
 

© 2019 Imperas Software Limited www.OVPworld.org Page 1 of 168 

 
 
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OVPsim and Imperas CpuManager User Guide 
 
 

 
 
 
 

Imperas Software Limited 
Imperas Buildings, North Weston, 

Thame, Oxfordshire, OX9 2HA, UK 
docs@imperas.com 

 
 
 
 
 
 
 
Author: Imperas Software Limited 
Version: 2.5 
Filename: OVPsim_and_CpuManager_User_Guide.doc 
Project: OVPsim and CpuManager User Guide 
Last Saved: Monday, 08 April 2019  
Keywords: ICM API 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 2 of 168 
. 

Copyright Notice 
Copyright © 2019 Imperas Software Limited All rights reserved. This software and 
documentation contain information that is the property of Imperas Software Limited. The 
software and documentation are furnished under a license agreement and may be used or 
copied only in accordance with the terms of the license agreement. No part of the 
software and documentation may be reproduced, transmitted, or translated, in any form or 
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written 
permission of Imperas Software Limited, or as expressly provided by the license 
agreement. 
 
Right to Copy Documentation 
The license agreement with Imperas permits licensee to make copies of the 
documentation for its internal use only. Each copy shall include all copyrights, 
trademarks, service marks, and proprietary rights notices, if any. 
 
Destination Control Statement 
All technical data contained in this publication is subject to the export control laws of the 
United States of America. Disclosure to nationals of other countries contrary to United 
States law is prohibited. It is the reader’s responsibility to determine the applicable 
regulations and to comply with them. 
 
Disclaimer 
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY 
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 3 of 168 
. 

Table of Contents 
 

1 Superseded Document Information ............................................................................ 8 
1.1 Examples............................................................................................................. 8 

2 Introduction................................................................................................................. 9 
2.1 What are CpuManager and OVPsim?................................................................. 9 
2.2 Use of ICM with Imperas tools........................................................................... 9 
2.3 Compiling Examples Described in this Document........................................... 10 

3 Imperas ICM Header Files........................................................................................ 11 
4 Simple Single-Processor Platforms........................................................................... 12 

4.1 Simple Single-Processor Example.................................................................... 12 
4.1.1 Initialization .................................................................................................. 13 
4.1.2 Selecting Models from the Library ............................................................... 13 
4.1.3 Creation of a Model Instance........................................................................ 13 

4.1.3.1 Defining SemiHosting .......................................................................... 14 
4.1.4 Including the Command Line Parser ............................................................ 15 
4.1.5 Loading the Application Executable............................................................. 16 
4.1.6 Running the Simulation ................................................................................ 16 
4.1.7 Clean Up ....................................................................................................... 17 

4.2 Text Output ....................................................................................................... 17 
4.3 Running the Example........................................................................................ 17 

4.3.1 Compiling the CpuManager Platform........................................................... 18 
4.3.2 Creating an Executable ................................................................................. 18 
4.3.3 Running the Simulation ................................................................................ 18 
4.3.4 Dynamic link library ..................................................................................... 19 

5 Simulation Options with ICM Attributes.................................................................. 20 
5.1 Model Tracing Operations ................................................................................ 20 

5.1.1 Example: Simulation Tracing ....................................................................... 21 
5.1.2 Controlling tracing during simulation........................................................... 23 
5.1.3 Command Line.............................................................................................. 24 

5.2 Simulating Exceptions ...................................................................................... 24 
5.2.1 Example: Simulating an Unaligned Access Exception................................. 24 

6 Attributes................................................................................................................... 27 
6.1 Setting Attributes .............................................................................................. 27 
6.2 Attribute Definitions ......................................................................................... 27 
6.3 Special Attributes.............................................................................................. 27 

6.3.1 MIPS Attribute.............................................................................................. 27 
6.3.2 Endian Attribute............................................................................................ 28 

6.4 User-Defined Attribute Example ...................................................................... 28 
6.5 Querying Attributes .......................................................................................... 28 
6.6 Overriding Attributes ........................................................................................ 29 

7 Custom Tracing using Model Access Functions ...................................................... 30 
7.1 Reading and Writing Registers ......................................................................... 30 
7.2 Generating Disassembly Output ....................................................................... 32 
7.3 Dumping Registers............................................................................................ 32 
7.4 Instruction Counts ............................................................................................. 32 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 4 of 168 
. 

7.5 Simulating for One Instruction ......................................................................... 33 
7.6 Example ............................................................................................................ 34 

8 Semihosting............................................................................................................... 37 
8.1 Example ............................................................................................................ 37 
8.2 Additional intercept objects .............................................................................. 39 

9 Memory Operations .................................................................................................. 40 
9.1 Accessing Processor Model Memory ............................................................... 40 

9.1.1 Loading object files....................................................................................... 40 
9.1.1.1 Supported object formats ...................................................................... 41 
9.1.1.2 Loading Symbols in object files ........................................................... 41 

9.1.2 Reading and Writing Data ............................................................................ 42 
9.1.2.1 Reading and Writing Data Example ..................................................... 42 

9.1.3 Reading and writing memory without side-effects. ...................................... 46 
9.2 Adding Memory Callbacks ............................................................................... 47 

9.2.1.1 Example Adding a Memory Callback................................................... 47 
9.3 Explicit Local and External Memory................................................................ 49 
9.4 Mapping an address region to a callback.......................................................... 50 

9.4.1 Invalid access ................................................................................................ 51 
9.4.2 Debugging Bus Connections......................................................................... 51 
9.4.3 Processor Instruction Execution ................................................................... 52 
9.4.4 Example ........................................................................................................ 52 

10 Simulator Scheduler.................................................................................................. 56 
10.1.1 Example .................................................................................................... 56 

11 Caches ....................................................................................................................... 58 
11.1 Transparent or Full MMC Models.................................................................... 58 
11.2 MMC Operation................................................................................................ 59 
11.3 Transparent Model ............................................................................................ 59 

11.3.1 Full Model................................................................................................. 60 
11.4 Creating and connecting an MMC.................................................................... 60 

11.4.1 Transparent MMC Example ..................................................................... 60 
11.4.2 Full MMC Example .................................................................................. 62 
11.4.3 Cascaded MMC Example ......................................................................... 63 

12 Byte Swapping (Endian Correction)......................................................................... 65 
12.1 Bus Connections ............................................................................................... 65 
12.2 Bus bridge ......................................................................................................... 66 

12.2.1 Aliasing ..................................................................................................... 66 
12.3 Performance considerations .............................................................................. 67 

13 Dynamic Bus Bridges ............................................................................................... 68 
14 Attaching a Debugger ............................................................................................... 70 

14.1 Example of attaching to GDB........................................................................... 70 
14.2 Attaching to the remote multiprocessor debugger ............................................ 72 
14.3 Automatic startup of remote debuggers. ........................................................... 73 

14.3.1 Using the control file ................................................................................ 73 
14.3.1.1 Integrated debugger .......................................................................... 73 
14.3.1.2 Remote debugger .............................................................................. 74 

14.4 Selecting the GDB ............................................................................................ 74 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 5 of 168 
. 

15 Multiprocessor Support............................................................................................. 75 
15.1 Example ............................................................................................................ 75 
15.2 Verbose Output ................................................................................................. 78 

15.2.1 Simulation Time Statistics ........................................................................ 78 
15.3 Standard Multiprocessor Scheduling Algorithm .............................................. 79 

15.3.1 Changing the Time Slice Size................................................................... 79 
15.3.2 Changing Processor Nominal MIPS Rate................................................. 80 
15.3.3 Writing Custom Scheduling Algorithms .................................................. 80 

15.4 Many Core Example ......................................................................................... 80 
16 QuantumLeap Multiprocessor Support..................................................................... 85 

16.1 Example ............................................................................................................ 85 
16.2 QuantumLeap Results ....................................................................................... 87 
16.3 QuantumLeap Scheduling Algorithm............................................................... 87 
16.4 QuantumLeap Options ...................................................................................... 88 

16.4.1 Option -parallelopt .................................................................................... 88 
16.4.2 Option -parallelthreads.............................................................................. 88 
16.4.3 Option -parallelmax .................................................................................. 89 

17 Limiting Performance to Wall Clock Time .............................................................. 90 
17.1.1 Example 2 – Wallclock Simulation .......................................................... 90 

18 Interrupting Simulation............................................................................................. 92 
18.1 Cntrl-C Handler ................................................................................................ 92 
18.2 Causing Processor to Yield............................................................................... 93 
18.3 Example ............................................................................................................ 94 
18.4 Important Notes ................................................................................................ 94 

18.4.1 ICM API Usage in Ctrl-C Handler ........................................................... 94 
18.4.2 icmInterrupt Usage.................................................................................... 95 

19 Interrupting a Specific Processor .............................................................................. 96 
19.1 Example ............................................................................................................ 96 

19.1.1 Reset Processor ......................................................................................... 96 
19.1.2 Startup Reset ............................................................................................. 98 
19.1.3 Reset Wire (net) ...................................................................................... 101 

20 Integration with Client Debuggers.......................................................................... 104 
20.1 Memory Access .............................................................................................. 104 
20.2 Register Query ................................................................................................ 104 
20.3 Register Group Query ..................................................................................... 104 
20.4 Mode State Query ........................................................................................... 105 
20.5 Exception State Query .................................................................................... 105 
20.6 Processor Freezing .......................................................................................... 106 
20.7 Address Breakpoints ....................................................................................... 106 
20.8 Instruction Count Breakpoints ........................................................................ 106 
20.9 Memory, Bus and Processor Watchpoints ...................................................... 106 

20.9.1 Watchpoint Creation and Deletion.......................................................... 106 
20.9.2 Watchpoint Attribute Query ................................................................... 109 
20.9.3 Handling Triggered Watchpoints............................................................ 110 

20.10 Handling Simultaneous Debug Events ....................................................... 110 
20.11 Debugger Examples .................................................................................... 110 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 6 of 168 
. 

20.11.1 Debugger Integration Example 1 ............................................................ 111 
20.11.1.1 Establishing Watchpoints................................................................ 111 
20.11.1.2 Running the Simulator .................................................................... 113 
20.11.1.3 Compiling and Running the Example............................................. 116 

20.11.2 Semantics of Physical and Virtual Watchpoints ..................................... 118 
20.11.2.1 Physical Watchpoints...................................................................... 118 
20.11.2.2 Virtual Watchpoints ........................................................................ 118 

20.11.3 Debugger Integration Example 2 ............................................................ 119 
20.11.3.1 Establishing Watchpoints................................................................ 119 
20.11.3.2 Running the Simulator .................................................................... 120 
20.11.3.3 Compiling and Running the Example............................................. 121 

20.12 Scheduler Notification ................................................................................ 123 
21 Peripherals............................................................................................................... 126 

21.1 Adding a Peripheral ........................................................................................ 126 
21.1.1 Instantiating a Peripheral ........................................................................ 126 
21.1.2 Attach a peripheral to a Bus.................................................................... 126 

21.1.2.1 Fixed Bus ........................................................................................ 126 
21.1.2.2 Dynamic Bus................................................................................... 126 

21.2 Enabling Diagnostics ...................................................................................... 127 
21.2.1 Model Diagnostics .................................................................................. 127 
21.2.2 Intercept Library Diagnostics ................................................................. 127 
21.2.3 PSE Debugger Support ........................................................................... 128 

21.3 Passing Attributes ........................................................................................... 128 
21.4 Simulating a Platform ..................................................................................... 128 

21.4.1 Default Scheduling Algorithm................................................................ 128 
21.4.2 Custom Scheduling Algorithm ............................................................... 128 

21.5 Adding an Extension Intercept Library........................................................... 129 
21.5.1 Adding more Intercept Libraries............................................................. 130 
21.5.2 Example platform.................................................................................... 130 

21.6 Selecting using VLNV.................................................................................... 132 
21.6.1 Example VLNV searches........................................................................ 133 

22 Nets connecting models .......................................................................................... 134 
22.1 Example .......................................................................................................... 134 

23 Detecting changes on a net ..................................................................................... 135 
23.1 Example .......................................................................................................... 135 

24 Packetnets ............................................................................................................... 136 
24.1 Packetnet Direction......................................................................................... 136 
24.2 Packetnet ports ................................................................................................ 136 
24.3 Recursion ........................................................................................................ 136 
24.4 Packet size....................................................................................................... 136 
24.5 Packetnet functions ......................................................................................... 137 
24.6 Example .......................................................................................................... 137 

25 Simulator Control Files........................................................................................... 139 
26 Encapsulating Models for use in other Environments ............................................ 140 

26.1 SystemC .......................................................................................................... 140 
26.1.1 Create Processor Instance ....................................................................... 141 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 7 of 168 
. 

26.1.2 External SystemC Memory..................................................................... 143 
26.1.3 Example Platform ................................................................................... 145 

26.1.3.1 Running the SystemC Example ...................................................... 146 
26.1.3.2 Platform with local Memory........................................................... 147 
26.1.3.3 Platform with SystemC Memory .................................................... 148 

27 Using Native Memory............................................................................................. 150 
27.1 Example .......................................................................................................... 150 
27.2 Combining External and Native Memory....................................................... 151 

28 Simulation Optimization......................................................................................... 152 
28.1 Example .......................................................................................................... 152 

29 Plugin Commands................................................................................................... 153 
29.1 Discovering Installed Commands ................................................................... 155 

30 Multicore (SMP) Support ....................................................................................... 156 
30.1.1 Controlling an SMP ................................................................................ 156 

31 Processor Information............................................................................................. 157 
31.1 Processor Documentation ............................................................................... 157 

31.1.1 Documentation Nodes............................................................................. 157 
31.1.2 Processor Simulation Information .......................................................... 157 

31.2 Processor Parameters ...................................................................................... 158 
31.3 Processor Ports................................................................................................ 159 

31.3.1 Bus ports ................................................................................................. 159 
31.3.2 Net ports.................................................................................................. 160 
31.3.3 FIFO ports............................................................................................... 160 
31.3.4 Fetching information from an SMP ........................................................ 161 

32 Custom Object Readers........................................................................................... 162 
32.1 Writing a custom reader.................................................................................. 162 

33 Command Line Parsing........................................................................................... 163 
33.1 Simulator Flags ............................................................................................... 163 
33.2 User-specified Flags........................................................................................ 163 

34 Differences between CpuManager and OVPsim .................................................... 166 
34.1 Heterogeneous Platforms ................................................................................ 166 
34.2 Control Files.................................................................................................... 166 
34.3 Debug Interface............................................................................................... 166 
34.4 Verification and Analysis ............................................................................... 166 
34.5 ICM API Support ............................................................................................ 166 
34.6 Simulator Feature summary............................................................................ 166 
34.7 OVPsim unsupported API functions summary............................................... 167 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 8 of 168 
. 

1 Superseded Document Information 
This document provides some simulation background but describes the use of the ICM 
API that is deprecated and replaced by the OP API. Detailed information for the OP API 
is found in a release in the API documentation doc/api/op/html/index.html 
 
This document has been superseded by the following documents that are found in a 
release in the directory doc/ovp 
 
The iGen_Platform_and_Module_Creation_User_Guide document describes how to 
use the iGen Model Generator to generate the virtual platform definition of the hardware. 
This definition can be in the form of a platform or a module. A platform is a description 
of a hardware design that becomes a stand-alone executable. A module is a description of 
a hardware design that is loaded by a harness or another module. A module, therefore, 
can define a complete hardware definition (as a platform) but can also describe sub-
systems and so represent hierarchy of a design and allow re-use. 
 
The Writing_Platforms_and_Modules_in_C_User_Guide document provides an 
introduction to using the OP API (which replaces the deprecated ICM API described in 
this document) to create virtual platform definitions of hardware in the form of platforms 
and modules. The document also shows how to control the simulator with test harnesses 
also written in C. 
 
 

1.1 Examples 
This document describes examples that can be found in a release under the directory 

 
Imperas/Examples/PlatformsICM. 

 
There are now equivalent and additional examples using the OP API that can be found in 
a release under the directories 

 
Imperas/Examples/PlatformConstruction  
Imperas/Examples/SimulationControl. 

 
This document has been updated to provide the details of the equivalent OP API 
examples to the ICM API examples described in this document. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 9 of 168 
. 

