR_SCHED) {

icmPrintf(

2 In fact, icmSimulateP latform simulates for a time duration, which can be specified by
icmSimulationStopTime. The actual number of instructions executed up to this stop time is the
processor nominal mips rate X 1e6 x stopTime.

© 2019 Imperas Software Limited www.OVPworld.org Page 33 of 168

OVPsim and CpuManager User Guide

"Simulation finished, “FMT_64u” instructions executed\n",
icmGetProcessorlCount(processor)

)

7.6 Example

The following example uses the functions above to control the order of instruction
disassembly, register dumping and instruction execution.

This example is found in the access directory.

$IMPERAS_HOME/Examples/PlatformsICM/access

NOTE
OP API examples showing the same feature are available a
PlatformConstruction/walker and SimulationControl/processorRegsist ss

The test platform file, platform/platform.c, is as follows:

int main(int argc, char ** argv) {

// check for the application program name argument
if(argc!=2) {

icmPrintf(""%s: expected application name argument\n", argv[0]);
3

// initialize CpuManager
icmlnitPlatform(ICM_VERSION, 0, 0, 0, “platform”);

// create a processor
icmProcessorP processor = icmNewProcessor(

“cpul™, // CPU name

“orlk™, // CPU type

o, // CPU cpuld

o, // CPU model flags

32, // address bits

model, // model file

o, // not used

o, // enable tracing or register values
0, // user-defined attributes
semihosting, // semi-hosting file

0 // not used

)

// load the processor object file
icmLoadProcessorMemory(processor, argv[1l], ICM_LOAD_DEFAULT, False, True);

Bool done = False;
while(ldone) {
Uns32 currentPC = (Uns32)icmGetPC(processor);

// disassemble instruction at current PC
icmPrintf(""** Instruction Disassemble\n™);
icmPrintf(
"Ox%08x : %s\n'", currentPC,
icmDisassemble(processor, currentPC)

);

// execute one instruction
icmPrintf(""** Instruction Execution\n');
done = (icmSimulate(processor, 1) I= ICM_SR_SCHED);

© 2019 Imperas Software Limited www.OVPworld.org Page 34 of 168

OVPsim and CpuManager User Guide

// dump registers
icmPrintf(""** Register Dump\n');
icmDumpRegisters(processor);

}

// print number of instructions executed at end of simulation

icmPrintf(

"“Simulation finished, "FMT_64u" instructions executed\n",

icmGetProcessorlCount(processor)

)

// free simulation data structures

icmTerminate();

return O;

}

Compile the test platform and application as before using the following com ds in the
access directory:

make —C platform

make —C application

To run the simulation, in the access directory, run :

A

(>

4

-/platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf

You should see the following output: : U

** Instruction Disassemble
0x01000074 : 1.addi
** Instruction Execution

** Register Dump

: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

RO : 00000000
R4 : deadbeef
R8 : deadbeef
R12: deadbeef
R16: deadbeef
R20: deadbeef
R24: deadbeef
R28: deadbeef
PC : 01000078
TCR: 00000000
BF:0 CF:0 OF:O0

rl,r0,0x0

- 00000000
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: 00008001
- 00000000

** |nstruction Disassemble
0x01000078 : l.addi
** Instruction Execution

** Register Dump

: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

RO : 00000000
R4 : deadbeef
R8 : deadbeef
R12: deadbeef
R16: deadbeef
R20: deadbeef
R24: deadbeef
R28: deadbeef
PC : 0100007c
TCR: 00000000
BF:0 CF:0 OF:0

r2,r0,0x1

- 00000000
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: 00008001
- 00000000

: 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

© 2019 Imperas Software Limited www.OVPworld.org

Page 35 of 168

OVPsim and CpuManager User Guide

** Instruction Disassemble
0x0100007c : I.addi
** Instruction Execution

** Register Dump

. FFFFfFfff
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

RO : 00000000
R4 : deadbeef
R8 : deadbeef
R12: deadbeef
R16: deadbeef
R20: deadbeef
R24: deadbeef
R28: deadbeef
PC : 01000080
TCR: 00000000
BF:0 CF:0 OF:0

r3,r0,OXFFFFffff

- 00000000
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: 00008001
- 00000000

- 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

© 2019 Imperas Software Limited www.OVPworld.org

Page 36 of 168

OVPsim and CpuManager User Guide

8 Semihosting

We saw the use of the intercept library imperasgxit earlier which allows simple
assembler tests to be constructed and exit cleanly. In this example we will show how to
use a more general semihosting library so that, for example, calls to printf in the
application code can be intercepted and performed on the host machine.

Construction of semihosting libraries is covered in detail in the OVP Processor Modeling
Guide, in the chapter entitled Function Address Semihosting. Here, we will show how to

instantiate a standard Imperas semihosting shared object library to interc
calls in the newlib library for the OR1K processor. The semihosting shared li
found using icmGetVInvString, as follows:

icmGetVInvString(vinvRoot, “ovpworld.org", "semihosting", "orlkNewlib"™, "1.0", "model™);

= Why is semihosting not part of the processor model, but specifi arately?
This enables processor models to be “pure” instructi rate models, entirely

J al

independent of the environment in which they are tc % and for multiple,

incompatible, environments to be supported si by specifying a semihosting
library for each one.

8.1 Example

The following example uses the semiho n above to allow a simple “hello’

application to print to the standard out

This example is found in the se ti ectory.

$IMPERAS_HOME/Examples/PlatformsICM/semihosting

NOTE
OP xa showing the same feature are available as
imulationControl/simpleSemiHosting
//
// Main simulation routine
//

int main(int argc, char ** argv) {

// check for the application program name argument
if(argc!=2) {

icmPrintf("'%s: expected application name argument\n", argv[0]);
}

// select library components
const char *viInvRoot = NULL; // When NULL use default library
const char *model icmGetVInvString(

vinvRoot ,

“ovpworld.org",

"‘processor",

"orlk",

"1.0",

"model"*

© 2019 Imperas Software Limited www.OVPworld.org Page 37 of 168

OVPsim and CpuManager User Guide

const char *semihosting = icmGetVInvString(
vinvRoot,
"ovpworld.org",
"semihosting",
"orlkNewlib",
"1.0",
"model

)

// initialize CpuManager
icmlnitPlatform(ICM_VERSION, O, 0, 0, “platform”);

// create a processor with semihosting
icmProcessorP processor = icmNewProcessor(

“cpul™, // CPU name

"orlk", // CPU type

o, // CPU cpuld

o, // CPU model flags
32, // address bits
model, // model File

0, // not used

o, // enable tracing etc
o, // user-defined attributes
semihosting, // semi-hosting file
0 // not used

)

// load the processor object file
icmLoadProcessorMemory(processor, argv[1l], ICM_LOAD_DEFAULT, False, True);

// run simulation
icmSimulatePlatform();

// terminate simulation
icmTerminate();

return O;

}
Compile the test platform and ap 0 a"fore using the following commands in the
semihosting directory:

A

make —C platform
make —C application

To run the simulation, in the ihosting directory, run :

-/platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf

You following output:

Hello

Y
Linked into the application are calls to standard operating system functions (for example
open and close). With the appropriate semihosting library installed these low level calls
are intercepted by the simulator and the functionality to implement them is provided by
the native host instead.

© 2019 Imperas Software Limited www.OVPworld.org Page 38 of 168

OVPsim and CpuManager User Guide

8.2 Additional intercept objects

Intercept libraries can be added to an existing processor instance using

icmAddInterceptObject() (only available in Imperas Professional products).

icmProcessorP processor = icmNewProcessor(

"cpul™, // CPU name
“orlk”, // CPU type
o, // CPU cpuld
o, // CPU model flags
32, // address bits
model, // model file
o, // not used
0, // simulation attributes
0, // user-defined attributes
semihosting, // semi-hosting file
o, // not used
)
icmAddInterceptObject(
processor, // processor handle
"“interceptl”, // intercept library instance name
""/home/library/intercept", // path to intercept library shared object
o, // not used
0 // optional user defined attribute list
)

© 2019 Imperas Software Limited www.OVPworld.org

Page 39 of 168

OVPsim and CpuManager User Guide

9 Memory Operations

9.1 Accessing Processor Model Memory

When a new processor instance is created, by default an implicit RAM memory that
covers the entire address space that can be accessed by the processor type is also created.

This memory can be directly accessed with the ICM platform using the functions:
icmReadProcessorMemory and icmWriteProcessorMemory. The functio
icmLoadProcessorMemory can be used to load an object file. In addition, the functions
icmDebugReadProcessorMemory and icmDebugWriteProcessorMemory Ised to
read and write memory without causing side effect in the processor model
TLM2.0 models connected to the processor.

9.1.1 Loading object files
As we have previously seen an object file can be loaded int: SO mory using the
icmLoadProcessorMemory function:

P

icmlimagefileP icmLoadProcessorMemory(
icmProcessorP processor,
const char *objectFile,
icmLoadAttrs attrs,
Bool verbose,
Bool useEntry

)

A 4

icmLoadAttrs are defined as:

ICM_LOAD_DEFAULT: 0x00
ICM_LOAD_PHYSICAL: 0x01 Use jec ile physical addresses if available
I1CM_LOAD_VERBOSE: section as it is loaded

ICM_ZERO_BSS: € the extent of the BSS section if present
ICM_SET_START: 3 Set the PC to the code start address
ICM_LOAD_SYMBOLS_ONLY] Read the symbols but do not load the code or data
ICM_ELF_USE_VNMA oad ELF files using VMA addresses instead of LMA.

t as setting ICM_SET_START in the attrs argument. This is done to
preserve backwards compatibility with previous versions of the API.

For ELF files, the Load Memory Address (LMA) is used as the load address by default.
Setting ICM_ELF_USE_VMA in the attrs argument will cause the Virtual Memory Address
(VMA) to be used instead.

In the following example the memory is loaded from file hello.or1k using physical
address information, and the PC will be set to the entry address defined in the object file:

icmLoadProcessorMemory(processor, “hello.orlk”, ICM_LOAD_PHYSICAL, False, True);

© 2019 Imperas Software Limited www.OVPworld.org Page 40 of 168

OVPsim and CpuManager User Guide

The algorithm used is as follows:

1. Find the processor passed in argument #1.

2. Find the bus connected to the instruction port on that processor.
3. Load the specified object file into memory on that bus.

The loader takes each section address from the object file and looks for memory which
decodes at that address. An error is raised if no memory is mapped at a load address.
The loader uses any address decoding available on the bus, even if the decoded memory
is shared with other processors.

loaded
ill

If more than one processor is using the same code memory, the program neec
only once; When OVPsim starts a processor with no explicitly loaded progra
look for any other processors of the same architecture with common progr
and, if one is found, use the start address associated with that proces

An object file which is not directly related to a processor (€.
into memory on a bus using icmLoadBus.

ile) be loaded

The functions icmLoadProcessorMemory and icmLoa
which can be interrogated using icmGetlImagefile
and icmGetlImagefileEntry to find respectively th
architecture code and the executable start add

icmlmagefileP
ImagefileElfcode
e 16-bit processor

, 1
dianness, th

9.1.1.1 Supported object formats
The simulator currently supports:
ELF Used by all GNU tool ¢
TI COFF An extended version

Texas Instrument

e COFF format, used by compilers supplied by

y loads an object file into simulated memory it also
in the object file, and records the address-to-symbol

rcepting a function by name (see icmAddIinterceptObject)

Sometimes object code might be loaded by another route (e.g. using a boot-loader
running on a simulated processor) in which case the simulator has no opportunity to read
the symbols. In this situation the function icmLoadSymbols can be used to associate
symbols with a processor without loading the code. In this example, instruction tracing
will include code labels found in program.elf, though the code came from another source:

create platform

// initialize CpuManager
icmlnitPlatform(ICM_VERSION, 0, 0, 0, “platform”);

// create a processor
icmProcessorP processor = icmNewProcessor(

© 2019 Imperas Software Limited www.OVPworld.org Page 41 of 168

OVPsim and CpuManager User Guide

"procl™,
“orlk™,

o,

0,

32,
modelPath,
0
ICM_ATTR_TRACE,
o,

o,

0

load and run simulation \

// load the boot loader. This program will load the contents of
///mainprogram.elf by some other means.
icmLoadProcessorMemory(processor, 'bootloader.elf", ICM_LOAD_DEFAULT, False. False);

// load the symbols from the other program so that they are known to
// the simulator.

icmLoadSymbols(processor, "program.elf", False);
icmSimulatePlatform();

icmTerminate();

‘ = icmLoadSymbols reads the same format fil icmLoadProcessorMemory.

9.1.2 Reading and Writing Dat
The memory space can also be read an
icmReadProcessorMemory and icmW
transfer N bytes of data between bu
simulated memory address.

ritten directly using the
ocessorMemory functions. These functions
nd the simulated memory space using the

9.1.2.1 Reading and Wri

This example is found.in the hexLoader directory.

IS 'S &
$IMPERAS_HOME/Examples/PlatformsICM/hexLoader
J s L4

NOTE
API example showing the same feature are available as
ulationControl/ loadingApplicationProgramHexFormatFile

The example shows the use of the write memory and read memory functions to perform
the loading of a program. The program is provided in the form of a hex file with address
and data pairs.

The file loader is written in standard C code as part of the platform. In the same way any
file format can be supported by either incorporating available C code of a reader or
creating a new one.

© 2019 Imperas Software Limited www.OVPworld.org Page 42 of 168

OVPsim and CpuManager User Guide

The hex file format used in this example is based upon a simple sequence of address and
data, with comments marked using ‘#’.

#01000074 <_start>
01000074 0000209c ;
01000078 0100409c ;

In this example the loader is implemented so that multiple consecutive addresses can be
written with the same value.

#load memory addresses with 0x00000000
01000078-01000088 00000000 ;

Following is the loader, found in the file platform/platform.c, that take ne of
the file containing the data to be loaded and a switch to control the byte s

static int loadHexFile(icmProcessorP processor, char *fileName, Bool swap) {

FILE *fp;
char InBuf[MAX_LINE_LENGTH + 1];
int address, endAddress, data, dataCheck;

fp = fopen(fileName, "r");

it (1fp) {
printf (“Failed to open Memory Initialization File %s\n*", fileName);
return -1;

3
icmPrintf(""\nLoading Hex file %s\n*", fileName);
while (fgets(inBuf,MAX_LINE_LENGTH, fp) !'= 0) {

if (inBuf[0] == "#") {
// ignore header
} else {
if (sscanf(inBuf, "%08x-%08x %08x ;', &address, &endAddress, &data) != 3) {
sscanf(inBuf, "%08x %08x ;', &address, &data);
endAddress = address;

}

if (swap) { //byte swap
data = (data & 0x000000fFfF) << 24 |
(data & O0x0000ff00) << 8 |

(data & Ox00ff0000) >> 8
(data & Oxff000000) >> 24

3
do {
//
// Access the memory through the processor memory space
//
icmWriteProcessorMemory(processor, // processor
address, // memory address
&data, // data buffer of data to write
4); // number of bytes to write

icmReadProcessorMemory(processor, address, &dataCheck, 4);

if(data !'= dataCheck) {
icmPrintf("'Failed Data Read Back at O0x%08\n", address);
return -1;

}

icmPrintf(" O0x%08x <= 0x%08x\n'", address, data);

© 2019 Imperas Software Limited www.OVPworld.org Page 43 of 168

OVPsim and CpuManager User Guide

} while (address++ < endAddress);

}

icmPrintf(*'Load Complete\n\n');

if (fclose(fp)!=0) {
printf ("Failed to close Memory Initialization File\n");
return -1;

}

return O;

= Note if the processor uses virtual addressing the address of the

mapping.

The main routine in the platform file, creates a platform wi
and two regions of memory. The memory is loaded by a cal
has been described above.

// Load Hex file into Simulator Memory

iT (loadHexFile(processor, argv[1l], False)) {
printf(""Hex File Load of %s Failed\n", argv[l]):
return -1;

be
E 4

To run the example, compile the test plat e following command in the
hexLoader directory:

.

make —C platform

) 4

n assembler file, asmtest.S, and the same file as
in the hexLoader directory, run :

In the application directory
hex, asmtest.hex. To run t

-/platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.hex

You should seg@xe following:

OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org.
Copyright (C) 2005-2015 Imperas Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.

Visit www. imperas.com for multicore debug, verification and analysis solutions.
OVPsim started: Thu Mar 12 11:54:16 2015

BUS MASTERS: 2
PORT *DATA" of “platform/cpul”
PORT "INSTRUCTION®" of "platform/cpul”
BUS SLAVES: 1
0x00000000:OX000FFFFF: XXXXXXXX unmapped XXXXXXXX
0x00100000:OxFFFFFFFf: PORT “"mpl® of "platform/memory*

Loading Hex file application/asmtest.hex
0x01000074 <= 0x0000209c
0x01000078 <= 0x0100409c
0x0100007c <= OxFFFF609c
0x01000080 <= 0x0008809c
0x01000084 <= 0x000884b0

© 2019 Imperas Software Limited www.OVPworld.org Page 44 of 168

OVPsim and CpuManager User Guide

0x01000088 <=
0x0100008c <=
0x01000090 <=
0x01000094 <=
0x01000098 <=
0x0100009c <=
0x010000a0 <=
0x010000al <=
Load Complete

0x0000a484
Oxffffa3al
0x0000a4a0
0x0100a5a0
0x002804d4
0x0000c084
0x0000209c
0x0000209c

Info "platform/cpul®, 0x0000000001000074: I.addi
Info "platform/cpul® REGISTERS

: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

RO : 00000000
R4 : deadbeef
R8 : deadbeef
R12: deadbeef
R16: deadbeef
R20: deadbeef
R24: deadbeef
R28: deadbeef
PC : 01000078
TCR: 00000000
BF:0 CF:0 OF:0

R1 : 00000000
R5 : deadbeef
R9 : deadbeef
R13: deadbeef
R17: deadbeef
R21: deadbeef
R25: deadbeef
R29: deadbeef
SR : 00008001
TMR: 00000000

. lines deleted ..

Info "platform/cpul®, 0x0000000001000098: 1I.sw
Info "platform/cpul® REGISTERS

- 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
= 00000000

RO : 00000000
R4 : 00400000
R8 : deadbeef
R12: deadbeef
R16: deadbeef
R20: deadbeef
R24: deadbeef
R28: deadbeef
PC : 0100009c
TCR: 00000000
BF:0 CF:0 OF:0

R1 : 00000000
R5 : 00400002
R9 : deadbeef
R13: deadbeef
R17: deadbeef
R21: deadbeef
R25: deadbeef
R29: deadbeef
SR : 00008001
TMR: 00000000

Info "platform/cpul®, 0x000000000100009c: I.lwz
Info "platform/cpul® REGISTERS

: 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

RO : 00000000
R4 : 00400000
R8 : deadbeef
R12: deadbeef
R16: deadbeef
R20: deadbeef
R24: deadbeef
R28: deadbeef
PC : 0100009c
TCR: 00000000
BF:0 CF:0 OF:0

Processor Exception (PC_PRX) Processor "platform/cpul® 0x100009c:

R1 : 00000000
R5 : 00400002
R9 : deadbeef
R13: deadbeef
R17: deadbeef
R21: deadbeef
R25: deadbeef
R29: deadbeef
SR : 00008001
TMR: 00000000

rl,r0,0x0

R3 :
R7 :
R11:
R15:
R19:
R23:
R27:
R31:
EPC:
PMR:

R3 :
R7 :
R11:
R15:
R19:
R23:
R27:
R31:
EPC:
PMR:

Processor Exception (PC_RPX) No read access at 0x0

OVPsim Ffinished: Thu Mar 12 11:54:16 2015
Visit www. imperas.com for multicore debug, verification and analysis solutions.
OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org.

Note that:

: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

FFFFFFff
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00000000

Trrrefef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00000000

1.1wz

ré,0x0(r0)

© 2019 Imperas Software Limited www.OVPworld.org

Page 45 of 168

OVPsim and CpuManager User Guide

1. The load from address 0x00000000 causes an exception — this is because there is
no memory mapped at this address.

2. The simulator reports the exception (and returns from icmSimulatePlatform, using
icmGetStatus would show the status was 1CM_SR_RD_PR1V although this isn’t
shown in this example). The 1CM_ATTR_SIMEX instance attribute could be used to
cause the exception to be simulated instead — see section 5.2 for more information
about this.

9.1.3 Reading and writing memory without side-effects.
The functions icmbDebugReadProcessorMemory and icmDebugWritePro
are for use with a debugger, rather than as part of a platform model. This tab
their behavior:

ssorMemory

Function Endian TLM2.0 Effect on tlb
icmDebugReadProcessorMemory | selectable | transport dbg | none

icmDebugWriteProcessorMemory | selectable | transport_db non returns 'False'
icmReadProcessorMemory target b_transport ig date bus err if supported
icmWriteProcessorMemory target b_transport ht bus err if supported

Their prototypes are:

Y.

icmDebugReadProcessorMemory (

icmProcessorP processor, // processor context
Addr simAddress, // address in processor®"s address space
void *pbuffer, // pointer to destination host memory
Uns32 objectSize, // size of each object, in bytes
Uns32 objects, // number of objects
icmHostEndian endian // byte swap behavior

)

icmDebugWriteProcessorMemory(
icmProcessorP processor, // processor context
Addr simAddress, // address in processor"s address space
void *buffer, // pointer to destination host memory
Uns32 objectSize, // size of each object, in bytes
Uns32 objects, // number of objects
icmHostEndian endian // byte swap behavior

s the treatment of byte order in the host memory pointed to

Effect

Byte swapped, if necessary, to be host endian

No swapping; result will be same as target processor
B B Byte swapped, if necessary, to be big endian
ICM_HOSTENDIAN_LITTLE | Byte swapped, if necessary, to be little endian

If required, the bytes in each group of objectsize bytes, will be reversed, throughout the
whole buffer (if objectsize = 1 byte, there can be no swapping).

A request to read or write can cross boundaries between different types of memory, or
regions where no device exists. The functions return true if the entire buffer was read or
written successfully, raise if any part failed.

© 2019 Imperas Software Limited www.OVPworld.org Page 46 of 168

OVPsim and CpuManager User Guide

The processor argument refers to the target processor for the read or write. The required
endianness is that of the data endian of the processor, which might differ from the code
endian.

9.2 Adding Memory Callbacks

Adding callbacks across memory regions allows memory watchpoints, amongst other
features, to be implemented. A callback is executed whenever there is either a read or a
write access to a specified range of memory addresses.

The callbacks are created using icmAddReadCal Iback and icmAddwriteCal Iback
functions. &

// watch read accesses to the address range 0x01000000:0x01000fff
icmAddReadCal Iback(processor, 0x01000000, 0x01000fff, bufferReadCallBack, 0);

// watch write accesses to the address range 0x01000000:0x01000Fff
icmAddWriteCal Iback(processor, 0x01000000, 0x01000fff, bufferWriteCallBack, 0);

Watchpoints allow the monitoring of memory access behavi a asitrunsan
application.

9.2.1.1 Example Adding a Memory Callback

This example is found in the watchpoint direcior

$IMPERAS_HOME/Examples/PlatformsiCM/watchpoint
“———

OP API example showi e feature are available as
SimulationControl/ monitoringAccesses

function_

//
// Create a watchpoint
// Invoke callback on write accesses to the address 0x00400000-0x00400003

//
icmAddWriteCal Iback(

processor, // processor

0x00400000, // low address

0x00400003, // high address

watchWriteCB, // callback to invoke

"watch termination" // user data passed to callback
):

The callback functions used for a read or a write should be defined using the macros
ICM_MEM_WATCH_FN. The memory callback function is defined below.

//
// Callback for memory writes to defined external area
//

© 2019 Imperas Software Limited www.OVPworld.org Page 47 of 168

OVPsim and CpuManager User Guide

static ICM_MEM_WATCH_FN(watchWriteCB) {

icmPrintf(
"WATCHPOINT "%s": Writing to Ox%08x : Finish Simulation\n",
(Uns8 *)userData,
(Int32)address

icmFinish(processor, -7);

}

This function reports the write and then makes a call to icmFinish. This ICM function is
used to terminate the simulation at the start of the next instruction; the next instruction is

of simulation:

icmPrintf('Simulation finished with status %d\n", icmGetStatus());

To run the example, compile the test platform and application using wing
commands in the watchpoint directory:

make —C platform
make —C application

To run the simulation, in the watchpoint diréy,w

-/platform/platform.${IMPERAS_ARCH}.exe --6?ogram application/asmtest.OR1K._elf

You should see output similar to%ﬂ%{
A Y

OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org.
Copyright (C) 2005-2015 Imperas Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.

Visit www. imperas.com for multicore debug, verification and analysis solutions.
OVPsim started: Thu Mar 12 13:17:39 2015

BUS MASTERS: 2
PORT “DATA" of "platform/cpul”
PORT " INSTRUCTION® of "platform/cpul®
BUS SLAVES: 2
0x00000000:0x003FFfFfFf: PORT "mpl® of "platform/meml*
0x00400000: OxFFFFFFFF: PORT "mp2° of "platform/mem2*
Starting Simulation ...
Info "platform/cpul®, 0x0000000001000074: 1.addi rl,r0,0x0
Info "platform/cpul®, 0x0000000001000078: I.addi r2,r0,0x1
Info "platform/cpul®, 0x000000000100007c: I.addi r3,r0,OxFFfFfffff
Info "platform/cpul®, 0x0000000001000080: 1.addi r4,r0,0x800
Info "platform/cpul®, 0x0000000001000084: I.muli r4,r4,0x800
Info "platform/cpul®, 0x0000000001000088: I.sw 0x0(r4),r5
WATCHPOINT “watch termination®: Writing to 0x00400000 : Finish Simulation
Simulation finished with status -7
Done

OVPsim finished: Thu Mar 12 13:17:39 2015
Visit www. imperas.com for multicore debug, verification and analysis solutions.
OVPsim (32-Bit) V20150205 Open Virtual Platform simulator from www.OVPworld.org.

© 2019 Imperas Software Limited www.OVPworld.org Page 48 of 168

OVPsim and CpuManager User Guide

Note that:
1. The load from address 0x00400000 is captured by the write callback.
2. The simulation is set to finish before the next instruction, which is not
executed.
3. The status code passed as the second argument to icmFinish is printed just

before the simulation exits.

9.3 Explicit Local and External Memory

Until now, all examples have used an implicit RAM memory that covers the entire

address space that can be accessed by the processor type. Instead of doing processor
address spaces can be explicitly specified to contain separate RAMs and R i
some perhaps shared between processors in a multiprocessor system. It is ible to
specify that certain address ranges will be modeled by callback functions in
platfgrm itself, which is useful for modeling simple memory-mapp c
uarts”.

In order to use an explicit address space mapping, it is first
which all address-mapped components will be connected. /
function icmNewBus, which takes a bus name and bit

icmBusP bus = icmNewBus(“bus”, 32);

This example defines a new bus called bu bits wide.

The bus must be connected to any pro that uses it using
icmConnectProcessorBusses, ak rocessor and two busses, the instruction
bus and the data bus, as argume es tor permits processors to have distinct data

and instruction busses). Most pro se the same address space for both data and
instruction accesses, SO 0 u uments have the same value:

icmConnectProcessorBusses(processor, bus, bus);

Any nu j then be defined and connected to the bus. A memory
i i i emory,’'Which takes a memory name, access privileges and high

icmMemoryP memoryl = icmNewMemory(“meml1l”, ICM_PRIV_RWX, OxO003fffff);

% But note that in general, it is much better to use Imperas PSE objects to model peripherals, instead of
coding them directly in ICM, for many reasons:
1. PSE models run in a protected address space and cannot crash the simulator;
2. PSE models allow concepts such as simulation time and threading to be handled elegantly;
3. A platform consisting of processor models and PSEs is ideally suited to debug with the Imperas
debugger;
4. PSEs can be analyzed using tools built with Imperas intercept technology without having to
modify and recompile the platform.
See the OVP Peripheral Modeling Guide for detailed information on PSEs.

© 2019 Imperas Software Limited www.OVPworld.org Page 49 of 168

OVPsim and CpuManager User Guide

This example defines a new memory called mem1 which has an address range
0:0x3FFFFF (i.e. it is of size 0x400000). The access privileges for the memory are
defined by the enumeration type icmPriv in icmCpuManager . h:

typedef enum icmPrivE {

ICM_PRIV_NONE=0x0, // no access permitted
ICM_PRIV_R =0x1, // read permitted
ICM_PRIV_W =0x2, // write permitted
ICM_PRIV_RW =0x3, // read & write permitted
ICM_PRIV_X =0x4, // execute permitted
ICM_PRIV_RX =0x5, // read & execute permitted
ICM_PRIV_WX =0x6, // write & execute permitted
ICM_PRIV_RWX =0x7, // read, write & execute permitted
} icmPriv;
= Note that the last argument to icmNewMemory is the memory upper bound, he
memory size. This is so that it is possible to define a memory es,

i.e. to cover the full range of a 64-bit address space.
= The highAddr is the high address within the memory
which the memory is decoded when connected onto a-bus. T

is the.address at
ded address
highAddr.

range for the memory is bus base address to bus ba % S

Once a memory has been created, it can be connect
icmConnectMemoryToBus, Which takes a bus objec
object and a bus address as arguments, for ex

memaory port name, a memory

icmConnectMemoryToBus(bus, “mpl”, memoryl,‘Bxloooo);

typedef struct extMemDescS {
void *localSource;
void *localSink;

} extMemDesc;

// called when a read occurs in the range 0x00400000, Ox00400fff,
// copies data from localSource;

I1CM_MEM_READ_FN(extMemReadCB) {
extMemDesc *p = userData;
memcpy(value, p->localSource, bytes)

© 2019 Imperas Software Limited www.OVPworld.org Page 50 of 168

OVPsim and CpuManager User Guide

}

// called when a write occurs in the range 0x00400000, Ox00400fff,
// copies data to localSink;

ICM_MEM_WRITE_FN(extMemWriteCB) {
memcpy(p->localSink, value, bytes)

static extMemDesc extMem;

icmMapExternalMemory (

bus, “external”, ICM_PRIV_R, 0x00400000, 0x00400fff,
extMemReadCB, extMemWriteCB, &extMem

This example specifies that the range 0x400000: 0x400FFf on the bus sho
modeled using simulated memory, but should instead be implemented usi
platform callback functions, extMemReadCB and extMemWriteCB. Th
functions are specified using the 1CM_MEM_READ_FN and 1CM_MEM_ - acros. Any
time a simulated processor or device performs a memory or write in this address
range, the appropriate platform callback function will be calle allback will
allback should fill the

value buffer with bytes bytes of data (the required c
address).