2 Introduction 
This document describes use of the Innovative CpuManager Interface (ICM) API to 
implement simulation models of platforms containing any number of processor models 
communicating using shared memory. Platforms created using the ICM interface can be 
simulated using either the freely-available OVPsim simulation environment or the 
Imperas commercial CpuManager product. 

2.1 What are CpuManager and OVPsim? 
CpuManager and OVPsim are dynamic linked libraries (.so suffix on Linux, .dll suffix 
on Windows) implementing Imperas simulation technology. The shared objects contain 
implementations of the ICM interface functions described later in this document. These 
ICM functions enable instantiation, interconnection and simulation of complex 
multiprocessor platforms containing arbitrary shared memory topologies. 
 
Processor models for use with CpuManager and OVPsim are created using another API, 
the OVP Virtual Machine Interface (VMI) API, also available for download from the 
www.ovpworld.org website. This API enables processor models to be created that run at 
very high simulation speeds (typically hundreds of millions of simulated instructions per 
second). This is described in the OVP Processor Modeling Guide, also available for 
download from the www.ovpworld.org website. 
 
CpuManager is the commercial product available from Imperas. OVPsim is the freely-
available (for Non-Commercial usage) version of this product. Which one to use is 
determined at runtime by the IMPERAS_RUNTIME environment variable. If it is not set 
or is set to OVPsim then the OVPsim library (which requires an OVP license) is 
dynamically linked at runtime. If it is set to CpuManager then the CpuManager library 
(which requires an Imperas license) will be used. To see the differences, refer to section 
33. 
 
A C++ version of the ICM API is available as source, which can be compiled using your 
own C++ compiler. Is has been tested with g++ (4.0.3) and Microsoft Visual C++ 
(MSCV 2015 Express). This is located in 
Imperas/ImpPublic/include/host/icm/icmCpuManager.hpp 
 
A subset of ICM functionality can be used in SystemC TLM2.0. The TLM2.0 C++ 
interface code is available as source for processor and peripheral models, allowing the 
use of these models in SystemC TLM2.0 platforms. 

2.2 Use of ICM with Imperas tools 
A program using ICM can be linked with the ICM RuntimeLoader to perform runtime 
dynamic loading of either the CpuManager or OVPsim dynamic linked libraries, to 
produce a stand-alone executable. Alternatively, it can be linked to create a dynamic link 
library, which can itself be loaded into the Imperas simulator (imperas.exe) or the 

http://www.ovpworld.org/
http://www.ovpworld.org/


OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 10 of 168 
. 

Imperas debug and verification environment. The Imperas simulator provides many 
benefits in addition to the basic OVP features, including: 

• Multiprocessor debug – the simulator’s extended GDB control allows 
simultaneous debug of all processor and PSE models in the platform, including 
processor specific stepping and breakpoints, temporary freezing of selected 
processors, and all the usual features of GDB. 

• External control of simulation features. Even if you can’t recompile the platform, 
the Imperas simulator can turn on tracing, diagnostics and other simulation 
features, many during a simulation run. 

• Loading of extension libraries for analysis and verification. Even if you can’t 
recompile the platform, the Imperas simulator can load additional intercept 
objects from its command line. 

2.3 Compiling Examples Described in this Document 
This documentation is supported by C code samples in an Examples directory, available 
either to download from the www.ovpworld.org website or as part of an Imperas 
installation. 
 
The examples use processor models and tool chains, available to download from the 
www.ovpworld.org website or as part of an Imperas installation. 
 
SystemC TLM2.0 models can be used on Linux with gcc or on Windows with 
MinGW/MSYS (since SystemC release v2.3.0) or MSVC 8.0. It is assumed that users of 
this environment will be familiar with SystemC, TLM2.0 and will have obtained this 
software from www.systemc.org or similar. 
 

http://www.ovpworld.org/
http://www.ovpworld.org/
http://www.systemc.org/


OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 11 of 168 
. 

3 Imperas ICM Header Files 
The ICM API, used by both CpuManager and OVPsim, is defined by several header files 
within the Imperas tool release tree or freely-available download from 
www.ovpworld.org : 
 
Common Definitions 
Standard types    Imperas/ImpPublic/include/impTypes.h 
 
ICM API Definitions 
Formatted output & C API function 
Imperas/ImpPublic/include/host/icm/icmCpuManager.h 
 
For clarity this file now includes several headers which can be included according to the 
functionality required: 
 
icmConstruct.h Platform construction. 
icmDebugger.h Functions for use by an integrated debugger. 
icmDestruct.h Functions for clean up after a simulation. 
icmObjectfiles.h Reading and loading application processor object files. 
icmQuery.h Interrogation and exploration of an existing platform. 
icmRuntime.h Interacting with the platform during simulation. 
icmSimulatorSession.h Changing the way the simulator runs. 
icmText.h Writing text to the output stream, redirection of text. 
icmTrace.h Instruction tracing. 
icmTypes.h Types required by all icm functions. 
icmVersion.h The ICM interface version. 
 
C++ API functions 
Imperas/ImpPublic/include/host/icm/icmCpuManager.hpp 
 
TLM2.0 Interfaces 
TLM2.0 generic 
Imperas/ImperasLib/source/ovpworld.org/modelSupport/<>/1.0/tlm2.0/*.h 
TLM interface 
Imperas/ImperasLib/source/<v>/<l>/<n>/<v>/tlm2.0/*.hpp 
 
<v>/<l>/<n>/<v> are the vendor, library, name and version of the model, and are the 
same references used to locate the model in the library. 

http://www.ovpworld.org/


OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 12 of 168 
. 

4 Simple Single-Processor Platforms 
A simple program can be made that runs a single-processor platform using just five calls 
from the ICM API: 

• icmInitPlatform 
icmInitPlatform initializes the simulation environment prior to a simulation 
run: it should be the first ICM routine called in any application. It names the 
platform, specifies attributes to control some aspects of the simulation to be 
performed, and also specifies how a debugger should be connected to the 
application if required. 

• icmNewProcessor 
icmNewProcessor is used to create a new processor instance. 

• icmLoadProcessorMemory 
Once a processor has been instantiated by icmNewProcessor, this routine is used 
to load an object file into the processor memory. Currently accepted formats are 
ELF and TI-COFF. 

• icmSimulatePlatform 
icmSimulatePlatform is used to run simulation of the processor and program, 
for a specified duration. 

• icmTerminate 
icmTerminate must be called at the end of simulation.  It's function is to: 

o Free memory. 
o Return any licenses to the license server. 
o Ensure all tools have finished writing their results files. 
o Print the simulation statistics. 

CpuManager installs an 'atexit' handler which checks that icmTerminate has been 
called but does not call it automatically. 

 
Later sections in this document will describe the arguments to these functions in more 
detail. 

4.1 Simple Single-Processor Example 
A simple single-processor platform example is available in the directory: 
 
$IMPERAS_HOME/Examples/PlatformsICM/simple 
 

NOTE 
OP API equivalent example is available as PlatformConstruction/simpleCpuMemory 

 
This uses the freely-available OR1K processor (see 
http://www.opencores.org/projects.cgi/web/or1k/architecture). 
 
The following sections describe the main operations being performed 

http://www.opencores.org/projects.cgi/web/or1k/architecture


OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 13 of 168 
. 

4.1.1 Initialization 
The simulator is initialized by calling icmInitPlatform: 
 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “platform”); 

 
This function takes five arguments. The first argument is the version string from the ICM 
header files, which should be supplied as shown, simAttrs, is a bitmask controlling 
aspects of simulation behavior (for example, whether to emit verbose output giving 
simulated MIPS rate). Arguments 3 & 4 are used when processor debug is required, 
discussed in a later section. Argument 5 is an optional name for the platform. 
 

4.1.2 Selecting Models from the Library 
 
The components, including processors, peripherals and memories, are supplied in a 
Vendor, Library, Name and Version (VLNV) format library structure. An API function 
icmGetVlnvString is available to help construct the path to access these models.  
  
    // select library components  
    const char *vlnvRoot = 0; // when null, use the default library 
    const char *model = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "processor", "or1k", "1.0", "model" 
    ); 
    const char *semihosting = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "modelSupport", "imperasExit", "1.0", "model" 
    ); 

 
With the first argument set to NULL the default Imperas library is used. This is specified 
by the environment variable IMPERAS_VLNV and by default would point to 
$IMPERAS_HOME/lib/$IMPERAS_ARCH/ImperasLib 
 

4.1.3 Creation of a Model Instance 
A single instance of a processor is defined by calling icmNewProcessor: 
 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        “or1k”,             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        0,                  // enable tracing etc 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 

 
The arguments to icmNewProcessor are as follows: 

• name: this is an instance name to give the instance, which must be unique in the 
design. 

• type: this is a type name for the instance, in this case specified as “or1k” in the 
makefile. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 14 of 168 
. 

• cpuId: every processor has an id number, specified by this argument. 
• cpuFlags: this is a bitmask that can be accessed from within the processor model 

to change its behavior (for example, to turn on debug modes). In normal usage, 
pass 0. 

• addressBits: this specifies the default data and instruction bus widths for the 
model (typically 32, though ICM supports addresses up to 64 bits wide). 

• modelFile: this is the path to the dynamic load library (.dll or .so) 
implementing the processor model. The file extension can be ignored. If the path 
is a directory rather than a file, the file model.so or model.dll is assumed. For this 
example, the path is specified in the Makefile as follows (relative to the Imperas 
installation): 
ImperasLib/ovpworld.org/processor/or1k/1.0/model.dll 

• (unused argument) 
• procAttrs: this is a bitmask controlling some aspects of processor behavior. The 

options available here will be covered in later sections of this document. 
• userAttrs: this argument specifies a list of application-specific attributes for the 

processor. In this example, the instance has no attributes. 
• semiHostFile  specify the semihosting library for the processor instance; this is 

described in the next subsection. 
• Unused argument 
 
If a platform has many processors, it is sometimes convenient to record user-data on 
the processor instance. This data can then be retrieved. 
 
icmNewProcessorWithHandle is a variant of icmNewProcessor with and extra 
argument 'handle' 
icmGetProcessorHandle returns the handle. 
 
 

4.1.3.1 Defining SemiHosting 
Imperas semihosting allows the default behavior of specified functions or instructions to 
be modified using a semihosting shared object library that is loaded by the simulator in 
addition to the processor model. In this case, we have defined a global label, exit, on the 
last instruction of the assembler test: 
 
.global _start 
_start:     
    l.addi        r1,r2,0 
    .... 
    .... 
    l.muli        r1,r2,0 
.global exit 
exit: 
    l.addi        r1,r2,0 

 
This label can be used in conjunction with a standard Imperas semihosting shared object 
library, located at the following location in the Imperas installation: 
 
ImperasLib/ovpworld.org/modelSupport/imperasExit/1.0/model.dll 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 15 of 168 
. 

 
This semihosting library terminates simulation immediately after any instruction labeled 
exit. To use the semihosting library, platform/platform.c includes the semihosting 
object file name, specified by semihosting, defined in the platform makefile. 
 
semihosting refers to the name of the .so or .dll file implementing the semihosting. 
 

⇒ This simple example makes no specific mention of any processor memory 
configuration, other than to say that the processor address bus width is 32 bits. In 
the absence of any other specific information about memory configuration, 
CpuManager / OVPsim will create a single fully-populated RAM memory 
attached to both the processor data and instruction busses. 

 

4.1.4 Including the Command Line Parser 
 
By including the Command Line Parser access is given to all the standard platform 
arguments.  
 
the commonly used arguments for this example are  

--program to specify the program elf file to load 
--gdbconsole to start debugging the application running on the processor 

 
This is the same set of arguments that are available using the Control File. Please see the 
document 'OVP_Control_File_User_Guide' for further information. 
 
 
static Bool cmdParser(int argc, const char *argv[]); 
 
int main(int argc, const char *argv[]) 
{ 
    // Check arguments and ensure application to load specified 
    if(!cmdParser(argc, argv)) { 
        icmMessage("E", "platform", "Command Line parser error"); 
        icmExitSimulation(1); 
        return 1; 
    } 
... 

 
    static Bool cmdParser(int argc, const char *argv[]) { 
        icmCLPP parser = icmCLParser("platform", ICM_AC_ALL); 
    char message[1024]; 
    sprintf(message, "Basic Usage\n  platform.IMPERAS_ARCH.exe  
                                  --program <elf file>\n"); 
        icmCLParserUsageMessage(parser, (const char *)message); 
 
        Bool ok = icmCLParseArgs(parser, argc, argv); 
 
        if (!icmCLParseArgUsed (parser,"program")) { 
                icmMessage("E", "program",  
            "Argument '--program' must be used to specify application elf file to load"); 
                ok = False; 
        } 
        return ok; 
} 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 16 of 168 
. 

As well as adding the standard set of command line arguments, it is possible for the user 
to add their own, for example the following shows the addition of a new Boolean type of 
argument that can be used in the platform to change some operation. 
 
    icmCLParserAdd(parser, "enable", 0 , 0, "user platform config", ICM_AT_BOOLVAL, 
                            &options.enable, "enable my option", 0x0, 0, 1);  

 

4.1.5 Loading the Application Executable 
Once a processor instance has been created, an object file can be loaded into the 
processor memory using icmLoadProcessorMemory: 
 
    icmLoadProcessorMemory(processor, argv[1], ICM_LOAD_DEFAULT, False, True); 

 
The first argument is the processor for which to load memory. 
 
The second argument is the application object file name. In this example the application 
file name is passed as the first argument to the program when the platform is run. note 
that ELF and TI COFF format files are accepted. 
 
The third argument is an enumerated type allowing control over how the program is 
loaded. This allows: 

a) The use of physical rather than virtual addresses when loading. 
b) Verbose output that reports each section loaded. 
c) The zeroing of the BSS section. 
d) Set the processor initial PC to the entry address of the file. 
e) Only load the symbols and do not modify memory. 

 
See the definition of the icmLoaderAttrs type in impTypes.h for the values to be used. 
 
The fourth argument enables verbose output showing the location of sections in the 
loaded object file. This argument overrides the setting of argument 3. 
 
The fifth argument specifies whether the processor should start execution from the start 
address specified in the object file (if True) or whether it should start at the model-
specific boot address (if False). This argument overrides the setting of argument 3. 
 

⇒ NOTE: This example uses the command line parser which allows the program to 
loaded to be specified on the command line using the --program argument. This 
performs the same operation as the icmLoadProcessorMemory() function shown 
above.  

 

4.1.6 Running the Simulation 
Once the processor has been instantiated and an application program loaded, the program 
can be simulated to completion using: 
 
    icmSimulatePlatform(); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 17 of 168 
. 

 
This routine simulates the entire platform using the CpuManager / OVPsim default 
scheduler, which (for multiprocessor platforms) runs each processor for a number of 
instructions in a time slice before advancing time to run the next time slice. 
 
There is also a routine available, icmSimulate, which can be used to simulate a specific 
processor for a precise number of instructions. This second function is useful in situations 
when CpuManager / OVPsim are being used as a subsystem of a larger simulation 
implemented in another environment (for example, SystemC). 
 

4.1.7 Clean Up 
Finally, icmTerminate is used to clean up simulation data structures and delete all 
simulation objects created since the previous icmInitPlatform call. 
 

⇒ Why should icmTerminate always be called at the end of simulation? 
Some platform components may perform significant actions in their destructors. 
For example, processor models may have a mode in which they print processor-
specific information about the simulation run (e.g. whether certain execution units 
were used or not). If you don’t call icmTerminate then these actions will not be 
performed. 

  

4.2 Text Output 
Use icmPrintf and icmMessage to communicate with the user of the platform. 
icmPrintf (const char *format, ...) is similar to the C library function printf, but sends its 
output to the simulator output stream and log file (if one is active). 
 
icmMessage(const char *severity, const char *prefix, const char *format, ...) also sends 
its output to the simulator output stream and log file (if one is active). The severity string 
should be one of: 

 "I"    for information only. 
 "W"    warning of a non-fatal problem. 
 "E"    An error has occurred. 
 "F"    A fatal error has occurred (this value will terminate the session). 

 
The prefix string should be a unique, short code associated with this platform e.g. 
"MY_CCT". Prefix strings make post-processing the log file easier. 

4.3 Running the Example 
Take a copy of the example: 
 
cp –r $IMPERAS_HOME/Examples/PlatformsICM/simple . 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 18 of 168 
. 

4.3.1 Compiling the CpuManager Platform 
The test platform can be compiled to produce an executable, 
platform.${IMPERAS_ARCH}.exe, by using this command in the platform directory: 
 
make –C platform 

 

4.3.2 Creating an Executable 
A test case must be created using the processor tool chain. Because the OR1K processor 
is supported by Imperas tools and shipped as an example, there is already an encapsulated 
tool chain that you can use to compile test cases for it. 
 
Within the platform directory is a simple assembler test, application/asmtest.c, 
which simply performs a few instructions and exits. The application can be compiled 
using the following command in the platform directory: 
 
make –C application 

 
The result is an ELF format file for the OR1K called asmtest.OR1K.elf. 
 

⇒ The target make all is also present in the example makefile that creates both the 
application and the platform in a single step. 

 

4.3.3 Running the Simulation 
Having compiled the test platform and application, you are now ready to run a 
simulation. Do this by running the following in the platform directory: 
 
Platform/platform.<ARCH1>.exe --program application/asmtest.OR1K.elf 

 
⇒ The environment variable IMPERAS_RUNTIME determines the simulation library 

(OVPsim or CpuManager) that is used at runtime. If not specified, it will to 
default to OVPsim. To use CpuManager instead (which requires a license for the 
Imperas Professional Tools) do:| 
 
export IMPERAS_RUNTIME=CpuManager 

 
You should see the following output: 
 
Processor ‘cpu1’ terminated at ‘exit’, address 0x10000bc 

 
This message is printed by the imperasExit semihosting library as the processor executes 
the first instruction at exit in the application. 

                                                 
1 ARCH is the Host machine architecture, for example Windows32, Linux32 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 19 of 168 
. 

4.3.4 Dynamic link library 
Also built is a dynamic link library, a .dll or .so version of the platform for use in the 
Imperas simulator (see section 1) 
 
The dynamic library can now be simulated in the Imperas simulator: 
 
linux> imperas.exe --icmobject platform/model.so 

 
If your platform has a main() which accepts arguments e.g.: 
 
 
int main(char *argv[], int argc) { 
    char *executable = argv[1]; 
    char *options    = argv[2]; 
    … 
} 
 

 
The Imperas simulator can pass arguments to the platform: 
 
linux> imperas.exe --icmobject platform/model.so  \ 
                   --icmargv --program application/asmtest.OR1K.elf  option1 option2 

 
See the Imperas Simulation Guide for more details. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 20 of 168 
. 

5 Simulation Options with ICM Attributes 
Predefined attributes can be applied to the platform using the simAttrs argument to 
icmInitPlatform() function. This is a bitwise-or of any of the following: 
 
Attribute Definition 
ICM_STOP_ON_CTRLC           Install a Ctrl-C signal handler 
ICM_NO_OPTIMIZE Turn off aggressive JIT code optimization. 
ICM_GDB_CONSOLE Start a gdb console 
ICM_MPD_CONSOLE Start an MPD console 
ICM_SUPPRESS_BANNER   Suppress the banner 
ICM_VERBOSE Output more information 
ICM_ENABLE_IMPERAS_INTERCEPTS Intercept special Imperas functions. 
ICM_WALLCLOCK Prevent the simulator running faster than real-

time when it is inactive. 
ICM_NO_RSP_WAIT Do not wait for a debugger connection. 
ICM_PRINT_USER_ATTRIBUTES Print list of model defined attributes then exit 
ICM_PRINT_COMMANDS Print a list of model commands then exit 
 
Predefined attributes can be applied to a processor model when it is instantiated, using the 
procAttrs argument to icmNewProcessor(). This is a bitwise-or of any of the following: 
 
Attribute Definition 
ICM_ATTR_TRACE           enable instruction tracing 
ICM_ATTR_TRACE_ICOUNT print instruction count with trace  
ICM_ATTR_TRACE_CHANGE write changed registers with trace 
ICM_ATTR_TRACE_REGS_BEFORE dump registers with trace before execution 
ICM_ATTR_TRACE_REGS_AFTER   dump registers with trace after execution 
ICM_ATTR_TRACE_BUFFER maintain 256-instruction trace buffer 
ICM_ATTR_SIMEX           simulate exceptions 
ICM_ATTR_FETCH_VALIDATE validate the address of each instruction fetch 

(processor model validation) 
ICM_ATTR_NOTRACE_ANNUL don't trace annulled instructions. 
 
In this section, the attributes controlling instruction tracing will be covered. Details of 
other attributes are given later in this document. 

5.1 Model Tracing Operations 
Using the ICM_ATTR_TRACE attribute enables instruction-by-instruction tracing for that 
processor instance using the disassembler built in to the processor model. 
 
The ICM_ATTR_TRACE_CHANGE attribute writes the value of all modified registers when 
tracing is enabled by ICM_ATTR_TRACE. Changed values are detected by maintaining a 
record of all values readable using the register access API (see icmGetNextReg and 
related functions) at the completion of every instruction. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 21 of 168 
. 

 
The ICM_ATTR_TRACE_REGS_BEFORE attribute dumps the current processor register state, 
again using the model-specific register dump format, when tracing is enabled by 
ICM_ATTR_TRACE. The order of events for each instruction is: 

1. The register state of the processor is dumped; 
2. The instruction about to be executed is shown in disassembled form; 
3. The instruction is executed. 

 
The ICM_ATTR_TRACE_REGS_AFTER attribute dumps the current processor register state, 
again using the model-specific register dump format, when tracing is enabled by 
ICM_ATTR_TRACE. The order of events for each instruction is: 

1. The instruction about to be executed is shown in disassembled form; 
2. The instruction is executed; 
3. The register state of the processor is dumped. 

 

5.1.1 Example: Simulation Tracing 
 
The test platform for this example is in the tracing directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/tracing 
 
File platform/platform.c has been changed as follows: 
 
 
    #define SIM_FLAGS (ICM_ATTR_TRACE | ICM_ATTR_TRACE_REGS_AFTER) 
 
    // create a processor 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        “or1k”,             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        SIM_FLAGS,          // enable tracing of register values 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 
 

 
We have added the value ICM_ATTR_TRACE and ICM_ATTR_TRACE_REGS to the procAttrs 
argument of icmNewProcessor. This enables dumping of the processor state and registers 
before each instruction is executed. 
 

⇒ Note that in a multiprocessor system, processor instances do not all have to have 
the same attributes. This means that you can enable tracing only for specific 
processors, for example. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 22 of 168 
. 

 
Compile the test platform and application as before using the following commands in the 
tracing directory: 
 
make -C platform 
make –C application 

 
To run the simulation, in the tracing directory, do: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf 

 
You should see the following output: 
 
Info 'cpu1', 0x0000000001000074: l.addi   r1,r0,0x0 
Info 'cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : deadbeef   R3 : deadbeef 
 R4 : deadbeef   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 01000078   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
Info 'cpu1', 0x0000000001000078: l.addi   r2,r0,0x1 
Info 'cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : deadbeef 
 R4 : deadbeef   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 0100007c   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
Info 'cpu1', 0x000000000100007c: l.addi   r3,r0,0xffffffff 
Info 'cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : ffffffff 
 R4 : deadbeef   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 01000080   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
Info 'cpu1', 0x0000000001000080: l.addi   r4,r0,0x800 
Info 'cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : ffffffff 
 R4 : 00000800   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 23 of 168 
. 

 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 01000084   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
...  etc ... 
 
Info 'cpu1', 0x00000000010000ac: l.addi   r1,r2,0x0 
Processor 'cpu1' terminated at 'exit', address 0x10000ac 
Info 'cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000001   R2 : 00000001   R3 : ffffffff 
 R4 : 00000800   R5 : 00400000   R6 : 00100000   R7 : 000007ff 
 R8 : ffffffff   R9 : 00000000   R10: 00000000   R11: 00000000 
 R12: 00000000   R13: 00000000   R14: 00000000   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 010000b0   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 

The initial instructions of the application initialize registers R1-R14 of the OR1K 
processor, mostly using l.addi instructions. As this happens, we see each register value 
change from 0xdeadbeef (set in the processor constructor) to 0x00000000. 
 
There is a line of trace output for every instruction that is executed. Each trace line gives 
the instruction address (starting with 0x1000074, the start address specified in the ELF 
file) and the instruction disassembly, produced using the disassembler of the OR1K 
model.  
 

5.1.2 Controlling tracing during simulation 
These functions can be used to control tracing when the simulator is stopped during a 
session: 
function use 
icmTraceOnAfter Turn tracing on after this many more instructions 
icmTraceOffAfter Turn tracing off after this many more instructions 
icmEnableTraceBuffer Keep rolling record of last 254 instructions (slight speed 

penalty) 
icmDisableTraceBuffer Stop the rolling record. 
icmDumpTraceBuffer Dump the contents of the rolling record. 
 
Due to the amount of data produced, tracing has a heavy speed penalty. The trace buffer 
has a lesser cost so can be used to record a short history which can be printed out when 
desired, typically when a breakpoint or watchpoint has been hit. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 24 of 168 
. 

5.1.3 Command Line 
The same tracing operations can also be controlled from the command line when the 
command line parser is included into the platform. 
 

5.2 Simulating Exceptions 
By default, simulation will stop (icmSimulatePlatform will return) if a processor 
exception occurs. Some examples of processor exceptions are: 
 

• Executing from memory with no execute permission; 
• Read, write or fetch at unaligned address (for processors that require aligned 

access); 
• Attempting to read or write from an address where there is no memory or the 

memory has insufficient permissions. 
 

⇒ When icmSimulatePlatform returns for any reason other than end-of-
simulation, it returns an icmProcessorP object that is the handle of the processor 
that was executing when the termination condition occurred. To find the exact 
reason why simulation stopped, use: 
    icmStopReason icmGetStopReason(icmProcessorP processor); 
The icmStopReason type returned by this function is an enumeration encoding 
the possible reasons why simulation stopped. 

 
Instead of stopping simulation on a simulated exception, it is possible to specify that the 
processor should perform its usual exception actions instead (typically, enter kernel mode 
and jump to a kernel exception handler). This is done using the ICM_ATTR_SIMEX 
processor instance attribute. 
 

5.2.1 Example: Simulating an Unaligned Access Exception 
 
This example is in the exception directory. 
 
$IMPERAS_HOME/Examples/PlatformsICM/exceptions 
 
The test platform file platform/platform.c, has been changed as follows: 
 
    #ifdef SIMEXCEPTIONS 
        #define SIM_FLAGS (ICM_ATTR_SIMEX | ICM_ATTR_TRACE) 
    #else 
        #define SIM_FLAGS (ICM_ATTR_TRACE) 
    #endif 
 
    // create a processor 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        “or1k”,             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 25 of 168 
. 

        0,                  // not used 
        SIM_FLAGS,          // instance attributes 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 

 
We have added the value ICM_ATTR_SIMEX to the attributes passed to the processor 
instance under control of the makefile. 

 
Compile the test platform and application as before using the following commands in the 
exception directory: 
 
make –C platform EXCEPTIONS=0 
make –C application 

 
To run the simulation, in the exception directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf 

 
You should see the following output: 
 
Info 'cpu1', 0x0000000000010000: l.addi   r1,r0,0x0 
Info 'cpu1', 0x0000000000010004: l.addi   r2,r0,0x1 
Info 'cpu1', 0x0000000000010008: l.lwz    r3,0x0(r2) 
Processor Exception (PC_PRX) Processor 'cpu1' 0x10008: l.lwz    r3,0x0(r2) 
Processor Exception (PC_RAX) Misaligned 4-byte read from 0x1 

 
The two lines: 
 
Processor Exception (PC_PRX) Processor 'cpu1' 0x10008: l.lwz    r3,0x0(r2) 
Processor Exception (PC_RAX) Misaligned 4-byte read from 0x1 

 
show that the load from address 0x00000001 has been detected as an unaligned load. 
When this happens, icmSimulatePlatform returns the processor object handle (to 
indicate that simulation stopped abnormally). 
 

⇒ Calling icmGetStopReason on the processor handle returned by 
icmSimulatePlatform would return ICM_SR_RD_ALIGN in this case. 

 
Now recompile the platform with simulation of exceptions enabled using the following 
command in the exception directory: 
 
make –C platform clean 
make –C platform EXCEPTIONS=1 

 
To run the simulation, in the exception directory, run : 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf 

 
You should see the following output: 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 26 of 168 
. 

Info 'cpu1', 0x0000000000010000: l.addi   r1,r0,0x0 
Info 'cpu1', 0x0000000000010004: l.addi   r2,r0,0x1 
Info 'cpu1', 0x0000000000010008: l.lwz    r3,0x0(r2) 
Info 'cpu1', 0x0000000000000200: l.j      0x00010024 
Info 'cpu1', 0x0000000000000204: l.nop    0x0 
Info 'cpu1', 0x0000000000010024: l.addi   r1,r2,0x0 
Processor 'cpu1' terminated at 'exit', address 0x10024 
 

In this example we see the load instruction is executed: 
 
Info 'cpu1', 0x0000000000010008: l.lwz    r3,0x0(r2) 

 
This causes the address of the next instruction executed to be at a processor exception 
address, 0x00000200, which is the address of the alignment exception handler in the 
OR1K processor: 
 
Info 'cpu1', 0x0000000000000200: l.j      0x00010024 

 
In this example, the code at the exception vector simply branches to the exit label, which 
exits simulation. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 27 of 168 
. 

6 Attributes 
Model instances may be configured by user-defined attributes to control any 
implementation-dependent details of the model, such as the endianness or the number of 
processors in a multi-core CPU. Attributes in the platform are referred to as parameters in 
a model.

6.1 Setting Attributes 
Each processor instance can be given a list of attributes. This list is created by the 
function icmNewAttrList: 
 
icmAttrListP icmNewAttrList(void); 

 
Once a list has been created, named attributes can be added to the list using the functions: 
 
void icmAddBoolAttr  (icmAttrListP attrs, const char *name, Bool value); 
void icmAddDoubleAttr(icmAttrListP attrs, const char *name, double value); 
void icmAddPtrAttr   (icmAttrListP attrs, const char *name, void *value); 
void icmAddStringAttr(icmAttrListP attrs, const char *name, const char *value);  
void icmAddUns32Attr (icmAttrListP attrs, const char *name, Uns32 value); 
void icmAddUns64Attr (icmAttrListP attrs, const char *name, Uns64 value); 

 
These functions allow the addition of a 64-bit unsigned attribute, a double attribute, a 
string attribute or a native host pointer to a previously-created attribute list. This attribute 
list is then passed as one of the arguments on the model instantiation call (e.g. 
icmNewProcessor). See section 6.3.1 for an example. 
 

6.2 Attribute Definitions 
The precise attributes supported by each processor model vary. For models provided with 
OVP, documentation of the attributes supported for each model may be found in the 
README.txt file in the same directory in the VLNV tree that contains the model file. 
The VLNV tree may be found at: 

$IMPERAS_HOME/lib/$IMPERAS_ARCH/ImperasLib  
 

6.3 Special Attributes 
Certain attributes are handled specially by the simulator. These are described in the 
following sections. 
 

6.3.1 MIPS Attribute 
All processors support a double attribute called mips, used to specify the nominal 
processor speed in millions of instructions per second. This nominal mips rate is used to 
apportion run time between processors in a multiprocessor simulation. The default 
nominal mips rate for each processor is 100. Section 6.4 shows an example of 
instantiating a processor with a nominal mips rate of 200 MIPS instead. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 28 of 168 
. 

6.3.2 Endian Attribute 
The model documentation for processors includes a definition of the endianness 
supported by that processor. This may be big, little or either. 
 
If the endian is defined as either then the model will accept a user string attribute called 
endian, used to specify the endianness of the processor. The endian attribute may take the 
values big or little.  
 
Some processors allow the endianness to be changed dynamically by software. The 
endian attribute only sets the initial value for the endianness at the start of simulation in 
this case.  
 
See Section 6.4 for an example of setting the endian attribute on a processor 
instantiation.. 