9.4.1 Invalid access

During the read or write callback the clie
completed. To signal this, either functi ead Or icmAbortWrite should be
called by the client. Use icmAbort the callback was initiated by either of these
functions: y)

icmReadProcessorMemory
icmReadBus

Use icmAbortWriUw callback was initiated by either of these functions:

icmWriteProcessorMemory

icmWriteBus .

t should icmAbortRead or icmAbortWrite be called.

Inn

If the initi rocessor model implements rdAbortExceptCB Or wrAbortExceptCB
callback functions in its vmiAttrs structure, then the appropriate callback will be
invoked to allow the processor model to handle the abort. Otherwise, simulation will be
terminated with a memory abort error message.

9.4.2 Debugging Bus Connections
When there are many connections to a bus, visualizing the connections can be difficult, to
help, the ICM interface defines a useful debugging function:

void icmPrintBusConnections(icmBusP bus);

© 2019 Imperas Software Limited www.OVPworld.org Page 51 of 168

OVPsim and CpuManager User Guide

Given a bus, this function prints details of all the master (e.g. processors) and slaves (e.g.
memories) currently connected to that bus. As an example, the output might look like

this:

BUS MASTERS: 2
PORT "DATA" of "cpul®
PORT *INSTRUCTION® of
BUS SLAVES: 2

0x00000000:0x003FFFff:
0x00400000:0x00400FFF:
0x00401000:OXFFFFFFff:

“cpul*®

PORT "mpl® of "meml®
MAPPED r-- RCB:0x8048808 WCB:0x8048857
PORT *mp2° of "mem2*

9.4.3 Processor Instruction Execution
When the memory represented by or accessed through an external memor

simulation.

artifact the
.Iftheread is a

er to the processor
processor argument will be

In order to distinguish between a real instruction fetch and
icmProcessorP processor argument should be used within. t
processor instruction fetch the processor argument
making the access. If the read is a simulation artifa
NULL, indicating that it is not a processor m

9.4.4 Example
This example is found in the memory-dire

%
$IMPERAS_HOME/Examples/PlatformsICM/memory

NOTE
showing the same feature are available as

plat

// create a processor
icmProcessorP processor = icmNewProcessor(

“cpul™, // CPU name

“orlk™, // CPU type

o, // CPU cpuld

o, // CPU model flags

32, // address bits

model , // model file
“modelAttrs”, // model attributes
MODEL_ATTRS, // simulation attributes
0, // user-defined attributes
semihosting, // semi-hosting file
“modelAttrs”, // semi-hosting attributes

© 2019 Imperas Software Limited www.OVPworld.org Page 52 of 168

OVPsim and CpuManager User Guide

// create the processor bus
icmBusP bus = icmNewBus(“'bus', 32);

// connect the processor busses
icmConnectProcessorBusses(processor, bus, bus);

// create two simulated memories for low and high regions
icmMemoryP memoryl = icmNewMemory(‘'meml1l", ICM_PRIV_RWX, OxO003fffff);
icmMemoryP memory2 = icmNewMemory(*'mem2*, ICM_PRIV_RWX, OxFFFFFFff-0x00401000) ;

// map the address range 0x00400000:0x00400fff externally to the processor,
// read only
icmMapExternalMemory (
bus, "external', ICM_PRIV_R, 0x00400000, O0x00400fff,
extMemReadCB, extMemWriteCB, O
);

// connect memories to bus
icmConnectMemoryToBus(bus, *“mpl', memoryl, 0);
icmConnectMemoryToBus(bus, "mp2', memory2, 0x00401000);

N 4
The callbacks are defined using the macros in the ICM A
static ICM_MEM_READ_FN(extMemReadCB) {
Int32 data = Oxcefaedfe;
*(Int32 *)value = data;
icmPrintf(
"EXTERNAL MEMORY: Reading Ox%08x from O0x%08x\n*,
data, (Int32)address
);
3
static ICM_MEM_WRITE_FN(extMemWriteCB) {
icmPrintf(
"EXTERNAL MEMORY: Writing Ox%08x to Ox%08x\n",
(Int32)value, (Int32)address
3 —
This very simple RO mentation returns the fixed pattern oxcefaedfe for any read

ny write (obviously a real example can do something
if required).

make —C platform
make —C application

To run the simulation, in the memory directory, run :

-/platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf

You should see the following output:

Running example
BUS MASTERS: 2
PORT *DATA®" of "platform/cpul”

© 2019 Imperas Software Limited www.OVPworld.org Page 53 of 168

OVPsim and CpuManager User Guide

PORT

BUS SLAVES: 2

0x00000000:0x003FFFff:
0x00400000:0x00400FFF:
0x00401000: OXFFFFFFff:

,r4,0x800

- 00000000
- 00400000
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: 01000088
- 00000000

lines deleted .

" INSTRUCTION*

of "platform/cpul®

PORT "mpl® of "meml®
MAPPED r-- RCB:<ADDRESS> WCB:<ADDRESS>
PORT "mp2° of "mem2*

"platform/cpul®, 0x0000000001000084: I.muli
"platform/cpul® REGISTERS

CF:0 OF:0

- 00000000
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00008001
- 00000000

: 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

Info "platform/cpul®, 0x0000000001000088: 1I.lwz
EXTERNAL MEMORY: Reading Oxcefaedfe from 0x00400000
Info "platform/cpul® REGISTERS

- 00000000

RO
R4 :
R8 :
R12:
R16:
R20:
R24:
R28:
PC :
TCR:
BF:0

- 00000000
- 00400000
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: 01000098
- 00000000

BF:0

- TFFEFfFfff
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
EPC:

PC :

00400000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
0100008c
00000000
CF:0 OF:0

- 00000000
: feedface
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: 00008001
- 00000000

: 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

"platform/cpul®, 0x0000000001000094: 1.addic
"platform/cpul® REGISTERS

CF:0 OF:0

- 00000000
: 00400002
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: 00008001
- 00000000

: 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
- 00000000

"platform/cpul®, 0x0000000001000098: 1.sw
“"platform/cpul® REGISTERS

- 00000000
- 00400000
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef

01000098

- 00000000
: 00400002
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: 00008001

: 00000001
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
ESR:

deadbeef

r4

R3 :
R7 :
R11:
R15:
R19:
R23:
R27:
R31:
EPC:
PMR:

FFFFFfff
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00000000

r5,0x0(r4)

R3 :
R7 :
R11:
R15:
R19:
R23:
R27:
R31:
EPC:
PMR:

FFFFFfff
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00000000

r5,r5,0x1

R3 :
R7 :
R11:
R15:
R19:
R23:
R27:
R31:
EPC:
PMR:

Trrrefef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
00000000

deadbeef

© 2019 Imperas Software Limited www.OVPworld.org

Page 54 of 168

OVPsim and CpuManager User Guide

TCR: 00000000 TMR: 00000000 PSR: 00000000 PMR: 00000000
BF:0 CF:0 OF:0

Processor Exception (PC_PRX) Processor "platform/cpul® 0x1000098: 1I.sw 0x0(r4),r5
Processor Exception (PC_WPX) No write access at 0x400000

Note that:

1. The load to the external memory region is performed correctly but the store
causes an exception — this is because the external region was specified to have
read access permission only.

2. Although the read memory callback returns the value oxcefaedfe, the value
that gets loaded into register R5 of the OR1K processor is Oxfeedface. This is

required to perform endian swapping to get the desired results.

3. The simulator reports the exception (and returns 1CM_SR .
] ample). The
ception to be
1 about this.

© 2019 Imperas Software Limited www.OVPworld.org Page 55 of 168

OVPsim and CpuManager User Guide

10 Simulator Scheduler

The scheduler controls the execution of instructions on each of the processor models that
may be in the platform and also when peripheral models timed events occur.

It is the recommended approach to use the simulator internal built-in scheduler by calling
icmSimulatePlatform() to execute simulation. However, in circumstances when you wish
to control how the processor models instruction execution are scheduled and how time is
moved forward the icmSimulate() and icmAdvanceTime() functions can be used in its
place.

How processors execute instructions and how time is moved forward may be-controlled
when using the standard scheduler by setting the processor MIPS rate and)
quantum.

When using a custom scheduler it is the combination of the argume
functions that determine how instructions executed and time a

It is possible to create the same execution with both the sta 1d custom schedulers
as shown in the example.

10.1.1 Example
This example is found in the customSchedul ire

$IMPERAS_HOME/ExampIes/PIatformsIéﬁ/customScheduIer

h o

OP API example w [ame feature are available as
rol/customScheduler

scheduler is used to control the execution of an
moving time forward so that events within peripheral

The example shows ho

application on a processo
models occur at thé&mtr
‘4‘.; "'.I;

// the constructor
createPlatform();

icmSimulationStarting();

icmMessage(*'1', "PLATFORM"™, "Running with %s scheduler",
options.standard ? "standard™ : 'custom');

if (options.standard) {
// running with built in standard scheduler
icmSimulatePlatform();
} else {
// run simulation with custom scheduling
icmTime myTime;
icmStopReason rtnVal = ICM_SR_SCHED;
Ffor(myTime=TIME_SLICE; rtnVal==ICM_SR_SCHED ||
rtnvVal==1CM_SR_HALT;myTime+=TIME_SLICE){
rtnVal= icmSimulate(handles.processor, INSTRUCTIONS_PER_TIME_SLICE);
icmAdvanceTime(myTime);
b
}

© 2019 Imperas Software Limited www.OVPworld.org Page 56 of 168

OVPsim and CpuManager User Guide

// terminate simulation
icmTerminate();

Compile the test platform and application as before using the following commands in the
memory directory:

make —C platform
make —C application

To run the simulation, in the customScheduler directory, run : \

/platform/platform.${IMPERAS_ARCH}.exe \
--program application/application.OR1K.elf

You should see the following output: 0
A)

Info (PLATFORM) Running with custom scheduler
Info (16550_BRS) platform/uartTTYO: baud rate=1152000 parity=N data bits=5 total bits=7
character delay=6usec

Info (16550_UWR) platform/uartTTYO: Write to Data register: data=0x48 (
Info (16550_UWR) platform/uartTTYO: Write to Data register: data=0x65 (
Info (16550_UWR) platform/uartTTYO: Write to Data register: data=0x6c (
Info (16550 _UWR) platform/uartTTYO: Write to Data register: data=0x6c ("
Info (16550_UWR) platform/uartTTYO: Write to Data register: data=0x6f (
Info (16550_UWR) platform/uartTTYO: Write to Data register: data=0x0a (

To run the simulation, with the standar hedula' the customScheduler directory,
run :

®
-/platform/platform.${IMPERAS_ARCH}.exe \
--program application/application.OR1K.elf --standard

You should see the same ¢

© 2019 Imperas Software Limited www.OVPworld.org Page 57 of 168

OVPsim and CpuManager User Guide

11 Caches

A cache, active memory device or external memory management unit can be modeled
using a Memory Model Component (MMC). An MMC fits between a bus master such as
a processor or a peripheral (that can be a bus master), and a bus slave such as a RAM,
ROM or peripheral with a bus slave port. MMCs can also be cascaded to model, for
example, multi-level caches.

Processor A

BSP , BSP ,
MMC L1A MMC L1B

refer to the MI Memory Model Component Function Reference for details

Note that si ery bus access through an MMC causes at least one function to be
called, use of an MMC will impact simulation performance.

11.1 Transparent or Full MMC Models

An MMC operates in one of two possible modes, transparent or full. An MMC can be
written to support one or either mode. Full models implement storage and so can be used
to accurately model components such as caches that are incoherent with main memory.
Transparent models do not implement storage (so cannot be incoherent) but can be used
to create very fast performance monitors. As an example, a transparent cache model
would model only the cache tags and use this information to count hits and misses.

© 2019 Imperas Software Limited www.OVPworld.org Page 58 of 168

OVPsim and CpuManager User Guide

11.2 MMC Operation

A full MMC model has one or more master ports and one or more slave ports. A
transparent MMC model must have exactly one master port and one or more slave ports.
Transparent MMCs have only one master port because during construction busses
connected to the MMC slave ports are connected straight through to the master port.

In operation, a bus cycle instigated by another bus master in the system activates the
MMC via one of its slave ports. This causes an activation function to be called in the
MMC model. In a transparent MMC the activation function will perform som
calculation and then return, allowing the simulator to propagate the effect o
to the next component. In a full MMC the activation function might also i a bus
cycle on a bus connected to one of its master ports.

11.3 Transparent Model

Bus Master MMC

A

Read Cycle call readiN() {
yele__ ——» reads++;

~_ })

RAM

Fetch data

N

© 2019 Imperas Software Limited www.OVPworld.org Page 59 of 168

OVPsim and CpuManager User Guide

11.3.1 Full Model

Bus Master MMC
RAM
Read Cycle——»readNFull() {
if(cached)
getLocalData()
else -

vmirtReadNByteDomain(...)——ech data

A 4

An MMC is created using icmNewMMC. It is connected to a k

11.4 Creating and connecting an MM
w cmConnectMMCBus

11.4.1 Transparent MMC Exampl
An example of a transparent MMC is availab

$IMPERAS_HOME/ExampIes/PIatformsICM/transparentMMC

ame feature are available as
tion/transparentMMC

OP API example
Platfor

This has a platform file

// select library components
const char *vInvRoot = 0; // when null use default library
const char *model = icmGetVInvString(

vinvRoot, "ovpworld.org", '"processor', "orlk', "1.0", "model"
)

const char *semihosting = icmGetVInvString(
vinvRoot, "ovpworld.org", ‘"semihosting, "orlkNewlib*, *1.0", "model™*

cénst char *mmc_model = icmGetVInvString(
vinvRoot, "ovpworld.org"™, "mmc", "wb_1lway 32byteline_2048tags', "1.0",
"model™

)

// initialize CpuManager
icmInitPlatform(ICM_VERSION, 0, 0, 0, “platform”);

// create a processor
icmProcessorP cpulh = icmNewProcessor(

“cpul™, // CPU name
"orlk", // CPU type

o, // CPU cpuld

o, // CPU model flags
32, // address bits
model, // model file

© 2019 Imperas Software Limited www.OVPworld.org Page 60 of 168

OVPsim and CpuManager User Guide

// not used

0,

o, // simulation attributes
o, // user-defined attributes
semihosting, // semi-hosting file

0, // not used

)

// create transparent MMCs
icmMmcP mmci = icmNewMMC('mmci**, mmc_model, "modelAttrs",

True);
icmMmcP mmcd

0, O,
icmNewMMC(*'mmecd**, mmc_model, "modelAttrs'™, 0, 0, True);

// create the processor instruction bus and data bus
icmBusP ibus = icmNewBus(“ibus", 32);
icmBusP dbus = icmNewBus(*'dbus™, 32);

// create the processor main bus
icmBusP mbus = icmNewBus("'mbus', 32);

// connect processor ports to their buses
icmConnectProcessorBusses(cpulh, ibus, dbus);

// connect MMCs to buses
icmConnectMMCBus(mmci, ibus, "spl", False);
icmConnectMMCBus(mmecd, dbus, "'spl', False);

// connect master ports of MMC to main bus
icmConnectMMCBus(mmci, mbus, "mpl*, True);
icmConnectMMCBus(mmcd, mbus, "mpl*, True);

// create two simulated memories for low and high regions
icmMemoryP memoryl = icmNewMemory(“'meml1*, ICM_PRIV_RWX, OxO003fffff);
icmMemoryP memory2 = icmNewMemory("'mem2', ICM_PRIV_RWX, OxFFFFFFFF-0x00401000);

// connect memories to main bus
icmConnectMemoryToBus(mbus, ‘“‘mpl', memoryl, 0);
icmConnectMemoryToBus(mbus, *‘mp2', memory2, 0x00401000);

// run until exit
icmSimulatePlatform();

// free simulation data structures
icmTerminate();

cache model from the ovpworld.org library. This

e, SO it can be used as-is or modified if required. In
ounts the number of accesses to hypothetical cache
he configuration in terms of number of ways, line size and
ut is as follows:

Running example

Compiling Application hello.OR1K
Linking Application hello.OR1K.elf
2x transparent MMC

cacheConstructor called for platform/mmci
Ways o1
Line bits - 5
Tag bits :© 11

Tags 2,048

Line bytes: 32

Size : 65,536

Tag mask :© 111111111222.....

Key mask : 111111111111111111111111111.....

© 2019 Imperas Software Limited www.OVPworld.org Page 61 of 168

OVPsim and CpuManager User Guide

cacheConstructor called for platform/mmcd

Ways

Line bits :

Tag bits

Tags

Line bytes
Size

Tag mask
Key mask

cacheLink called for platform/mmci

cacheLink called for platform/mmcd

Hello world

cacheDestructor called for platform/mmci

READ ACCESSES

HITS

MISSES
1-byte
2-byte
4-byte
8-byte
N-byte

TOTAL READ :
TOTAL BYTES:

: 2,003
230

0

0
2,233
0

0
2,233
8,932

(0 bytes, average size=0.0 bytes)

cacheDestructor called for platform/mmcd

READ ACCESSES

HITS

MISSES
1-byte
2-byte
4-byte
8-byte
N-byte

TOTAL READ :
TOTAL BYTES:

WRITE ACCESSES:

HITS

MISSES
1-byte
2-byte
4-byte
8-byte
N-byte

TOTAL WRITE:
TOTAL BYTES:

Done

11.4.2

: 282

: 0

1,164

(0 bytes, average size=0.0 bytes)

(0 bytes, average size=0.0 bytes)

Full MMC Example
An example of a full MMC is available at:

$IMPERAS_HOME/Examples/PlatformsICM/ful IMMC

NOTE

OP API example showing the same feature are available as
PlatformConstruction/fullMMC

© 2019 Imperas Software Limited www.OVPworld.org

Page 62 of 168

OVPsim and CpuManager User Guide

The platform file is almost identical to that shown previously for transparent MMCs. The
only significant difference is in the MMC instantiation lines:

// create transparent MMCs
icmMmcP mmci = icmNewMMC(**'mmci**, mmc_model, "modelAttrs', 0, 0, False);
icmMmcP mmcd icmNewMMC("'mmed*, mmc_model, "modelAttrs™, 0, 0, False);

The final argument to icmNewmMC specifies whether the MMC is transparent or full. In
full mode, content as well as tags are modeled, so it is possible for the system to
demonstrate incoherency effects.

11.4.3 Cascaded MMC Example
Both transparent and full MMC models can be instantiated in a cascaded f
master ports of MMCs nearer the processor are connected to slave ports o
the memory subsystem. This allows structures such as cache hierar asily
modeled.

An example of a platform with cascaded MMCs is availablg at:

$IMPERAS_HOME/Examples/PlatformsICM/cascadedTransparentMMC

——_——

NOT
OP API example showing the same feature are available as
PlatformConstructio nsparentMMC

This has a platform file containing:

Y
const char *vInvRoot = 0; // when null use default library
const char *model = icmGetVInvString(
vinvRoot, "ovpworld.org", "processor", "orlk', "1.0", "model"

const char *semihosting = icmGetVInvString(
vinvRoot, "ovpworld.org", '"semihosting', "orlkNewlib', "1.0", "model"

cénst char *mmc_model = icmGetVInvString(
vinvRoot, "ovpworld.org"”, "mmc', "wb_1lway 32byteline_2048tags', "1.0",
"model"*

);

// initialize CpuManager
icminitPlatform(ICM_VERSION, 0, 0, 0, “platform”);

// create a processor
icmProcessorP cpulh = icmNewProcessor(

“cpul™, // CPU name

"orlk", // CPU type

o, // CPU cpuld

o, // CPU model flags

32, // address bits

model, // model file

0, // not used

0, // simulation attributes
o, // user-defined attributes
semihosting, // semi-hosting file

0 // not used

© 2019 Imperas Software Limited www.OVPworld.org Page 63 of 168

OVPsim and CpuManager User Guide

// create transparent MMCs

icmMmcP mmcL1l = icmNewMMC(**mmcL11*, mmc_model, *“‘modelAttrs', 0, 0, True);
icmMmcP mmcL1D icmNewMMC("'mmcL1D", mmc_model, "modelAttrs", 0, 0O, True);
icmMmcP mmcL2 icmNewMMC(*'mmcL2", mmc_model, "modelAttrs', 0, O, True);

// create busses
icmBusP Plbus
icmBusP PDbus
icmBusP L1llbus
icmBusP L1Dbus
icmBusP mbus

icmNewBus(*'Plbus', 32);
icmNewBus(*'PDbus', 32);
icmNewBus(*'L1lbus™, 32);
icmNewBus(*'L1Dbus", 32);
icmNewBus(“'mbus", 32);

// connect processor busses
icmConnectProcessorBusses(cpulh, Plbus, PDbus);

// connect L1 MMCs

icmConnectMMCBus(mmcL1l, L1llbus, "mpl"™, True);
icmConnectMMCBus(mmcL1l, Plbus, "spl", False);
icmConnectMMCBus(mmcL1D, L1Dbus, *“mpl', True);
icmConnectMMCBus(mmcL1D, PDbus, 'spl', False);

// connect L2 MMC

icmConnectMMCBus(mmcL2, mbus, “mpl", True);
icmConnectMMCBus(mmcL2, L1llbus, "spl", False);
icmConnectMMCBus(mmcL2, L1Dbus, "sp2", False);

// create two simulated memories for low and high regions
icmMemoryP memoryl = icmNewMemory(''meml', ICM_PRIV_RWX, OxO003Fffff);
icmMemoryP memory2 = icmNewMemory(*'mem2", ICM_PRIV_RWX, OxFFFFFFFF-0xf0000000) ;

// connect memories to bus

icmConnectMemoryToBus(mbus, ‘“mpl', memoryl, 0);

icmConnectMemoryToBus(mbus, "‘mp2', memory2, O0xf0000000);
- . 4

} } P N
// run until exit

icmSimulatePlatform();

// free simulation data structures
icmTerminate();

)4

jects representing L1 instruction cache, L1 data

e as written, all three caches are modeled as
transparent, but it is possi ve combinations of transparent and full models in the
same simulation, wi on that transparent models must be closer to the
processor than ful : example, all of these are legal combinations:
i i 2 all transparent;
d L2 all full;
nd L1 data transparent; L2 full.
gal to try to model either L1 cache as a full model when the L2 cache

This example defines three MM

Itis
is transparent.

© 2019 Imperas Software Limited www.OVPworld.org Page 64 of 168

OVPsim and CpuManager User Guide

12 Byte Swapping (Endian Correction)

A bus controller in a real platform might have the ability to perform byte-swapping on
each bus cycle. This allows, for example, a big-endian processor to communicate with a
little-endian peripheral component. CpuManager supports byte swapping through the use
of an MMC. The bus is broken into two and an MMC inserted between the two parts.

12.1 Bus Connections

one bus and passing them to another. An MMC cannot perform address de
activated by accesses to all addresses. If the swapping function is required
address range, a bus bridge is used to decode the required range, and i passed to
the MMC.

Processor

BSP
memory

MMC endianSwap

Qoher us

This diagram illustrates the example in

$IMPERAS_HOME/Examples/PlatformsICM/byteSwapper

NOTE
OP API example showing the same feature are available as
PlatformConstruction/ byteSwapperMMC

The OR1K processor uses two RAMs (one shown) for program and stack. The bridge
maps a limited address range from the main bus onto an intermediate bus which is

© 2019 Imperas Software Limited www.OVPworld.org Page 65 of 168

OVPsim and CpuManager User Guide

connected to the MMC model endianSwap which can be found in the ovpworld.org mmc
library. A simple peripheral model (not shown) is connected to the peripheral bus.

Thus, the processor has direct access to its memory without byte-swapping, but a 32-bit
access (read or write) to the peripheral will have its bytes reversed.

Note that in this design, a bus master on the peripheral bus will be unable to access the
processor memory.

The platform is constructed in \

$IMPERAS_HOME/Examples/PlatformsICM/byteSwapper/platform/platform.c

12.2 Bus bridge

Construction of the processor, memory and peripheral components Iready been
covered. The function icmNewBusBridge creates a bus bri

icmNewBusBridge(
icmBusP_1, // connection to incoming bus
icmBusP_2, // connection to outgoing bus
“bridgel”, // name of this bridge
"'decoder_spl", // name of slave port
""decoder_mpl', // name of master port
o, // low address of mapped region on the outgoing bus
OxfF, // high address of mapped region on the outgoing bus
0x80000000 // base address of mapped region on the incoming bus
)
The bus bridge is a generic compo s not exist in a library) which maps part or

S s space of another. Note that in this
example incoming refers to the b hich is connected to the bus master, outgoing is the
bus which is connected to \V:

should be unique on thei

to alias a region of an address space to another region on the
mple models the effect of not connecting the most significant address

icmNewBusBridge(
busi, // connection to incoming bus
busi, // connection to outgoing bus (the same bus)
“bridgel”, // name of this bridge
"'spl”, // name of slave port
“mpl", // name of master port
o, // low address of mapped region on the outgoing bus
OX7FFFffff, // high address of mapped region on the outgoing bus
0x80000000 // base address of mapped region on the incoming bus
)

© 2019 Imperas Software Limited www.OVPworld.org Page 66 of 168

OVPsim and CpuManager User Guide

12.3 Performance considerations

In the simulator, byte swapping converts a memory access to a function call, hence a
byte-swapper model should be used with care; a byte-swapper placed between a
processor and its main memory (program or data) will severely restrict its performance.
However, putting a byte-swapper between a processor and a peripheral model will cause
minimal effect when the peripheral is itself modeled by function calls.

© 2019 Imperas Software Limited www.OVPworld.org Page 67 of 168

OVPsim and CpuManager User Guide

13 Dynamic Bus Bridges

A dynamic bus bridge is used in a similar way as a bus bridge, described in the previous
section, but allows dynamic changes to the address space visible on a bus to be created. It
IS a generic component (it does not exist in a library) which maps part or all of the
address space of one bus to the address space of another.

A dynamic bus bridge creates a mapping between two busses that, essentially, makes the
region on the slave bus appear directly connected onto the master bus at the address range
specified.

Any previously bridged addresses within a new mapped region are removed
the underlying memory of a mapping is not affected so that a subsequent vack
onto an address region will make the same memory visible once agai

Processor

Dynamic Mappings

Bus

Bus
Mapped

External

BSP BSP

memory memory

memory
Callback

This diagram illustrates the example in

$IMPERAS_HOME/Examples/PlatformsICM/dynamicBridges

© 2019 Imperas Software Limited www.OVPworld.org Page 68 of 168

OVPsim and CpuManager User Guide

NOTE
OP API example showing the same feature are available as
PlatformConstruction/usingExternalMemory and SimulationControl/dynamicBridge

The bridge is initially used to map the full extent of the processor address map to the
‘mapped’ bus. As the program executes the buses are dynamically re-mapped so that an
address region accessed by the program is
1. mapped from the “mapped’ bus to the ‘external’ bus
2. mapped back from the ‘external’ bus to the “mapped’ bus, allowing previous
values to be accessed.
3. unmapped, so that an access to the region will create a memory fault.

The platform is constructed in

$IMPERAS_HOME/Examples/PlatformsICM/dynamicBridges/platform/platform.c

The function icmBridgebuses creates a dynamic bus bridge:

icmBridgebuses(
busLocal, // mapping on master bus, incoming bus
busMapped, // connection to slave, outgoing bus

0x00400000, // low address of mapped region on the outgoing bus
0x0040000F, // high address of mapped region on the outgoing bus
0x00400000 // base address of mapped region on the incoming bus

);

Note that in this example incomin rs e bus which is connected to the bus master,
outgoing is the bus which is con to.the slaves.

© 2019 Imperas Software Limited www.OVPworld.org Page 69 of 168

OVPsim and CpuManager User Guide

14 Attaching a Debugger

It is possible to attach a debugger that uses the gdb RSP protocol to a processor in a
CpuManager or OVPsim simulation. CpuManager offers more functionality than
OVPsim:

Simulator Features

OVPsim Single gdb connection. If platform has more than 1 processor, must use
icmDebugThisProcessor t0 specify which to debug

CpuManager Up to 8 gdb connections. Need not use icmbebugThisProces
8. Connections are offered in instance order.

In order to use RSP, icmInitPlatform must be passed the debug pro

For example:

d / ; N
icminitPlatform(ICM_VERSION, attributes, *rsp', portNum, “platl™);

by giving a number greater than zero, or the allocation ca
system by specifying a port number of zero.

If using OVPsim, or using CpuManager with more than 8
CpuManager and connecting the debugger to the pro
then use icmDebugThisProcessor.