6.4 User-Defined Attribute Example 
The following is an example of code that overrides the mips and endian user-defined 
attributes when instantiating an instance of a processor: 
 
 
    // create a user attribute object 
    icmAttrListP userAttrs = icmNewAttrList(); 
 
    // add a double attribute to set mips to 200 
    icmAddDoubleAttr(userAttrs, "mips", 200.0);  
 
    // add a string attribute to set endian to big 
    icmAddStringAttr(userAttrs, "endian", “big”);  
 
    // add a native host pointer attribute  
    icmAddPtrAttr(userAttrs, "dataPtr", &data); 
 
    // create a processor 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        “or1k”,             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        0,                  // simulation attributes 
        userAttrs,          // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 
 

 

6.5 Querying Attributes 
The function icmIterAllUserAttributes  will iterate over all user-defined attributes in 
the platform. If it is called after loading all processor models and loading and initializing 
all PSEs, it will include all attributes set by the platform AND all attributes tested for by 
models. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 29 of 168 
. 

6.6 Overriding Attributes 
Attributes can be overridden by several mechanisms: 

• The -override command line argument to the Imperas simulator imperas.exe. 
• The -override command line argument in an Imperas control file. 
• The icmOverride() function. 

 
icmOverride(const char *path, const char *value) 

 
The icmOverride() function can be used repeatedly to create a list of overrides in the 
simulator before constructing the platform. This list is then consulted during platform 
construction and entries are applied to model instances if they match. This mechanism 
allows the separation of platform construction from command line parsing and platform 
configuration. The path argument is the hierarchical path to a model parameter. The value 
argument is a string representation of the value and will be converted to the required type. 
 
 int main(int argc, char ** argv) { 
 
    // parse the command line, or read configuration data 
    // The override must be set before the platform is constructed 
    icmOverride(“plat1/cpu1/variant”, “VARIANT_A”); 
 
 
    // Start the platform 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “plat1”); 
 
    // create a processor 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        ... 
    ); 
 
    // load the processor object file 
    icmLoadProcessorMemory(processor, argv[1], ICM_LOAD_DEFAULT, False, True); 
 
    icmSimulatePlatform(); 
    icmTerminate(); 
 
    return 0; 
} 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 30 of 168 
. 

7 Custom Tracing using Model Access Functions 
In section 5.1, we saw an example which used standard instantiation attributes to enable 
tracing. The trace file output was generated in a fixed order. Occasionally, it might be 
necessary to generate trace information in a different format: for example, if an ICM 
platform program is being used to generate trace output to compare with the output from 
another tool, comparison is much easier if the format from the ICM platform can be made 
to exactly match the other tool. 
 
The ICM API contains a number of functions allowing processor instance registers to be 
read and written. These can be used to construct test platforms that generate trace output 
from a simulation run in whatever format required. These access functions allow:  

• Access to instance program counter; 
• Access to any processor register by name; 
• Dump of processor registers; 
• Disassembly of the current instruction; 
• Access to the count of instructions executed by the processor. 

 
There is also a function available that allows a processor model to be stepped by a single 
instruction, icmSimulate, which will be used in this example. 

7.1 Reading and Writing Registers 
There are a set of functions that allow access to the current program counter and to access 
the program counter while determining if the current instruction is being executed in the 
delay slot (for processors that support delay slot instructions). 
 
To access the current program counter, use icmGetPC: 
 
Addr currentpc = icmGetPC(processor);   // get current PC 

 
The return value from icmGetPC is of type Addr, which is a 64-bit unsigned integer. For 
processors with address widths less than 64 bits, this value should be cast to an 
appropriate sized value if it is to be used subsequently in an arithmetic expression; for 
example: 
 
Uns32 currentpc = (Uns32)icmGetPC(processor);   // get current PC as 32-bit value 

 
For processors with delay slot instructions, it is sometimes useful to know whether the 
current instruction is a delay slot instruction. To do this, use icmGetPCDS: 
 
Uns8  delaySlotOffset; 
Uns32 branchPC = icmGetPCDS(processor, &delaySlotOffset); 

 
icmGetPCDS behaves as follows: 

1. If the current instruction is not a delay slot instruction, it returns the current 
program counter and sets the byref value delaySlotOffset to 0; 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 31 of 168 
. 

2. If the current instruction is a delay slot instruction, it returns the address of the 
preceding branch instruction and sets the byref value delaySlotOffset to the 
current instruction byte offset from the branch instruction. For example, if there is 
a branch instruction at 0x1000 with a delay slot instruction at 0x1004, then if 
icmGetPCDS is called when the processor is executing the delay slot instruction at 
0x1004, it will return 0x1000 and set delaySlotOffset to 4. 

 
The current value of any processor register can be found using icmReadReg, which fills a 
byref argument buffer with the current value of a named register: 
 
Bool icmReadReg(icmProcessorP processor, const char *name, void *buffer); 

 
To write a processor register, there is a similar function icmWriteReg: 
 
Bool icmWriteReg(icmProcessorP processor, const char *name, void *buffer); 

 
The following code snippet shows how a processor register called R1 can be masked with 
a bitmask REG_FLAG_MASK in an ICM platform: 
 
Uns32 regR1; 
icmReadReg(processor, “R1”, regR1); 
regR1 = regR1 & REG_FLAG_MASK; 
icmWriteReg(processor, “R1”, regR1); 

 
⇒ It is the responsibility of the ICM application to ensure that the buffer value is the 

correct size to hold the register data. For example, the above example implicitly 
requires that register R1 is a 32-bit register which will fit in a value of type Uns32. 

 
The function icmSetPC can be used to set the processor's start-address without knowing 
the name of the PC in the particular model being used (not everyone calls it 'PC'). 
 
It is also possible within an ICM platform to iterate over all the registers in a processor 
instance to determine their names and sizes (in bits) using three functions: 
icmGetNextReg, icmGetRegInfoName and icmGetRegInfoBits. 
 
icmGetNextReg returns an opaque pointer of type icmRegInfoP, which describes a single 
processor register. It takes as an argument the previously-returned icmRegInfoP value; 
when passed a NULL pointer, it returns the first icmRegInfoP pointer for a processor 
mode. It can therefore be used to iterate over all register descriptions for a processor in a 
simple loop: 
 
icmRegInfoP info = 0;    // initiate loop with NULL pointer 
 
while((info=icmGetNextReg(info))) { 
    . . . 
} 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 32 of 168 
. 

Given an icmRegInfoP pointer, the name of the register it corresponds to can be found 
using icmGetRegInfoName and the register size in bits can be found using 
icmGetRegInfoBits: 
 
icmRegInfoP info = 0;    // initiate loop with NULL pointer 
 
while((info=icmGetNextReg(info))) { 
 
    const char *name = icmGetRegInfoName(info); 
    Uns32       bits = icmGetRegInfoBits(info); 
 
    icmPrintf(“Found %u-bit register %s\n”, name, bits); 
} 

 
The name returned by icmGetRegInfoName can be used if required to identify the register 
to read or write using icmReadReg or icmWriteReg. 
 
icmGetRegInfoUsage returns an enumeration describing if the register has special use. 

7.2 Generating Disassembly Output 
Processor models contain instruction disassembly functionality that can be accessed from 
an ICM platform using icmDisassemble, which returns a string disassembly of an 
instruction at a passed address. For example, to print the disassembled instruction at the 
current program counter: 
 
icmPrintf(“%s”, icmDisassemble(processor, icmGetPC(processor))); 

7.3 Dumping Registers 
Processor models also contain functionality to dump all processor register values in a 
standard format. This can done using icmDumpRegisters: 
 
icmDumpRegisters(processor); 

7.4 Instruction Counts 
Every processor also maintains a count of the number of instructions that it has executed 
(as a 64-bit unsigned integer). This can be accessed using the ICM function 
icmGetProcessorICount; for example, to print the number of instructions executed at 
the end of simulation: 
 
icmPrintf( 
    "Simulation finished, “FMT_64u” instructions executed...\n", 
    icmGetProcessorICount(processor) 
); 

 
⇒ The macro FMT_64u defines a format string that will correctly print a 64-bit 

unsigned integer on both Linux and Windows hosts. It is defined with other 
similar macros in ImpPublic/include/host/impTypes.h. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 33 of 168 
. 

7.5 Simulating for One Instruction 
Previous examples have used the function icmSimulatePlatform, which simulates a 
platform using a built-in scheduling algorithm that simulates each processor for many 
instructions before returning to the ICM platform2. For this example, we instead want to 
simulate a processor one instruction at a time, performing custom instruction tracing after 
each one completes. To do this, use icmSimulate: 
 
icmStopReason icmSimulate(processorP processor, Uns64 instructions); 

 
icmSimulate runs the passed processor for up to instructions more instructions and then 
returns. The precise reason why simulation stopped is indicated by the return code: 
 
typedef enum icmStopReasonE { 
  ICM_SR_SCHED      = 0x00, ///< Scheduler expired. 
  ICM_SR_YIELD      = 0x01, ///< Yield encountered. 
  ICM_SR_HALT       = 0x02, ///< CPU is halted. 
  ICM_SR_EXIT       = 0x03, ///< CPU has exited. 
  ICM_SR_FINISH     = 0x04, ///< Simulation finish. 
  ICM_SR_RD_PRIV    = 0x05, ///< Read privilege exception. 
  ICM_SR_WR_PRIV    = 0x06, ///< Write privilege exception. 
  ICM_SR_RD_ALIGN   = 0x07, ///< Read align exception. 
  ICM_SR_WR_ALIGN   = 0x08, ///< Write align exception. 
  ICM_SR_FE_PRIV    = 0x09, ///< Fetch privilege exception. 
  ICM_SR_ARITH      = 0x0a, ///< Arithmetic exception. 
  ICM_SR_INTERRUPT  = 0x0b, ///< Interrupt simulation. 
  ICM_SR_FREEZE     = 0x0c, ///< Frozen (by icmFreeze). 
  ICM_SR_WATCHPOINT = 0x0d, ///< Memory watchpoint is pending. 
  ICM_SR_BP_ICOUNT  = 0x0e, ///< Instruction count breakpoint is pending. 
  ICM_SR_BP_ADDRESS = 0x0f, ///< Address breakpoint is pending. 
  ICM_SR_RD_ABORT   = 0x10, ///< Read abort exception. 
  ICM_SR_WR_ABORT   = 0x11, ///< Write abort exception. 
  ICM_SR_FE_ABORT   = 0x12, ///< Fetch abort exception. 
  ICM_SR_INVALID    = 0x13  ///< (invalid entry). 
} icmStopReason; 

 
The three most common return codes are: 

• ICM_SR_SCHED 
processor successfully simulated the required number of instructions and returned 

• ICM_SR_EXIT 
processor has exited (but in a multiprocessor platform, other processors may still 
be running) 

• ICM_SR_FINISH 
simulation has finished 

 
In practice, it is usually sufficient to continue simulation while the return code from 
icmSimulate is ICM_SR_SCHED, for example: 
 
while(icmSimulate(processor, 1)==ICM_SR_SCHED) { 
    . . . 
} 
icmPrintf( 

                                                 
2 In fact, icmSimulatePlatform simulates for a time duration, which can be specified by 
icmSimulationStopTime. The actual number of instructions executed up to this stop time is the 
processor nominal mips rate x 1e6 x stopTime. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 34 of 168 
. 

    "Simulation finished, “FMT_64u” instructions executed\n", 
    icmGetProcessorICount(processor) 
); 

7.6 Example 
The following example uses the functions above to control the order of instruction 
disassembly, register dumping and instruction execution. 
 
This example is found in the access directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/access 
 

NOTE 
OP API examples showing the same feature are available as  

PlatformConstruction/walker and SimulationControl/processorRegsisterAccess 
 
The test platform file, platform/platform.c, is as follows: 
 
int main(int argc, char ** argv) { 
 
    // check for the application program name argument 
    if(argc!=2) { 
        icmPrintf("%s: expected application name argument\n", argv[0]); 
    } 
 
    // initialize CpuManager 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “platform”); 
 
    // create a processor 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        “or1k”,             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        0,                  // enable tracing or register values 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 
 
    // load the processor object file 
    icmLoadProcessorMemory(processor, argv[1], ICM_LOAD_DEFAULT, False, True); 
 
    Bool done = False; 
 
    while(!done) { 
 
        Uns32 currentPC = (Uns32)icmGetPC(processor); 
 
        // disassemble instruction at current PC 
        icmPrintf("** Instruction Disassemble\n"); 
        icmPrintf( 
            "0x%08x : %s\n", currentPC, 
            icmDisassemble(processor, currentPC) 
        ); 
 
        // execute one instruction 
        icmPrintf("** Instruction Execution\n"); 
        done = (icmSimulate(processor, 1) != ICM_SR_SCHED); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 35 of 168 
. 

 
        // dump registers 
        icmPrintf("** Register Dump\n"); 
        icmDumpRegisters(processor); 
    } 
 
    // print number of instructions executed at end of simulation 
    icmPrintf( 
        "Simulation finished, "FMT_64u" instructions executed\n", 
        icmGetProcessorICount(processor) 
    ); 
 
    // free simulation data structures 
    icmTerminate(); 
 
    return 0; 
} 
 

Compile the test platform and application as before using the following commands in the 
access directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the access directory, run : 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf 

 
You should see the following output: 
 
** Instruction Disassemble 
0x01000074 : l.addi   r1,r0,0x0 
** Instruction Execution 
** Register Dump 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : deadbeef   R3 : deadbeef 
 R4 : deadbeef   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 01000078   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
** Instruction Disassemble 
0x01000078 : l.addi   r2,r0,0x1 
** Instruction Execution 
** Register Dump 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : deadbeef 
 R4 : deadbeef   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 0100007c   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 36 of 168 
. 

** Instruction Disassemble 
0x0100007c : l.addi   r3,r0,0xffffffff 
** Instruction Execution 
** Register Dump 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : ffffffff 
 R4 : deadbeef   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 01000080   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
… etc … 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 37 of 168 
. 

8 Semihosting 
We saw the use of the intercept library imperasExit earlier which allows simple 
assembler tests to be constructed and exit cleanly. In this example we will show how to 
use a more general semihosting library so that, for example, calls to printf in the 
application code can be intercepted and performed on the host machine. 
 
Construction of semihosting libraries is covered in detail in the OVP Processor Modeling 
Guide, in the chapter entitled Function Address Semihosting. Here, we will show how to 
instantiate a standard Imperas semihosting shared object library to intercept the system 
calls in the newlib library for the OR1K processor. The semihosting shared library is 
found using icmGetVlnvString, as follows: 
 
icmGetVlnvString(vlnvRoot, "ovpworld.org", "semihosting", "or1kNewlib", "1.0", "model"); 

 
⇒ Why is semihosting not part of the processor model, but specified separately? 

This enables processor models to be “pure” instruction-accurate models, entirely 
independent of the environment in which they are to be used, and for multiple, 
incompatible, environments to be supported simply by specifying a semihosting 
library for each one. 

8.1 Example 
The following example uses the semihosting shown above to allow a simple ‘hello’ 
application to print to the standard output. 
 
This example is found in the semihosting directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/semihosting 
 

NOTE 
OP API examples showing the same feature are available as  

SimulationControl/simpleSemiHosting 
 
// 
// Main simulation routine 
// 
int main(int argc, char ** argv) { 
 
    // check for the application program name argument 
    if(argc!=2) { 
        icmPrintf("%s: expected application name argument\n", argv[0]); 
    } 
 
    // select library components 
    const char *vlnvRoot = NULL; // When NULL use default library 
    const char *model    = icmGetVlnvString( 
        vlnvRoot , 
        "ovpworld.org", 
        "processor", 
        "or1k", 
        "1.0", 
        "model" 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 38 of 168 
. 

     ); 
    const char *semihosting = icmGetVlnvString( 
        vlnvRoot, 
        "ovpworld.org", 
        "semihosting", 
        "or1kNewlib", 
        "1.0", 
        "model 
    ); 
 
    // initialize CpuManager 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “platform”); 
 
    // create a processor with semihosting 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        "or1k",             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        0,                  // enable tracing etc 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 
 
    // load the processor object file 
    icmLoadProcessorMemory(processor, argv[1], ICM_LOAD_DEFAULT, False, True); 
 
    // run simulation 
    icmSimulatePlatform(); 
 
    // terminate simulation 
    icmTerminate(); 
 
    return 0; 
} 

Compile the test platform and application as before using the following commands in the 
semihosting directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the semihosting directory, run : 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 
You should see the following output: 
 
Hello 

 
Linked into the application are calls to standard operating system functions (for example 
open and close). With the appropriate semihosting library installed these low level calls 
are intercepted by the simulator and the functionality to implement them is provided by 
the native host instead. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 39 of 168 
. 

8.2 Additional intercept objects 
Intercept libraries can be added to an existing processor instance using 
icmAddInterceptObject()  (only available in Imperas Professional products). 
 
 
 
 
... 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        “or1k”,             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        0,                  // simulation attributes 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0,                  // not used 
    ); 
 
    icmAddInterceptObject( 
        processor,                 // processor handle 
        "intercept1",              // intercept library instance name 
        "/home/library/intercept", // path to intercept library shared object 
        0,                         // not used 
        0                          // optional user defined attribute list 
    ); 

 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 40 of 168 
. 

9 Memory Operations 

9.1 Accessing Processor Model Memory 
When a new processor instance is created, by default an implicit RAM memory that 
covers the entire address space that can be accessed by the processor type is also created. 
 
This memory can be directly accessed with the ICM platform using the functions: 
icmReadProcessorMemory and icmWriteProcessorMemory. The function 
icmLoadProcessorMemory can be used to load an object file. In addition, the functions 
icmDebugReadProcessorMemory and icmDebugWriteProcessorMemory can be used to 
read and write memory without causing side effect in the processor model, or in any 
TLM2.0 models connected to the processor. 
 

9.1.1 Loading object files 
As we have previously seen an object file can be loaded into processor memory using the 
icmLoadProcessorMemory function: 
 
icmImagefileP icmLoadProcessorMemory( 
    icmProcessorP processor, 
    const char   *objectFile, 
    icmLoadAttrs  attrs, 
    Bool          verbose, 
    Bool          useEntry 
); 

 
icmLoadAttrs are defined as:
 
ICM_LOAD_DEFAULT:      0x00    
ICM_LOAD_PHYSICAL:     0x01   Use object file physical addresses if available 
ICM_LOAD_VERBOSE:      0x02   Report each section as it is loaded 
ICM_ZERO_BSS:          0x04   Zero the extent of the BSS section if present 
ICM_SET_START:         0x08   Set the PC to the code start address 
ICM_LOAD_SYMBOLS_ONLY  0x10   Read the symbols but do not load the code or data 
ICM_ELF_USE_VMA        0x20   Load ELF files using VMA addresses instead of LMA. 

 
Specifying True for the verbose argument has the same effect as setting 
ICM_LOAD_VERBOSE in the attrs argument. Specifying True for the useEntry argument 
has the same effect as setting ICM_SET_START in the attrs argument. This is done to 
preserve backwards compatibility with previous versions of the API. 
 
For ELF files, the Load Memory Address (LMA) is used as the load address by default. 
Setting ICM_ELF_USE_VMA in the attrs argument will cause the Virtual Memory Address 
(VMA) to be used instead.  
 
In the following example the memory is loaded from file hello.or1k using physical 
address information, and the PC will be set to the entry address defined in the object file: 
 
icmLoadProcessorMemory(processor, “hello.or1k”, ICM_LOAD_PHYSICAL, False, True); 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 41 of 168 
. 

The algorithm used is as follows:  
1. Find the processor passed in argument #1.  
2. Find the bus connected to the instruction port on that processor.  
3. Load the specified object file into memory on that bus.  
 
The loader takes each section address from the object file and looks for memory which 
decodes at that address. An error is raised if no memory is mapped at a load address.  
The loader uses any address decoding available on the bus, even if the decoded memory 
is shared with other processors. 
 
If more than one processor is using the same code memory, the program need be loaded 
only once; When OVPsim starts a processor with no explicitly loaded program, it will 
look for any other processors of the same architecture with common program memory 
and, if one is found, use the start address associated with that processor.  
 
An object file which is not directly related to a processor (e.g. a data file) can be loaded 
into memory on a bus using icmLoadBus. 
 
The functions icmLoadProcessorMemory  and icmLoadBus return an icmImagefileP 
which can be interrogated using icmGetImagefileEndian, icmGetImagefileElfcode 
and icmGetImagefileEntry to find respectively the endianness, the 16-bit processor 
architecture code and the executable start address. 
 
9.1.1.1 Supported object formats 
The simulator currently supports: 
ELF        Used by all GNU tool chains 
TI COFF    An extended version of the COFF format, used by compilers supplied by 

Texas Instruments 
 
9.1.1.2 Loading Symbols in object files 
When  icmLoadProcessorMemory  loads an object file into simulated memory it also 
reads the symbol tables included in the object file, and records the address-to-symbol 
mappings. These mapping can then be used: 

 When issuing tracing information 
 When intercepting a function by name (see icmAddInterceptObject) 

 
Sometimes object code might be loaded by another route (e.g. using a boot-loader 
running on a simulated processor) in which case the simulator has no opportunity to read 
the symbols. In this situation the function icmLoadSymbols can be used to associate 
symbols with a processor without loading the code. In this example, instruction tracing 
will include code labels found in program.elf, though the code came from another source: 
 
create platform 
 
    // initialize CpuManager 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “platform”); 
   
    // create a processor 
    icmProcessorP processor = icmNewProcessor( 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 42 of 168 
. 

       "proc1", 
       "or1k", 
       0, 
       0, 
       32, 
       modelPath, 
       0 
       ICM_ATTR_TRACE, 
       0, 
       0, 
       0 
    ); 
 

 
load and run simulation 
 
    // load the boot loader. This program will load the contents of 
    ///mainprogram.elf by some other means. 
    icmLoadProcessorMemory(processor, "bootloader.elf", ICM_LOAD_DEFAULT, False. False); 
 
    // load the symbols from the other program so that they are known to 
    // the simulator. 
    icmLoadSymbols(processor, "program.elf", False); 
 
    icmSimulatePlatform(); 
 
    icmTerminate(); 

 
⇒  icmLoadSymbols reads the same format files as icmLoadProcessorMemory.  

 

9.1.2 Reading and Writing Data 
The memory space can also be read and written directly using the 
icmReadProcessorMemory and icmWriteProcessorMemory functions. These functions 
transfer N bytes of data between a local buffer and the simulated memory space using the 
simulated memory address.  
 
9.1.2.1 Reading and Writing Data Example 
 
This example is found in the hexLoader directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/hexLoader 
 

NOTE 
OP API example showing the same feature are available as  

SimulationControl/ loadingApplicationProgramHexFormatFile 
 
The example shows the use of the write memory and read memory functions to perform 
the loading of a program. The program is provided in the form of a hex file with address 
and data pairs. 
The file loader is written in standard C code as part of the platform. In the same way any 
file format can be supported by either incorporating available C code of a reader or 
creating a new one. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 43 of 168 
. 

 The hex file format used in this example is based upon a simple sequence of address and 
data, with comments marked using ‘#’. 
 
#01000074 <_start> 
01000074 0000209c ; 
01000078 0100409c ; 

 
In this example the loader is implemented so that multiple consecutive addresses can be 
written with the same value. 
 
#load memory addresses with 0x00000000 
01000078-01000088 00000000 ; 

 
Following is the loader, found in the file platform/platform.c, that takes the name of 
the file containing the data to be loaded and a switch to control the byte swapping. 
 
static int loadHexFile(icmProcessorP processor, char *fileName, Bool swap) { 
 
    FILE *fp; 
    char inBuf[MAX_LINE_LENGTH + 1]; 
    int address, endAddress, data, dataCheck; 
 
    fp = fopen(fileName, "r"); 
 
    if (!fp) { 
        printf ("Failed to open Memory Initialization File %s\n", fileName); 
        return -1; 
    } 
 
    icmPrintf("\nLoading Hex file %s\n", fileName); 
 
    while ( fgets( inBuf,MAX_LINE_LENGTH, fp) != 0 ) { 
 
        if ( inBuf[0] == '#') { 
            // ignore header 
        } else { 
            if ( sscanf(inBuf, "%08x-%08x %08x ;", &address, &endAddress, &data) != 3 ) { 
                sscanf(inBuf, "%08x %08x ;", &address, &data); 
                endAddress = address; 
            } 
 
            if (swap) {  //byte swap 
                data = (data & 0x000000ff) << 24 | 
                       (data & 0x0000ff00) <<  8 | 
                       (data & 0x00ff0000) >>  8 | 
                       (data & 0xff000000) >> 24 ; 
            } 
 
            do { 
                // 
                // Access the memory through the processor memory space 
                // 
                icmWriteProcessorMemory(processor,      // processor 
                                        address,        // memory address 
                                        &data,          // data buffer of data to write 
                                        4);             // number of bytes to write 
 
                icmReadProcessorMemory(processor, address, &dataCheck, 4); 
 
                if(data != dataCheck) { 
                    icmPrintf("Failed Data Read Back at 0x%08\n", address); 
                    return -1; 
                } 
                 
                icmPrintf("  0x%08x <= 0x%08x\n", address, data); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 44 of 168 
. 

            } while ( address++ < endAddress); 
        } 
    } 
     
    icmPrintf("Load Complete\n\n"); 
     
    if (fclose(fp)!=0) { 
        printf ("Failed to close Memory Initialization File\n"); 
        return -1; 
    } 
 
    return 0; 
} 
 

⇒ Note if the processor uses virtual addressing the address of the 
icmWriteProcessorMemory and icmReadProcessorMemory functions will be 
translated to a physical memory address using the current virtual address 
mapping. 

 

The main routine in the platform file, creates a platform with a single OR1K processor 
and two regions of memory. The memory is loaded by a call to the hexLoader routine that 
has been described above. 
 
    // Load Hex file into Simulator Memory 
    if (loadHexFile(processor, argv[1], False)) { 
        printf("Hex File Load of %s Failed\n", argv[1]); 
        return -1; 
    } 

 
To run the example, compile the test platform using the following command in the 
hexLoader directory: 
 
 make –C platform 

 
In the application directory you will find an assembler file, asmtest.S, and the same file as 
hex, asmtest.hex. To run the simulation, in the hexLoader directory, run : 
 
 ./platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.hex 

 
You should see output similar to the following: 
 
 
OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org. 
Copyright (C) 2005-2015 Imperas Ltd.  Contains Imperas Proprietary Information. 
Licensed Software, All Rights Reserved. 
Visit www.imperas.com for multicore debug, verification and analysis solutions. 
OVPsim  started: Thu Mar 12 11:54:16 2015 
 
BUS MASTERS: 2 
   PORT 'DATA' of 'platform/cpu1' 
   PORT 'INSTRUCTION' of 'platform/cpu1' 
BUS SLAVES: 1 
   0x00000000:0x000fffff: xxxxxxxx unmapped xxxxxxxx 
   0x00100000:0xffffffff: PORT 'mp1' of 'platform/memory' 
 
Loading Hex file application/asmtest.hex 
  0x01000074 <= 0x0000209c 
  0x01000078 <= 0x0100409c 
  0x0100007c <= 0xffff609c 
  0x01000080 <= 0x0008809c 
  0x01000084 <= 0x000884b0 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 45 of 168 
. 

  0x01000088 <= 0x0000a484 
  0x0100008c <= 0xffffa3a0 
  0x01000090 <= 0x0000a4a0 
  0x01000094 <= 0x0100a5a0 
  0x01000098 <= 0x002804d4 
  0x0100009c <= 0x0000c084 
  0x010000a0 <= 0x0000209c 
  0x010000a1 <= 0x0000209c 
Load Complete 
 
Info 'platform/cpu1', 0x0000000001000074: l.addi   r1,r0,0x0 
Info 'platform/cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : deadbeef   R3 : deadbeef 
 R4 : deadbeef   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 01000078   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
    … lines deleted … 
 
Info 'platform/cpu1', 0x0000000001000098: l.sw     0x0(r4),r5 
Info 'platform/cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : ffffffff 
 R4 : 00400000   R5 : 00400002   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 0100009c   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
Info 'platform/cpu1', 0x000000000100009c: l.lwz    r6,0x0(r0) 
Info 'platform/cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : ffffffff 
 R4 : 00400000   R5 : 00400002   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 0100009c   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
Processor Exception (PC_PRX) Processor 'platform/cpu1' 0x100009c: l.lwz    r6,0x0(r0) 
Processor Exception (PC_RPX) No read access at 0x0 
 
OVPsim  finished: Thu Mar 12 11:54:16 2015 
Visit www.imperas.com for multicore debug, verification and analysis solutions. 
OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org. 
 

 
Note that: 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 46 of 168 
. 

1. The load from address 0x00000000 causes an exception – this is because there is 
no memory mapped at this address. 

2. The simulator reports the exception (and returns from icmSimulatePlatform, using 
icmGetStatus would show the status was ICM_SR_RD_PRIV although this isn’t 
shown in this example). The ICM_ATTR_SIMEX instance attribute could be used to 
cause the exception to be simulated instead – see section 5.2 for more information 
about this. 

9.1.3 Reading and writing memory without side-effects. 
The functions icmDebugReadProcessorMemory and icmDebugWriteProcessorMemory 
are for use with a debugger, rather than as part of a platform model. This table compares 
their behavior: 
 
Function Endian TLM2.0 Effect on tlb Bad access 
icmDebugReadProcessorMemory  selectable transport_dbg none returns 'False' 
icmDebugWriteProcessorMemory selectable transport_dbg none returns 'False' 
icmReadProcessorMemory  target b_transport might update bus err if supported 
icmWriteProcessorMemory  target b_transport might update bus err if supported 
 
Their prototypes are: 
 
icmDebugReadProcessorMemory( 
    icmProcessorP processor,    // processor context 
    Addr          simAddress, // address in processor's address space 
    void         *buffer,    // pointer to destination host memory 
    Uns32         objectSize,    // size of each object, in bytes 
    Uns32         objects,    // number of objects 
    icmHostEndian endian    // byte swap behavior 
); 
 
icmDebugWriteProcessorMemory( 
    icmProcessorP processor,    // processor context 
    Addr          simAddress, // address in processor's address space 
    void         *buffer,    // pointer to destination host memory 
    Uns32         objectSize,    // size of each object, in bytes 
    Uns32         objects,    // number of objects 
    icmHostEndian endian    // byte swap behavior 
); 

 
The endian argument controls the treatment of byte order in the host memory pointed to 
by buffer: 
 

endian Effect 
ICM_HOSTENDIAN_HOST Byte swapped, if necessary, to be host endian 
ICM_HOSTENDIAN_TARGET No swapping; result will be same as target processor 
ICM_HOSTENDIAN_BIG Byte swapped, if necessary, to be big endian 
ICM_HOSTENDIAN_LITTLE Byte swapped, if necessary, to be little endian 
 
If required, the bytes in each group of objectSize bytes, will be reversed, throughout the 
whole buffer (if objectSize = 1 byte, there can be no swapping). 
 
A request to read or write can cross boundaries between different types of memory, or 
regions where no device exists. The functions return True if the entire buffer was read or 
written successfully, False if any part failed. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 47 of 168 
. 

The processor argument refers to the target processor for the read or write. The required 
endianness is that of the data endian of the processor, which might differ from the code 
endian. 

9.2 Adding Memory Callbacks 
Adding callbacks across memory regions allows memory watchpoints, amongst other 
features, to be implemented. A callback is executed whenever there is either a read or a 
write access to a specified range of memory addresses.  
The callbacks are created using icmAddReadCallback and icmAddWriteCallback 
functions. 
 
// watch read accesses to the address range 0x01000000:0x01000fff 
icmAddReadCallback(processor, 0x01000000, 0x01000fff, bufferReadCallBack, 0); 
 
// watch write accesses to the address range 0x01000000:0x01000fff 
icmAddWriteCallback(processor, 0x01000000, 0x01000fff, bufferWriteCallBack, 0); 

 
Watchpoints allow the monitoring of memory access behavior of a processor as it runs an 
application.  
 
9.2.1.1 Example Adding a Memory Callback 
 
This example is found in the watchpoint directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/watchpoint 
 

NOTE 
OP API example showing the same feature are available as  

SimulationControl/ monitoringAccesses 
 
This example shows the use of a watchpoint to trap a write to a specific address. 
 
In the main function of the platform a callback on a write to a word at 0x00400000 is 
added. The userData field is used to pass a name of the watch point to the callback 
function. 
 