S, Or using
than instance order,

icmProcessorP processor9 = icmNewProcessor(

"'cpu9”, // CPU name

“orlk”, // CPU type

9, // CPU cpuld

o, // CPU model flags
32, // address bits
model, // model File

o, // not used

0, // CPU attributes

0, // user-defined attributes
semihosting, // semi-hosting file
0 // not used

)

icmDebugThisProcessor(processor9); // specify this processor

When theWecutable is started, it will wait for a debugger to connect on the

specified port.

It is of course required to have a version of gdb specific to the target processor. The
OVPWorld web site can supply a gdb for most processor models available there.

14.1 Example of attaching to GDB

This example is found in this directory:

$IMPERAS_HOME/Examples/PlatformsICM/debugWithGDB

© 2019 Imperas Software Limited www.OVPworld.org Page 70 of 168

OVPsim and CpuManager User Guide

The following shows the program platform/platform.c:

// initialize OVPsim
unsigned int icmAttrs = ICM_INIT_DEFAULT;

icminitPlatform(ICM_VERSION, icmAttrs, 0, 0, “platl™);

// select library components
const char *vInvRoot = 0; // when null use default library
const char *model = icmGetVInvString(
vinvRoot, "ovpworld.org", "processor', "orlk', "1.0", "model"

const char *semihosting = icmGetVInvString(
vinvRoot, "ovpworld.org", '"semihosting', "orlkNewlib", "1.0", "model"
)

// create a processor
icmProcessorP processor = icmNewProcessor(

"OR1K", // processor name

"orlk", // CPU type

o, // processor cpuld

o, // processor model flags
32, // address bits

model, // model file

o, // not used

o, // no processor attributes
0, // no user-defined attributes
semihosting, // semi-hosting file

0 // not used

- e
// The simulator pauses here until connected to gdb
icmSimulatePlatform(Q);

// terminate simulation
icmTerminate();

ONSOLE and the third argument "rsp" to open
and line argument --gdbconsole should be used.

The icmAttrs should inclu
a GDB port connection

Compile the test plat
debugWithGD ctor

pplication as before using the following commands in the

make —C platform
make —C application
S

To start the simulation, in the debugWithGDB directory, run:

-/platform/platform.${IMPERAS_ARCH}.exe \
--program application/asmtest.OR1K.elf \
--gdbconsole

You should see the following output:

Info (GDBT_PORT) Host: <hostname>, Port: <port number>
Info (GDBT_WAIT) Waiting for remote debugger to connect...

A console will be started and a connection made to the simulator debug port.

© 2019 Imperas Software Limited www.OVPworld.org Page 71 of 168

OVPsim and CpuManager User Guide

The simulator will display the following output after connection of the debugger.

Info (GDBT_CONNECTED) Client connected

We now have the debugger connected to the simulation and can carry out normal
debugging commands supported by gdb — for example, try setting a breakpoint at main,
continuing and disassembling.

For more detailed information on debugging with gdb, refer to the Debugging
Applications with GDB User Guide.

14.2 Attaching to the remote multiprocessor d

As well as being integrated into the Imperas simulator, the Imperas
debugger is available as a stand-alone program that connects to the
connection, in the same way as gdb.

lator via an RSP

The procedure is identical to the previous example except is'no need to call

icmDebugThisProcessor().

You may modify and re-compile the platform file t
the GDB console to starting the MPD consol is
ICM_MPD_CONSOLE to the icmAttrs (a
line argument --mpdconsole

ange from automatically starting
one by adding
iling) or by adding the command

Or if you wish you may start the si tio
remotely without modifying the rm,r

he debugWithGDB directory, and attach

A
./platform/platform.${IMPERAS_ARCH}.exe \

--program application/asmtest.OR1K.elf \
-—port O

ate a port number from its pool).
t:

Info (GDBT_PORT) Host: <hostname>, Port: 5555
Info (GDBT_WAIT) Waiting for remote debugger to connect...
—

(The valu was the port number selected in this run).

Run the multiprocessor debugger in a separate shell using the following command in the
debugWi thGDB directory:

${IMPERAS_HOME}/bin/${IMPERAS_ARCH}/mpd.exe -port 5555

The following output will be seen

MPD (32-Bit) version <version>

© 2019 Imperas Software Limited www.OVPworld.org Page 72 of 168

OVPsim and CpuManager User Guide

Copyright (c) 2005-2015 Imperas Software Ltd.
ALL RIGHTS RESERVED

This program is proprietary and confidential information of
Imperas Software Ltd. and may be used and disclosed only as authorized
in a license agreement controlling such use and disclosure.

Info (MPD_SCS) Connecting

Info (GDBT_CONNECTED) Client connected
Info (MPD_SC) Socket connected

Info (MPD_VC) Server is compatible
idebug (OR1K) >

The debugger is now ready for use. Please refer to Imperas_Debugger_Us

14.3 Automatic startup of remote debuggers.
As we have seen in the previous example, the simulator can start gd
option has been purchased) in a separate window. Set the simulato
ICM_GDB_CONSOLE or ICM_MDP_CONSOLE.
// initialize CpuManager with MPD console
icminitPlatform(ICM_VERSION, ICM_GDB_CONSOLE, “rsp”, 0, “platl™);
or

icminitPlatform(1CM_VERSION, ICM_MPD_CONSOLE, “rsp”, 0, “platl”);

sing%mmand line parser using the
ctively.

Alternatively both options may be app
arguments --gdbconsole and --mp

When simulation starts, a ne
gdb) already connected to
desktop, on Linux, the ¢
environment variab

| appear with the multiprocessor debugger (or
. On Windows, the console will be on the local
x-term) will follow the setting of the DISPLAY

14. U control file

If yo ct supports use of the Imperas Control File, then the multiprocessor
debugger can be/invoked in one of two modes, using the simulator control file.
14.3.1.1 Integrated debugger

If the platform has access to a console (and the platform is not using the console itself)
then the integrated debugger can be started. The debugger banner and prompt will appear
in the console and can be used from there. Use the control file entry:

--idebug

© 2019 Imperas Software Limited www.OVPworld.org Page 73 of 168

OVPsim and CpuManager User Guide

14.3.1.2 Remote debugger

If no console is available or if the platform is using the console for other purposes, then
the remote debugger must be used. A window will appear and the debugger can be used
from there. Use the control file entry:

--mpdconsole

The multiprocessor debugger can also be started in TCL mode and can execute a startup
script if required. Please refer to the Imperas Control File User Guide and the Imperas
Debugger User Guide for more details.

When simulating a platform in the Imperas simulator, a GDB executable
associated with each processor type to give full symbolic debug capabiliti
Two methods of association can be used:
e Each model in the OVP processor model library con
be used by default. If the installation includes the g
automatically.

e If this gdb is not available or if another has to be
icmSetProcessorGdbPath can set the path @‘ Stjxc X

A

14.4 Selecting the GDB &

// set the gdb path
icmSetProcessorGdbPath(

icmProcessorP processor, // handle to the processor instance
const char *path, // Tull path to the GDB executable
const char *flags // any flags to be appended to the GDB invocation

Y

© 2019 Imperas Software Limited www.OVPworld.org Page 74 of 168

OVPsim and CpuManager User Guide

15 Multiprocessor Support

Any number of processors can be instantiated within an ICM platform. Shared memory
resources and callbacks on mapped memory regions are used to allow communication
between them.

The following section shows a simple multiprocessor platform created using bus and
memory objects first introduced in section 9.3.

15.1 Example

This example is found in the multiprocessor directory.

$IMPERAS_HOME/Examples/PlatformsICM/multiprocessor
A 4

NOTE
OP API example showing the same feature a
PlatformConstruction/twoProcessorsSh

The following shows the instantiation of two proces
them. Each processor also has a small amount of lo

ory shared between
emory for stack.

Two processors are instantiated with individ and 1d numbers.

F N
// create a processor

icmProcessorP processor0 = icmNewProcessor(

"cpul™, // CPU name
“orlk”, // CPU type
o, // CPU cpuld
o, // CPU model flags
32, // address bits
model, // model file
0, // not used
SIM_ATTRS, // simulation attributes
o, // user-defined attributes
semihosting, // semi-hosting file
0 // not used
);
icmProcessorP processorl = icmNewProcessor(
“cpu2', // CPU name
“orlk”, // CPU type
1, // CPU cpuld
o, // CPU model flags
32, // address bits
model, // model file
o, // not used
SIM_ATTRS, // simulation attributes
o, // user-defined attributes
semihosting, // semi-hosting file
0 // not used
)

Two busses are created, one for each processor, and connected to the processors:

// create the processor busses
icmBusP busl = icmNewBus(“'busl", 32);

© 2019 Imperas Software Limited www.OVPworld.org Page 75 of 168

OVPsim and CpuManager User Guide

icmBusP bus2 = icmNewBus(*'bus2™, 32);

// connect the processor busses
icmConnectProcessorBusses(processor0O, busl, busl);
icmConnectProcessorBusses(processorl, bus2, bus2);

This example needs three memories: a local stack memory for each processor and some
shared memory. These are created and connected to the processor busses:

// create memories
icmMemoryP locall
icmMemoryP local2
icmMemoryP shared

icmNewMemory(*'locall", ICM_PRIV_RWX, OXOFFfffff);
icmNewMemory(*"local2", ICM_PRIV_RWX, OXOFfffffff);
icmNewMemory(*'shared™, ICM_PRIV_RWX, Oxefffffff);

// connect memories
icmConnectMemoryToBus(busl, "mpl", shared, 0x00000000);
icmConnectMemoryToBus(bus2, *"mp2'", shared, 0x00000000);
icmConnectMemoryToBus(busl, “mpl*, locall, 0xf0000000);
icmConnectMemoryToBus(bus2, “mpl*, local2, 0xf0000000);

-_—

Memory maps for multiprocessor systems can be very co so'it’is often useful to be
able to show the bus connections using icmPrintBusConnecti

// show the bus connections
icmPrintf(""\nbusl CONNECTIONS\n");
icmPrintBusConnections(busl);
icmPrintf(""\nbus2 CONNECTIONS\n');
icmPrintBusConnections(bus?2);
icmPrintf(''\n");

The full memory map of each processor i onto the shared memory object,
except for a small section of local me for e tack. The program is loaded onto
both processors using the --progr d line argument.

The platform is then 5|mulatedt mpletion using icmSimulatePlatform:

// run simulation
icmSimulatePlatform();

The cpuld defined w the essor instance is created can be accessed from within
intercepted function impProcessorld, in order that a

dard Imperas function intercepts like impProcessorld,

ICM_ENABLE_ IMPERAS_INTERCEPTS must be passed using the 2nd argument of
icmInitPlatform. We also set 1CM_VERBOSE in this example, which enables simulation
runtime statistics at the end of simulation:

// initialize CpuManager - require Imperas intercepts because the
// application uses impProcessorld() to get processor id
icminitPlatform(ICM_VERSION, ICM_VERBOSE]ICM_ENABLE_IMPERAS_INTERCEPTS, 0, 0, 0);

© 2019 Imperas Software Limited www.OVPworld.org Page 76 of 168

OVPsim and CpuManager User Guide

Compile the test platform and application as before using the following commands in the
multiprocessor directory:

make —C platform
make —C application

To run the simulation, in the multiprocessor directory, run:

-/platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf

You should see the following output as the two processors execute the ap

tion. cpu0

is generating the Fibonacci series with cpul reading the results from the sha emory:

busl CONNECTIONS
BUS MASTERS: 2
PORT “DATA® of "cpuO*
PORT "INSTRUCTION®" of *
BUS SLAVES: 2
0x00000000: OxeFFFFFff:
0xF0000000 : OXFFFFFfFff:

bus2 CONNECTIONS

BUS MASTERS: 2
PORT “DATA® of “cpul®
PORT "INSTRUCTION® of -

BUS SLAVES: 2
0x00000000:OxeFFFFFff:
0xF0000000 : OXFFFFFfFff:

CPU
CPU
CPU
CPU

1 starting. ..
0 starting...
0: fib(0) =
1: munge(0)
CPU 0: fib(1) =
CPU 1: munge(l)
CPU 0: fib(2) =
CPU 1: munge(l)
CPU 0: fib(3) =
CPU 1: munge(2)
CPU 0: fib(4) =
CPU 1: munge(3)
CPU 0: fib(5) =
CPU 1: munge(5)

HoanwiNIEFEIEPI O

10
. etc ...

CPU 0: fib(33) = 3524578
CPU 1: munge(3524578) = 80
CPU 0: fib(34) = 5702887
CPU 1: munge(5702887) = 71

cpuO*®

PORT "mpl®
PORT "mpl®

cpul*

PORT "mp2"
PORT "mpl®

0566737

1033285

of "shared”
of "locall"

of "shared”
of "local2*

processor0O has executed 1658900172 instructions
processorl has executed 1658997966 instructions

Info

mfo ----- - -\ -------- .: : \;} }o i i i i i i

Info CPU "cpul® STATISTICS
Info Type

Info Nominal MIPS

Info Final program count
Info Simulated instructi
Info Simulated MIPS

Info CPU "cpu0® STATISTICS
Info Type

Info Nominal MIPS

Info Final program count
Info Simulated instructi
Info Simulated MIPS

o orlk
- 100

er : Oxldcc

ons: 1,658,997,966

1 781.2

: orlk
- 100

er : Oxldcc

ons: 1,658,900,172

: 781.2

© 2019 Imperas Software Limited www.OVPworld.org

Page 77 of 168

OVPsim and CpuManager User Guide

Info TOTAL

Info Simulated instructions: 3,317,898,138

Info Simulated MIPS - 1562.4
Info------——————-- b
Info

Info - ——————
Info SIMULATION TIME STATISTICS

Info Simulated time 16.59 seconds

Info User time : 2.12 seconds

Info System time : 0.00 seconds

Info Elapsed time : 2.12 seconds

Info Real time ratio : 7.81x faster
Info------—-———---- i b

15.2 Verbose Output

Note that the log from example multiprocessor includes output at the eng 0
statistics about the number of instructions executed by each processor, the %
MIPS rate for each processor, and the total instructions and MIPS ra is inforn
is present because 1CM_VERBOSE was specified as an optio icm latform:

ation

icminitPlatform(ICM_VERSION, ICM_VERBOSE|ICM_ENABLE_IMPERAS_INTERCEPTS, 0, 0, “pltl™);

The actual performance reported may vary and depends on the per ance of the native
host. In this example (run on a 3.4Ghz Dell Core i7- e achine) the overall
simulation speed is about 1560 simulated OR1K MIPS; approximately half for each
processor.

15.2.1 Simulation Time Stati
In verbose mode the simulator writes information about simulated and elapsed time. Four

time values appear in the SIMULATION STATISTICS paragraph:
Info -

Info SIMULATION TIME STATISTICS

Info Simulated time : 16.59 seconds

Info User time : 2.12 seconds

Info System time : 0.00 seconds

Info Elapsed time : 2.12 seconds

Info Real time ratio 7.81x faster

Info - —————— ————

M simulation in simulated time. This corresponds

eis 0
M in a simulation language such as Verilog and VHDL,; it is

o wall-clock time.

User time time that the simulation process spent executing instructions on the host
machine; system time is the time the host machine spent in the system while executing
instructions on behalf of the simulation process. Elapsed time is the overall time taken by
the simulation process on the host from start to finish. All three of these times will vary
from run to run, depending on the host load average and other factors. Real time ratio
shows how much faster than real time this simulation ran.

For each processor, the simulated MIPS line gives the rate at which instructions for that
processor were executed in wallclock time. In other words, the simulated MIPS number
for a processor is calculated by dividing the number of instructions executed by that

© 2019 Imperas Software Limited www.OVPworld.org Page 78 of 168

OVPsim and CpuManager User Guide

processor by the elapsed time for the simulation process. In this example, the reported
simulated MIPS for cpul is calculated by dividing the simulated instructions
(1,658,997,966) by the elapsed time (2.12 seconds) to give 781.2:

Info CPU "cpul® STATISTICS

Info Type : orlk

Info Nominal MIPS : 100

Info Final program counter : Oxldcc

Info Simulated instructions: 1,658,997,966
Info Simulated MIPS : 781.2

Provided that a processor does not halt during a simulation, then the simu
than real time if simulated MIPS exceeds nominal MIPS, and slower than re
nominal MIPS exceeds simulated MIPS.

This example used the standard multiprocessor scheduling

simulator under icmSimulatePlatform. This works

1. Simulation time is broken into time slices. each time slice is 0.001
seconds (one millisecond).

2. The simulator selects the first proces

fact does this by calculating the n

that processor in a time slice, a

The number of instructions in a 't

(processor nominal Ml

In this example, each pro

This means that each-p

instructions per ti

3. When the first prc

es it for one time slice. It in
uctions that should be executed by

the default nominal MIPS rate of 100 MIPS.
| execute 100 x 1e6 x 0.001 = 100,000

orh

s simulated for 100,000 instructions, it is suspended
imulated for the time slice.
imulated the time slice, simulated time is moved on

n approximation designed to give realistic simulation results with very
high simulator performance: the simulator is not designed to be cycle accurate.

The simulation algorithm is configurable in several ways:

15.3.1 Changing the Time Slice Size
The size of the time slice (in seconds) can be set with:

Bool icmSetSimulationTimeSlice(icmTime newsSliceSize);

where type icmTime is a long double. Shorter time slices may approximate real system
behavior more closely, but degrade simulator performance.

© 2019 Imperas Software Limited www.OVPworld.org Page 79 of 168

OVPsim and CpuManager User Guide

15.3.2 Changing Processor Nominal MIPS Rate
The nominal MIPS rate for each processor can be set with a user attribute. See section 6
for an example of this.

15.3.3 Writing Custom Scheduling Algorithms

If the standard multiprocessor scheduling algorithm does not do what is required, a
custom algorithm can be built around calls to icmSimulate for each processor. This
function will simulate a specified processor for an exact number of instructions.

Please note:
1) The user must ensure that the appropriate number of instructions
each processor, in a multicore platform.
2) When a platform also includes peripheral models time must be upc
appropriate rate.

re executed on

Please see section 10 Simulator Scheduler for more infor on creatin custom

scheduler.

15.4 Many Core Example

This example shows the instantiation of many (def ocessors in a platform and is
found in the manycore directory.

$IMPERAS HOME/ExampIes/PIatformsICM/manycore

The following shows the instantiation ny p%ssors in a loop as part of a sub-

system with local memory.
The processors are mstantlat d dual names and Id numbers.

for (i=0; i<PROCESSOR_! COUNT i++) {
// create processor cpu<i>
sprintf(name, "cpu%d”, i);
processor[i] = icmNewProcessor(

name, // CPU name

"orlk™, // CPU type

i, // CPU cpuld

0, // CPU model flags

32, // address bits

model, // model file
"modelAttrs", // morpher attributes
SIM_ATTRS, // simulation attributes. enable tracing etc
0, // user-defined attributes
semihosting, // semi-hosting file
"modelAttrs" // semi-hosting attributes

)
The busses are created, one for each processor, and connected to the processors:

// create the processor busses
sprintf(name, "bus®%d"”, i);
bus[i] = icmNewBus(name, 32);

// connect the processor busses
icmConnectProcessorBusses(processor[i], bus[i], bus[i]);

© 2019 Imperas Software Limited www.OVPworld.org Page 80 of 168

OVPsim and CpuManager User Guide

This example has a single memory for each sub-system. These are created and connected
to the processor busses:

// create memory
sprintf(name, “"memory%d", i);
memory[i] = icmNewMemory(name, ICM_PRIV_RWX, OXFFFFFFff);

// connect memory
icmConnectMemoryToBus(bus[i], "mpl*, memory[i], 0x00000000);

We load the program into each processor’s memory and set the start address.to the entry
indicated in the program file loaded. If the program is not loaded successfu e print an
error message and exit.

icmLoaderAttrs loadAttrs = ICM_LOAD_VERBOSE|ICM_SET_START;
if(licmLoadProcessorMemory(processor[i], argv[1l], loadAttrs, False, True)

) {
icmMessage("E", "PLATFORM_LOAD", "Failed to load %s onto processor %d", argv[1l], i);

// terminate simulation and free simulation data structures
icmTerminate();
return -1;

}

A4
The platform is then simulated to completion using |m)I aglatform:

~
// run simulation

icmSimulatePlatform();

Compile the test platform and applicati (fibong' as before using the following
commands in the manycore directo%'

make —C platform
make —C application

T

iprocessor directory, run:

To run the simulation, in the mu

PN
-/platform/platform.${IMPERAS_ARCH}.exe --program application/fibonacci.OR1K.elf

You eet Ilowing output as the processors execute the application.

Eac -system bus is printed

BUS[0] CONNECTIONS
BUS MASTERS: 2
PORT “DATA" of "platform/cpu0O*
PORT "INSTRUCTION® of "platform/cpu0O*
BUS SLAVES: 1
0x00000000:OxFFFFFFFF: PORT “"mpl® of “"memoryO*

Each processor loads the program into its local memory in its sub-system.

Info (OR_OF) Target "platform/cpu0® has object file read from
"application/fibonacci.OR1K.elf*

Info (OR_PH) Program Headers:

Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags
Align

© 2019 Imperas Software Limited www.OVPworld.org Page 81 of 168

OVPsim and CpuManager User Guide

Info (OR_PD) LOAD 0x00002000 0x00000000 0x00000000 0x0000e080 0x0000e194 RWE
2000

Each processor starts executing the program as it is scheduled (only partial output is
shown).

CPU 23
fib(0)
fib(1)
fib(2)
fib(3)
fib(4)
fib(5)
fib(6)
... snip -
fib(13) = 233

CPU 21 starting...

n
~
)
=
-+
=}
«Q

L1 A VL [1}
T 0O WNRER PO

fib(0) = 0
fib(1) =1
fib(2) =1

. snip ...

fib(12) = 144
fib(13) = 233
CPU 20 starting...

fib(0) = 0
fib(l) =1
. snip

fib(12) = 144
fib(13) = 233
CPU 19 starting...

... snip ...

fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(18) = 2584
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181

© 2019 Imperas Software Limited www.OVPworld.org Page 82 of 168

OVPsim and CpuManager User Guide

fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(19) = 4181
fib(20) = 6765
fib(20) = 6765
fib(20) = 6765
fib(20) = 6765
fib(20) = 6765
fib(20) = 6765
fib(20) = 6765
fib(20) = 6765
fib(20) = 6765
fib(20) = 6765
fib(20) = 6765
. snip

fib(31) = 1346269
CPU 23 finishing...
fib(31) = 1346269
CPU 22 finishing...
fib(31) = 1346269
CPU 21 finishing...
fib(31) = 1346269
... snip ...
fib(31) = 1346269
CPU O finishing...

Output statistics are shown for each processor with th m simulation
statistics shown last.

Info --————— -
Info CPU "platform/cpu23- STATISTICS

Info Type orlk

Info Nominal MIPS - 100

Info Final program counter : Oxlab4

Info Simulated instructions: 353,720,711

Info Simulated MIPS : 30.8

Info --——————————————
Info

info -----------\----- o \b oo i i i i i i i i i b -
Info CPU "platform/cpu22* STATISTICS

Info Type : orlk

Info Nominal MIPS - 100

Info Final program counter : Oxlab4

Info Simulated |nstruct|ons 353,720,711

Info Simulated MIPS : 30.8

Info --————————————_————————
... snip

Info
Info-----—-—————--——--- b —————
Info CPU "platform/cpu0* STATISTICS

Info Type orlk

Info Nominal MIPS : 100

Info Final program counter : Oxlab4

Info Simulated instructions: 353,719,241

Info Simulated MIPS : 30.8

info -------------- - \b bl b b i i i i i i i i -
Info

Info --————————————_————————
Info TOTAL

Info Simulated instructions: 8,489,280,698

Info Simulated MIPS : 738.2

Info - ———————————
Info

Info ---——————---
Info SIMULATION TIME STATISTICS

Info Simulated time : 3.54 seconds

Info User time : 11.49 seconds

Info System time : 0.01 seconds

© 2019 Imperas Software Limited www.OVPworld.org Page 83 of 168

OVPsim and CpuManager User Guide

Info Elapsed time : 11.78 seconds
mfo ----- - ----- - --- - - : : \}}}p} b i b i i i i i i i i i i i i

© 2019 Imperas Software Limited www.OVPworld.org Page 84 of 168

OVPsim and CpuManager User Guide

16 QuantumLeap Multiprocessor Support

As of VMI version 6.0.0, Imperas Professional Simulation products implement a parallel
simulation algorithm called QuantumLeap, which enables multicore platform simulation
to be distributed over separate threads on multiple cores of the host machine for improved
performance.

QuantumLeap allows for the parallel execution of both processor and peripheral models
on host processors. This section describes its use with processors; refer to the OVP
Peripheral Modeling Guide for information about parallelization of perip S.

16.1 Example
This example is again found in the multiprocessor directory.
{ , \

F N
$IMPERAS_HOME/Examples/PlatformsICM/multiprocessor

NOTE
OP API example showing the same feature are available as
PlatformConstruction/twoProces ar ory

Refer to section 15 for a detailed description
test platform and application as before usin?

n and platform. Compile the
ing commands in the
multiprocessor directory:

make —C platform
make —C application

Y 4
Enable the QuantumLeWa control file (control files are described in

section 25):

echo “—parallel” > control.ic
export IMPERAS_TOOLS=control.ic
export IMPERAS_RUNTIME=CpuManager

s only supported as a licensed feature of the Imperas
; contact Imperas for details.

-/platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf

You should see the following output as the two processors execute the application. cpu0
Is generating the Fibonacci series with cpul reading the results from the shared memory:

CpuManagerMulti Parallel started: Fri Nov 29 09:32:32 2013

busl CONNECTIONS
BUS MASTERS: 2

© 2019 Imperas Software Limited www.OVPworld.org Page 85 of 168

OVPsim and CpuManager User Guide

PORT *DATA*® of “cpu0*
PORT "INSTRUCTION® of
BUS SLAVES: 2

"cpu0*

0x00000000:0xefFFFFFF: PORT "mpl® of "shared”
OxF0000000: OXFFFFFFFf: PORT "mpl® of "locall®
bus2 CONNECTIONS
BUS MASTERS: 2
PORT "DATA" of "cpul®
PORT "INSTRUCTION®" of "cpul®
BUS SLAVES: 2
0x00000000:0xefFFFFFF: PORT "mp2* of "shared”
OxF0000000: OXFFFFFFFf: PORT "mpl” of "local2*
CPU 1 starting..
CPU 0 starting.
CPU 0: fib(0) = O
CPU 1: munge(0) = 0
CPU 0: fib(1) =1
CPU 1: munge(l) = O
CPU 0: fib(2) =1
CPU 1: munge(1l) = 0
CPU 0: fib(3) = 2
CPU 1: munge(2) =1
CPU 0: fib(4) =3
CPU 1: munge(3) = 3
CPU 0: fib(5) =5
CPU 1: munge(5) = 10
. etc ...
CPU 0: fib(33) = 3524578

CPU 1: munge(3524578) = 800566737

CPU 0: fib(34) = 5702887

CPU 1: munge(5702887) = 711033285

processor0O has executed 1658900172 instructions
processorl has executed 1658997966 instructions

Info

Info - ——————
Info CPU “cpul® STATISTICS

Info Type : orlk

Info Nominal MIPS : 100

Info Final program counter : Oxldcc

Info Simulated instructions: 1,660,597,974

Info Simulated MIPS : 1300.3

Info CPU "cpuO® STATISTICS

Info Type : orlk

Info Nominal MIPS : 100

Info Final program counter : Oxldcc

Info Simulated instructions: 1,660,600,176

Info Simulated MIPS - 1300.3

Info TOTAL

Info Simulated instructions: 3,321,198,150

Info Simulated MIPS - 2600.7

Info --———————————_————
Info

Info -
Info SIMULATION TIME STATISTICS

Info Simulated time 16.61 seconds

Info User time : 2.19 seconds

Info System time : 0.35 seconds

Info Elapsed time : 1.28 seconds

Info Real time ratio : 13.00x faster

Info - ——————

CpuManagerMulti Parallel finished: Fri Nov 29 09:32:33 2013

Note that the banners emitted at the start and end of simulation include an indication that
QuantumLeap parallel simulation is now enabled.

© 2019 Imperas Software Limited www.OVPworld.org Page 86 of 168

OVPsim and CpuManager User Guide

16.2 QuantumLeap Results

The actual performance reported may vary and depends on the performance of the native
host. In this example (run on a 3.4Ghz Dell Core i7-3770 desktop machine) the overall
simulation speed is about 2600 simulated OR1K MIPS, approximately half for each
processor. This is almost twice as fast as the same application run without QuantumLeap
in section 15.

16.3 QuantumLeap Scheduling Algorithm

The QuantumLeap scheduling algorithm is similar in many respects to th
multiprocessor scheduling algorithm described in section 15.3. The exact de
algorithm are proprietary, but some general characteristics are given here.

Time moves forward in quanta which are calculated in exactly the sam

is started. Any processor may also cause the simulation to r onous mode
during a quantum if the simulator detects that synchronous operation.is required (for
example, execution of a test-and-set instruction). In su e, all other processors are
safely stopped while the atomic action is carried ou Cessor requiring
synchronization.

Provided that synchronizing instructions and to shared registers are correctly
described, the simulation is deterministic in the absence of unguarded spin locks

(demonstrate this by running this exa imulation several times: instruction counts for
each processor will remain the sa m run). See the OVP Processor Modeling
Guide for a detailed description t e processor models compatible with
QuantumLeap.

iffer between the normal multiprocessor algorithm and

The actual simulation resul
f se of detailed scheduling differences. In the normal

in some deterministic intermediate state between the start and end
en an intermediate processor interacts with them. This usually affects
and sometimes program results, but in a correctly-designed program

d QuantumLeap results represent alternative legal paths through the
parallel program. If you examine instruction counts for this example program running
with and without QuantumLeap, you will see that they differ slightly, but the results are
the same.

Any instruction that is intercepted is guaranteed to be run in synchronous mode with all
other processors stopped. This means that legacy intercept libraries can be used with
QuantumLeap without modification.

© 2019 Imperas Software Limited www.OVPworld.org Page 87 of 168

OVPsim and CpuManager User Guide

Sometimes QuantumLeap results are non-deterministic. This can either be due to legal
constructs such as unguarded spin locks (often used to defer expensive synchronization
instructions) or by real program synchronization bugs. QuantumLeap determinism can be
a useful tool for validating parallel algorithm correctness.

16.4 QuantumLeap Options

Control file arguments —parallelopt, —paral lelthreads and —paral lelImax can
be used to control details of the simulation, as described below.

16.4.1 Option -parallelopt

Bit 0: enable nice scheduling behavior
When this bit is 0, QuantumLeap operates in a greedy mode; in wh e algorithm
assumes that it can freely use all resources of the host to a stest possible
simulation. Setting this bit enables nice mode, which suspend ive ds more

frequently so that more resources are available to other pro % e host machine.

ﬁ and version. Often,

some operating system versions, the
idate performance on your

iate to use this option.

The effect of nice mode depends on the operating s
QuantumLeap simulation runs little or no slower; o
effect may be to slow simulation more signifi
operating system before deciding whether it

Bit 1: don’t fix affinity
When this bit is 0, QuantumLeap ts to fix the affinity of a simulated core to a
particular native core to avoid ¢ volved in synchronizing caches that can occur
when native processes are move m native core to another. Setting this bit disables
affinity fixing so that sim cesses can migrate between native cores.

The default value of ~par tis 1, specifying nice mode simulation and fixed
affinities.

Example

Tor ious simulation with greedy scheduling behavior and no fixed affinities:

echo “—parallel” > control.ic

echo “—parallelopt 2° >> control.ic

export IMPERAS_TOOLS=control.ic

export IMPERAS_RUNTIME=CpuManager

-/platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf

16.4.2 Option -parallelthreads

QuantumLeap option -paral lelthreads can be used in a control file to specify the
maximum number of parallel threads that should simulate at once. This option can be
useful in (for example) regression test runs, to restrict a particular simulation to use of a
smaller-than-normal set of the available processor resources, to ensure that some

© 2019 Imperas Software Limited www.OVPworld.org Page 88 of 168

OVPsim and CpuManager User Guide

resources are available for other runs that might be occurring in parallel on the same
machine.

Example
To run a simulation in which no more than three parallel threads execute at once:

echo “—parallel” > control.ic

echo “—parallelthreads 3” >> control.ic

export IMPERAS_TOOLS=control.ic

export IMPERAS_RUNTIME=CpuManager

-/platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf

Note that standard QuantumLeap supports up to 4 parallel threads. To spec ore than
this, a separate license is required; contact Imperas for details.

16.4.3 Option -parallelmax
QuantumLeap option -parallelmax can be used in a contr
simulation should run as many threads as possible in paral
This option requires a separate license; contact Imperas for

Example
To run a simulation using maximum parallelization:a)

echo “-parallel” > control.ic

echo “—parallelmax” >> control.ic

export IMPERAS_TOOLS=control.ic

export IMPERAS_RUNTIME=CpuManager

-/platform/platform.${IMPERAS_ARCH} .exe ——programiigplication/application.ORlK.eIf

© 2019 Imperas Software Limited www.OVPworld.org Page 89 of 168

OVPsim and CpuManager User Guide

17 Limiting Performance to Wall Clock Time

In the above example, we saw that a pair of OR1K processors with a nominal speed of
100 MIPS could be made to run at over 800 MIPS (combined). Although it is usually a
benefit to have better-than-real-time simulation performance, there are some occasions
when this is undesirable: for example, when simulating an OS such as Linux, processors
are almost entirely idle when waiting at a login prompt. Unless told otherwise, the
simulator will move simulated time rapidly forward when processors are idling. The
effect of this is that it is impossible to log in interactively to the simulated Linux, because
the log in times out instantly as simulated time shoots forward.

It is possible to restrict maximum performance to any multiple of the real
using the function icmSetwal IClockFactor:

void icmSetWallClockFactor(double factor);

The factor specifies the maximum multiple of real time at
For example, a value of 3.0 implies no more than three tim
specifies no more than half real time. The following e
the multiprocessor platform performance to a fixed

17.1.1 Example 2 — Wallclock Si
This example is found in the wal Iclock

$IMPERAS_HOME/Examples/PlatformsICM/wal lclock

The following example is exactl sa ! the previous one except that after

initialization a new call restricts the si tion performance to no more than two times
real time:

// limit performance to no more than 2x nominal speed
icmSetWal IClockFactor(2);

Compi test or nd%cation as before using the following commands in the
wal Iclock directory:

make —C platform
make —C application

To run the simulation, in the mul tiprocessor directory, run:

-/platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf

The output should be similar to this:

processor0 has executed 1658900172 instructions
processorl has executed 1658997966 instructions

Info

INfO ——————— o

© 2019 Imperas Software Limited www.OVPworld.org Page 90 of 168

OVPsim and CpuManager User Guide

Info CPU “cpul” STATISTICS

Info Type o orlk

Info Nominal MIPS = 100

Info Final program counter : Oxldcc

Info Simulated instructions: 1,658,997,966

Info Simulated MIPS : 199.9
Info CPU “cpu0” STATISTICS

Info Type : orlk
Info Nominal MIPS : 100

Info Final program counter : Oxldcc
Info Simulated instructions: 1,658,900,172

Info Simulated MIPS : 199.9

Info TOTAL

Info Simulated instructions: 3,317,898,138

Info Simulated MIPS : 399.9

info -----------\--- -\t t.enn¢£€nnn n : i i i i i i
Info

Info - ——————
Info SIMULATION TIME STATISTICS

Info Simulated time 16.59 seconds

Info User time : 6.53 seconds

Info System time : 0.00 seconds

Info Elapsed time : 8.30 seconds

Info Host utilization : 49.0% (wallclock enabled)
Info------—-———---- i b

Note that each processor is now running at almost exactly
the specified nominal MIPS). In the simulation time ics, elapsed time has increased,
because the simulation had to spend some time wai order not to exceed the

specified maximum multiple of real time. A new ho ilization line indicates how
heavily the host processor was used by the simulation ss. In this example, a
utilization of 49.0% indicates that the si ss spent approximately half of its
time waiting.

© 2019 Imperas Software Limited www.OVPworld.org Page 91 of 168

OVPsim and CpuManager User Guide

18 Interrupting Simulation

Normally, icmSimulate and icmSimulatePlatform will run until they have completed
the requested number of simulated instructions (for icmSimulate) or time has advanced
until the time specified by icmSetSimulationStopTime (for icmSimulatePlatform), or
until a processor model has performed some explicit action that terminates the simulation
loop early (for example, halting or exiting).

18.1 Cntrl-C Handler

Occasionally, it may be required that the icmSimulate call be terminated
external event. For example, the platform may implement an interrupt han
when a user presses Ctrl-C the simulation loop should immediately t

done using the icminterrupt API call from within a signal-handl W
following code snippet (Linux only):

#include <signal.h>

//

// LINUX signal handler to interrupt the running simulation

//

static void ctriCHandler(Int32 nativeSigNum, siginfo_t *siglnfo, void *context) {
icminterrupt();

}

//

// Install a LINUX signal handler to trap any CtrliC
//

static void installCtriCHandler(void) {

struct sigaction sa = {{0}};
sa.sa_sigaction = ctriCHandler;
sa.sa_flags = SA_SIGINFO;
sigfillset(&sa.sa_mask);
sigaction(SIGINT, &sa, NULL);

}

Within the main func th I-C handler is installed:

PN

int main(int argc, char ** argv) {

// install a signal handler to trap any CtrliC
installCtriCHandler();

}

When the user presses Ctrl-C as this example is running, a call to icmInterrupt will be
generated. This will cause any active icmSimulate or icmSimulatePlatform call to
return, and the stopReason for the processor that stops will be set to 1CM_SR_INTERRUPT.
This needs to be handled in the main routine, for example:

© 2019 Imperas Software Limited www.OVPworld.org Page 92 of 168

OVPsim and CpuManager User Guide

icmProcessorP stoppedProcessor;

// simulate until done or ctrl-C
while((stoppedProcessor=icmSimulatePlatform())) {
if(icmGetStopReason(stoppedProcessor)==1CM_SR_INTERRUPT) {
icmPrintf(
"%s: interrupt after " FMT_64u " instructions..._.\n",
icmGetProcessorName(stoppedProcessor),
icmGetProcessor ICount(stoppedProcessor)

);
} else {
break;
b
b

In this example, when an interrupt occurs, the platform prints a message a
simulation by calling icmSimulatePlatform again (which will continue fro
was interrupted). In real cases, applications will typically enter a co
instead at this point.

In the common case that simulation needs to be interrupted c
API provides a method that does not require OS-specific si
specify 1CM_STOP_ON_CTRLC as an attribute in icml W \

trl- nt, The ICM
r code: simply

icmInitPlatform(
ICM_VERSION,
1CM_VERBOSE| 1CM_ENABLE_ IMPERAS_INTERCEPTS| ICM_STOP_ON_CTRLC,
0,
0,
“platl”

);

This will have exactly the same an OS-specific interrupt handler calling

icminterrupt.

as

or to Yield

rocessor is interrupted when it accesses an area of

18.2 Causin

cmYield is called when one of the processors makes a write to a specific

address range that triggers the memory watchpoint callback.

static ICM_MEM_WRITE_FN(watchWriteCB) {

icmPrintf(
"“"WATCHCALLBACK "%s®": Writing to Ox%08x : Interrupt\n',
(Uns8 *)userData,
(Int32)address

);

// Calling this APl function will interrupt the simulator
icmYield(processor);

© 2019 Imperas Software Limited www.OVPworld.org Page 93 of 168

OVPsim and CpuManager User Guide

18.3 Example

This example is found in the interruptSimulation directory.

$IMPERAS_HOME/Examples/PlatformsICM/interruptSimulation

NOTE
OP API example showing the same feature are available as
SimulationControl/interruptSimulation

Compile the test platform and application as before using the following co @ the
interruptSimulation directory:

A \

e

make —C platform
make —C application

To run the simulation, in the interruptSimulation direc

-/platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf

You should see output as in example multiproc wuz two processors execute the
application.

After a number of iterations the applic will e a write that will cause a call to
icmlinterrupt () in the platform. Thi lc e simulator to return and a message will
be generated of the form:

_ _ s
CPU 0: Watchpoint Trigger at 18
WATCHCALLBACK "cpuO®: Writing to Oxeffffff0 : Interrupt
/cpu0: interrupt after 2042123 instructions. ..

You may also press repeatedly while the application runs; each time, a line will be
genera ft X

cpu0: yield after <number> instructions..

or:
cpul: yield after <number> instructions..

depending Mich processor is running when the Ctrl-C is hit.

18.4 Important Notes

18.4.1 ICM API Usage in Ctrl-C Handler

When in a Ctrl-C or other similar handler and you want to cause the simulation to be
interrupted i.e. return from the icmSimulate or icmSimulatePlatform functions the
icmInterrupt may be used. However, it is important that no other ICM API calls should be
made from within a handler of this type. To do so may result in unexpected behavior.

© 2019 Imperas Software Limited www.OVPworld.org Page 94 of 168

OVPsim and CpuManager User Guide

18.4.2 icminterrupt Usage
One important point about icmiInterrupt is that it is not intended to be asynchronously
thread-safe. In other words, it is not appropriate to asynchronously call icminterrupt
when the simulation thread is not suspended. In ICM applications with multiple
asynchronous threads, the interrupting thread should be designed to work as follows:

1. It should suspend the simulating thread using any appropriate means;

2. It should call icmInterrupt to notify the suspended thread that an interrupt has

been requested,;

3. It should restart the simulating thread so that the interrupt request can be acted on.

If this sequence is not followed, simulator data structures may become co ed.

© 2019 Imperas Software Limited www.OVPworld.org Page 95 of 168

OVPsim and CpuManager User Guide

19 Interrupting a Specific Processor

Processor models written using the VMI interface can be made to react to external
interrupt events on named ports. For example, a processor model can be made to perform
a hard reset on an event on a port (perhaps called reset).

Events are signaled to processor models using nets, which can be created by icmNewNet
and connected to processor instances using icmConnectProcessorNet. A value can be
written to a net using icmWriteNet.

The following example shows how a processor reset signal can be stimulat ing nets.

19.1 Example

19.1.1 Reset Processor
This example is found in the interruptProcessor directory.

$IMPERAS_HOME/Examples/PlatformsICM/interruptProcessor

NOTE
OP API example showing the s available as
SimulationControl/ proces ruptControl

The following CpuManager / OVPsim
processor running an application. The
a reset by writing to a net.

platform that instantiates a single
ication is run for 100,000 instructions and then

The main routine is as foll ns relevant to this example in bold):

'S
// create processor cpu0
icmProcessorP processorO = icmNewProcessor (

“cpu0”™, // CPU name

“orlk”, // CPU type

o, // CPU cpuld

o, // CPU model flags

32, // address bits

model, // model file

0, // not used

SIM_ATTRS, // simulation attributes
0, // user-defined attributes
semihosting, // semi-hosting file

0 // not used

);

// load the processor object file
icmLoadProcessorMemory(processor0O, argv[1], ICM_LOAD DEFAULT, False, True);

// create a reset net and connect it to the reset port of processorO
icmNetP resetNet = icmNewNet(“'resetNet™);
icmConnectProcessorNet(processor0, resetNet, "reset", ICM_INPUT);

// simulate for one simulated millisecond
icmSetSimulationStopTime(0.001);
icmSimulatePlatform();

© 2019 Imperas Software Limited www.OVPworld.org Page 96 of 168

OVPsim and CpuManager User Guide

// write to the processor reset signal
icmWriteNet(resetNet, 1);
icmPrintf(
"processorO reset after " FMT_64u " instructions\n",
icmGetProcessorlCount(processor0)

)

// simulate until completion
icmSimulatePlatform();

// report the total number of instructions executed
icmPrintf(

""processor0 has executed " FMT_64u " instructions\n",
icmGetProcessorlCount(processor0)

The example creates a net object and connects it to the reset input port of the

processor instance as follows: O
F N \

icmNetP resetNet = icmNewNet(''resetNet™);
icmConnectProcessorNet(processor0, resetNet, "reset™, ICM_INPUT);

We then simulate for one simulated millisecond:

~

i |eve|—sensitive for the OR1K

reset and lowered afterwards):

icmSetSimulationStopTime(0.001);
icmSimulatePlatform();

The reset net is then stimulated (note that thi
model, so the value is written high to a?e

icmWriteNet(resetNet, 1);
icmWriteNet(resetNet, 0);

) 4
Finally, we then simulate aﬁilﬂ until theprocessor terminates:

icmSimuIatePIatform(j;

Compile the test p a plication as before using the following commands in the
interruptProcessor (0]

make —C platform
make —C application
e

To run the.si tion, in the interruptProcessor directory, run:

-/platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf

You should see output as follows:

fib(0)
fib(1)
fib(2)
fib(3)
fib(4)
fib(5)
fib(6)

I mmnnn
OUTWNEFE PO

© 2019 Imperas Software Limited www.OVPworld.org Page 97 of 168

OVPsim and CpuManager User Guide

fib(7) = 13
fib(8) = 21
fib(9) = 34
fib(10) = 55
fib(11l) = 89
fib(12) = 144
fib(13) = 233
processor0O reset after 100000 instructions
fib(0) = 0
fib(1) =1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
fib(8) = 21
fib(9) = 34
fib(10) = 55
fib(11) = 89
fib(12) = 144
fib(13) = 233
fib(14) = 377
fib(15) = 610
fib(16) = 987
fib(17) = 1597
fib(18) = 2584
fib(19) = 4181

processor0O has executed 1258786 instructions

AR
s, it resets and begins

Note that after the processor has executed 100,000 instructi

calculation of the fibonacci series again.

19.1.2 Startup Reset
This example is found in the rese t irectory.

1}
$IMPERAS_HOME/Examples/PlatformsICM/resetControl

NOTE
showing the same feature are available as
nControl/processorResetControl

r / OVPsim code creates a platform that instantiates two
the same application. Each processor is attached to an

ine. Before the simulation is started one reset line is release and the
second is asserted. The application is run for 0.01 seconds and the second reset line is
ulation is then run for a further 0.01 seconds.

The main routine is as follows (with sections relevant to this example in bold):

// create a processor
processor[0]= icmNewProcessor (

"'cpu0™, // CPU name
"orlk™, // CPU type

o, // CPU cpuld

o, // CPU model flags
32, // address bits
model, // model file

© 2019 Imperas Software Limited www.OVPworld.org Page 98 of 168

OVPsim and CpuManager User Guide

0 // not used

SIM_FLAGS, // enable tracing etc
userAttrs, // user-defined attributes
semihosting, // semi-hosting file

0 // not used

)
// create a processor
processor[1] = icmNewProcessor (

"cpul™, // CPU name

“orlk™, // CPU type

1, // CPU cpuld

o, // CPU model flags
32, // address bits
model, // model file

0, // not used
SIM_FLAGS, // enable tracing etc
userAttrs, // user-defined attributes
semihosting, // semi-hosting file
0 // not used

)

icmBusP busO = icmNewBus(*'bus0", 32);
icmBusP busl = icmNewBus(“'busl', 32);

icmConnectProcessorBusses(processor[0], busO, busO);
icmConnectProcessorBusses(processor[1], busl, busl);

icmMemoryP memLowO = icmNewMemory(*'memLowO", I1CM_PRIV_RWX, OXOFFfffff);
icmConnectMemoryToBus(busO0, "spl*,memLow0, 0x00000000) ;
icmMemoryP memLowl = icmNewMemory(*‘'memLowl®, ICM_PRIV_RWX, OXOFffffff);
icmConnectMemoryToBus(busl,"spl",memLowl, 0x00000000);

icmMemoryP memHighO = icmNewMemory(*'memHighO"™, ICM_PRIV_RWX, Oxdfffffff);
icmConnectMemoryToBus(busO0, “spl*,memHighO, 0x20000000);
icmMemoryP memHighl = icmNewMemory(“'memHighl", ICM_PRIV_RWX, Oxdfffffff);
icmConnectMemoryToBus(busl,"spl',memHighl, 0x20000000);

// load the processor object file
if(licmLoadProcessorMemory(processor[0], argv[1], ICM_LOAD DEFAULT, False, True)){

icmPrintf("Application %s not loaded by processorO\n", argv[1]);
return -1;

}
if(licmLoadProcessorMemory(processor[1], argv[1], ICM_LOAD DEFAULT, False, True)){

icmPrintf(""Application %s not loaded by processorl\n", argv[1]);
return -1;

icmWriteNet(resetO, 0);
icmWriteNet(resetl, 1);

N

// run simulation

// Set to stop at 0.001 seconds simulation time
icmSetSimulationStopTime(0.01);

icmSimulatePlatform();
icmPrintf('Simulation time: %Ff\n", (Float)icmGetCurrentTime());
icmWriteNet(resetl, 0);

// Set to stop at 0.002 seconds simulation time
icmSetSimulationStopTime(0.02);

icmSimulatePlatform();

© 2019 Imperas Software Limited www.OVPworld.org Page 99 of 168

OVPsim and CpuManager User Guide

The example creates net objects and connects them to the reset input ports of each of the
two OR1K processor instance as follows:

icmNetP resetO = icmNewNet(*'reset0");
icmConnectProcessorNet(processor[0], resetO, "reset"™, ICM_INPUT);
icmNetP resetl = icmNewNet(*'resetl™);
icmConnectProcessorNet(processor[1], resetl, "reset™, ICM_INPUT);

We hold processor one in reset

icmWriteNet(resetl, 1);

and release the reset to processor 0.

icmWriteNet(resetO, 0);

&
We then simulate for 0.01 simulated seconds: . e) i

icmSetSimulationStopTime(0.01);
icmSimulatePlatform();

The reset net to processor one is then written to relewu
%

icmWriteNet(resetl, 0);

Finally, we then simulate again for a further imulated seconds:

EN

icmSetSimulationStopTime(0.02);
icmSimulatePlatform();

Compile the test platform and ap@as!efore using the following commands in the
resetControl directory: A

make —C application CROS§EOR1K
make —C platform CROSS=0R1K

To run the simulation, r ontrol directory, run:

./platform/platform.$£lMPERAS_ARCH}.exe --program application/application.OR1K.elf

You should see output as follows:

CPU 0: Starting ...

CPU 0O: Hello World O
CPU 0: Hello World 1
CPU 0: Hello World 2
CPU 0O: Hello World 3
Simulation time: 0.0
CPU 1: Starting ...

10000

CPU 1: Hello World O
CPU 0O: Hello World 4
CPU 1: Hello World 1
CPU 0: Hello World 5
CPU 1: Hello World 2
CPU 0: Hello World 6

© 2019 Imperas Software Limited www.OVPworld.org Page 100 of 168

OVPsim and CpuManager User Guide

CPU 1: Hello World 3
Simulation time: 0.020000

Note that while processor ‘CPU 0’ has executed for 0.01 simulated seconds there is no
output from processor ‘CPU 1°. After 0.01 seconds of simulated time has expired the
reset line to processor ‘CPU 1’ is released and it starts execution. The simulator schedules
execution on both processors ‘CPU 0” and *CPU 1’ and output from both is generated.

19.1.3 Reset Wire (net)
This example is found in the resetControlPeripheral directory.

$IMPERAS_HOME/Examples/PlatformsiCM/resetControlPeripheral

NOTE
OP API example showing the same feature

This example includes a platform that instantiates one proc one peripheral
model. A reset line connects to both the peripheral a or and is driven by the
peripheral.

The processor is running a fibonacci applicati
the reset vector so that on a reset it branches bac
The peripheral model opens a socket, usi
and monitors characters received over the socket:

The main routine of the peripherpje

// open a tcp/ip socket using standard socket features

// set parameter “console” to open terminal and connect to port

// set parameter “portnum® to a port number to open and await manual connection
Int32 channel = bhmSerOpenAuto();

es the generation of code at
tial entry point at *_start’.
port included in the BHM API calls,

ser.c, is as follows:

if (channel) {
bhmSerWriteN(channel, startMessage, sizeof(startMessage));
while (1) {
//

// Non Blocking read

//

Uns8 buffer[MAXREAD];

Uns8 bytes = bhmSerReadN(channel, buffer, 1);

if (bytes) {
// echo value back to terminal
bhmSerWriteN(channel, buffer, 1);

it (buffer[0] == "r") {
bhmMessage(*'1'*, ""RESET", "Generate Reset");
ppmWriteNet(handles.resetOut, 1);
ppmWriteNet(handles.resetOut, 0);

3

if (buffer[0] == "qg") {
bhmFinish(Q);

3

© 2019 Imperas Software Limited www.OVPworld.org Page 101 of 168

OVPsim and CpuManager User Guide

3
// polling delay
bhmwaitDelay(100) ;

}
Open a socket, waiting for a connection to be made

bhmSerOpenAuto();

Attempt to read a single character from the socket. This is a non-blocking read (there is
an equivalent blocking read, bhmSerReadN) so if nothing is available it r
result 0.

bhmSerReadN(channel, buffer, 1);

K 4

If a character is available and it is ‘r’ the peripheral togglesthe ‘re et
(handles.resetOut is the handle to the opened port on the periphera ich the reset
line is connected) to generate a reset signal causing the process re

ppmWriteNet(handles.resetOut, 1);
ppmWriteNet(handles.resetOut, 0);

Compile the test platform, peripheral and applicatio e using the following
commands in the resetControlPeripheral dire

make —C platform NOVLNV=1
make —C peripheral NOVLNV=1
make —C application CROSS=ARM7TDMI

To run the simulation, in the res@l!eripheral directory, run:
AT,

-/platform/platform.${IMPERAS_ARCH}.exe \
--program application/fibonacci.ARM7TDMI .elf \
--override systemReset/resetGeneration/console=1 \
--override systemReset/resetGeneration/finishOnDisconnect=1 \
--override systemReset/resetGeneration/outfile=uart.log \
--output imperas.log

You tput as follows:
Simulator owing we reset four times and then quit the simulation.

OVPsim (32-Bit) v20150901.0 Open Virtual Platform simulator from www.OVPworld.org.
Copyright (c) 2005-2015 Imperas Software Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.

Visit www. IMPERAS.com for multicore debug, verification and analysis solutions.

OVPsim started: Fri Oct 02 14:09:36 2015

=h
-
O
~
i
\~/
I

0
1
1

© 2019 Imperas Software Limited www.OVPworld.org Page 102 of 168

OVPsim and CpuManager User Guide

fib(3) =
fib(4) =

- snlp -
fib(25) = 75025
fib(26) = 121393

fib(27) = 196418

Info (RESET) systemReset/resetGeneration: Generate Reset
starting...

fib(0) = 0

fib(1) 1

fib(2) 1

... ship ...

fib(31) = 1346269

fib(32) = 2178309

Info (RESET) systemReset/resetGeneration: Generate Reset

starting. ..

fib(0) = 0

fib(1) =1

fib(2) =1
. sni

fib(31) = 1346269

fib(32) = 2178309

Info (RESET) systemReset/resetGeneration: Generate Reset
starting. ..

fib(0) = 0

... snip ...

fib(27) 196418

fib(28) = 317811

fib(29) = 514229

Info (RESET) systemReset/resetGeneration: Generate Reset
starting. ..

fib(0) = 0

... ship ...

fib(32) = 2178309

fib(33) = 3524578

OVPsim finished: Fri Oct 02 14:09:40 2015

OVPsim (32-Bit) v20150901.0 Open Virtual Platform simulator from www.OVPworld.org.
Visit www. IMPERAS.com for multicore debug, verification and analysis solutions.

h

UART output

Example Peripheral Reset Generation
type "r" to force reset
"q" to finish simulation
rrrrq

A 4

© 2019 Imperas Software Limited www.OVPworld.org Page 103 of 168

OVPsim and CpuManager User Guide

20 Integration with Client Debuggers

It is a common requirement to be able to integrate ICM platforms with client debuggers.
To support this requirement, additional capabilities are supported in the Imperas
Professional Tools product (not OVPsim), as described in the following sections.

20.1 Memory Access

The functions icmDebugReadProcessorMemory and icmDebugWriteProcessorMemory
should be used to examine or modify memory without causing side effects: See the
section on Memory Operations.

20.2 Register Query

Debuggers often need to know the processor registers supported, so e
presented to the user and watchpoints can be set on register value es (See section
20.9.1 for more information about watchpoints). The suppor ro isters can be

found using the processor register iterator:

icmRegInfoP icmGetNextReg(icmProcessorP processor, icmRegInfoP previous);

ument on the first call. On
e previous call. For each
its, usage and group can be found

The iterator should be passed NULL as the previou
subsequent calls, it should be passed the valu
non-NULL value returned, the register name, wi
using these functions:

m

const char* icmGetReglnfoName(icmRegInfoP reglnfo);
Uns32 icmGetReglnfoBits(icmReginfoP reglnfo);
icmRegUsage icmGetReglnfoUsage(icmReginfoP reglnfo);
icmRegGroupP icmGetReglnfoGroup(icmReglnfoP reglnfo);

register groups.can be found using the processor register group iterator:

icmRegGroupP icmGetNextRegGroup(icmProcessorP processor, icmRegGroupP previous);

The iterator should be passed NULL as the previous argument on the first call. On
subsequent calls, it should be passed the value returned on the previous call. For each
non-NULL value returned, the group name can be found using:

const char *icmGetRegGroupName(icmRegGroupP group);

The registers within a group can be found using the by-group register iterator:

© 2019 Imperas Software Limited www.OVPworld.org Page 104 of 168

OVPsim and CpuManager User Guide

icmRegInfoP icmGetNextReglInGroup (
icmProcessorP processor,
icmRegGroupP group,
icmRegInfoP previous
);
Like the other iterators, the iterator should be passed NULL as the previous argument on
the first call. On subsequent calls, it should be passed the value returned on the previous

call.

20.4 Mode State Query

Debuggers often need to know the processor modes supported, so that the
presented to the user and watchpoints can be set on mode changes (see section 20.9.1 for
more information about watchpoints). The supported processor modes can @ ing
the processor mode iterator:

The iterator should be passed NULL as the previous argume irst call. On
subsequent calls, it should be passed the value returned on
non-NULL value returned, a string name and processo
these two functions:

const char *icmGetModelnfoName(icmModelnfoP modelnfo);
Uns32 icmGetModelnfoCode(icmModelnfoP modelnfo);

The current processor mode description can be using:
e, .

icmModelnfoP icmGetMode(icmProcessorP processor);

Debuggers often need to k processor exceptions supported, so that they can be
presented to the user nts can be set on exception events (see section 20.9.1
for more informati points). The supported processor exceptions can be

DN iterator:

icmExceptionInfoP icmGetNextException(
icmProcessorP processor,
icmExceptionlnfoP previous

);

The iterator should be passed NULL as the previous argument on the first call. On
subsequent calls, it should be passed the value returned on the previous call. For each
non-NULL value returned, a string name and processor-specific code can be found using
these two functions:

const char *icmGetExceptionlnfoName(icmExceptionInfoP exceptionlnfo);
Uns32 icmGetExceptionlnfoCode(icmExceptionlnfoP exceptioninfo);

The current processor exception description can be found using:

© 2019 Imperas Software Limited www.OVPworld.org Page 105 of 168

OVPsim and CpuManager User Guide

icmExceptionlnfoP icmGetException(icmProcessorP processor);

20.6 Processor Freezing

Two routines allow specific processors in a multiprocessor platform to be frozen and
unfrozen:

void icmFreeze(icmProcessorP processor);
void icmUnfreeze(icmProcessorP processor);

When in a frozen state, a processor in a multiprocessor simulation will not be scheduled
when icmSimulatePlatform is called. It is therefore possible to restrict i
subset of processors in a multiprocessor platform by freezing those process
not be run. A function is also available to test the frozen state of a specific proce

Bool icmlsFrozen(icmProcessorP processor);

20.7 Address Breakpoints

Two routines allow breakpoints to be set and cleared for a speci rocessor and address:

—

void icmSetAddressBreakpoint(icmProcessorP processor, Addr simAddress);
void icmClearAddressBreakpoint(icmProcessorP processor, Addr simAddress);

empt by the processor to
orm Or icmSimulate to return with

Two routines allow a breakpoint cleared that causes a processor to stop
executing after a specific n inst

ES
void icmSetlCountBreakpoint(icmProcessorP processor, Uns64 delta);
void icmClearlCountBreakpoint(icmProcessorP processor);

Once the,specifi ctions has elapsed, icmSimulatePlatform or
icmSi i processor’s stopReason Set to 1CM_SR_BP_I1COUNT.