    // 
    // Create a watchpoint 
    // Invoke callback on write accesses to the address 0x00400000-0x00400003 
    // 
    icmAddWriteCallback( 
        processor,          // processor 
        0x00400000,         // low address 
        0x00400003,         // high address 
        watchWriteCB,       // callback to invoke 
        "watch termination" // user data passed to callback 
    ); 
 

The callback functions used for a read or a write should be defined using the macros 
ICM_MEM_WATCH_FN. The memory callback function is defined below.  
 
// 
// Callback for memory writes to defined external area 
// 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 48 of 168 
. 

static ICM_MEM_WATCH_FN(watchWriteCB) { 
 
    icmPrintf( 
        "WATCHPOINT '%s': Writing to 0x%08x : Finish Simulation\n", 
        (Uns8 *)userData, 
        (Int32)address 
    ); 
    icmFinish(processor, -7); 
} 

 
This function reports the write and then makes a call to icmFinish. This ICM function is 
used to terminate the simulation at the start of the next instruction; the next instruction is 
not executed. The second argument of icmFinish is an integer status code: this is of no 
significance to the simulator but can be used to communicate information to the 
simulation harness. In this case, the status code is printed in a message just before the end 
of simulation: 
 
    icmPrintf("Simulation finished with status %d\n", icmGetStatus()); 

 
To run the example, compile the test platform and application using the following 
commands in the watchpoint directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the watchpoint directory, run : 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf 

 
You should see output similar to the following: 
 
 
OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org. 
Copyright (C) 2005-2015 Imperas Ltd.  Contains Imperas Proprietary Information. 
Licensed Software, All Rights Reserved. 
Visit www.imperas.com for multicore debug, verification and analysis solutions. 
OVPsim started: Thu Mar 12 13:17:39 2015 
 
BUS MASTERS: 2 
   PORT 'DATA' of 'platform/cpu1' 
   PORT 'INSTRUCTION' of 'platform/cpu1' 
BUS SLAVES: 2 
   0x00000000:0x003fffff: PORT 'mp1' of 'platform/mem1' 
   0x00400000:0xffffffff: PORT 'mp2' of 'platform/mem2' 
Starting Simulation ... 
Info 'platform/cpu1', 0x0000000001000074: l.addi   r1,r0,0x0 
Info 'platform/cpu1', 0x0000000001000078: l.addi   r2,r0,0x1 
Info 'platform/cpu1', 0x000000000100007c: l.addi   r3,r0,0xffffffff 
Info 'platform/cpu1', 0x0000000001000080: l.addi   r4,r0,0x800 
Info 'platform/cpu1', 0x0000000001000084: l.muli   r4,r4,0x800 
Info 'platform/cpu1', 0x0000000001000088: l.sw     0x0(r4),r5 
WATCHPOINT 'watch termination': Writing to 0x00400000 : Finish Simulation 
Simulation finished with status -7 
Done 
 
OVPsim  finished: Thu Mar 12 13:17:39 2015 
Visit www.imperas.com for multicore debug, verification and analysis solutions. 
OVPsim (32-Bit)  v20150205 Open Virtual Platform simulator from www.OVPworld.org. 
 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 49 of 168 
. 

Note that: 
1. The load from address 0x00400000 is captured by the write callback. 
2. The simulation is set to finish before the next instruction, which is not 

executed. 
3. The status code passed as the second argument to icmFinish is printed just 

before the simulation exits. 

9.3 Explicit Local and External Memory 
Until now, all examples have used an implicit RAM memory that covers the entire 
address space that can be accessed by the processor type. Instead of doing this, processor 
address spaces can be explicitly specified to contain separate RAMs and ROMs, with 
some perhaps shared between processors in a multiprocessor system. It is also possible to 
specify that certain address ranges will be modeled by callback functions in the ICM 
platform itself, which is useful for modeling simple memory-mapped devices such as 
uarts3. 
 
In order to use an explicit address space mapping, it is first necessary to create a bus to 
which all address-mapped components will be connected. A bus is defined using the 
function icmNewBus, which takes a bus name and bit width as arguments, for example: 
 
icmBusP bus = icmNewBus(“bus”, 32); 

 
This example defines a new bus called bus which is 32 bits wide. 
 
The bus must be connected to any processor that uses it using 
icmConnectProcessorBusses, which takes a processor and two busses, the instruction 
bus and the data bus, as arguments (the simulator permits processors to have distinct data 
and instruction busses). Most processors use the same address space for both data and 
instruction accesses, so often the bus arguments have the same value: 
 
icmConnectProcessorBusses(processor, bus, bus); 

 
Any number of memory objects can then be defined and connected to the bus. A memory 
is defined using icmNewMemory, which takes a memory name, access privileges and high 
address bound as arguments, for example: 
 
icmMemoryP memory1 = icmNewMemory(“mem1”, ICM_PRIV_RWX, 0x003fffff); 

 

                                                 
3 But note that in general, it is much better to use Imperas PSE objects to model peripherals, instead of 
coding them directly in ICM, for many reasons: 

1. PSE models run in a protected address space and cannot crash the simulator; 
2. PSE models allow concepts such as simulation time and threading to be handled elegantly; 
3. A platform consisting of processor models and PSEs is ideally suited to debug with the Imperas 

debugger; 
4. PSEs can be analyzed using tools built with Imperas intercept technology without having to 

modify and recompile the platform. 
See the OVP Peripheral Modeling Guide for detailed information on PSEs. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 50 of 168 
. 

This example defines a new memory called mem1 which has an address range 
0:0x3fffff (i.e. it is of size 0x400000). The access privileges for the memory are 
defined by the enumeration type icmPriv in icmCpuManager.h: 
 
typedef enum icmPrivE { 
    ICM_PRIV_NONE=0x0,              // no access permitted 
    ICM_PRIV_R   =0x1,              // read permitted 
    ICM_PRIV_W   =0x2,              // write permitted 
    ICM_PRIV_RW  =0x3,              // read & write permitted 
    ICM_PRIV_X   =0x4,              // execute permitted 
    ICM_PRIV_RX  =0x5,              // read & execute permitted 
    ICM_PRIV_WX  =0x6,              // write & execute permitted 
    ICM_PRIV_RWX =0x7,              // read, write & execute permitted 
} icmPriv; 

 
⇒ Note that the last argument to icmNewMemory is the memory upper bound, not the 

memory size. This is so that it is possible to define a memory of size 2^64 bytes, 
i.e. to cover the full range of a 64-bit address space. 

⇒ The highAddr is the high address within the memory, it is NOT the address at 
which the memory is decoded when connected onto a bus. The decoded address 
range for the memory is bus base address to bus base address + highAddr. 

 
Once a memory has been created, it can be connected to a bus using 
icmConnectMemoryToBus, which takes a bus object, a memory port name, a memory 
object and a bus address as arguments, for example: 
 
icmConnectMemoryToBus(bus, “mp1”, memory1, 0x10000); 

 
This example connects a memory to a bus using port mp1 of the memory (memories may 
be multiport, and be connected to several busses using different port names). The 
memory is connected with memory address 0 mapped to bus address 0x10000. 
 
Memories defined with icmNewMemory use the simulator’s internal memory modeling 
capabilities. It is possible as an alternative to specify that a memory range should be 
modeled using a callback function in the ICM platform instead. This is done using 
icmMapExternalMemory: 
 

9.4 Mapping an address region to a callback 
In this example, an address region is mapped to read and write callbacks supplied by  
user's functions. 
 
typedef struct extMemDescS { 
    void *localSource; 
    void *localSink; 
} extMemDesc; 
 
// called when a read occurs in the range 0x00400000, 0x00400fff, 
// copies data from localSource; 
 
ICM_MEM_READ_FN(extMemReadCB) { 
    extMemDesc *p = userData; 
    memcpy(value, p->localSource, bytes) 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 51 of 168 
. 

} 
 
// called when a write occurs in the range 0x00400000, 0x00400fff, 
// copies data to localSink; 
 
ICM_MEM_WRITE_FN(extMemWriteCB) { 
    memcpy(p->localSink, value, bytes) 
} 
 
static extMemDesc extMem; 
 
icmMapExternalMemory( 
    bus, “external”, ICM_PRIV_R, 0x00400000, 0x00400fff, 
    extMemReadCB, extMemWriteCB, &extMem 
); 

 
This example specifies that the range 0x400000:0x400fff on the bus should not be 
modeled using simulated memory, but should instead be implemented using two ICM 
platform callback functions, extMemReadCB and extMemWriteCB. These callback 
functions are specified using the ICM_MEM_READ_FN and ICM_MEM_WRITE_FN macros. Any 
time a simulated processor or device performs a memory read or write in this address 
range, the appropriate platform callback function will be called. The write callback will 
be passed the value being written in the value argument. The read callback should fill the 
value buffer with bytes bytes of data (the required contents for a read at the passed 
address). 
 

9.4.1 Invalid access 
During the read or write callback the client might decide that the access cannot be 
completed. To signal this, either function icmAbortRead or icmAbortWrite should be 
called by the client. Use icmAbortRead when the callback was initiated by either of these 
functions: 
 
icmReadProcessorMemory  
icmReadBus 

 
Use icmAbortWrite when the callback was initiated by either of these functions: 
 
icmWriteProcessorMemory  
icmWriteBus 

 
In no other context should icmAbortRead or icmAbortWrite be called. 
 
If the initiating processor model implements rdAbortExceptCB or wrAbortExceptCB 
callback functions in its vmiAttrs structure, then the appropriate callback will be 
invoked to allow the processor model to handle the abort. Otherwise, simulation will be 
terminated with a memory abort error message. 
 

9.4.2 Debugging Bus Connections 
When there are many connections to a bus, visualizing the connections can be difficult, to 
help, the ICM interface defines a useful debugging function: 
 
void icmPrintBusConnections(icmBusP bus); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 52 of 168 
. 

 
Given a bus, this function prints details of all the master (e.g. processors) and slaves (e.g. 
memories) currently connected to that bus. As an example, the output might look like 
this: 
 
BUS MASTERS: 2 
   PORT 'DATA' of 'cpu1' 
   PORT 'INSTRUCTION' of 'cpu1' 
BUS SLAVES: 2 
   0x00000000:0x003fffff: PORT 'mp1' of 'mem1' 
   0x00400000:0x00400fff: MAPPED r-- RCB:0x8048808 WCB:0x8048857 
   0x00401000:0xffffffff: PORT 'mp2' of 'mem2' 

 

9.4.3 Processor Instruction Execution 
When the memory represented by or accessed through an external memory callback is 
used to store the executable binary to be executed by the processor the external memory 
callback will be called for the processor instruction fetch access but also as an artifact of 
simulation. 
 
In order to distinguish between a real instruction fetch and a simulation artifact the 
icmProcessorP processor argument should be used within the callback. If the read is a 
processor instruction fetch the processor argument will be a pointer to the processor 
making the access. If the read is a simulation artifact then the processor argument will be 
NULL, indicating that it is not a processor making this access. 
 

9.4.4 Example 
This example is found in the memory directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/memory 
 

NOTE 
OP API example showing the same feature are available as  

PlatformConstruction/usingExternalMemory 
 
The example shows how a region of memory could be mapped externally in the ICM 
platform to simulate an area memory with read only privileges. 
 
 
    // create a processor 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        “or1k”,             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        “modelAttrs”,       // model attributes 
        MODEL_ATTRS,        // simulation attributes 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        “modelAttrs”,       // semi-hosting attributes 
    ); 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 53 of 168 
. 

    // create the processor bus 
    icmBusP bus = icmNewBus("bus", 32); 
 
    // connect the processor busses 
    icmConnectProcessorBusses(processor, bus, bus); 
 
    // create two simulated memories for low and high regions 
    icmMemoryP memory1 = icmNewMemory("mem1", ICM_PRIV_RWX, 0x003fffff); 
    icmMemoryP memory2 = icmNewMemory("mem2", ICM_PRIV_RWX, 0xffffffff-0x00401000); 
 
    // map the address range 0x00400000:0x00400fff externally to the processor, 
    // read only 
    icmMapExternalMemory( 
        bus, "external", ICM_PRIV_R, 0x00400000, 0x00400fff, 
        extMemReadCB, extMemWriteCB, 0 
    ); 
 
    // connect memories to bus 
    icmConnectMemoryToBus(bus, "mp1", memory1, 0); 
    icmConnectMemoryToBus(bus, "mp2", memory2, 0x00401000); 
 

 
The callbacks are defined using the macros in the ICM API as: 
 
static ICM_MEM_READ_FN(extMemReadCB) { 
 
    Int32 data = 0xcefaedfe; 
    *(Int32 *)value = data; 
 
    icmPrintf( 
        "EXTERNAL MEMORY: Reading  0x%08x from 0x%08x\n", 
        data, (Int32)address 
    ); 
} 
 
static ICM_MEM_WRITE_FN(extMemWriteCB) { 
 
    icmPrintf( 
        "EXTERNAL MEMORY: Writing 0x%08x to 0x%08x\n", 
        (Int32)value, (Int32)address 
    ); 
} 

 
This very simple ROM implementation returns the fixed pattern 0xcefaedfe for any read 
from the ROM area and ignores any write (obviously a real example can do something 
much more sophisticated than this if required). 
 
Compile the test platform and application as before using the following commands in the 
memory directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the memory directory, run : 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf 

 
You should see the following output: 
 
Running example 
BUS MASTERS: 2 
   PORT 'DATA' of 'platform/cpu1' 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 54 of 168 
. 

   PORT 'INSTRUCTION' of 'platform/cpu1' 
BUS SLAVES: 2 
   0x00000000:0x003fffff: PORT 'mp1' of 'mem1' 
   0x00400000:0x00400fff: MAPPED r-- RCB:<ADDRESS> WCB:<ADDRESS> 
   0x00401000:0xffffffff: PORT 'mp2' of 'mem2' 
 
. . . lines deleted . . . 
 
--------------- --------------- --------------- --------------- 
Info 'platform/cpu1', 0x0000000001000084: l.muli   r4,r4,0x800 
Info 'platform/cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : ffffffff 
 R4 : 00400000   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 01000088   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
Info 'platform/cpu1', 0x0000000001000088: l.lwz    r5,0x0(r4) 
EXTERNAL MEMORY: Reading  0xcefaedfe from 0x00400000 
Info 'platform/cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : ffffffff 
 R4 : 00400000   R5 : feedface   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 0100008c   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
. . . lines deleted . . . 
 
--------------- --------------- --------------- --------------- 
Info 'platform/cpu1', 0x0000000001000094: l.addic  r5,r5,0x1 
Info 'platform/cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : ffffffff 
 R4 : 00400000   R5 : 00400002   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 01000098   SR : 00008001   ESR: deadbeef   EPC: deadbeef   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
Info 'platform/cpu1', 0x0000000001000098: l.sw     0x0(r4),r5 
Info 'platform/cpu1' REGISTERS 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000001   R3 : ffffffff 
 R4 : 00400000   R5 : 00400002   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : deadbeef   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: deadbeef   R31: deadbeef 
 PC : 01000098   SR : 00008001   ESR: deadbeef   EPC: deadbeef   



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 55 of 168 
. 

 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
Processor Exception (PC_PRX) Processor 'platform/cpu1' 0x1000098: l.sw     0x0(r4),r5 
Processor Exception (PC_WPX) No write access at 0x400000 

 
Note that: 

1. The load to the external memory region is performed correctly but the store 
causes an exception – this is because the external region was specified to have 
read access permission only. 

2. Although the read memory callback returns the value 0xcefaedfe, the value 
that gets loaded into register R5 of the OR1K processor is 0xfeedface. This is 
because the native host (x86) is little-endian, whereas the OR1K processor is 
big-endian. Depending on the processor being used, memory callbacks may be 
required to perform endian swapping to get the desired results. 

3. The simulator reports the exception (and returns ICM_SR_WR_PRIV from 
icmSimulate, although this isn’t explicitly shown in this example). The 
ICM_ATTR_SIMEX instance attribute could be used to cause the exception to be 
simulated instead – see section 5.2 for more information about this. 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 56 of 168 
. 

10 Simulator Scheduler 
The scheduler controls the execution of instructions on each of the processor models that 
may be in the platform and also when peripheral models timed events occur. 
It is the recommended approach to use the simulator internal built-in scheduler by calling 
icmSimulatePlatform() to execute simulation. However, in circumstances when you wish 
to control how the processor models instruction execution are scheduled and how time is 
moved forward the icmSimulate() and icmAdvanceTime() functions can be used in its 
place. 
 