20.9.1 Watchpoint Creation and Deletion
Three routines are available to set read, write or access (either read or write) watchpoints
on a range of memory addresses in a memory:

icmWatchPointP icmSetMemoryReadWatchPoint(

icmMemoryP memory,
Addr low,
Addr high,
void *userData,

icmMemNotifierFn notifierCB

© 2019 Imperas Software Limited www.OVPworld.org Page 106 of 168

OVPsim and CpuManager User Guide

icmWatchPointP icmSetMemoryWriteWatchPoint(

icmMemoryP memory,
Addr low,
Addr high,
void *userData,
icmMemNotifierFn notifierCB
);
icmWatchPointP icmSetMemoryAccessWatchPoint(
icmMemoryP memory,
Addr low,
Addr high,
void *userData,
icmMemNotifierFn notifierCB
);

Three more routines allow watchpoints to be specified on a bus range:

icmWatchPointP icmSetBusReadWatchPoint(

icmBusP bus,
Addr Tow,
Addr high,
void *userData,
icmMemNotifierFn notifierCB

);

icmWatchPointP icmSetBusWriteWatchPoint(
icmBusP bus,
Addr Tow,
Addr high,
void *userData,
icmMemNotifierFn notifierCB

);

icmWatchPointP icmSetBusAccessWatchPoint(
icmBusP bus,
Addr Tow,
Addr high,
void *userData,
icmMemNotifierFn notifierCB

);

Three routines allow wa 0 be specified on a processor address range. For each,

an isPhysical argument ¢
memory (if True) or mory (if False)*:

icmWatchPointP icmSetProcessorReadWatchPoint(

icmProcessorP processor,
Bool isPhysical,
Addr low,
Addr high,
void *userData,
icmMemNotifierFn notifierCB

);

icmWatchPointP icmSetProcessorWriteWatchPoint(
icmProcessorP processor,
Bool isPhysical,
Addr low,
Addr high,
void *userData,
icmMemNotifierFn notifierCB

);

* See the section 20.11.2 for a definition of what exactly virtual and physical mean in this context.

© 2019 Imperas Software Limited www.OVPworld.org Page 107 of 168

OVPsim and CpuManager User Guide

icmWatchPointP icmSetProcessorAccessWatchPoint(

icmProcessorP processor,
Bool isPhysical,
Addr Tow,

Addr high,

void *userData,

icmMemNotifierFn notifierCB

)
One routine allows a watchpoint to be established on a register in a processor:

icmWatchPointP icmSetRegisterWatchPoint(

icmProcessorP processor,

icmRegInfoP reginfo,

void *userData,

icmRegNotifierFn notifierCB
)
One routine allows a watchpoint to be established on a processor m i
icmWatchPointP icmSetModeWatchPoint(

icmProcessorP processor,

void *userData,

icmRegNotifierFn notifierCB
):

Finally, one routine allows a watchpoint to be estab d on a processor exception:

PN
icmWatchPointP icmSetExceptionWatchPoint(
icmProcessorP processor,
void *userData,
icmRegNotifierFn notifierCB
)
Each function returns an icmwate ue type pointer for the watchpoint that

ows a client-specific data pointer to be
later use (see below). A previously-created

was created. The userData argu
associated with the watch
watchpoint can be deleted using:

void |cmDeIeteWatchP0|nt(lcmWatchP0|ntP watchpoint);

Mvatchpoint addition functions above allow a notifier
SOCIated with each watchpoint that decides whether the

be triggered or not (i.e., it allows the specification of conditional
watchpoints). For memory watchpoints, the prototype of the notifier is:

#define ICM_MEM_NOTIFIER_FN(_NAME) Bool _NAME(\
icmProcessorP processor, \

icmWatchPointP watchpoint, \
Addr PA, \
Addr VA, \
Uns32 bytes, \
void *userData, \
const void *value \

)
typedef ICM_MEM_NOTIFIER_FN((*icmMemNotifierFn));

© 2019 Imperas Software Limited www.OVPworld.org Page 108 of 168

OVPsim and CpuManager User Guide

In this case, the notifier is passed the physical and virtual addresses of the memory
access, the number of bytes being accessed and a pointer to a buffer containing those

bytes. For other watchpoint types, the prototype of the notifier is:
#define ICM_REG_NOTIFIER_FN(_NAME) Bool _NAME(\

icmWatchPointP watchpoint, \

icmProcessorP processor, \

void *userData \

)
typedef ICM_REG_NOTIFIER_FN((*icmRegNotifierFn));

In both cases, if the notifier is NULL or returns False then any processor tri
watchpoint will stop before it executes its next instruction with stopRea
ICM_SR_WATCHPOINT. Otherwise, if the notifier returns True, the triggerin sor will
not stop but instead continue executing normally.

20.9.2 Watchpoint Attribute Query
There are various functions that allow watchpoint attributes queri e type of a
watchpoint can be found using:

typedef enum icmWatchpointTypeE {

1CMWP_MEM_READ, // Memory read watchpoint.
ICMWP_MEM_WRITE, // Memory write watchpoint.
I1CMWP_MEM_ACCESS, // Memory access watchpoint.
ICMWP_REGISTER, // Register watchpoint.
1CMWP_MODE, // Mode change watchpoint.
1CMWP_EXCEPTION // Exception watchpoint.

} icmWatchpointType;

icmWatchpointType icmGetWatchPointType(icmWatchPointP watchpoint);

The client data pointer that was ate the watchpoint when it was created can
be found using:

void *icmGetWatchPointUserData(icmWatchPointP watchpoint);

For memory addre ge oints, the bounding addresses can be found using:

a P N
Addr icmGetWatchPointLowAddress(icmWatchPointP watchpoint);
Addr icmGetWatchPointHighAddress(icmWatchPointP watchpoint);
A 4

Thes turn zero for other watchpoint types. For processor register
watchpoints, the-register which is being watched can be found using:

icmRegInfoP icmGetWatchPointRegister(icmWatchPointP watchpoint);

This function returns NULL for other watchpoint types. For processor register and mode
change watchpoints, there are query functions which return pointers to the current and
previous value of the register being watched, or the current and previous mode (a pointer
of type icmMode InfoP):

void *icmGetWatchPointCurrentValue(icmWatchPointP watchpoint);
void *icmGetWatchPointPreviousValue(icmWatchPointP watchpoint);

© 2019 Imperas Software Limited www.OVPworld.org Page 109 of 168

OVPsim and CpuManager User Guide

20.9.3 Handling Triggered Watchpoints

When a watchpoint triggers (because a processor does a read or write to the address range
over which it is sensitive, or because the processor register or mode it is watching
changes, or an exception occurs), icmSimulatePlatform or icmSimulate will return
with the processor’s stopReason set to 1CM_SR_WATCHPOINT. Because watchpoints can
be specified with overlapping ranges and on multiple registers and other events
simultaneously, it is possible for multiple watchpoints to be triggered by a single
processor instruction. To enable these all to be handled, a function is available that
returns the first triggered watchpoint: A

Once the first triggered watchpoint has been handled by the debugger, it @

using: N 0 \

void icmResetWatchPoint(icmWatchPointP watchpoint);

eturn the next
: chpoints have been

processor which

icmWatchPointP icmGetNextTriggeredWatchPoint(void);

Then a subsequent call to icmGetNextTriggeredWatchPoi
triggered watchpoint that has not been reset, and so on unti
handled by the client debugger. For each triggered
triggered it can be found using:

icmProcessorP icmGetWatchPointTriggeredBy(icmWatchPointP watchpoint);

20.10 Handling Simul

It is possible that execution of a single pr
address breakpoint, an instructio
case, the priority order is as follo
1. The instruction cour
stopped for stopRe M_SR_BP_ICOUNT before the instruction is executed;
2. When simulati d by icmSimulate or icmSimulatePlatform, the
address br int is triggered next, causing the processor to be stopped for
' BP_ADDRESS, again before the instruction is executed;
IS resumed by icmSimulate or icmSimulatePlatform, the
letes. After completion, the processor is stopped for stopReason
TCHPOINT, at which point the triggered watchpoints can be found and
icmGetNextTriggeredWatchPoint and icmResetWatchPoint.

eo ebug Events

sor instruction could potentially cause an
oint and a watchpoint all to trigger. In this

20.11 Debugger Examples

There are two examples using the address breakpoint, instruction count breakpoint and
watchpoint constructs in the debugger Integration directory:

$IMPERAS_HOME/Examples/Platforms1CM/debuggerintegration

© 2019 Imperas Software Limited www.OVPworld.org Page 110 of 168

OVPsim and CpuManager User Guide

NOTE
OP API example showing the same feature are available as
SimulationControl/addingWatchpoints
SimulationControl/processorModelSaveRestoreValidation
SimulationControl/moduleSaveRestore

The first example uses the two-processor Fibonacci application first seen in the
multiprocessor example. The platform file, platforml.c, has been extensively modified
to exercise the breakpoint and memory watchpoint debugger integration commands (see

section 20.11.1).
-

The second example uses a simpler single-processor assembler example to
mode change and exception watchpoints (see section 20.11.2).

®

establishes watchpoint addresses

20.11.1 Debugger Integration Example !

20.11.1.1 Establishing Watchpoints

The platform for this example is platforml.c in the examg Forms directory.

Once processor memory has been loaded, the platf

on the shared memory between the two proce?ﬁ a

applyWatchpoints(shared);

The platform also establishes some atchpomts In processoro0 only using:

applyRegWatchp0|nts(processorO)

Function applyWatchpoi ws:

static void applyWatchpoints(icmMemoryP memory) {

Uns32 address;
Uns32 i;
Uns32 id = 0;

for(i=0; (address=watchpoints[i].address); i++) {

icmWatchPointP rwp = icmSetMemoryReadWatchPoint(
memory, address, address+watchpoints[i].size-1, (void *)(id++), O
):

icmWatchPointP wwp = icmSetMemoryWriteWatchPoint(
memory, address, address+watchpoints[i].size-1, (void *)(id++), O
):

icmPrintf(""READ watchpoint is %u\n", getWatchpointld(rwp));
icmPrintf(""WRITE watchpoint is %u\n', getWatchpointld(wwp));
3
}

The function iterates across a static array of watchpoint objects creating a separate read
and write watchpoint object for each one (obviously in a real debugger product the list

© 2019 Imperas Software Limited www.OVPworld.org Page 111 of 168

OVPsim and CpuManager User Guide

would not be static and perhaps an access watchpoint would be used). The list of
watchpoints actually contains just a single entry:

typedef struct watchpointS {
Uns32 address;
Uns32 size;

} watchpoint;

const static watchpoint watchpoints[] = {
{O0xe3b4, 4%, // fibres
{0}

of the Fibres static in the application. In a real debugger, the address and
would of course be found by the debugger from the object file.

Function applyRegWatchpoints is as follows: \ @

static void applyRegWatchpoints(icmProcessorP processor) {

icmWatchPointP rwpl = icmSetRegisterWatchPoint(
processor, icmGetRegByName(processor, "r3"), (void *)(id++), O
):

icmWatchPointP rwp2 = icmSetRegisterWatchPoint(
processor, icmGetRegByName(processor, "r9"), (void *)(id++), O
):

icmWatchPointP rwp3 = icmSetRegisterWatchPoint(
processor, icmGetRegByUsage(processor, ICM_REG_SP), (void *)(id++), O
):

icmPrintf(""REGISTER watchpoint 1 is %u\n', getWatchpointld(rwpl));
IcmPrintf(""'REGISTER watchpoint 2 is %u\n', getWatchpointld(rwp2));
icmPrintf(""REGISTER watchpoint 3 is %u\n', getWatchpointld(rwp3));

’ w

This function establishe hange watchpoints on three registers; two are found by
name (r3 and r9) a ound by usage (the OR1K stack register, r1). In a real
debugger, the regi)f course be selected dynamically.

The platform also strates how to query the registers by register group. Function

que lists all registers found on the processor, by group:
static void queryRegisters(icmProcessorP processor) {
icmPrintf(""%s REGISTERS\n", icmGetProcessorName(processor, "/'));
icmRegGroupP group = NULL;
while((group=icmGetNextRegGroup(processor, group))) {
icmPrintf("® GROUP %s\n", icmGetRegGroupName(group));
icmRegInfoP reg = NULL;

while((reg=icmGetNextReglInGroup(processor, group, reg))) {
icmPrintf(" REGISTER %s\n', icmGetReglnfoName(reg));
}

}

© 2019 Imperas Software Limited www.OVPworld.org Page 112 of 168

OVPsim and CpuManager User Guide

}

20.11.1.2 Running the Simulator

The simulator is run in a loop which calls icmSimulatePlatform. There are two modes
of operation: a normal mode (which runs to the next debug event or termination) and an
instruction step mode (used to single-step past an address breakpoint):

Bool stepOver = False;
icmProcessorP stopProcessor = NULL;
for(G:) {

if(stepOver) {
icmSetlCountBreakpoint(stopProcessor, 1);
stopProcessor = icmSimulatePlatform();
stepOver = False;

} else {
applyBreakpoints(processor0);
applyBreakpoints(processorl);
stopProcessor = icmSimulatePlatform();
clearBreakpoints(processor0);
clearBreakpoints(processorl);

. actions depending on stopReason here

¥
N 4

In the single step mode, an instruction count breakp is set for one instruction and then
the platform is simulated:

icmSetICountBreakpoint(stopProEEssor, 1);
stopProcessor = icmSimulatePlatform();
stepOver = False;

In the normal mode, address bree
next debug event or termination a

applyBreakpoints(processor0);
applyBreakpoints(processorl);
stopProcessor = icmSimulatePlatform();
clearBreakpoints(processor0);
clearBreakpoints(processorl);

Il address breakpoints are applied to both processors, though
why this has to be the case: each processor can have a distinct set of
utines to set and clear breakpoints are as follows:

static void applyBreakpoints(icmProcessorP processor) {
Uns32 i;

for(i=0; breakpoints[i]; i++) {
icmSetAddressBreakpoint(processor, breakpoints[i]);
}

b
static void clearBreakpoints(icmProcessorP processor) {
Uns32 i;

Tfor(i=0; breakpoints[i]; i++) {

© 2019 Imperas Software Limited www.OVPworld.org Page 113 of 168

OVPsim and CpuManager User Guide

icmClearAddressBreakpoint(processor, breakpoints[i]);

}

The breakpoint addresses for this simple example are specified in a static list, and
correspond to the addresses of routines in the application. Again, a real debugger would
read these from the application ELF file and not rely on fixed addresses:

const static Uns32 breakpoints[] = {

0x0fdc, // munge
0x1330, // main
0x108c, // writer
0x1204, // reader

0 // terminator

¥

Each time icmSimulatePlatform returns, the loop decides what to do next depending on
the system state.

1. If aNULL processor was returned, the simulation has termina
2. Otherwise, if the stopReason was ICM_SR_BP_1CO

[)
breakpoint has been hit (the debugger is single-step %
breakpoint location): S

case ICM_SR_BP_ICOUNT:
icmPrintf(
"Processor %s icount %u stopped at icount\n",

icmGetProcessorName(stopProcessor, /'),
(Uns32) icmGetProcessorlCount(stopProcessor)

struction count
An address

b;eak;

3. Otherwise, if the stopReason CM_SR_BP_ADDRESS an address breakpoint
has been hit. In this case, u switches mode to step for one instruction
to get past the breakpoin ess:
case ICM_SR_BP_ADDRESS:
icmPrintf(
"Processor %s icount %u stopped at address 0x%08x\n',
icmGetProcessorName(stopProcessor, /'),

(Uns32) icmGetProcessorlCount(stopProcessor),
icmGetPC(stopProcessor)

stepOver = True;
break;

4/ Oth wisevs{opRe’ason was ICM_SR_WATCHPOINT a watchpoint has
i n this case, the triggered watchpoints are scanned and reported:
case ICM_SR_WATCHPOINT:
icmPrintf(
"Processor %s icount %u stopped at watchpoint\n',

icmGetProcessorName(stopProcessor, /'),
(Uns32) icmGetProcessorlCount(stopProcessor)

);
handleWatchpoints();
break;

5. Otherwise, the stopReason is reported and simulation continues (no other
stopReasons are expected in this simulation).

Function handleWatchpoints reports and resets all triggered watchpoints. The function
iterates over all triggered but unhandled watchpoints, finding the watchpoint id and the
processor that caused the watchpoint to trigger:

© 2019 Imperas Software Limited www.OVPworld.org Page 114 of 168

OVPsim and CpuManager User Guide

static void handleWatchpoints(void) {
icmWatchPointP wp;
while((wp=icmGetNextTriggeredWatchPoint())) {
Uns32 id getWatchpointld(wp);

icmProcessorP processor = icmGetWatchPointTriggeredBy(wp);

It uses the watchpoint type to disambiguate the register and address watchpoint cases. If
this is a register watchpoint, details about it are printed, together with the old and new
values of the register:

switch(icmGetWatchPointType(wp)) {
case ICMWP_REGISTER: {
// a register watchpoint was triggered
icmRegInfoP reg icmGetWatchPointRegister(wp);

Uns32 *newValueP icmGetWatchPointCurrentValue(wp);
Uns32 *oldvalueP icmGetWatchPointPreviousValue(wp);

// indicate old and new value of the affected register
icmPrintf(
watchpoint %u (processor %s:%s) triggered O0x%08x->0x%08x\n",
id,
icmGetProcessorName(processor, /™),
icmGetReglInfoName(reg),
*oldvalueP,
*newValueP

);

If register watchpoints have fired mor 1003%, any one that fires is deleted the
next time it is triggered, otherwise-i es

\

// delete watchpoint after 100 triggers
if(regWatchPointCount++>100) {
icmDeleteWatchPoint(wp);

} else {
icmResetWatchPoint(wp);
¥

ior Idn required in a real debugger integration — it is done here

e output is not swamped by register change callback messages).

range is printed.and the watchpoint reset:

case ICMWP_MEM_READ:
case ICMWP_MEM_WRITE:
case ICMWP_MEM_ACCESS:

// a memory watchpoint was triggered
icmPrintf(
watchpoint %u (range Ox%08x:0x%08x) triggered by processor %s\n",
id,
(Uns32) icmGetWatchPointLowAddress(wp),
(Uns32) icmGetWatchPointHighAddress(wp),
icmGetProcessorName(processor, "/')

© 2019 Imperas Software Limited www.OVPworld.org Page 115 of 168

OVPsim and CpuManager User Guide

icmResetWatchPoint(wp);

break;

The userData associated with a watchpoint is used to record an arbitrary watchpoint id
number:

static Uns32 getWatchpointld(icmWatchPointP watchpoint) {
return (Uns32)icmGetWatchPointUserData(watchpoint);
3

20.11.1.3 Compiling and Running the Example
Compile the test platform and application as before using the following commands in the
debugger Integration directory:

make —C platform SRC=platforml.c
make —C application

To run the simulation, in the debuggerIntegration directo n:

-/platform/platforml.${IMPERAS_ARCH}.exe --program application/applicafion.ORlK.elf

You should see the following output a)V'

READ watchpoint is O
WRITE watchpoint is 1
REGISTER watchpoint 1 is 2
REGISTER watchpoint 2 is 3
REGISTER watchpoint 3 is 4
/cpu0 REGISTERS
GROUP GPR

REGISTER RO

REGISTER R1

REGISTER R2

. many similar lines deleted .

REGISTER R29
REGISTER R30
REGISTER R31
GROUP System
REGISTER PC
REGISTER SR
REGISTER EPCR
REGISTER EEAR
REGISTER EXCPT
Processor /cpul icount 45 stopped at address 0x00001330
Processor /cpul icount 46 stopped at icount
CPU 1 starting...
Processor /cpul icount 2136 stopped at address 0x00001204
Processor /cpul icount 2137 stopped at icount
Processor /cpu0 icount 2 stopped at watchpoint
watchpoint 2 (processor /cpu0:R3) triggered Oxdeadbeef->0x00000000
Processor /cpuO icount 8 stopped at watchpoint
watchpoint 3 (processor /cpu0:R9) triggered Oxdeadbeef->0x00000000
Processor /cpu0O icount 31 stopped at watchpoint
watchpoint 4 (processor /cpuO:R1) triggered 0x00000000->0xffFF0000
Processor /cpuO icount 32 stopped at watchpoint
watchpoint 4 (processor /cpuO:R1) triggered OxFFFFO000->OxFFFffffc
Processor /cpu0 icount 37 stopped at watchpoint
watchpoint 4 (processor /cpuO:R1) triggered OxFffffffc->0xffffffec
Processor /cpu0O icount 44 stopped at watchpoint
watchpoint 3 (processor /cpu0:R9) triggered 0x00000000->0x00001434

© 2019 Imperas Software Limited www.OVPworld.org Page 116 of 168

OVPsim and CpuManager User Guide

Processor /cpu0 icount 44 stopped at address 0x00001330
Processor /cpu0O icount 45 stopped at watchpoint

. many similar lines deleted .

Processor /cpu0O icount 526 stopped at watchpoint

watchpoint 2 (processor /cpu0:R3) triggered 0x00000000->0x0000e4d0
Processor /cpuO icount 542 stopped at watchpoint

watchpoint 3 (processor /cpu0:R9) triggered 0x00003e40->0x000040d0
Processor /cpu0O icount 543 stopped at watchpoint

watchpoint 4 (processor /cpuO:R1) triggered OxFFFFF8bO->0OxFFFff8a8
Processor /cpuO icount 552 stopped at watchpoint

watchpoint 3 (processor /cpu0:R9) triggered 0x000040d0->0x0000d66e
Processor /cpu0 icount 601 stopped at watchpoint

watchpoint 2 (processor /cpu0:R3) triggered 0x0000e4d0->0x00000000
CPU O starting...
Processor /cpuO icount 1551 stopped at address 0x0000108c
Processor /cpu0 icount 1552 stopped at icount
CPU 0: fib(0) =0
Processor /cpu0O icount 4026 stopped at watchpoint

watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 100018 stopped at watchpoint

watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 100034 stopped at address 0x00000fdc
Processor /cpul icount 100035 stopped at icount
CPU 1: munge(0) = 0
CPU 0: fib(1) =1
Processor /cpuO icount 102435 stopped at watchpoint

watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 200021 stopped at watchpoint

watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 200037 stopped at address 0x00000fdc
Processor /cpul icount 200038 stopped at icount
CPU 1: munge(1l) = 0
CPU 0: fib(2) =1
Processor /cpuO icount 202442 stopped at watchpoint

watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 300017 stopped at watchpoint

watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 300033 stopped at address 0x00000fdc
Processor /cpul icount 300034 stopped at icount
CPU 1: munge(1l) = 0
CPU 0: fib(3) = 2

. many similar lines deleted .

CPU 1: munge(89) = 3916
CPU 0: fib(12) = 144
Processor /cpuO icount 1204648 stopped at watchpoint

watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 1300016 stopped at watchpoint

watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 1300032 stopped at address 0x00000fdc
Processor /cpul icount 1300033 stopped at icount
CPU 1: munge(144) = 10296
CPU 0: fib(13) = 233
Processor /cpuO icount 1304695 stopped at watchpoint

watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 1400011 stopped at watchpoint

watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 1400027 stopped at address 0x00000fdc
Processor /cpul icount 1400028 stopped at icount
CPU 1: munge(233) = 27028
CPU 0: fib(14) = 377
Processor /cpuQ icount 1404712 stopped at watchpoint

watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 1500016 stopped at watchpoint

watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor
Processor /cpul icount 1500034 stopped at address 0x00000fdc
Processor /cpul icount 1500035 stopped at icount
CPU 1: munge(377) = 70876

/cpu0

/cpul

/cpu0

/cpul

/cpu0

/cpul

/cpu0

/cpul

/cpu0

/cpul

/cpu0

/cpul

© 2019 Imperas Software Limited www.OVPworld.org

Page 117 of 168

OVPsim and CpuManager User Guide

The example first shows the result of the register group iterator and the by-group register
iterator: there are two groups (GPR and System) containing the OR1K GPRs and system
registers, respectively.

Each address breakpoint that is encountered is reported with lines of this form:
Processor /cpul icount 45 stopped at address 0x00001330

Instruction count breakpoints are reported with lines of this form:

Processor /cpul icount 46 stopped at icount

Register watchpoints are reported by a pair of lines of this form, giving the
values of the affected register:

Processor /cpu0O icount 2 stopped at watchpoint
watchpoint 2 (processor /cpu0:R3) triggered Oxdeadbeef->0x00000000

Memory watchpoints are reported by a pair of lines of this form:

Processor /cpu0O icount 4037 stopped at watchpoint
watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu0

20.11.2 Semantics of Physical an al Watchpoints

The functions icmSetProcessorReadWa , IcmSetProcessorWriteWatchPoint
and icmSetProcessorAccessWatchP each an argument isPhysical which
indicates whether the watch point shoul hysical or virtual. The semantics of these
are as follows:

20.11.2.1

Physical

point is set, it applies to the addressed physical memory
y which that is accessed. For example, if you set a physical
ress 0x10000, the watch point will trigger if the processor is in a non-
TLB mapped mode and accesses address 0x10000, or if it is a TLB mapped mode where
say) maps to 0x10000 and an access is made to VA=0x50000.

20.11.2.2 Virtual Watchpoints
When a virtual memory watch point is set, it applies to the memory addressed by the
virtual address range as viewed from the current processor mode. As a contrived
example:
1. Suppose that a processor is currently in TLB-mapped kernel mode, and that
virtual address 0x50000 maps to physical address 0x10000.
2. A watch point is set using icmSetProcessor*WatchPoint for virtual address
VVA=0x50000.

© 2019 Imperas Software Limited www.OVPworld.org Page 118 of 168

OVPsim and CpuManager User Guide

3. The watch point is triggered by any accesses to VA=0x50000 in TLB-mapped
kernel mode (as expected), or any aliased access to PA=0x10000.

4. The mapping for VA=0x50000 in TLB-mapped kernel mode is changed to
PA=0x20000.

5. The watch point is still triggered by any accesses to 0x50000 in TLB-mapped
kernel mode (as expected). Note that the physical memory for the watch point has
changed from 0x10000 to 0x20000. Accesses that change memory at
PA=0x10000 by any route no longer trigger the watch point.

6. The processor enters TLB-mapped user mode. Say that in this mode
VA=0x50000 is mapped to PA=0x60000 and VA=0x70000 is mapf
PA=0x20000.

These semantics avoid much spurious watch point triggeri
modes. When a user places a memory watch point at vi
always means virtual address 0x20000 in the curre

20.11.3 Debugger Integration m

20.11.3.1 Establishing Watchpoi
The platform for this example is plat .c in the example platforms directory. The
platform has a similar structure to fo , but instances only a single processor.

Once processor memory has bee ded, the platform establishes processor mode
change watchpoints as fol

applyModeWatchpoints(processor);

It also esﬁblis@ﬂoinm as follows:

applyExceptionWatchpoints(processor);

Function applyModeWatchpoints is as follows:

static void applyModeWatchpoints(icmProcessorP processor) {
icmWatchPointP mwp = icmSetModeWatchPoint(processor, (void *)(id++), 0);
icmPrintf("'MODE watchpoint 1 is %u\n", getWatchpointld(mwp));

}

The function creates a single mode change watchpoint with an arbitrary id number.

Function applyExceptionWatchpoints is as follows:

static void applyExceptionWatchpoints(icmProcessorP processor) {
icmWatchPointP ewp = icmSetExceptionWatchPoint(processor, (void *)(id++), 0);

© 2019 Imperas Software Limited www.OVPworld.org Page 119 of 168

OVPsim and CpuManager User Guide

icmPrintf(""EXCEPTION watchpoint 1 is %u\n', getWatchpointld(ewp));
}

This also creates a single exception watchpoint with an arbitrary id number.