How processors execute instructions and how time is moved forward may be controlled 
when using the standard scheduler by setting the processor MIPS rate and the platform 
quantum.  
When using a custom scheduler it is the combination of the arguments passed to the 
functions that determine how instructions executed and time are related. 
 
It is possible to create the same execution with both the standard and custom schedulers 
as shown in the example. 
 

10.1.1 Example 
This example is found in the customScheduler directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/customScheduler 
 

NOTE 
OP API example showing the same feature are available as  

SimulationControl/customScheduler 
 
The example shows how a custom scheduler is used to control the execution of an 
application on a processor while moving time forward so that events within peripheral 
models occur at the correct rate. 
 
    // the constructor 
    createPlatform(); 
 
    icmSimulationStarting(); 
 
    icmMessage("I", "PLATFORM", "Running with %s scheduler",  
                                options.standard ? "standard" : "custom"); 
 
    if (options.standard) { 
        // running with built in standard scheduler 
        icmSimulatePlatform(); 
    } else { 
        // run simulation with custom scheduling 
        icmTime myTime; 
        icmStopReason rtnVal = ICM_SR_SCHED; 
        for(myTime=TIME_SLICE;rtnVal==ICM_SR_SCHED || 
                              rtnVal==ICM_SR_HALT;myTime+=TIME_SLICE){ 
            rtnVal= icmSimulate(handles.processor, INSTRUCTIONS_PER_TIME_SLICE); 
            icmAdvanceTime(myTime); 
        } 
    } 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 57 of 168 
. 

 
    // terminate simulation 
    icmTerminate(); 
 

 
Compile the test platform and application as before using the following commands in the 
memory directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the customScheduler directory, run : 
 
./platform/platform.${IMPERAS_ARCH}.exe \ 
             --program application/application.OR1K.elf 

 
You should see the following output: 
 
 
Info (PLATFORM) Running with custom scheduler 
Info (16550_BRS) platform/uartTTY0: baud rate=1152000  parity=N  data bits=5  total bits=7 
character delay=6usec 
Info (16550_UWR) platform/uartTTY0: Write to Data register: data=0x48 ('H') 
Info (16550_UWR) platform/uartTTY0: Write to Data register: data=0x65 ('e') 
Info (16550_UWR) platform/uartTTY0: Write to Data register: data=0x6c ('l') 
Info (16550_UWR) platform/uartTTY0: Write to Data register: data=0x6c ('l') 
Info (16550_UWR) platform/uartTTY0: Write to Data register: data=0x6f ('o') 
Info (16550_UWR) platform/uartTTY0: Write to Data register: data=0x0a (' ') 
 

 
To run the simulation, with the standard scheduler, in the customScheduler directory, 
run : 
 
./platform/platform.${IMPERAS_ARCH}.exe \ 
             --program application/application.OR1K.elf --standard 

 
You should see the same output. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 58 of 168 

11 Caches 
A cache, active memory device or external memory management unit can be modeled 
using a Memory Model Component (MMC). An MMC fits between a bus master such as 
a processor or a peripheral (that can be a bus master), and a bus slave such as a RAM, 
ROM or peripheral with a bus slave port. MMCs can also be cascaded to model, for 
example, multi-level caches. 

Processor A 

. 

 
 
Please refer to the OVP VMI Memory Model Component Function Reference for details 
of writing an MMC. 
 
Note that since every bus access through an MMC causes at least one function to be 
called, use of an MMC will impact simulation performance. 

11.1 Transparent or Full MMC Models 
An MMC operates in one of two possible modes, transparent or full. An MMC can be 
written to support one or either mode. Full models implement storage and so can be used 
to accurately model components such as caches that are incoherent with main memory. 
Transparent models do not implement storage (so cannot be incoherent) but can be used 
to create very fast performance monitors. As an example, a transparent cache model 
would model only the cache tags and use this information to count hits and misses. 

BMP code 

MMC L1A 

BSP 

BMP 

RAM A 

BSP

MMC L1B 

BMP data

BSP

BMP 

MMC L2 

BSP1 

BMP 

BSP2



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 59 of 168 

 

11.2 MMC Operation 
A full MMC model has one or more master ports and one or more slave ports. A 
transparent MMC model must have exactly one master port and one or more slave ports. 
Transparent MMCs have only one master port because during construction busses 
connected to the MMC slave ports are connected straight through to the master port. 
 
In operation, a bus cycle instigated by another bus master in the system activates the 
MMC via one of its slave ports. This causes an activation function to be called in the 
MMC model. In a transparent MMC the activation function will perform some 
calculation and then return, allowing the simulator to propagate the effect of the bus cycle 
to the next component. In a full MMC the activation function might also instigate a bus 
cycle on a bus connected to one of its master ports. 

11.3 Transparent Model 

Bus Master MMC 

. 

 

Read Cycle 
readN() { 
  reads++; 
} 

call 

 
Fetch data 

RAM 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 60 of 168 

11.3.1 Full Model 

Bus Master 

Read Cycle 

MMC 

readNFull() { 
    if(cached) 
        getLocalData() 
    else 
        vmirtReadNByteDomain(...) 
}  

Fetch data 

RAM 
call 

 

11.4 Creating and connecting an MMC 
An MMC is created using icmNewMMC. It is connected to a bus using icmConnectMMCBus. 
 

11.4.1 Transparent MMC Example 
An example of a transparent MMC is available at  
 
$IMPERAS_HOME/Examples/PlatformsICM/transparentMMC 
 

NOTE 
OP API example showing the same feature are available as  

PlatformConstruction/transparentMMC 
 
This has a platform file containing: 
  
    // select library components  
    const char *vlnvRoot = 0; // when null use default library 
    const char *model = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "processor", "or1k", "1.0", "model" 
    ); 
    const char *semihosting = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "semihosting", "or1kNewlib", "1.0", "model" 
    ); 
    const char *mmc_model = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "mmc", "wb_1way_32byteline_2048tags", "1.0", 
        "model" 
    ); 
 
    // initialize CpuManager 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “platform”); 
 
    // create a processor 
    icmProcessorP cpu1h = icmNewProcessor( 
        "cpu1",             // CPU name 
        "or1k",             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 

. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 61 of 168 
. 

        0,                  // not used 
        0,                  // simulation attributes 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0,                  // not used 
    ); 
 
    // create transparent MMCs 
    icmMmcP mmci = icmNewMMC("mmci", mmc_model, "modelAttrs", 0, 0, True); 
    icmMmcP mmcd = icmNewMMC("mmcd", mmc_model, "modelAttrs", 0, 0, True); 
 
    // create the processor instruction bus and data bus 
    icmBusP ibus = icmNewBus("ibus", 32); 
    icmBusP dbus = icmNewBus("dbus", 32); 
 
    // create the processor main bus 
    icmBusP mbus = icmNewBus("mbus", 32); 
 
    // connect processor ports to their buses 
    icmConnectProcessorBusses(cpu1h, ibus, dbus); 
 
    // connect MMCs to buses 
    icmConnectMMCBus(mmci, ibus, "sp1", False); 
    icmConnectMMCBus(mmcd, dbus, "sp1", False); 
 
    // connect master ports of MMC to main bus 
    icmConnectMMCBus(mmci, mbus, "mp1", True); 
    icmConnectMMCBus(mmcd, mbus, "mp1", True); 
 
    // create two simulated memories for low and high regions 
    icmMemoryP memory1 = icmNewMemory("mem1", ICM_PRIV_RWX, 0x003fffff); 
    icmMemoryP memory2 = icmNewMemory("mem2", ICM_PRIV_RWX, 0xffffffff-0x00401000); 
 
    // connect memories to main bus 
    icmConnectMemoryToBus(mbus, "mp1", memory1, 0); 
    icmConnectMemoryToBus(mbus, "mp2", memory2, 0x00401000); 

 
 
    // run until exit 
    icmSimulatePlatform(); 
 
    // free simulation data structures 
    icmTerminate(); 

 
This example instantiates a generic cache model from the ovpworld.org library. This 
cache model is available as source, so it can be used as-is or modified if required. In 
transparent mode, the cache model counts the number of accesses to hypothetical cache 
lines, given a particular cache configuration in terms of number of ways, line size and 
cache size. Example output is as follows: 
 
Running example 
Compiling Application hello.OR1K 
Linking Application hello.OR1K.elf 
2x transparent MMC 
 
cacheConstructor called for platform/mmci 
  -------------------------------------------- 
  Ways      : 1 
  Line bits : 5 
  Tag bits  : 11 
  -------------------------------------------- 
  Tags      : 2,048 
  Line bytes: 32 
  Size      : 65,536 
  Tag mask  : ................11111111111..... 
  Key mask  : 111111111111111111111111111..... 
  -------------------------------------------- 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 62 of 168 
. 

 
 
cacheConstructor called for platform/mmcd 
  -------------------------------------------- 
  Ways      : 1 
  Line bits : 5 
  Tag bits  : 11 
  -------------------------------------------- 
  Tags      : 2,048 
  Line bytes: 32 
  Size      : 65,536 
  Tag mask  : ................11111111111..... 
  Key mask  : 111111111111111111111111111..... 
  -------------------------------------------- 
 
 
cacheLink called for platform/mmci 
 
cacheLink called for platform/mmcd 
Hello world 
 
cacheDestructor called for platform/mmci 
 
READ ACCESSES: 
  HITS       :           2,003 
  MISSES     :             230 
  1-byte     :               0 
  2-byte     :               0 
  4-byte     :           2,233 
  8-byte     :               0 
  N-byte     :               0 (0 bytes, average size=0.0 bytes) 
  TOTAL READ :           2,233 
  TOTAL BYTES:           8,932 
 
cacheDestructor called for platform/mmcd 
 
READ ACCESSES: 
  HITS       :             343 
  MISSES     :              14 
  1-byte     :              30 
  2-byte     :              30 
  4-byte     :             297 
  8-byte     :               0 
  N-byte     :               0 (0 bytes, average size=0.0 bytes) 
  TOTAL READ :             357 
  TOTAL BYTES:           1,278 
 
WRITE ACCESSES: 
  HITS       :             282 
  MISSES     :              24 
  1-byte     :              12 
  2-byte     :              12 
  4-byte     :             282 
  8-byte     :               0 
  N-byte     :               0 (0 bytes, average size=0.0 bytes) 
  TOTAL WRITE:             306 
  TOTAL BYTES:           1,164 
Done 

11.4.2  Full MMC Example 
An example of a full MMC is available at: 
 
$IMPERAS_HOME/Examples/PlatformsICM/fullMMC 
 

NOTE 
OP API example showing the same feature are available as  

PlatformConstruction/fullMMC 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 63 of 168 
. 

 
The platform file is almost identical to that shown previously for transparent MMCs. The 
only significant difference is in the MMC instantiation lines: 
  
    // create transparent MMCs 
    icmMmcP mmci = icmNewMMC("mmci", mmc_model, "modelAttrs", 0, 0, False); 
    icmMmcP mmcd = icmNewMMC("mmcd", mmc_model, "modelAttrs", 0, 0, False); 

 
The final argument to icmNewMMC specifies whether the MMC is transparent or full. In 
full mode, content as well as tags are modeled, so it is possible for the system to 
demonstrate incoherency effects. 

11.4.3 Cascaded MMC Example 
Both transparent and full MMC models can be instantiated in a cascaded fashion, where 
master ports of MMCs nearer the processor are connected to slave ports of MMCs nearer 
the memory subsystem. This allows structures such as cache hierarchies to be easily 
modeled. 
 
An example of a platform with cascaded MMCs is available at: 
 
$IMPERAS_HOME/Examples/PlatformsICM/cascadedTransparentMMC 
 

NOTE 
OP API example showing the same feature are available as  

PlatformConstruction/cascadedTransparentMMC 
 
This has a platform file containing: 
  
    const char *vlnvRoot = 0; // when null use default library 
    const char *model = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "processor", "or1k", "1.0", "model" 
    ); 
    const char *semihosting = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "semihosting", "or1kNewlib", "1.0", "model" 
    ); 
    const char *mmc_model = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "mmc", "wb_1way_32byteline_2048tags", "1.0", 
        "model" 
    ); 
 
    // initialize CpuManager 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “platform”); 
 
    // create a processor 
    icmProcessorP cpu1h = icmNewProcessor( 
        "cpu1",             // CPU name 
        "or1k",             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        0,                  // simulation attributes 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 64 of 168 
. 

    // create transparent MMCs 
    icmMmcP mmcL1I = icmNewMMC("mmcL1I", mmc_model, "modelAttrs", 0, 0, True); 
    icmMmcP mmcL1D = icmNewMMC("mmcL1D", mmc_model, "modelAttrs", 0, 0, True); 
    icmMmcP mmcL2  = icmNewMMC("mmcL2",  mmc_model, "modelAttrs", 0, 0, True); 
 
    // create busses 
    icmBusP PIbus  = icmNewBus("PIbus",  32); 
    icmBusP PDbus  = icmNewBus("PDbus",  32); 
    icmBusP L1Ibus = icmNewBus("L1Ibus", 32); 
    icmBusP L1Dbus = icmNewBus("L1Dbus", 32); 
    icmBusP mbus   = icmNewBus("mbus",   32); 
 
    // connect processor busses 
    icmConnectProcessorBusses(cpu1h, PIbus, PDbus); 
 
    // connect L1 MMCs 
    icmConnectMMCBus(mmcL1I, L1Ibus, "mp1", True); 
    icmConnectMMCBus(mmcL1I, PIbus,  "sp1", False); 
    icmConnectMMCBus(mmcL1D, L1Dbus, "mp1", True); 
    icmConnectMMCBus(mmcL1D, PDbus,  "sp1", False); 
 
    // connect L2 MMC 
    icmConnectMMCBus(mmcL2, mbus,   "mp1", True); 
    icmConnectMMCBus(mmcL2, L1Ibus, "sp1", False); 
    icmConnectMMCBus(mmcL2, L1Dbus, "sp2", False); 
 
    // create two simulated memories for low and high regions 
    icmMemoryP memory1 = icmNewMemory("mem1", ICM_PRIV_RWX, 0x003fffff); 
    icmMemoryP memory2 = icmNewMemory("mem2", ICM_PRIV_RWX, 0xffffffff-0xf0000000); 
 
    // connect memories to bus 
    icmConnectMemoryToBus(mbus, "mp1", memory1, 0); 
    icmConnectMemoryToBus(mbus, "mp2", memory2, 0xf0000000); 

 
    // run until exit 
    icmSimulatePlatform(); 
 
    // free simulation data structures 
    icmTerminate(); 

 
This example defines three MMC objects representing L1 instruction cache, L1 data 
cache and L2 shared cache. In the example as written, all three caches are modeled as 
transparent, but it is possible to have combinations of transparent and full models in the 
same simulation, with the restriction that transparent models must be closer to the 
processor than full models. For example, all of these are legal combinations: 

1. L1 instruction, L1 data and L2 all transparent; 
2. L1 instruction, L1 data and L2 all full; 
3. L1 instruction and L1 data transparent; L2 full. 

It is however not legal to try to model either L1 cache as a full model when the L2 cache 
is transparent. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 65 of 168 

12 Byte Swapping (Endian Correction) 
A bus controller in a real platform might have the ability to perform byte-swapping on 
each bus cycle. This allows, for example, a big-endian processor to communicate with a 
little-endian peripheral component. CpuManager supports byte swapping through the use 
of an MMC. The bus is broken into two and an MMC inserted between the two parts. 
 

12.1 Bus Connections 
An MMC creates a one-way connection between two busses, accepting bus cycles from 
one bus and passing them to another. An MMC cannot perform address decoding so is 
activated by accesses to all addresses. If the swapping function is required for a limited 
address range, a bus bridge is used to decode the required range, and its output passed to 
the MMC. 

Processor

BMP 

. 