20.11.3.2 Running the Simulator

The simulator loop is similar to that in platform1.c. The only significant difference is in
function handleWatchpoints. The function once more iterates over all triggered but
unhandled watchpoints, finding the watchpoint id and the processor that caused the

watchpoint to trigger: |
static void handleWatchpoints(void) {

icmWatchPointP wp;

while((wp=icmGetNextTriggeredWatchPoint())) {

Uns32 id
icmProcessorP processor

getWatchpointld(wp);
icmGetWatchPointTriggeredBy(wp);

In this platform, it uses the watchpoint type to disambiguate nd exception

the mode
watchpoint cases. If this is a mode change watchpoint, deta r

are printed,
together with the old and new mode, and the watchv re

switch(icmGetWatchPointType(wp)) {
case ICMWP_MODE: {
// a mode switch watchpoint was triggered

icmModelnfoP *oldValueP = icmGetWatchPointPreviousValue(wp);
icmModelnfoP *newValueP icmGetWatchPointCurrentValue(wp);

icmModelnfoP oldValue = *oldValueP;
icmModelnfoP newValue = *newValueP;
icmPrintf(
watchpoint %u (processor %s:mode) triggered %s->%s\n",
id,

icmGetProcessorName(processor, /™),
icmGetMode InfoName(oldValue),
icmGetMode InfoName (newValue)

)5
icmResetWatchPoint(wp);
break;

"}

If this is an exception watchpoint, information about the exception name is printed and
the watchp reset. Note that exception watchpoints have no notion of previous and
current value:

case ICMWP_EXCEPTION: {
icmExceptionInfoP exception = icmGetException(processor);

// an exception watchpoint was triggered
icmPrintf(
watchpoint %u (processor %s:exception) triggered ->%s\n",
id,
icmGetProcessorName(processor, "/"),
icmGetExceptionlnfoName(exception)

© 2019 Imperas Software Limited www.OVPworld.org Page 120 of 168

OVPsim and CpuManager User Guide

);
icmResetWatchPoint(wp);
break;

20.11.3.3 Compiling and Running the Example

Compile the test platform and application using the following commands in the

debugger Integration directory:

make —C platform SRC=platform2.c
make —C application

To run the simulation, in the debugger Integration directory, run:

_/platform_platform2 . ${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf

You should see the following output

MODE watchpoint 1 is O
EXCEPTION watchpoint 1 is 1

Info "cpu0®, 0x0000000000010000(_start): l.ori r30,r0,0x0
Info "cpu0®, 0x0000000000010004(_start+4): l.ori r31,r0,0x0
Info "cpu0®, 0x0000000000010008(_start+8): l.mtspr r0,r0,32
Info "cpu0®, 0x000000000001000c(_start+c): l.ori rl,r0,0x2
Info "cpu0®, 0x0000000000010010(loopl): I.mfspr r2,r0,32

Info "cpu0®, 0x0000000000010014(loopl+4): 1.addi r2,r2,0x1
Info "cpu0®, 0x0000000000010018(loopl+8): I.mtspr r0,r2,32
Info "cpu0®, 0x000000000001001c(loopl+c): 1.addi rl,rl,OxfFFfffff
Info "cpu0®, 0x0000000000010020(loop1+10): I.sfeqi r1,0x0
Info “"cpu0®, 0x0000000000010024(loopl1+14): I.bnFf 0x00010010
Info "cpu0®, 0x0000000000010028(loopl+18): I.nop 0x0

Info "cpu0®, 0x0000000000010010(loopl): I.mfspr r2,r0,32

Info "cpu0®, 0x0000000000010014(loopl+4): 1.addi r2,r2,0x1
Info "cpu0®, 0x0000000000010018(loopl+8): I.mtspr r0,r2,32
Info "cpu0®, 0x000000000001001c(loopl+c): l.addi rl,rl,OxFFFfrfrfff
Info "cpu0®, 0x0000000000010020(loopl+10): I.sfeqi r1,0x0
Info “"cpu0®, 0x0000000000010024(loopl+14): I.bnf 0x00010010
Info "cpu0®, 0x0000000000010028(loopl+18): 1.nop 0x0

Info "cpu0®, 0x000000000001002c(loopl+lic): I_jal 0x00010048
Info "cpu0®, 0x0000000000010030(loop1+20): I.nop 0x0

Info "cpu0®, 0x0000000000010048(incEPC): I.mfspr r2,r0,32
Info "cpu0®, 0x000000000001004c(incEPC+4): 1.addi r2,r2,0x1
Info "cpu0®, 0x0000000000010050(incEPC+8): I.mtspr r0,r2,32
Info "cpu0®, 0x0000000000010054(incEPC+c): I.jr r9

Info "cpu0®, 0x0000000000010058(incEPC+10): I.nop 0x0

Info "cpu0®, 0x0000000000010034(loopl+24): I.mtspr r0,r0,17

Processor /cpu0 icount 26 stopped at watchpoint
watchpoint 0 (processor /cpuO:mode) triggered SUPERVISOR->USER

Info "cpu0®, 0x0000000000010038(loop1+28): I.jal 0x00010048
Info "cpu0®, 0x000000000001003c(loopl+2c): 1.nop 0x0
Info "cpu0®, 0x0000000000010048(incEPC): I.mfspr r2,r0,32

Processor /cpuO icount 29 stopped at watchpoint
watchpoint 0 (processor /cpuO:mode) triggered USER->SUPERVISOR
watchpoint 1 (processor /cpuO:exception) triggered ->ILL

Info "cpu0®, 0x0000000000000700(.-text+700): I.addi r30,r30,0x1

Info "cpu0®, 0x0000000000000704(.-text+704): l.sw OxFFFffffc(r3l),rl
Info "cpu0®, 0x0000000000000708(.-text+708): I.mfspr rl1,r0,32

Info "cpu0®, 0x000000000000070c(.-text+70c): I.addi rl,rl,0x4

Info "cpu0®, 0x0000000000000710(-text+710): I.mtspr r0,rl,32

Info "cpu0®, 0x0000000000000714(.text+714): 1.1lwz rl,0xfFFFfffc(r3l)
Info "cpu0®, 0x0000000000000718(.-text+718): I.rfe

Processor /cpuO icount 36 stopped at watchpoint
watchpoint 0 (processor /cpuO:mode) triggered SUPERVISOR->USER

© 2019 Imperas Software Limited www.OVPworld.org

Page 121 of 168

OVPsim and CpuManager User Guide

Info "cpu0®, 0x000000000001004c(incEPC+4): I.addi r2,r2,0x1
Info "cpu0®, 0x0000000000010050(incEPC+8): I.mtspr r0,r2,32
Processor /cpuO icount 38 stopped at watchpoint

watchpoint 0 (processor /cpuO:mode) triggered USER->SUPERVISOR

watchpoint 1 (processor /cpuO:exception) triggered ->ILL
Info "cpu0®, 0x0000000000000700(.text+700): I.addi r30,r30,0x1
Info "cpu0®, 0x0000000000000704(.text+704): 1.sw OxFFFFfFffc(r3l),rl
Info "cpu0®, 0x0000000000000708(-text+708): I.mfspr r1,r0,32
Info "cpu0®, 0x000000000000070c(.-text+70c): I.addi rl,rl,0x4
Info "cpu0®, 0x0000000000000710(.-text+710): l.mtspr r0,rl,32
Info "cpu0®, 0x0000000000000714(.-text+714): 1.1wz rl,0xfFFFFFffc(r3l)
Info "cpu0®, 0x0000000000000718(-text+718): l.rfe
Processor /cpu0O icount 45 stopped at watchpoint

watchpoint O (processor /cpuO:mode) triggered SUPERVISOR->USER
Info "cpu0®, 0x0000000000010054(incEPC+c): I.jr r9
Info "cpu0®, 0x0000000000010058(incEPC+10): I.nop 0x0
Info "cpu0®, 0x0000000000010040(loopl+30): I.rfe
Processor /cpu0 icount 48 stopped at watchpoint

watchpoint 0 (processor /cpuO:mode) triggered USER->SUPERVISOR

watchpoint 1 (processor /cpuO:exception) triggered ->ILL
Info "cpu0®, 0x0000000000000700(-text+700): I.addi r30,r30,0x1
Info "cpu0®, 0x0000000000000704(-text+704): I.sw OxFFFffffc(r3l),rl
Info "cpu0®, 0x0000000000000708(-text+708): I.mfspr r1,r0,32
Info "cpu0®, 0x000000000000070c(-text+70c): 1.addi rl,rl,0x4
Info "cpu0®, 0x0000000000000710(-text+710): I.mtspr r0,rl,32
Info "cpu0®, 0x0000000000000714(.-text+714): 1.lwz r1,0xfFFfffffc(r3l)
Info "cpu0®, 0x0000000000000718(.-text+718): l.rfe
Processor /cpuO icount 55 stopped at watchpoint

watchpoint O (processor /cpuO:mode) triggered SUPERVISOR->USER
Info "cpu0®, 0x0000000000010044(exit): I.nop 0x0
Processor "cpu0® terminated at "exit", address 0x10044

RO : 00000000 R1 : 00000000 R2 : 00000004 R3 : deadbeef
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 00010040 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 00000003 R31: 00000000
PC : 00010048 SR : 00008000 ESR: 00008000 EPC: 00010044
TCR: 00000000 TMR: 00000000 PSR: 00000000 PMR: 00000000
BF:0 CF:0 OF:0

processor has executed 56 instructions

Each mode chanﬁeWis encountered is reported with lines of this form:

Processor /cpuO icount 26 stopped at watchpoint
watchpoint O (processor /cpuO:mode) triggered SUPERVISOR->USER

Exception watchpoints are reported with lines of this form:

Processor /cpuO icount 29 stopped at watchpoint
watchpoint 0 (processor /cpuO:mode) triggered USER->SUPERVISOR
watchpoint 1 (processor /cpuO:exception) triggered ->ILL

Note that exception watchpoints always occur at the same time as mode change
watchpoints in this example, as each exception requires a switch from user to supervisor
mode.

© 2019 Imperas Software Limited www.OVPworld.org Page 122 of 168

OVPsim and CpuManager User Guide

20.12 Scheduler Notification

Without changing the platform or the scheduler, an integrated debugger can be notified
when significant actions occur that might require debugger intervention. This is useful
when calls to icmSimulate or icmSimulatePlatform are made in code that is not
accessible to the debugger - for example from a SystemC platform. Use the function
icmSetDebugNotifiers to install callbacks on these actions. The callbacks are:

Call

Meaning

icmStartSimFn

Simulation is about to begin, but no peripherals rocessors
have run yet.

icmEndConstructorsFn

Peripheral constructors have run, application pro
about to start.

icmEndSchedFn

Called after each application processor has fini

icmEndSchedFn Called after each PSE has finishe
you wish to debug a PSE. Should rett
continue, false to finish.

use this if
ulation is to

icmTimeAdvanceFn Called when a scheduler advances
simulation is to continue,

ould return true if

icmFinishFn Called when simulation is ut to finish

The example in Examples/Debugger/threads

e use of this function to allow a

platform and a debugger to run in separate thread, but in the same program. This is

pseudo code extracted from the examp

static ICM_START_SIM_FN(startSim) {
// called once:
// Before the peripheral constructors run

}

static ICM_END_CONSTRUCTORS_FN(endConstructors) {
// called once
// After the peripheral constructors run

// Before the first instructions are executed on application processors

static ICM_END_SCHED_FN(debugProc) {
// called after each core has executed instructions.
icmStopReason reason = icmGetStopReason(processor);
iT (debuggerNeedsToActOnThisReason(reason)) {

3
if(debuggerWantsToFinish(Q)) {
return False;

} else {

return True;
3

b
static ICM_END_SCHED_FN(debugPSE) {

icmStopReason reason = icmGetStopReason(processor);
iT (debuggerNeedsToActOnThisReason(reason)) {

}

© 2019 Imperas Software Limited www.OVPworld.org

Page 123 of 168

OVPsim and CpuManager User Guide

if(debuggerWantsToFinish()) {
return False;

} else {
return True;

}

}

static ICM_TIME_ADVANCE_FN(advanceTime) {
// called when (and only when) time is advanced

return True;

}

static ICM_FINISH_FN(FinishSim) {
// called when no more instructions to execute, but before destruction.

}
int main(...) {

icmDebugNotifier notify = {

.start = startSim,
.endCons = endConstructors,
.sched = debugProc,
.schedPSE = debugPSE,
.advance = advanceTime,
.Finish = finishSim,
.userData = myPointer

¥

// request callbacks. Note: this can be called before icmlnitPlatform(Q)
icmSetDebugNotifiers(¬ify);

buildPlatform(); // using icmlnitPlatform etc

// Run the simulation
icmSimulatePlatform();

er icmIlnitPlatform but must be called

before simulation begins. one call to startSim, then a call to debugProc
each time a processor core stops executing. This might be because the simulator has
executed all the instr equested of this processor or it might be that a breakpoint,
watchpoint or oth ent has occurred. debugProc will be called if

callback or Fal
will be tri

if the simulation should finish, in which case end of simulation events
d but no more instructions will be simulated.

The function finishsSim will be called once, before the platform is destroyed.

The function debugPSE is required only if you wish to debug PSE code. Leave the
callback pointer null if not required. The userData field will be passed to the callback. It
should return True if the simulation can continue after the callback or False if the
simulation should finish.

© 2019 Imperas Software Limited www.OVPworld.org Page 124 of 168

OVPsim and CpuManager User Guide

The function advanceTime will be called when the simulator moves simulated time
forwards. It should return True if the simulation can continue after the callback or False
if the simulation should finish.

© 2019 Imperas Software Limited www.OVPworld.org Page 125 of 168

OVPsim and CpuManager User Guide

21 Peripherals

ICM supports the inclusion of multiple peripherals in a platform. A peripheral is modeled
using a Peripheral Simulation Engine (PSE) and/or an Intercept library. The creation of a
PSE is described in detail in the OVP Peripheral Modeling Guide.

This section provides information on how a peripheral is includes and used within an
ICM platform.

21.1 Adding a Peripheral

The peripheral is instantiated in the platform and connected to the bus usin more
ports. The name of the port, used when connecting onto the bus, must matc ame
used when the port is created within the peripheral model. Within th ' al aport

has a size but has no address, it is only when it is connected to the at it is given an

address.

21.1.1 Instantiating a Peripheral
The peripheral is instantiated using the icmNewPSE or icmN
calls. This function returns a handle to the PSE insta

\

icmPseP vga = icmNewPSE(*'vga', vgaPse, vgaAttrs, NULL, NULL);
h.

// instantiate the peripheral

21.1.2 Attach a peripheral to a

A peripheral can be connected at a fix ress on a bus or it can be attached
dynamically.
21.1.2.1 Fixed Bus

When connecting to a fixe 1e peripherals port is connected as either a master or
slave port between a spec '
match that defined in the peripheral model

e dynamically connected to a bus. This is the case when modeling a
peripheral device that connects to a dynamic bus, such as PCI, that is configured at run
time.

The address to which the peripheral will respond is coded within the behavioral code of
the peripheral model and not within the platform.

icmConnectPSEBusDynamic(vga, bus, "memory', False);

© 2019 Imperas Software Limited www.OVPworld.org Page 126 of 168

OVPsim and CpuManager User Guide

21.2 Enabling Diagnostics

A peripheral can be designed to provide diagnostics information during its execution. The
diagnostics can be defined by the model developer using the modeling equivalent of
printf within the model (model diagnostics) or provided from the simulation system
(system diagnostics).

21.2.1 Model Diagnostics
The model diagnostics are controlled by setting the diagnostic level of the
model. This is enabled in the platform after the PSE has been instantiated
icmSetPSEdiagnosticLevel function call.

peripheral

It is standard to provide 3 levels of diagnostics within the model diagnostic
level providing a super set of lower level diagnostics.

For a PSE based peripheral the diagnostics would be controlled by esof0,1,2,0r3
being written.

No diagnostics

Low diagnostics

Medium diagnostics

High diagnostics

System diagnostics. At this level (and a
reports net and register callbacks, ut

A~ OWNPEFEO

e) the simulator automatically

ition of code to the model.

The example code below would set the diagnostics to the highest level and so provide the
most verbose output. This could provi ails down to the individual register level.

Ve 4

icmSetPSEdiagnosticLevel(vga, 4);

21.2.2 Interc ry Diagnostics
When the peripher

the dlag ostics

created using native code within an interception library
gh the PSE part of the model using the same

approach is to use high order bits in the diagnostic level for the
intercept I|brary 0, for example, to turn on the highest diagnostics level for both the
PSE and elements of a peripheral model, we can use bits 0 and 1 for the PSE and
4 and 5 for the Native.

#define PSE_DIAG_HIGH 3
#define PSE_DIAG_MEDIUM 2
#define PSE_DIAG_LOW 1
#define INT_DIAG_HIGH (3<<4)
#define INT_DIAG_MEDIUM (2<<4)
#define INT_DIAG_LOW (1<<4)

icmSetPSEdiagnosticlLevel(vga, INT_DIAG_HIGH | PSE_DIAG_HIGH);

© 2019 Imperas Software Limited www.OVPworld.org Page 127 of 168

OVPsim and CpuManager User Guide

21.2.3 PSE Debugger Support
When simulating a platform in the Imperas simulator, a GDB executable can be
associated with each PSE so that full symbolic debug is available for PSE.

Two methods of association are used:
e The PSE model in the Imperas component library specifies a gdb path. This will
work if the Imperas simulator is supplied with its standard component library.

e The function icmSetPSEGdbPath can set the path ;
// set the gdb path
icmSetPSEGdbPath(
icmPseP pse, // handle to the PSE
const char *path, // Tull path to the GDB executable
const char *flags // any flags to be appended to the GDB invocation
);
21.3 Passing Attributes o
A configurable peripheral model uses attributes passed fro orm to the
peripheral model to change its behavior. There are three types ributes that can be

passed to and read by the peripheral model, unsigne

passed as an attribute list and added to that declare usm different functlons

rList function and then populated
ns6 ttr, icmAddUns64Attr and
instance when it is instantiated.

An empty attribute list is created using the i
with attributes using the three functions i
icmAddStringAttr. The listis then a

to the

icmAttrListP vgaAttrs = icmNewAttrList();
icmAddUns64Attr(vgaAttrs, "scanDelay', 50000);
icmAddUns64Attr(vgaAttrs, "PClslot", 18);
icmAddUns64Attr(vgaAttrs, '‘noGraphics'™, noGraphics);
icmAddStringAttr(vgaAttrs, *“title”, "OVPsim MIPS32 Malta™);
icmPseP vga = icmNewPSE(''vga', vgaPse, vgaAttrs, NULL, NULL);

P

21.4 Simula a Platform

21. fault Scheduling Algorithm

The platforms created using the ICM API would normally make use of the default
scheduling algorithm. By using the default algorithm the ICM platform can be directly
imported into the Imperas professional tools without any modification.

The default scheduling is performed by a call to the icmSimulatePlatform function.
This runs all processor and peripheral instances in the platform.

21.4.2 Custom Scheduling Algorithm

© 2019 Imperas Software Limited www.OVPworld.org Page 128 of 168

OVPsim and CpuManager User Guide

A custom scheduling algorithm is created using the icmSimulate and icmAdvanceTime
functions in place of the icmSimulatePlatform function.

The function icmSimulate is applied to only one processor instance. To simulate the
platform all processors and peripherals in the platform must be scheduled. The function
icmSimulate is used for each processor instance in turn to make them execute a fixed
number of instructions. The number of instructions a processor can execute in a given
slice of time is a product of the performance of the processor and the length of time the
time slice occupies.

executed any instructions they should perform in a time slice the platform
forward in time by the appropriate amount using the icmAdvanceTi

moving time forward any peripheral functionality that is waiting f mount of time to
expire within this time slice will execute its behavior. icm ce ns False if
the new time is at or beyond a requested stop time (see icm nStopTime).
#define INST_PER_SECOND 100000000

#define TIME_SLICE 0.01

#define INST_PER_TIME_SLICE (INST_PER_SECOND*TIME_SLICE)

icmTime myTime;

icmStopReason rtnVal = ICM_SR_SCHED;

Bool outOftime = False;

Ffor(myTime=TIME_SLICE;rtnVal==ICM_SR_SCHED || rtnVal==ICM_SR_HALT;myTime+=TIME_SLICE){
rtnVal= icmSimulate(processor, INST_PER_TIME_SLICE);
outOfTime = licmAdvanceTime(myTime);

}

21.5 Adding E sion Intercept Library

Inter ibrari used to extend the functionality of a peripheral model. This
allo model behavior to be modeled using native host code. This used when

The intercept library is loaded automatically by the peripheral model, though this
function can be overridden by specifying the path to the extension library as the forth
argument to icmNewPSE or icmNewPSEWithHandle.

The following is the instantiation of a VGA peripheral model that uses an intercept
library for part of its behavior. The variable vgalntercept is a string providing the path
to the library to be loaded.

Const char *vgatExtension = “localDir/model”; // the .so or .dll is assumed.

© 2019 Imperas Software Limited www.OVPworld.org Page 129 of 168

OVPsim and CpuManager User Guide

icmPseP vga = icmNewPSE(*'vga', vgaPse, vgaAttrs, vgaExtension, 0);

21.5.1 Adding more Intercept Libraries
Intercept libraries can be added to an existing PSE instance using
icmAddPseInteceptObject (only available in Imperas Professional products).

icmPseP vga = icmNewPSE(*'vga', vgaPse, vgaAttrs, NULL, NULL,);
icmAddPselnterceptObject(

vga, // PSE handle

"interceptl", // intercept library instance name
"*/home/library/intercept”, // path to shared object or DLL

o0, // not used

0 // optional list of user defined attributes

// used to control the intercept library

g—

21.5.2 Example platform

An example of a peripheral that uses an intercept library fo @ ting native
behavior may be found in following directory:

A
$IMPERAS_HOME/Examples/Models/Peripherals/creatingDMAC/5.nativeBehaviour

-y

The example shows a peripheral with a nativ t instantiated into the platform in
the file platform/platform.c:

) L1111 77777777777777777777777/7/77777//7777///7777///7/77///7//7/////7//////777
// DMAC Peripheral
L1111 17777777777/77777/777777/777777/77777//77777////7/77////777////77///7/777

// instantiate the peripheral
icmAttrListP config = icmNewAttrList();
icmAddUns64Attr(config, "enableNative", 1);

icmPseP dmac = icmNewPSE(*'dmac", "peripheral/pse/pse.pse’, config, 0, 0);
-
In th source file, peripheral/pse/dmac.attrs.igen.c, the semihost library to be

loaded is defined with the extension member of the ppmModelAttr structure:

ppmModelAttr modelAttrs = {

.versionString = PPM_VERSION_STRING,
-type = PPM_MT_PERIPHERAL,
-busPortsCB = nextBusPort,
-netPortsCB = nextNetPort,
-paramSpecCB = nextParameter,
.vinv ={

.vendor = "ovpworld.org",

_library = "peripheral",

© 2019 Imperas Software Limited www.OVPworld.org Page 130 of 168

OVPsim and CpuManager User Guide

.hame = "dmac",
.version = "1.0"
3,
-family = "ovpworld.org",
.extension = "._./model/model"*

Compile the test platform and application as before using the following commands in the
5.nativeBehaviour directory:
A

make -C peripheral/pse NOVLNV=1
make -C peripheral/model NOVLNV=1
make -C platform NOVLNV=1
make -C application

To run the simulation, in the memory directory, run:

-/platform/platform.${IMPERAS_ARCH}.exe --program application/dmaTest.elf

You should see the following output (some repetitive parts h een‘removed):
N

OVPsim started: Thu Mar 26 22:09:51 2015

Info (ICM_AL) Found attribute symbol "modelAttrs® in file
*/Imperas/lib/Linux32/ImperasLib/ovpworld.org/semihosting/orlkNewlib/1.0/model .so"

Info (ICM_AL) Found attribute symbol "modelAttrs® in file
*/Imperas/lib/Linux32/ImperasLib/ovpworld.org/processor/orlk/1.0/model .so"

Info (OR_OF) Target "platform/CPUl" has object file read from “"application/dmaTest.elf"
Info (OR_PH) Program Headers:

Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags
Align

Info (OR_PD) LOAD 0x00002000 0x00000000 0x00000000 0x00012544 0x00012664 RWE
2000

Info (ICM_AL) Found attribute symbol "modelAttrs® in file
"/home/straus/tmp/5.nativeBehaviour/peripheral/model/model .so"

Info (INIT) platform/dmac: Use Native data on channel 1

Info (PP_STUBS) platform/dmac: User initialization

Info (INIT) "MWRITE®, hi O lo fFffffff master 1 dynamic O

Info (INIT) platform/dmac: Semihost Initialized

Info (DMAC) platform/dmac: ch O waiting

Info (DMAC) platform/dmac: ch 1 waiting

Info (DMAC) platform/dmac: configWr 0x02 (2) burst size 4

TEST DMA: initial dstl "111111111111112112112121111111111111" dst2
"2222222222222222222222222222222222"

TEST DMA: dmaBurst ch:0 bytes:13

Info (DMAC) platform/dmac: regWr32 Oxffffefed (4294963172)

Info (DMAC) platform/dmac: regWr32 Oxffffdfed4 (4294959076)

Info (DMAC) platform/dmac: regWr32 0x0000000d (13)

Info (DMAC) platform/dmac: configChOWr O0x00008001 enable 1 interrupts 1 halt O
Info (DMAC) platform/dmac: ch O running

Info (DMAC) platform/dmac: ch O 13 bytes burst size 4 from ffffefe4 to ffffdfed
Info (DMAC) platform/dmac: ch O access 4 bytes from ffffefe8 to ffffdfe8

TEST DMA: dmaBurst ch:1 bytes:35

Info (DMAC) platform/dmac: regWr32 Oxffffcfed (4294954980)

Info (DMAC) platform/dmac: regWr32 Oxffffbfed4 (4294950884)

Info (DMAC) platform/dmac: regWr32 0x00000023 (35)

Info (DMAC) platform/dmac: configChlWr 0x00008001 enable 1 interrupts 1 halt O
Info (DMAC) platform/dmac: ch 1 running

Info (DMAC) platform/dmac: ch 1 35 bytes burst size 4 from ffffcfed4 to ffffbfed
Info (PERIPHERAL_SEMI) Send native data Oxffffcfe4 to OxFfffbfe4 (4 bytes)
Info (DMAC) platform/dmac: ch 1 access 4 bytes from ffffcfe8 to ffffbfe8

© 2019 Imperas Software Limited www.OVPworld.org Page 131 of 168

OVPsim and CpuManager User Guide

TEST DMA: Waiting for interrupts

Info (DMAC) platform/dmac: ch O access 4 bytes from ffffefec to ffffdfec
Info (PERIPHERAL_SEMI) Send native data Oxffffcfe8 to OxFfffbfe8 (4 bytes)
Info (DMAC) platform/dmac: ch 1 access 4 bytes from ffffcfec to ffffbfec

Info (DMAC) platform/dmac: ch 1 status=0x3

Info (DMAC) platform/dmac: ch 1 waiting

TEST DMA: Interrupt

Info (DMAC) platform/dmac: regRd32 0x01800000 (25165824)

Info (DMAC) platform/dmac: regRd32 0x01800000 (25165824)

TEST DMA: Interrupt chO 0x8001

Info (DMAC) platform/dmac: configChOWr O0x00000000 enable O interrupts O halt O
Info (DMAC) platform/dmac: regRd32 0x01800000 (25165824)

Info (DMAC) platform/dmac: regRd32 0x01800000 (25165824)

TEST DMA: Interrupt chl 0x8001

Info (DMAC) platform/dmac: configChlWr O0x00000000 enable O interrupts O halt O
TEST DMA: 2 interrupts received

TEST DMA: DMA result dstl "Hello world." dst2 "The whole world spread before you.*

OVPsim Ffinished: Thu Mar 26 22:09:52 2015

21.6 Selecting using VLNV

description at compile time but this builds a platfor ortable. Much more
useful is to be able to specify the model using Ven ibrary Name and Version

The icmGetVInvString function allows
and an environment variable, IMPERAS vV, to
a specific model.

ify the root of the library and select

The arguments to icmGetVInvS g are:
char *rootDirecto LL, root directory or directories
char vendor dor directory or ">
char library rary directory or "*""

ame directory or ">

sion directory or ">

ilename or ""pse’ or "model"

used; this isa *:” separated list of paths on Linux, a “;” separated list on Windows.
icmGetVInvString() will search the directories in order.

Setting vendor, library or name to an empty string (not NULL) or to “*” specifies a
wild-card for this directory.

Setting version to an empty string (not NULL) or to “* specifies the latest numeric
version. Note that "1.1.1' is later than "*1.1" and that "'zzz" is later than any number.

© 2019 Imperas Software Limited www.OVPworld.org Page 132 of 168

OVPsim and CpuManager User Guide

file should be set to the exact filename expected or to the special strings ""pse’ or
"model'" to make the search platform independent. Note that Imperas peripheral models
are always named "'pse.pse’ and processor and intercept models are names ""model .so"
on Linux or ""model .d11 on Windows.

icmGetVInvString will return the expanded string if a match is found, or NULL if there
is zero or more than one match. If NULL is returned, an error message is printed.

If you wish to try several VLNV searches, use icmTryVInvString. This is identical to
icmGetVInvString but does not produce an error message (or change the lator's error
status).

21.6.1 Example VLNV searches
N

// On Linux find the latest PSE model called uart in any library by chipco.com
sl = icmGetVInvString(*'*/home/models:/home/users', ‘‘chipco.com’, ", "uart', "', "pse');

// On Windows find the latest OVP orlk processor model — note that 0S-dependent suffix
// (-so or .dIl) is omitted for portability
s2 = icmGetVInvString(“'c:\ovp\models;c:\local*, "ovpworld.org"™, ", "orlk", "', "model™);

// Find the non-intrusive code coverage module
s3 = icmGetVInvString(NULL, "imperas.com™, "intercept’”, "icov", ', "model'™);

// select a 16450 UART version 1.7 from the default ovpworld.org peripheral library.
s4 = icmGetVInvString(NULL, "national.ovpworld.org", "peripheral’™, "16450", "1.7", "pse');

// Try several places without producing an error
if (1(s = icmTryVInvString(path, vi, 11, m1, ", "model))) {
s = icmTryVInvString(path, v2, 12, m2, ", "model);

1

if(1s) {
icmPrintf("'Could not find your model in the usual places\n");
return;

}

© 2019 Imperas Software Limited www.OVPworld.org Page 133 of 168

OVPsim and CpuManager User Guide

22 Nets connecting models

A single- or multi-bit wire can be modeled using a net. Interrupts and reset signals are
typically implemented this way. Note that although it is possible to construct a signal-
level model of a bus using ICM, this style of modeling is discouraged; no attempt has
been made to optimize the net object, so the performance of a signal-level model would
be disappointing.

Nets are created then connected to processor and peripheral models. The arguments to
icmConnectProcessorNet and icmConnectPSENet are as follows:

icmConnectProcessorNet

icmProcessorP processor Handle returned when creating the processor instance.

icmNetP net Handle returned when created the net.

const char *portName Name of the port as it appears in the model

icmDirection direction ICM_INPUT or ICM_OUTPUT. v)
icmConnectPSENet

icmPseP pse Handle returned when creating the PSE instance.

icmNetP net Handle returned when created the net.

const char *portName Name of the port as it appears in the model

icmDirection direction ICM_INPUT or ICM_OUTPUT.

N
22.1 Example

This example shows the connection of the interr tput from a UART to the interrupt
input of the OR1K processor.

icmNetP intNet = icmNewNet("intl™); // UART

const char *uartPse icmGetVInvString(NULL, "ovpworld.org"™, "', ''16450", "', '"pse");

icmPseP uartl icmNewPSE(*'uartl™, uartPse, NULL, NULL, NULL);
const char *orlkModel = icmGetVInvString(vinvRoot, "ovpworld.org","","orlk","", ""model");
icmProcessorP processor = icmNewProcessor(

“cpul™, // CPU name

"orlk", // CPU Type

o, // CPU cpuld

o, // CPU model flags

32, // address bits

orlkModel, // model file

o, // not used

o, // simulation attributes

0, // user-defined attributes

0, // semi-hosting file

0 // not used

)
icmConnectProcessorNet(processor, intNet, "intr0", ICM_INPUT);

icmConnectPSENet(uartPSE, intNet, "intOut', ICM_OUTPUT);

© 2019 Imperas Software Limited www.OVPworld.org Page 134 of 168

OVPsim and CpuManager User Guide

23 Detecting changes on a net

Code can be triggered when a net is written by a model. A function is declared using the
NET_WRITE_FN prototype macro, then connected to a net using icmAddNetCal Iback.
Note that the trigger occurs if the net is written. It is up to the application to decide if the
net value has changed.

23.1 Example

Any change on an interrupt port is made to print a line to the simulator log stream. Note
the use of the userData field to pass a pointer to the recorded old value.

NET_WRITE_FN(intNetWritten) {
Uns32 *old = userData;
if(value = *old) {
icmPrintf(“Net changed to %d\n”, value);
*old = value;
3
}

void construct() {

// create a net and connect it to the interrupt port of a peripheral
Uns32 oldValue = 0;

icmNetP intNet = icmNewNet("intNet");

icmConnectPSENet(psel0, intNet, "interrupt', ICM_OUTPUT);

icmAddNetCallback(intNet, intNetWritten, &oldVvalue);
// simulate for one simulated second

icmSetSimulationStopTime(1.0);
icmSimulatePlatform();

N 4

© 2019 Imperas Software Limited www.OVPworld.org Page 135 of 168

OVPsim and CpuManager User Guide

24 Packetnets

Models that communicate with Ethernet, USB CAN, GSM etc. can use the packetnet
abstraction of a packet based network. A packet transaction is modeled as an
instantaneous event; network speed and latency must be modeled in the transmitting or
receiving devices. A packetnet communicates by callbacks and shared memory. The
transmitting model creates a packet in its local memory then calls the transmit function.
This causes a notification function to be called in each receiving model in turn, passing a
pointer to and number of bytes in the packet. The notification function can. modify the
data if required. When every notification function has returned, the transmit function
returns, then the transmitting model can examine the packet if required.

Note that peripheral models each occupy their own address spaces. Theref
simulator copies the data as and when required, so the models must y on pointers in
the data. The contents of a received packet should not be used afte notification

function has returned.

The order that the connected models receive a packet is de @
construction in the ICM code, but should not be relie

The peripheral model API can send and receive thr the ‘packetnet interface. The ICM
API is used to create connections during platform con on, but can also be a test-
bench by sending and receiving packets.

24.1 Packetnet Direction

A packetnet is bidirectional; a @" an:send and receive from the same packetnet
(though it does not have to).

24.2 Packetnet

vy the order of

the connection between a packetnet and a peripheral
ch does not use packetnet ports.

| methods of communication between models, it is possible by
carelessly connecting packetnets to create a loop so that a call in one model results in a
call back 1 e same function in that model. The simulator detects and prevents deep
recursion on any packetnet.

A peripheral model will not receive notification for a packet that it is sending, an ICM
notifier function in the test-bench will not receive packets sent by the test-bench.

24.4 Packet size

Physical networks have a maximum packet size. Larger data are broken into smaller units
handled by the protocol stack. A peripheral model must specify the maximum number of

© 2019 Imperas Software Limited www.OVPworld.org Page 136 of 168

OVPsim and CpuManager User Guide

bytes to be sent in one packet when it connects to a packetnet, though it can send fewer
bytes if needed. All peripheral models on one packetnet must define the same maximum
size. The ICM interface can connect models together without knowing the maximum
size, but it is an error for the test-bench to transmit a packet larger than the size set by
peripherals on the packetnet.

24.5 Packetnet functions

Create an instance of a packetnet in the platform (returns a handle to the nwacketnet):

icmPacketnetP icmNewPacketnet(const char *packetnetName)

Connect a packetnet to a packetnet port on an instance of a peripheral:

icmConnectPSEPacketnet(icmPSEP pse, icmPacketnetP net, const char *portName)

void icmWritePacketnet(icmPacketnetP net, void *data, Uns32 bytes)

Send a packet to all receivers on a packetnet:

packetnet notification callback definition using ma
function to bind the callback to a packetnet i e.

efining the prototype, and

static ICM_PACKETNET_NOTIFIER_FN(cb) {

}

void icmAddPacketnetCallback(icmPacketnetP net, icmPacketnetNotifierFn cb, void *userData)

24.6 Example

An example using a Ea '.% :

$IMPERAS_HOME/Examples/Models/Peripherals/packetnet

The
peri

ample uses i s igen to construct most of the code for the platform and

Take a copy of the example:

cp $IMPERAS_HOME/Examples/Models/Peripherals/packetnet .

Construct and compile the platform and peripheral models and compile the application:

make all

The packetnet is created and connected to the peripheral model instances in code
generated by igen here:

platform/platform.constructor.igen.h (look for the CONNECTIONS comment)

© 2019 Imperas Software Limited www.OVPworld.org Page 137 of 168

OVPsim and CpuManager User Guide

The packetnet notifier function, its installer, and code to send a packet over the packetnet
is in hand-written code here:

platform/platform.c (look for pktGotData and writePkt)

Run the example:

make simulate

Referring to the output:

The application code starts running &

Info PACKETNET TEST Application

Writing to the tx register in peripheral pktmodell calls the callback t

peripheral/user.c) which makes pktModell send a packet using pp etnetWrite.
The packet is received by pktModel2 and the callback pkt ta in the platform. Then
the txWrite function in pktModel1 returns:

Info (PKT_PSETXS) testpacketnet/pktModell: PSE to packetnet START {77} {PSE} {00}
Info (PKT_PSERXD) testpacketnet/pktModel2: Peripheral PKT model Trigger ...

Info (PKT_ICMRXD) testpacketnet/top: Platform PKT testbench Trigger ...

Info (PKT_PSETXE) testpacketnet/pktModell: PSE to packetnet DONE {77} {PSE} {02}

v

Then the application makes pktModel?2 tr i same way:

Info (PKT_PSETXS) testpacketnet/pktModel2: PSE to packetnet START {88} {PSE} {00}
Info (PKT_PSERXD) testpacketnet/pktModell: Peripheral PKT model Trigger ...

Info (PKT_ICMRXD) testpacketnet/top: Platform PKT testbench Trigger ...

Info (PKT_PSETXE) testpacketnet/pktModel2: PSE to packetnet DONE {88} {PSE} {02}

Info PACKETNET TEST Application DONE

When the application fi
peripherals.

e test-bench sends a packet which is received by the

. S s -
Info (PKT_ICMTXS) testpacketnet/top: writePkt packetbusl START {01}, {ICM}, {00}
Info (PKT_PSERXD) testpacketnet/pktModell: Peripheral PKT model Trigger ...
Info (PKT_PSERXD) testpacketnet/pktModel2: Peripheral PKT model Trigger ...
Info (PKT_ICMRXD) testpacketnet/top: Platform PKT testbench Trigger ...
Info (EEI7ICMTXE) testpacketnet/top: writePkt packetbusl DONE {01}, {ICM}, {03}

© 2019 Imperas Software Limited www.OVPworld.org Page 138 of 168

OVPsim and CpuManager User Guide

25 Simulator Control Files
Simulator control files are supported by CpuManager and OVPsim.

A simulator control file allows control of extension libraries, overrides, application
programs and model commands in environments that do not have a simulator command
line. It also allows the substitution of one VLNV reference with another, provided the
function icmGetVInvString is used to obtain the path.

For details of the control file refer to the OVP_Control_File_User_Guide

Control files are loaded using icmAddControlFile() which must be invo
calling icmlInitPlatform().

icmAddControlFile("controll.ic");
icmAddControlFile("control2.ic™);

icminitPlatform(...);

icmSimulatePlatform();

nu able 1MPERAS_TOOLS.

.

F X -
shell> export IMPERAS_TOOLS="controlfilel.ic;controlfile2.ic"

Control files can also be specified using the
Filenames are separated by : (Linux) or ;

shelI> mySystemC.exe # simulator using CpuManager.so

<)

© 2019 Imperas Software Limited www.OVPworld.org Page 139 of 168

OVPsim and CpuManager User Guide

26 Encapsulating Models for use in other Environments

An essential purpose of the ICM API is to allow Imperas simulation models to be
exported to other environments (for example, SystemC).

26.1 SystemC

The ICM API allows the Imperas models to be exported into a SystemC environment.
There are two levels at which the ICM API can be used: C and C++. It is the C++ API
that is utilized in the SystemC environment. Once exported, an Imperas model can be
controlled from the SystemC interface by, for example, allowing it to be clo
instruction at a time.

The following code example illustrates a few of the basic principles when
API to encapsulate a model for use in a SystemC environment. Spe ;
how to:

e Create a processor instance

e Attach external memory

e Register callbacks

t consists of an application to be

a SystemC platform (in the

The example code is found in the directory system
run on the processor model (in the applicatio ct
platform directory).
The example instantiates a single proc and, depending upon build commands, an
external memory modeled as a Sy.

© 2019 Imperas Software Limited www.OVPworld.org Page 140 of 168

OVPsim and CpuManager User Guide

26.1.1 Create Processor Instance
The processor is created using constructs in the file platform/impProcessor.hpp that
create a SystemC module using the SC_MODULE macro.

This file contains the processor constructor and destructor:

/////
//
// Constructor
//
theProcessor(sc_module_name instname, sc_clock &ck)
{
_init = false;
_proc = NULL;
_inclk(ck);

SC_METHOD(runner);
sensitive << _inclk.neg(Q);
dont_initialize();

3
/////
1/
// Destructor
//
~theProcessor()
{
if (Cinit & _proc) {
delete _proc;
_proc = NULL;
_init = false;
¥
3 V
An initialization routine is created sepa rom the constructor. This allows it to be
explicitly called and better error
As part of the initializatio lation stop callback is registered, using the C++
API function icmRegis pHandler. Without this function added the SystemC
environment would nd continue to clock the CpuManager model even
after the simulatio inished. Now when simulation finishes CpuManager makes a

call into the s
simulation.

// Init function

//

bool init(const char *procName,
const char *typeName,
int cpuld,
const char *morpherFile,
const char *morpherSymbl,
const char *semiHostFile,
const char *semiHostSymbol)

bool retcode = false;

char busName[strlen(procName)+10];
sprintf(busName, "%s_bus', procName);

_bus = new icmBusObject(

© 2019 Imperas Software Limited www.OVPworld.org Page 141 of 168

OVPsim and CpuManager User Guide

busName, // bus name
32 // address bits
);
_proc = new icmProcessorObject (
procName, // processor name
typeName, // processor type
cpuld, // processor ID
o, // processor model flags
32, // address bits

morpherFile, // processor model file
morpherSymbol, // morpher attributes

o, // processor attributes

o, // user-defined attributes
semiHostFile, // semi-hosting library file
semiHostSymbol // semi-hosting attributes

)
_proc->connectBusses(*_bus, * bus);

if (_proc) {
// register a handler for the simulator stop conditions
_proc->icmRegisterSimStopHandler(_shandle);

retcode = true;

}

return retcode;

b e
A 4

perator.

The application code is loaded by overloading the

/////
//
// Load the object file into processor memory
//
void objfile(const char *objfile)
{
// 1T processor was successfully created then
// load the program image into its memory
if (_proc) {
// load object file
(*_proc) << objfile;

3
The processor model i ed using the overloaded << operator. The number to the
right ies the number of instructions to step.

N

/////

//

// The SC_METHOD connected to the clock

//

void runner(void)

// step processor
(C*_proc) << 1;

An external memory creation function (extMem) is also in this file. This function calls the
ICM C++ API function mapExternalMemory to map the external SystemC memory
region into the address space of the processor. This actually attaches two callback

© 2019 Imperas Software Limited www.OVPworld.org Page 142 of 168

OVPsim and CpuManager User Guide

functions, rcb and wcb, that are used by the simulator to perform the access into the
SystemC memory, for reads and writes respectively.

/7777
//
// Maps a memory range to a memory manager outside the simulator.
//
void extMem(Addr loaddr, Addr hiaddr, icmMemWriteFn wcb, icmMemReadFn rcb, impMemory *mem)
{
_bus->mapExternalMemory (

"external",

ICM_PRIV_RW,

loaddr,

hiaddr,

wch,

rch,

mem

<

cce nc used by the
@ emory but any

impMemory . hpp that create

26.1.2 External SystemC Memory
In this section we are defining a SystemC memory and its a
ICM platform. For convenience we are defining our own S
SystemC memory could have been used.

The memory is defined using constructs in the file platfor

a SystemC module using the SC_MODULE ma

This file contains the memory construc nd destructor functions. Note that the memory
has a SystemC clock but this is not us his example. The memory model could be
extended using the SystemC cloc ovi ency generation on the memory accesses.

impMemory(sc_module_name instname, sc_clock &ck)

_init = false;
_mem = NULL;

_inclk(ck);

~impMemory ()
{

if (Cinit && _mem) {
delete _mem;

_mem = NULL;
_init = false;
¥

}

g

The memory initialization routine declares a byte array to be used for storage and defines
the configuration (address and size) of the memory block.

bool init(Addr baseAddr, Uns32 size)
bool retcode = false;
_mem = new char[size];

it Cmem) {
_init = true;

© 2019 Imperas Software Limited www.OVPworld.org Page 143 of 168

OVPsim and CpuManager User Guide

_base = baseAddr;
_size = size;
retcode = true;

}

return retcode;

The read and writes to the memory are contained within a single function; separate read
and write functions could have been used. Within this function is also included some
basic range checking for the accesses. The data size (bytes) is transferred between the
local memory byte array and the pointer passed as void *value.

bool inline inrange(Addr a)

return ((a>=_base) && (a<=(_base+_size-1))) ? true: false;

typedef enum { tWrite, tRead } trans_t;

bool transaction(trans_t tr, Addr address, void *value, Uns32 bytes)

{

bool retcode = false;

if Cinit) {
if (inrange(address) && inrange(address+bytes-1)) {
Addr adr = address - _base;

char *src, *dst;
switch (tr) {
case tWrite:
src = (char*)value;
dst = &(mem[adr]);
break;
case tRead:
src = &(_mem[adr]);
dst = (char*)value;
break;
default:
assert(0);
break;

}
memcpy(dst, src, bytes);

retcode = true;

}
}
return retcode;
r
The ICM m accesses these callback functions whenever a read or write access is

made to an address which falls in a region that has been mapped as external using the
mapExternalMemory function we saw earlier. The simulator uses the callback functions
rather than using the local memory space.

using namespace icmCpuManager;
extern "C" {

static ICM_MEM_WRITE_FN(memWriteCB)

iT (processor) {
impMemory *m = (impMemory*) userData;

© 2019 Imperas Software Limited www.OVPworld.org Page 144 of 168

OVPsim and CpuManager User Guide

it (m) m->transaction(impMemory::tWrite, address, value, bytes);

}

static ICM_MEM_READ_FN(memReadCB)
{
if (processor) {
impMemory *m = (impMemory*) userData;
it (m) m->transaction(impMemory::tRead, address, value, bytes);

26.1.3 Example Platform

The example platform uses the functions defined in the previous sections t
system containing: one OR1K processor instance and one SystemC memo
An application binary executed on the processor initializes an array in

of words to create an output sentence. The SystemC clock-is
operation.

The following code provides an example of the instantiatio gle OR1K processor
that is clocked using a SystemC sc_clock object. Th emory in the

SystemC environment that is mapped into a region ternal memory and accessed via
callback functions.

A SystemC clock is created with a 1uS . is example the clock frequency is
arbitrary and has no effect on the simu n.

i i a0
// define clock period
const sc_time clk _period(1, SC_US);

systemClock = new sc_clock("'SYSCLK", clk_period);
———

Create a new processor
initialization of th es

1’ with the SystemC clock attached. Perform

1N
proc = new theProcessor(*'cpul”, *systemClock);

retCode = proc->init(

"CPU1",

“orlk™,

0,

model,

0,

semihosting,

0

)

If the processor was created successfully we then create a memory and register the
callback functions so that it can be accessed by the simulator. There is code here to allow
the memory to be either specified using SystemC memory or using simulator memory,
depending on whether EXTMEM_BASEADDR iS noNn-zero:

© 2019 Imperas Software Limited www.OVPworld.org Page 145 of 168

OVPsim and CpuManager User Guide

if (retCode && EXTMEM_BASEADDR) {

// Create a memory object
extMemory = new impMemory(*'EXTMEM", *systemClock);
retCode = extMemory->init(EXTMEM_BASEADDR, EXTMEM_SIZE);

icmPrintf(
"SYSTEMC: Creating memory at %08x, size %d bytes\n",
EXTMEM_BASEADDR, EXTMEM_SIZE

)

if (retCode) {
icmPrintf("'SYSTEMC: Callback routines registered\n');
proc->localMem(*"locall”, 0, EXTMEM_BASEADDR-1);
proc->localMem(**'local2", EXTMEM_BASEADDR+EXTMEM_SIZE, OxFfffffff);
proc->extMem(
EXTMEM_BASEADDR,
(EXTMEM_BASEADDR+EXTMEM_SI1ZE-1),

memReadCB,
memWriteCB,
extMemory
);
3
} else {

proc->localMem(*'local*, 0, OxFFFffffr);
3

h

emory, the simulator will
rform the program initialization.)

Next, we load the application code to be executed.

(Note: If any of the application code resides in the ex
use the callback functions to access the ;nP‘n

if (retCode) {
proc->objfile(PROC_OBJFILE);

}

&

c_start() function. This will cause the
lile there are events being generated. As the platform is

simulation to run continuously v
generating clocks this ould not stop, even after the application program had
opHandler having been registered.

completed, Withouﬁ
P

B

// Processor and memory ready to simulate

if (retCode) {
icmMPrintf(""\nSYSTEMC: Starting Simulation ... \n");
sc_start();

}
26.1.3.1 %nning the SystemC Example

The example is found in the systemC directory.

Simulation is started using

$IMPERAS_HOME/Examples/PlatformsICM/systemC

This example require the availability of a systemC installation pointed to by an
environment variable SYSTEMC_HOME

© 2019 Imperas Software Limited www.OVPworld.org Page 146 of 168

OVPsim and CpuManager User Guide

26.1.3.2 Platform with local Memory

Compile the systemC platform and the test application using the following command in
the systemC directory

make —C application
make

Run the systemC platform using the following command in the systemC directory

E

impSimulation.exe --program application/application.OR1K.elf
L 4

An output similar to the following should be seen:

SystemC 2.3.0-ASI --- Aug 1 2012 13:30:30
Copyright (c) 1996-2012 by all Contributors,
ALL RIGHTS RESERVED
OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org.
Copyright (c) 2005-2015 Imperas Software Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.
Visit www. IMPERAS.com for multicore debug, verification and analysis solutions.

OVPsim started: Wed Dec 12 17:35:46 2012

Simulation started with the following parameters:

MORPHER_FILE: Imperas/lib/Linux32/ImperasLib/ovpworld.org/processor/orlk/1.0/model .so
SEMIHOST_FILE: Imperas/lib/Linux32/ImperasLib/ovpworld.org/semihosting/orlkNewlib/1.0/model
-so

APPLICATION_OBJFILE: application/application.OR1K.elf

SYSTEMC: Starting Simulation ...

1) Internal memory allocated for string

Array “extlndex® defined at address OxeffO with size 0x14

2) Copied indices from internal memory to "extlndex”

3) Use data from "extlndex® to index internal dictionary

extIndex[0]=3

extindex[1]=1

extIndex[2]=2

extIndex[3]=4

extIndex[4]=0

String from memory: "Imperas: Multicore design simplified”

EXIT instructions 25400

Info: /0SCI/SystemC: Simulation stopped by user.

OVPsim finished: Wed Dec 12 17:35:46 2012

OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org.
Visit www. IMPERAS.com for multicore debug, verification and analysis solutions.

© 2019 Imperas Software Limited www.OVPworld.org Page 147 of 168

OVPsim and CpuManager User Guide

26.1.3.3 Platform with SystemC Memory

When the previous example is run, the application prints out the location of the buffer
“extIndex” to which the string is written.

Array "extlndex® defined at address Oxeffc with size 0x14

In this example a systemC memory will be created at this address and this region mapped
as external memory in the platform.

In the Makefile find the section that defines membase and memsize. Unc nt the
fields and add the information found from the previous run of the applicati

Makefile Options
ifeq (1,${EXTMEMORY})
11 Change membase and memsize if you are building with EXTMEMORY=1

#membase = Oxeffc
#memsize = 0x14
A 4
The SystemC memory is created in the file, platform/impSin on.cpp and the region
mapped as external.

A Y
// If PROC was successfully created then attach some external memory to it
if (retCode && EXTMEM_BASEADDR) {

// Create a memory object
extMemory = new impMemory("'EXTMEM", *systemClock);
retCode = extMemory->init(EXTMEM_BASEADDR, EXTMEM_SIZE);

icmPrintf(
"SYSTEMC: Creating memory at %08x, size %d bytes\n",
EXTMEM_BASEADDR, EXTMEM_SIZE

)

if (retCode) {

icmPrintf("'SYSTEMC: Callback routines registered\n');
proc->localMem(*'locall, 0, EXTMEM_BASEADDR-1);
proc->localMem(**local2", EXTMEM_BASEADDR+EXTMEM_SIZE, OXFFfffffrT);
proc->extMem(

EXTMEM_BASEADDR,

(EXTMEM_BASEADDR+EXTMEM_SI1ZE-1),

memReadCB,

memWriteCB,

extMemory

The same cation will work if the internal array 'extIndex’ is now mapped to external
systemC memory. After the array address and size have been specified in the Makefile
rebuild the simulator.

make clean
make EXTMEMORY=1

That will build a SystemC simulation that uses external memory that can be run using the
command

impSimulation.exe --program application/application.OR1K.elf

© 2019 Imperas Software Limited www.OVPworld.org Page 148 of 168

OVPsim and CpuManager User Guide

The following output should now be seen

SystemC 2.3.0-ASI --- Aug 1 2012 13:30:30
Copyright (c) 1996-2012 by all Contributors,
ALL RIGHTS RESERVED

OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org.
Copyright (c) 2005-2015 Imperas Software Ltd. Contains Imperas Proprietary Information.

Licensed Software, All Rights Reserved.

Visit www. IMPERAS.com for multicore debug, verification and analysis solutions.

OVPsim started: Wed Dec 12 17:35:46 2012

Simulation started with the following parameters:

MORPHER_FILE: Imperas/lib/Linux32/ImperasLib/ovpworld.org/processor/orlk/1.0/model .so
SEMIHOST_FILE: Imperas/lib/Linux32/ImperasLib/ovpworld.org/semihosting/orlkNewlib/1.0/model

-so

APPLICATION_OBJFILE: application/application.OR1K.elf
SYSTEMC: Starting Simulation ...

SYSTEMC: Creating memory at 0000effc, size 20 bytes
SYSTEMC: Callback routines registered

1) Internal memory allocated for string

Array "extlndex® defined at address Oxeffc with size 0x14
2) Copied indices from internal memory to “extlndex”

3) Use data from "extlndex®" to index internal dictionary
extIndex[0]=3

extindex[1]=1

extIndex[2]=2

extindex[3]=4

extIndex[4]=0

String from memory: "Imperas: Multicore design simplified”

© 2019 Imperas Software Limited www.OVPworld.org

Page 149 of 168

OVPsim and CpuManager User Guide

27 Using Native Memory

Some applications of ICM require that simulated memory be allocated by the application
rather than using icmNewMemory. The function icmMapNativeMemory enables such use of
native memory in a platform.

Note that since each call to icmMapNativeMemory requires a contiguous block of
memory, this method is not suitable for modeling memory of size is similar to or larger
than the memory of the host machine. Conversely, memories created usin
icmNewMemory can be specified to be as large as desired, and backing sto such
memories is allocated sparsely on demand.

27.1 Example

b 1’1,” %

icmBusP bus = icmNewBus("'bus™, 32);

// a very large (1Gb) ICM memory.

icmMemoryP meml = icmNewMemory(“'mem1*, ICM_PRIV_RW, 0x40000000);
// A small (64K) area of native memory

Uns32 msize = 0x1000;

void *mem2 = malloc(msize);

// connect both memories
icmConnectMemoryToBus(bus, *"pl*, meml, 0x80000000);
icmMapNativeMemory(bus, 0, msize-1, mem2);

// A processor connected to "bus® will see memory mapped at
/7 0x0-OxFFF and 0x80000000-0xBFFFFFFF

= Making the native memo all tan the boundaries described by
icmMapNativeMemory can cause memory corruptions, because the simulator may
ds of the allocated space.

The simulator's obj
icmLoadNativeMemory:

be used to load external memory using

icmBusP bus = icmNewBus(.-..);
icmProcessorP proc = icmNewProcessor(...);

// (64K) area of native memory

Uns32 msize = 0x1000;
void *mem = malloc(msize);
Addr base = 0x0;

// connect memory to bus
icmMapNativeMemory(bus, base, msize-1, mem);

// load it with a program
icmLoadNativeMemory(mem, msize, base, "myprog.elf", 0, True, O, proc);

© 2019 Imperas Software Limited www.OVPworld.org Page 150 of 168

OVPsim and CpuManager User Guide

27.2 Combining External and Native Memory

Occasionally, it can be useful to specify memory regions that combine aspects of
mapping using external callbacks and mapping using native memory pointers (in other
words, a combination of the effects of icmMapExternalMemory and
icmMapNativeMemory). For example, it might be the case that a memory region should
be mapped natively for read accesses, but use a callback for write accesses. In such cases,
function icmMapExternalNativeMemory can be used:

void icmMapExternalNativeMemory (

icmBusP bus,
const char* portName,
icmPriv priv,
Addr lowAddr,
Addr highAddr,

icmMemReadFn readCB,
icmMemWriteFn writeCB,
void* memory,
void* userData

);

To specify how the memory is used, three arguments may be used
combinations:

1. readCB: if non-NULL, this indicates that read
this callback. If NULL, then read accesses sh
pointer memory.

2. writeCB: if non-NULL, this indicates accesses to the memory should use
this callback. If NULL, then writ esses should be performed directly using
pointer memory.

3. memory: this is a native poi to d for read or write accesses when either
the read or write callbac tion iS.NULL.

e memory should use

be performed directly using

© 2019 Imperas Software Limited www.OVPworld.org Page 151 of 168

OVPsim and CpuManager User Guide

28 Simulation Optimization

A simulator using the ICM interface is at liberty to pre-read code that is going to
simulate, then make internal optimization to run that code a quickly as possible. If that
code is then modified by another processor or PSE model, or by an ICM API call (e.g..
icmWriteProcessorMemory()), then the simulator must discard and re-generate its
optimizations. If however, the code is stored in memory created using
icmMapNativeMemory() and modified by an agent external to ICM, the simulator will

not know its code is invalid. The Programmer must therefore notify the simulator using
icmFlushProcessorMemory() -

28.1 Example

N

icmBusP bus
icmProcessorP proc

icmNewBus(*'bus™, 32);
icmNewProcessor(....);

// A 64K area of native memory
Uns32 msize = 0x1000;
void *mem2 = malloc(msize);

// connect memory
icmMapNativeMemory(bus, 0, msize-1, mem2);

// connect processor
icmConnectProcessorBusses(proc, bus, bus)

;/ . . . during simulation . . .

memcpy(mem2, newData, msize);
icmFlushProcessorMemory(proc, 0, msize-1);

// When proc is allowed to continue, it will re-optimize any code that has been

// executed from this memory.

© 2019 Imperas Software Limited www.OVPworld.org Page 152 of 168

OVPsim and CpuManager User Guide

29 Plugin Commands

A processor model or an intercept object or plugin can install its own commands to be
executed as required during simulation. Commands are typically used to enable or disable
functionality in the model or plugin or to extract analysis data that the model or plugin
has been accumulating.

Commands are installed in a processor model using vmi rtAddCommand(). See

OVP_VMI_Run_Time_Function_Reference.doc.

Commands are called using icmCal ICommand(). A command can be called any time
after it has been installed and before the simulation terminates, but t eeds to be
aware of when installation occurs. Models and plugins are r ended to install their
commands in their constructors, in which case the earliest e to call a command

Commands are installed in a plugin using vmiosAddCommand (). See
OVP_VMI_OS_Support_Function_Reference.doc, and icmAdd Interceg
in this document.

is immediately before icmSimulate() or icmSimu la 0.
This example calls two commands; before simulati d before shutdown.
int main(int argc, char ** argv) {
const char *vinvRoot = NULL;
const char *model = icmGetVInvString(vinvRoot,
"ovpworld.org", '‘processor', "orlk', "1.0", "model');
const char *intercept = icmGetVInvString(vinvRoot,
"myco.org"”, "intercepts', "countThings', 0, "model');

icminitPlatform(ICM_VERSION, 0, 0, 0, “platform”);

icmProcessorP processor = icmNewProcessor(

“cpul™, // CPU name
"orlk", // CPU type
o, // CPU cpuld
o, // CPU model flags
32, // address bits
model, // model file
o, // not used
o, // enable tracing etc
0, // user-defined attributes
0, // no semihost or intercept library
0 // not used
)
icmAddInterceptObject(
processor,
"pluginl®,
intercept,
0, // not used
0
)
icmLoadProcessorMemory(processor, ‘‘program.elf”, ICM_LOAD DEFAULT, False, True);

© 2019 Imperas Software Limited www.OVPworld.org Page 153 of 168

OVPsim and CpuManager User Guide

// Call this command before simulation
char *argv[2] = { "logging, "-on" };

icmCal 1Command(

"cpul®™, // instance that has the command

o, // it"s in the processor, not in its plugin

argv[0] // name of the command

2, // number of arguments

argv // argument array (by convention including the command)

)

icmSetSimulationStoptime(0.37); // stop after this many seconds
icmSimulatePlatform();

// stopped again after 0.37 secs
argv[0] = "showResults";
argv[1] = "-all";

// Call this command during simulation
icmCal 1Command(

"cpul™, // instance

"pluginl®, // name of plugin containing the command

argv[0] // name of the command

2, // number of arguments

argv // argument array (by convention including the command)

):
icmTerminate();
// do NOT try calling a command here

return O;

Note that although each command can use its arguments in any way, it is normal practice
to use the Unix convention of passing ommand name as the first argument. Thus
argv[0] is the command name and first true argument.

An example of calling co e created within a processor model is in

$IMPERAS_HOME/Examples/PlatformsICM/cal 1Command .

NOTE
| example showing the same feature are available as
ulationControl/callingInstalledCommands

This uses the MIPS32 model commands.

In platform/platform.c an array is defined for the arguments for the command. This is a
Linux like argv, argc array; with argument zero the name of the command

const char *cmdlArgv[] = {"mipsCOPO", "16", "0"};

When calling the command this array is passed to the icmCallCommand function.

result = icmCallCommand(*'cpul®™, NULL, cmdlArgv[0], 3, &cmdlArgv[0]);

© 2019 Imperas Software Limited www.OVPworld.org Page 154 of 168

OVPsim and CpuManager User Guide

The result returned from the icmCallCommand function is a string passed back from the
command itself after execution. It can represent success or failure of the command or it
can be an information string; this is command dependent.

This example also shows setting the “plugininstanceName” argument to NULL when the
command is on a model itself rather than on a plugin loaded onto a model.

29.1 Discovering Installed Commands

An ICM application can discover what commands are available, for the whole platform
or for a particular processor model.

An example of discovering commands that are created within a processor mode

Imperas/Examples/Platforms1CM/cal 1Command .

NOTE
OP API example showing the same feature a
SimulationControl/callingInstalledCc

>

A function is declared using the provided pr rguments to the function
are: platform name (if supplied), model n ame (if from a plugin), command
name short help string (if supplied) anduser dat

This uses the MIPS32 model commands.

static ICM_INSTALLED_COMMAND_FN(printCommand) {

-
The function printCom balled for every installed command, in the platform:

icmGetAlIPlatformCommands(printCommand, userData);

... or in aparti pro r:

icmProcessorP proc = icmFindProcessorByName(procName);

icmGetAl IProcessorCommands(proc, printCommand, userData);

© 2019 Imperas Software Limited www.OVPworld.org Page 155 of 168

OVPsim and CpuManager User Guide

30 Multicore (SMP) Support

Multicore processors have information at their 'root’ level - accessed from the handle
returned during construction, and also on processor objects under the root level - accessed
through handles obtained by iterator or callback functions. Each sub-processor has a
unique name and a description which indicates its function within the multicore model.
This is a summary of the functions used to access a multicore processor:

function use
icmGetSMPParent Return the parent of the given processor.
icmGetSMPChild Return the first child of the given processor.

icmGetSMPPrevSibling | Return the previous sibling of the given process:
icmGetSMPNextSibling | Return the next sibling of the given processor

icmGetSMPIndex Return the index number of the gi
icmSMPIsL eaf Return true if the given process
icmlterAllChildren Call the given function on each chi processor;

finds all processor at one level.
icmliterAllDescendants | Call the given function on each de

ant of the given

e whole hierarchy,
except the root
icmlterAllProcessors Call the given fun
processor. From the
including the root
icmGetProcessorDesc Return a st describing the type of the given processor.
Can be
icmGetProcessorName Retur, (unigue) name of the current processor

scendant of the given
will find the whole hierarchy,

30.1.1 C
This is a summary s'that can be applied to the root of an SMP and to sub-

allowed on root allowed on children

etc. y (applies to all children) y
icmDebugThisProcessor y n
icmSetGd y n
icmReadProcessorMemory etc | y (uses current TLB state) | y (uses current TLB state)
icmReadReg, icmSetPC etc. y (if register is present) y (if register is present)
Freeze, unfreeze etc. n y
set/clear breakpoints y (applies to all children) y

© 2019 Imperas Software Limited www.OVPworld.org Page 156 of 168

OVPsim and CpuManager User Guide

31 Processor Information

The ICM API can be used to find information that is embedded in a processor model.
This information is typically used by:

0 adebugger to present information to the user
o0 on-line documentation generators

All these functions require a handle to a processor instance. Any parameters passed to the
instance when it was created (such as the variant) will be reflected in the

There is an example in:

$(IMPERAS_HOME)/Examples/PlatformsICM/queryProcessor

NOTE p
OP API example showing the same feature ila

SimulationControl/processorQ

31.1 Processor Docume

31.1.1 Documentati
Processor documentation is pres
title or section content and can h
using icmGetProcessorDo.

as a hierarchy of nodes. Each node can be a section
more child nodes. The 'root' node is found
g functions are used to traverse the hierarchy:

e root document node.

function us
t sibling of the current node.

icmGetProcessorDoc
i i NNet the first child of the current node.

Return the text from this node

Returns True if this node is text content, False if it is a title or
heading.

icmDoclsText

31.1.2 Processor Simulation Information

These functions return information from a processor model useful to a simulator or
debugger:

function use

icmGetProcesorVinv Returns information about where the model is stored

in an Imperas release. This information will usually
match where the model was found in the first place.

© 2019 Imperas Software Limited www.OVPworld.org Page 157 of 168

OVPsim and CpuManager User Guide

icmGetProcessorElfCode Get 1 or more the ELF codes expected by this model.
This should normally match the type code found in
ELF program files loaded for execution by this model.

icmGetProcessorEndian Get the endianness supported by this model.

icmGetProcessorGdbPath Get the path to the gdb debugger matching this
processor in the Imperas release.

icnGetProcessorDefaultSemihost | Returns information about where the default semihost
library for the model is stored in the Imperas release.

31.2 Processor Parameters

The behavior of a processor model can be changed by setting name/value pa
simulator prior to simulation. These pairs are referred to as attributes whe

discovered from the ICM API. Iterators and accessor use i
handle to a unique parameter of a processor.

function use

icmGetNextParameterinfo | Return the handle of t
this processor.

st or subsequent parameter of

icmGetParamName Return the paramet .
icmGetParamType Return the para type as an enumeration.
icmGetParamTypeString Return t rameter type as a string.
icmGetParamDesc Retu h escription of the parameter.

Parameter types are as follows:

enumeration use

ICM_PT BOOL Trueifsetto 1,y ort; false otherwise

ICM_PT _INT32 32 bit signed integer

32 bit unsigned integer

64 bit unsigned integer, also used for addresses.

Double Double precision floating point.

String Arbitrary text string

Enumeration | String whose value must be one of a specified
set.
ICM_PT ENDIAN Endian enumeration with values 'big’ or 'little’

The enumeration names and values of a parameter of type ICM_PT_ENUM can be
obtained using the icmParamEnumP handle. Note that the mapping of the string to an
integer is private to the model.

function use

icmGetNextParamEnum Return the handle of the 1st or subsequent enumeration

© 2019 Imperas Software Limited www.OVPworld.org Page 158 of 168

OVPsim and CpuManager User Guide

icmGetParamEnumName Return the name (string value) of the enumeration
icmGetParamEnumValue Return the integer value of the enumeration.
icmGetParamEnumDesc Return a short a description of the enumeration.

31.3 Processor Ports

Processor bus, net and FIFO ports can be discovered from the ICM API. The three port
types are distinct and are accessed through different handle types.

handle use

icmBusPortInfoP handle to a bus port description
icmNetPortInfoP handle to a net port description
icmFifoPortInfoP handle to a FIFO port description

31.3.1 Bus ports
These functions are used to query a model's bus por
have two bus ports; INSTRUCTION and DATA; D
have others.

te that most processor models
and other special processors might

function

icmGetNextBusPortInfo t bus port information handle
icmGetBusPortName of the bus port.
icmGetBusPortType n the type of bus port as an enumeration

icmGetBusPortTypeStrin type of bus port as a string

icmGetBusPortDomain rn the domain type of bus port as an enumeration

icmGetBusPortDesc

Return a short description of the bus port

icmGetBusPortAd turn the width of the address bus, in bits.

string description
Bus master creates bus transactions
_BPT - Bus slave responds to bus transactions
ICM_BPT _MASTERSLAVE | Bus master/slave | creates and responds

Types of bus domain:

type string description
ICM_DOM_CODE Code domain Used to fetch program code
ICM_DOM DATA Data domain Used to read write data
ICM_DOM OTHER Other domain Other uses.

© 2019 Imperas Software Limited www.OVPworld.org Page 159 of 168

OVPsim and CpuManager User Guide

31.3.2 Net ports

These functions are used to query a model's net ports. The most common use of net ports

are for reset and for interrupt inputs.

function use

icmGetNextNetPortInfo Return the next net port information handle
icmGetNetPortName Return the name of the net port.
icmGetNetPortType Return the type of net port as an enumeratio
icmGetNetPortTypeString Return the type of net port as a string
icmGetNetPortDesc Return a short description of the net p
Types of Net port:

type string description
ICM_NPT _INPUT Input

ICM_NPT OUTPUT Output

ICM_NPT _INOUT Inout

31.3.3
Some processors have serig

FIFO ports

ons typically used to build large processor
d using FIFOs which can be queried using these

eturn the next FIFO port information handle

Return the name of the FIFO port.

Number of bits in each word read or written

Return the type of FIFO port as an enumeration

Return the type of FIFO port as a string

icmGetFifoPortDesc

Return a short description of the FIFO port

Types of FIFO port:

type string description
ICM_FPT_INPUT Input FIFO Input
ICM_FPT_OUTPUT Output FIFO Output

© 2019 Imperas Software Limited www.OVPworld.org

Page 160 of 168

OVPsim and CpuManager User Guide

31.3.4 Fetching information from an SMP
This is a summary of data that can be found on the root of an SMP and on the sub-

processors (if they exist):

data

appears on the root

appears on sub-processors

document node

Bus port

Net Port

FIFO port

Parameter

Name

Description

< <|S|o|o|o|>

Index

Registers

<KIKKIKIK KKK K

© 2019 Imperas Software Limited www.OVPworld.org

Page 161 of 168

OVPsim and CpuManager User Guide

32 Custom Object Readers

If you wish to load object files of a format not supported by CpuManager or the Imperas
Simulator, you can write your own reader and install it in the simulator.

A new reader is installed using icmInstal 10bjectReader (). An example of a
custom reader is in:

$IMPERAS_HOME/Examples/PlatformsICM/objectReader .

NOTE
OP API example showing the same feature are available a
SimulationControl/customApplicationReader

In platform/platform.c the custom reader is installed befor pro r memory is
loaded (otherwise the reader will not be available).

// install the new object reader
icminstal I0bjectReader (*'loader/model .so™);

K

The simulator tries to read the file "myprog" using ew loader before trying the built-

in loaders.

32.1 Writing a custom rea
This is covered in Custom_Object_Re df.

© 2019 Imperas Software Limited www.OVPworld.org Page 162 of 168

OVPsim and CpuManager User Guide

33 Command Line Parsing

A command line parser is available in the ICM API. This provides:
e The ability to read simulator flags from the user’s command line.
e A standard mechanism for parsing flags with boolean, string and numeric values.

33.1 Simulator Flags
In its simplest form, call icmCLParseStd() from main() BEFORE calling WPlatform:

int main(int argc, char ** argv) {
// Create and use the standard argument parser
icmCLPP parser = icmCLParser(“'myPlatform *, ICM_AC_ALL);
cmdParserAddUserArgs(parser);

icmCLParseArgs(parser, argc, argv);

// initialize CpuManager
icminitPlatform(ICM_VERSION, O, 0, O, “myPlatform™);

With this call, the program will parse most argume
file (see Imperas Control File User Guide), a
—help shows all available flags. The function is

nts accepted by imperas.exe;
ified as follows:

'S

icmCLParse (
const char *executableName, // for use in error reports
icmCLPArgClass use, // choose which arguments to parse

);

7

The use argument is set as

value ning

ICM_AC NONE imulator arguments

ICM_AC BASIC sic arguments

ded argument set

Further extended argument set

All arguments (available in some products)

To set the defau
controls)

elp and usage message (perhaps an overview of the platform and its

icmCLParseUsageMessage(
icmCLPP parser, // Existing parser
const char *message // default message

)

This will appear as part of the —help output or when a command line error is detected.

33.2 User-specified Flags

To parse arguments specific to the platform use the following idiom:

© 2019 Imperas Software Limited www.OVPworld.org Page 163 of 168

OVPsim and CpuManager User Guide

int main(int argc, char ** argv) {
Bool goval;

// Create the standard argument parser
icmCLPP parser = icmCLParser(“'myPlatform ", ICM_AC_ALL);

// Add your arguments here
icmCLParserAdd(parser, “go”, “G”, 0, ICM_AT_BOOLVAL, &goVal, “Say GO”, 0, userData);

// Parse the arguments
icmCLParseArgs(parser, argc, argv);

// initialize CpuManager
icminitPlatform(ICM_VERSION, O, 0, O, “myPlatform™);

In this example, if the program command line includes —go then the Me
‘goval’.

The function to add a custom argument is:

icmCLParserAdd (

icmCLPP parser, // parser handle

const char *name, // Tull name for the flag (without the “-°)

const char *shortName, // optional short name for the flag (without the “-°)
const char *argDesc, // Describe the value that follows the flag (if reqd)
const char *group, // argument group

icmCLPArgType type, // Enumeration (see below)

void *ptr, // Ptr to value or function

const char *description, // Description for —help

Uns32 mask, // Set to zero

Uns32 userData, // 2" argument to callback (if required)

Bool mandatory // 1T set, this argument _must_ be specified

)

Note that the flag name anc UUst not clash with existing names; a run-time

error will be produced i %

and line arguments to be grouped to clarify the output
group appear together. If group is null, the argument

to icmCLParserAdd specifies the argument type. Options are:

Flag is followed by Action
ICM_AT BOOLVAL nothing Sets a boolean variable
ICM_AT INT32VAL +Vve or —ve integer Sets a 32bit integer variable
ICM_AT UNS64VAL +ve 64 bit integer Sets a 64bit integer variable
ICM_AT DOUBLEVAL floating point number | Sets a double variable
ICM_AT _STRINGVAL a string Sets a string variable
ICM_AT STRINGLIST a list of strings * Adds to a list of strings
ICM_AT_PAIRLIST a list of pairs of the Adds to a list of name,value

form name=value pairs

© 2019 Imperas Software Limited www.OVPworld.org Page 164 of 168

OVPsim and CpuManager User Guide

ICM_AT FC BOOLEAN nothing Calls a function
ICM_AT FC INT32 +Ve or —ve integer Calls a function taking an Int32
ICM_AT FC UNS64 +ve 64 bit integer Calls a function taking an Uns64
ICM_AT FC DOUBLE floating point number | Calls a function taking a double
ICM_AT FC STRING string Calls a function taking a string
ICM_AT _FC_ ARGV one or more strings + Calls a function taking an array
ICM_AT_FC_ARGV_PAIR | one or more pairs of Calls a function taking two

the form name=value arrays

* The ICM_AT_STRINGLIST type can be specified on the command line more than
once. Each occurrence adds to a linked list of strings.
+ The ICM_AT_FC_ARGV type can be followed by one or more space-se alues
(which cannot begin with *-*).

If a callback action is specified the callback should be declz
prototype macros defined in icmContruct.h.

ed usi e CLPA xxxx

If mandatory is true, the parser will report an error if the ne

© 2019 Imperas Software Limited www.OVPworld.org Page 165 of 168

OVPsim and CpuManager User Guide

34 Differences between CpuManager and OVPsim
These are the differences between CpuManager and OVPsim:

34.1 Heterogeneous Platforms

CpuManager allows the simulation of heterogeneous platforms i.e. platforms that contain
processors of different types.

The user will therefore notice that heterogeneous platforms will run faster in
CpuManager than in OVPsim.

34.2 Control Files

CpuManager and OVPsim can read a simulation control file which allows m
to the simulation without recompiling the platform. Some features
CpuManager are not available in OVPsim. Put —help in the control o list the
available features.

34.3 Debug Interface

A remote debugger can be connected to just one pro i Psim platform.
CpuManager allows many simultaneous debugger ctions. CpuManager can also be
used with the Imperas Multi-Processor debug

i
ension libraries that provide tools. OVPsim
sor that is used to intercept system calls

34.4 Verification and Anal

OVPsim does not support the loading
can load one ‘semihost’ library o
to provide semihosting.
CpuManager can load many intercept li
opportunity for comprehe
recompiling.

ries onto each processor, providing the
and verification of application code without

e Imperas CpuManager (ICM) API.

OVPsim are only implemented as stubs which will cause the simulator
ing message. OVVPsim can simulate exactly the same platforms as

34.6 Simulator Feature summary

Feature OVPsim CpuManager
Speed Fast Fast
Multiple processors Yes Yes
Heterogeneous No Yes

© 2019 Imperas Software Limited www.OVPworld.org Page 166 of 168

OVPsim and CpuManager User Guide

Control files Yes Yes

Semihost intercept Yes Yes
Verification and Analysis | No many libraries
GDB Debug Interface Single GDB Multiple GDBs

Tracing (disassembly) Instructions only

Instruction and code labels

API:

Platform Construction Yes Yes

Simulator Control Yes Yes

Remote debug Single gdb Multiply gdb or Imperas MPD
or user multi-de

Integrated Debugger No Imperas MPD

Command Parser fewer built-in commands | Yes

34.7 OVPsim unsupported API functi

The following CpuManager functions are NOT implemente

Finding and calling model commands

icmCallCommand

icmPrintCommands

icmGetAllPlatformCommands

icmGetAllProcessorCommands

Passing control to a debugger

icmSetSchedFn

Freezing and releasing indivi

icmFreeze

icmUnfreeze

icmlIsFrozen

icmSetMemoryReadWatchPoint

icmSetMemoryWriteWatchPoint

icmSetMemoryAccessWatchPoint

icmSetBusReadWatchPoint

icmSetBusWriteWatchPoint

icmSetBusAccessWatchPoint

icmSetProcessorReadWatchPoint

icmSetProcessorWriteWatchPoint

icmSetProcessorAccessWatchPoint

© 2019 Imperas Software Limited www.OVPworld.org

Page 167 of 168

OVPsim and CpuManager User Guide

Breakpoints and watchpoints

icmSetRegisterWatchPoint

icmSetModeWatchPoint

icmSetExceptionWatchPoint

icmGetWatchPointType

icmDeleteWatchPoint

icmGetNextTriggeredWatchPoint

icmResetWatchPoint

icmGetWatchPointLowAddress®

icmGetWatchPointHighAddress’

icmGetWatchPointRegister®

icmGetWatchPointCurrentValue*

icmGetWatchPointPreviousValue®
icmGetWatchPointUserData”

icmGetWatchPointTriggeredBy*

Callback after a delay

icmTriggerAfter

icmCancelTrigger

Add a user-defined object file reader

icminstallObjectReader

Add disassembler

icmAddSymbol

Verification and Analysis

icmAddInterceptObject

Save and Restore

icmProcessorSave

icmMemoryRestoreStateFile

Debug Control

icmSetDebugMode

H#

> Although these functions can be called there is no underlying watch point available to interrogate

© 2019 Imperas Software Limited www.OVPworld.org Page 168 of 168

	1 Superseded Document Information
	1.1 Examples

	2 Introduction
	2.1 What are CpuManager and OVPsim?
	2.2 Use of ICM with Imperas tools
	2.3 Compiling Examples Described in this Document

	3 Imperas ICM Header Files
	4 Simple Single-Processor Platforms
	4.1 Simple Single-Processor Example
	4.1.1 Initialization
	4.1.2 Selecting Models from the Library
	4.1.3 Creation of a Model Instance
	4.1.3.1 Defining SemiHosting

	4.1.4 Including the Command Line Parser
	4.1.5 Loading the Application Executable
	4.1.6 Running the Simulation
	4.1.7 Clean Up

	4.2 Text Output
	4.3 Running the Example
	4.3.1 Compiling the CpuManager Platform
	4.3.2 Creating an Executable
	4.3.3 Running the Simulation
	4.3.4 Dynamic link library

	5 Simulation Options with ICM Attributes
	5.1 Model Tracing Operations
	5.1.1 Example: Simulation Tracing
	5.1.2 Controlling tracing during simulation
	5.1.3 Command Line

	5.2 Simulating Exceptions
	5.2.1 Example: Simulating an Unaligned Access Exception

	6 Attributes
	6.1 Setting Attributes
	6.2 Attribute Definitions
	6.3 Special Attributes
	6.3.1 MIPS Attribute
	6.3.2 Endian Attribute

	6.4 User-Defined Attribute Example
	6.5 Querying Attributes
	6.6 Overriding Attributes

	7 Custom Tracing using Model Access Functions
	7.1 Reading and Writing Registers
	7.2 Generating Disassembly Output
	7.3 Dumping Registers
	7.4 Instruction Counts
	7.5 Simulating for One Instruction
	7.6 Example

	8 Semihosting
	8.1 Example
	8.2 Additional intercept objects

	9 Memory Operations
	9.1 Accessing Processor Model Memory
	9.1.1 Loading object files
	9.1.1.1 Supported object formats
	9.1.1.2 Loading Symbols in object files

	9.1.2 Reading and Writing Data
	9.1.2.1 Reading and Writing Data Example

	9.1.3 Reading and writing memory without side-effects.

	9.2 Adding Memory Callbacks
	9.2.1.1 Example Adding a Memory Callback

	9.3 Explicit Local and External Memory
	9.4 Mapping an address region to a callback
	9.4.1 Invalid access
	9.4.2 Debugging Bus Connections
	9.4.3 Processor Instruction Execution
	9.4.4 Example

	10 Simulator Scheduler
	10.1.1 Example

	11 Caches
	11.1 Transparent or Full MMC Models
	11.2 MMC Operation
	11.3 Transparent Model
	11.3.1 Full Model

	11.4 Creating and connecting an MMC
	11.4.1 Transparent MMC Example
	11.4.2 Full MMC Example
	11.4.3 Cascaded MMC Example

	12 Byte Swapping (Endian Correction)
	12.1 Bus Connections
	12.2 Bus bridge
	12.2.1 Aliasing

	12.3 Performance considerations

	13 Dynamic Bus Bridges
	14 Attaching a Debugger
	14.1 Example of attaching to GDB
	14.2 Attaching to the remote multiprocessor debugger
	14.3 Automatic startup of remote debuggers.
	14.3.1 Using the control file
	14.3.1.1 Integrated debugger
	14.3.1.2 Remote debugger

	14.4 Selecting the GDB

	15 Multiprocessor Support
	15.1 Example
	15.2 Verbose Output
	15.2.1 Simulation Time Statistics

	15.3 Standard Multiprocessor Scheduling Algorithm
	15.3.1 Changing the Time Slice Size
	15.3.2 Changing Processor Nominal MIPS Rate
	15.3.3 Writing Custom Scheduling Algorithms

	15.4 Many Core Example

	16 QuantumLeap Multiprocessor Support
	16.1 Example
	16.2 QuantumLeap Results
	16.3 QuantumLeap Scheduling Algorithm
	16.4 QuantumLeap Options
	16.4.1 Option -parallelopt
	16.4.2 Option -parallelthreads
	16.4.3 Option -parallelmax

	17 Limiting Performance to Wall Clock Time
	17.1.1 Example 2 – Wallclock Simulation

	18 Interrupting Simulation
	18.1 Cntrl-C Handler
	18.2 Causing Processor to Yield
	18.3 Example
	18.4 Important Notes
	18.4.1 ICM API Usage in Ctrl-C Handler
	18.4.2 icmInterrupt Usage

	19 Interrupting a Specific Processor
	19.1 Example
	19.1.1 Reset Processor
	19.1.2 Startup Reset
	19.1.3 Reset Wire (net)

	20 Integration with Client Debuggers
	20.1 Memory Access
	20.2 Register Query
	20.3 Register Group Query
	20.4 Mode State Query
	20.5 Exception State Query
	20.6 Processor Freezing
	20.7 Address Breakpoints
	20.8 Instruction Count Breakpoints
	20.9 Memory, Bus and Processor Watchpoints
	20.9.1 Watchpoint Creation and Deletion
	20.9.2 Watchpoint Attribute Query
	20.9.3 Handling Triggered Watchpoints

	20.10 Handling Simultaneous Debug Events
	20.11 Debugger Examples
	20.11.1 Debugger Integration Example 1
	20.11.1.1 Establishing Watchpoints
	20.11.1.2 Running the Simulator
	20.11.1.3 Compiling and Running the Example

	20.11.2 Semantics of Physical and Virtual Watchpoints
	20.11.2.1 Physical Watchpoints
	20.11.2.2 Virtual Watchpoints

	20.11.3 Debugger Integration Example 2
	20.11.3.1 Establishing Watchpoints
	20.11.3.2 Running the Simulator
	20.11.3.3 Compiling and Running the Example

	20.12 Scheduler Notification

	21 Peripherals
	21.1 Adding a Peripheral
	21.1.1 Instantiating a Peripheral
	21.1.2 Attach a peripheral to a Bus
	21.1.2.1 Fixed Bus
	21.1.2.2 Dynamic Bus

	21.2 Enabling Diagnostics
	21.2.1 Model Diagnostics
	21.2.2 Intercept Library Diagnostics
	21.2.3 PSE Debugger Support

	21.3 Passing Attributes
	21.4 Simulating a Platform
	21.4.1 Default Scheduling Algorithm
	21.4.2 Custom Scheduling Algorithm

	21.5 Adding an Extension Intercept Library
	21.5.1 Adding more Intercept Libraries
	21.5.2 Example platform

	21.6 Selecting using VLNV
	21.6.1 Example VLNV searches

	22 Nets connecting models
	22.1 Example

	23 Detecting changes on a net
	23.1 Example

	24 Packetnets
	24.1 Packetnet Direction
	24.2 Packetnet ports
	24.3 Recursion
	24.4 Packet size
	24.5 Packetnet functions
	24.6 Example

	25 Simulator Control Files
	26 Encapsulating Models for use in other Environments
	26.1 SystemC
	26.1.1 Create Processor Instance
	26.1.2 External SystemC Memory
	26.1.3 Example Platform
	26.1.3.1 Running the SystemC Example
	26.1.3.2 Platform with local Memory
	26.1.3.3 Platform with SystemC Memory

	27 Using Native Memory
	27.1 Example
	27.2 Combining External and Native Memory

	28 Simulation Optimization
	28.1 Example

	29 Plugin Commands
	29.1 Discovering Installed Commands

	30 Multicore (SMP) Support
	30.1.1 Controlling an SMP

	31 Processor Information
	31.1 Processor Documentation
	31.1.1 Documentation Nodes
	31.1.2 Processor Simulation Information

	31.2 Processor Parameters
	31.3 Processor Ports
	31.3.1 Bus ports
	31.3.2 Net ports
	31.3.3 FIFO ports
	31.3.4 Fetching information from an SMP

	32 Custom Object Readers
	32.1 Writing a custom reader

	33 Command Line Parsing
	33.1 Simulator Flags
	33.2 User-specified Flags

	34 Differences between CpuManager and OVPsim
	34.1 Heterogeneous Platforms
	34.2 Control Files
	34.3 Debug Interface
	34.4 Verification and Analysis
	34.5 ICM API Support
	34.6 Simulator Feature summary
	34.7 OVPsim unsupported API functions summary