 
This diagram illustrates the example in 
 
$IMPERAS_HOME/Examples/PlatformsICM/byteSwapper 
 

NOTE 
OP API example showing the same feature are available as  

PlatformConstruction/ byteSwapperMMC 
 
The OR1K processor uses two RAMs (one shown) for program and stack. The bridge 
maps a limited address range from the main bus onto an intermediate bus which is 

memory
BSP

MMC endianSwap
BSP

BMP

                       Main bus

Bridge

                   Peripheral bus



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 66 of 168 
. 

connected to the MMC model endianSwap which can be found in the ovpworld.org mmc 
library. A simple peripheral model (not shown) is connected to the peripheral bus. 
 
Thus, the processor has direct access to its memory without byte-swapping, but a 32-bit 
access (read or write) to the peripheral will have its bytes reversed. 
 
Note that in this design, a bus master on the peripheral bus will be unable to access the 
processor memory. 
 
The platform is constructed in 
 
$IMPERAS_HOME/Examples/PlatformsICM/byteSwapper/platform/platform.c 

12.2 Bus bridge 
Construction of the processor, memory and peripheral components has already been 
covered. The function icmNewBusBridge creates a bus bridge: 
 
icmNewBusBridge( 
    icmBusP_1,      // connection to incoming bus 
    icmBusP_2,      // connection to outgoing bus 
   “bridge1”,       // name of this bridge 
   "decoder_sp1",   // name of slave port 
   "decoder_mp1",   // name of master port 
   0,               // low address of mapped region on the outgoing bus 
   0xf,             // high address of mapped region on the outgoing bus 
   0x80000000       // base address of mapped region on the incoming bus 
); 

 
The bus bridge is a generic component (it does not exist in a library) which maps part or 
all of the address space of one bus to the address space of another. Note that in this 
example incoming refers to the bus which is connected to the bus master, outgoing is the 
bus which is connected to the slaves. The port names are for documentation only, but 
should be unique on their respective busses. 
 

12.2.1 Aliasing 
 
A bus bridge can be used to alias a region of an address space to another region on the 
same bus. This example models the effect of not connecting the most significant address 
bit of a 32-bit bus: addresses in the top half of the address space are mapped to the 
bottom half. 
 
icmNewBusBridge( 
   bus1,            // connection to incoming bus 
   bus1,            // connection to outgoing bus (the same bus) 
   “bridge1”,       // name of this bridge 
   "sp1",           // name of slave port 
   "mp1",           // name of master port 
   0,               // low address of mapped region on the outgoing bus 
   0x7fffffff,      // high address of mapped region on the outgoing bus 
   0x80000000       // base address of mapped region on the incoming bus 
); 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 67 of 168 
. 

12.3 Performance considerations 
In the simulator, byte swapping converts a memory access to a function call, hence a 
byte-swapper model should be used with care; a byte-swapper placed between a 
processor and its main memory (program or data) will severely restrict its performance. 
However, putting a byte-swapper between a processor and a peripheral model will cause 
minimal effect when the peripheral is itself modeled by function calls. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 68 of 168 

13 Dynamic Bus Bridges 
A dynamic bus bridge is used in a similar way as a bus bridge, described in the previous 
section, but allows dynamic changes to the address space visible on a bus to be created. It 
is a generic component (it does not exist in a library) which maps part or all of the 
address space of one bus to the address space of another. 
 
A dynamic bus bridge creates a mapping between two busses that, essentially, makes the 
region on the slave bus appear directly connected onto the master bus at the address range 
specified.  
 
Any previously bridged addresses within a new mapped region are removed. However, 
the underlying memory of a mapping is not affected so that a subsequent mapping back 
onto an address region will make the same memory visible once again. 
 

Processor

BMP 

. 

 
 
 
 
 
 
 
This diagram illustrates the example in 
 
$IMPERAS_HOME/Examples/PlatformsICM/dynamicBridges 
 

memory
BSP

memory
BSPmemory 

Callback 

Bus 
External 

Bus 
Mapped 

 

Bus 
Local 

Dynamic Mappings 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 69 of 168 
. 

NOTE 
OP API example showing the same feature are available as  

PlatformConstruction/usingExternalMemory and SimulationControl/dynamicBridge 
 
The bridge is initially used to map the full extent of the processor address map to the 
‘mapped’ bus. As the program executes the buses are dynamically re-mapped so that an 
address region accessed by the program is 

1. mapped from the ‘mapped’ bus to the ‘external’ bus 
2. mapped back from the ‘external’ bus to the ‘mapped’ bus, allowing previous 

values to be accessed. 
3. unmapped, so that an access to the region will create a memory fault. 

 
The platform is constructed in 
 
$IMPERAS_HOME/Examples/PlatformsICM/dynamicBridges/platform/platform.c 
 
The function icmBridgebuses creates a dynamic bus bridge: 
 
icmBridgebuses( 
   busLocal,    // mapping on master bus, incoming bus 
   busMapped,   // connection to slave, outgoing bus 
   0x00400000,  // low address of mapped region on the outgoing bus 
   0x0040000f,  // high address of mapped region on the outgoing bus 
   0x00400000   // base address of mapped region on the incoming bus 
); 
 
Note that in this example incoming refers to the bus which is connected to the bus master, 
outgoing is the bus which is connected to the slaves. 
 
 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 70 of 168 
. 

14 Attaching a Debugger 
It is possible to attach a debugger that uses the gdb RSP protocol to a processor in a 
CpuManager or OVPsim simulation. CpuManager offers more functionality than 
OVPsim: 
 
Simulator Features 
OVPsim Single gdb connection. If platform has more than 1 processor, must use 

icmDebugThisProcessor to specify which to debug 
CpuManager Up to 8 gdb connections. Need not use icmDebugThisProcessor if less than 

8. Connections are offered in instance order. 
 
In order to use RSP, icmInitPlatform must be passed the debug protocol (currently, 
only "rsp" is supported) and port number as arguments. The port number can be specified 
by giving a number greater than zero, or the allocation can be left to the host operating 
system by specifying a port number of zero. 
 
If using OVPsim, or using CpuManager with more than 8 processors, or using 
CpuManager and connecting the debugger to the processors in other than instance order, 
then use icmDebugThisProcessor: 
 
For example: 
icmInitPlatform(ICM_VERSION, attributes, "rsp", portNum, “plat1”); 

…. 
icmProcessorP processor9 = icmNewProcessor( 
        "cpu9",             // CPU name 
        “or1k”,             // CPU type 
        9,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        0,                  // CPU attributes 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                  // not used 
); 
 
icmDebugThisProcessor(processor9);  // specify this processor 

…. 
 
When the ICM executable is started, it will wait for a debugger to connect on the 
specified port. 
 
It is of course required to have a version of gdb specific to the target processor. The 
OVPWorld web site can supply a gdb for most processor models available there. 

14.1 Example of attaching to GDB 
This example is found in this directory: 
 
$IMPERAS_HOME/Examples/PlatformsICM/debugWithGDB 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 71 of 168 
. 

 
The following shows the program platform/platform.c: 
    
 
    // initialize OVPsim 
    unsigned int icmAttrs = ICM_INIT_DEFAULT; 
 
    icmInitPlatform(ICM_VERSION, icmAttrs, 0, 0, “plat1”); 
 
    // select library components  
    const char *vlnvRoot = 0; // when null use default library 
    const char *model = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "processor", "or1k", "1.0", "model" 
    ); 
    const char *semihosting = icmGetVlnvString( 
        vlnvRoot, "ovpworld.org", "semihosting", "or1kNewlib", "1.0", "model" 
    ); 
     
    // create a processor 
    icmProcessorP processor = icmNewProcessor( 
        "OR1K",             // processor name 
        "or1k",             // CPU type 
        0,                  // processor cpuId 
        0,                  // processor model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        0,                  // no processor attributes 
        0,                  // no user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 

 
 
     // The simulator pauses here until connected to gdb 
    icmSimulatePlatform(); 
 
    // terminate simulation 
    icmTerminate(); 

 
The icmAttrs should include ICM_GDB_CONSOLE and the third argument "rsp" to open 
a GDB port connection or the command line argument --gdbconsole should be used. 
 
Compile the test platform and application as before using the following commands in the 
debugWithGDB directory: 
 
make –C platform 
make –C application 

 
To start the simulation, in the debugWithGDB directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe \ 
              --program application/asmtest.OR1K.elf \ 
              --gdbconsole 

 
You should see the following output: 
 
Info (GDBT_PORT) Host: <hostname>, Port: <port number> 
Info (GDBT_WAIT) Waiting for remote debugger to connect... 

 
A console will be started and a connection made to the simulator debug port. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 72 of 168 
. 

 
The simulator will display the following output after connection of the debugger. 
 
Info (GDBT_CONNECTED) Client connected 

 
We now have the debugger connected to the simulation and can carry out normal 
debugging commands supported by gdb – for example, try setting a breakpoint at main, 
continuing and disassembling. 
 
For more detailed information on debugging with gdb, refer to the Debugging 
Applications with GDB User Guide. 

14.2 Attaching to the remote multiprocessor debugger 
As well as being integrated into the Imperas simulator, the Imperas multiprocessor 
debugger is available as a stand-alone program that connects to the simulator via an RSP 
connection, in the same way as gdb. 
 
The procedure is identical to the previous example except that there is no need to call 
icmDebugThisProcessor(). 
 
You may modify and re-compile the platform file to change from automatically starting 
the GDB console to starting the MPD console.  This can be done by adding 
ICM_MPD_CONSOLE to the icmAttrs (and re-compiling) or by adding the command 
line argument --mpdconsole 
 
Or if you wish you may start the simulation, in the debugWithGDB directory, and attach 
remotely without modifying the platform, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe \ 
             --program application/asmtest.OR1K.elf \ 
             --port 0 

 
(The value 0 tells the OS to allocate a port number from its pool). 
You should see the following output: 
 
Info (GDBT_PORT) Host: <hostname>, Port: 5555 
Info (GDBT_WAIT) Waiting for remote debugger to connect... 

 
(The value 5555 was the port number selected in this run). 
 
Run the multiprocessor debugger in a separate shell using the following command in the 
debugWithGDB directory: 
 
${IMPERAS_HOME}/bin/${IMPERAS_ARCH}/mpd.exe -port 5555 

 
The following output will be seen 
 
 
                     MPD (32-Bit) version <version> 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 73 of 168 
. 

        Copyright (c) 2005-2015 Imperas Software Ltd. 
                     ALL RIGHTS RESERVED 
 
This program is proprietary and confidential information of 
Imperas Software Ltd. and may be used and disclosed only as authorized 
in a license agreement controlling such use and disclosure. 
 
Info (MPD_SCS) Connecting 
Info (GDBT_CONNECTED) Client connected 
Info (MPD_SC) Socket connected 
Info (MPD_VC) Server is compatible 
idebug (OR1K) >  

 
The debugger is now ready for use. Please refer to Imperas_Debugger_User_Guide. 
 

14.3 Automatic startup of remote debuggers. 
As we have seen in the previous example, the simulator can start gdb or MPD (if this 
option has been purchased) in a separate window. Set the simulator attributes 
ICM_GDB_CONSOLE or ICM_MDP_CONSOLE. 
 
    // initialize CpuManager with MPD console 
 
    icmInitPlatform(ICM_VERSION, ICM_GDB_CONSOLE, “rsp”, 0, “plat1”); 
    … 
or 
 
    icmInitPlatform(ICM_VERSION, ICM_MPD_CONSOLE, “rsp”, 0, “plat1”); 
    … 
 

 
Alternatively both options may be applied using the command line parser using the 
arguments --gdbconsole and --mpdconsole respectively. 
 
When simulation starts, a new window will appear with the multiprocessor debugger (or 
gdb) already connected to the simulator. On Windows, the console will be on the local 
desktop, on Linux, the console (an x-term) will follow the setting of the DISPLAY 
environment variable. 
 

14.3.1 Using the control file 
 
If your product supports use of the Imperas Control File, then the multiprocessor 
debugger can be invoked in one of two modes, using the simulator control file. 
 
14.3.1.1 Integrated debugger 
If the platform has access to a console (and the platform is not using the console itself) 
then the integrated debugger can be started. The debugger banner and prompt will appear 
in the console and can be used from there. Use the control file entry: 
 
--idebug 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 74 of 168 
. 

14.3.1.2 Remote debugger 
If no console is available or if the platform is using the console for other purposes, then 
the remote debugger must be used. A window will appear and the debugger can be used 
from there. Use the control file entry: 
 
--mpdconsole 

 
The multiprocessor debugger can also be started in TCL mode and can execute a startup 
script if required. Please refer to the Imperas Control File User Guide and the Imperas 
Debugger User Guide for more details. 

14.4 Selecting the GDB 
When simulating a platform in the Imperas simulator, a GDB executable can be 
associated with each processor type to give full symbolic debug capabilities. 
Two methods of association can be used: 

• Each model in the OVP processor model library contains a reference to the gdb to 
be used by default. If the installation includes the gdb, this will be selected 
automatically. 

• If this gdb is not available or if another has to be used, the function  
icmSetProcessorGdbPath can set the path per instance: 

 
// set the gdb path 
icmSetProcessorGdbPath( 
    icmProcessorP processor,    // handle to the processor instance 
    const char   *path,         // full path to the GDB executable 
    const char   *flags         // any flags to be appended to the GDB invocation 
); 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 75 of 168 
. 

15 Multiprocessor Support 
Any number of processors can be instantiated within an ICM platform. Shared memory 
resources and callbacks on mapped memory regions are used to allow communication 
between them. 
 
The following section shows a simple multiprocessor platform created using bus and 
memory objects first introduced in section 9.3. 

15.1 Example 
This example is found in the multiprocessor directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/multiprocessor 
 

NOTE 
OP API example showing the same feature are available as  

PlatformConstruction/twoProcessorsSharedMemory 
 
The following shows the instantiation of two processors and a memory shared between 
them. Each processor also has a small amount of local memory for stack. 
 
Two processors are instantiated with individual names and Id numbers.  
 
    // create a processor 
    icmProcessorP processor0 = icmNewProcessor( 
        "cpu1",             // CPU name 
        “or1k”,             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        SIM_ATTRS,          // simulation attributes  
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 
 
    icmProcessorP processor1 = icmNewProcessor( 
        "cpu2",             // CPU name 
        “or1k”,             // CPU type 
        1,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        SIM_ATTRS,          // simulation attributes 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 

 
Two busses are created, one for each processor, and connected to the processors: 
 
    // create the processor busses 
    icmBusP bus1 = icmNewBus("bus1", 32); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 76 of 168 
. 

    icmBusP bus2 = icmNewBus("bus2", 32); 
 
    // connect the processor busses 
    icmConnectProcessorBusses(processor0, bus1, bus1); 
    icmConnectProcessorBusses(processor1, bus2, bus2); 

 
This example needs three memories: a local stack memory for each processor and some 
shared memory. These are created and connected to the processor busses: 
 
    // create memories 
    icmMemoryP local1 = icmNewMemory("local1", ICM_PRIV_RWX, 0x0fffffff); 
    icmMemoryP local2 = icmNewMemory("local2", ICM_PRIV_RWX, 0x0fffffff); 
    icmMemoryP shared = icmNewMemory("shared", ICM_PRIV_RWX, 0xefffffff); 
 
    // connect memories 
    icmConnectMemoryToBus(bus1, "mp1", shared, 0x00000000); 
    icmConnectMemoryToBus(bus2, "mp2", shared, 0x00000000); 
    icmConnectMemoryToBus(bus1, "mp1", local1, 0xf0000000); 
    icmConnectMemoryToBus(bus2, "mp1", local2, 0xf0000000); 

 
Memory maps for multiprocessor systems can be very complex, so it is often useful to be 
able to show the bus connections using icmPrintBusConnections: 
 
    // show the bus connections 
    icmPrintf("\nbus1 CONNECTIONS\n"); 
    icmPrintBusConnections(bus1); 
    icmPrintf("\nbus2 CONNECTIONS\n"); 
    icmPrintBusConnections(bus2); 
    icmPrintf("\n"); 

 
The full memory map of each processor is mapped onto the shared memory object, 
except for a small section of local memory for each stack. The program is loaded onto 
both processors using the --program command line argument. 
 
The platform is then simulated to completion using icmSimulatePlatform: 
 
    // run simulation 
    icmSimulatePlatform(); 

 
The cpuId defined when the processor instance is created can be accessed from within 
application code using the Imperas intercepted function impProcessorId, in order that a 
processor can identify itself. This is shown in the following code and used to identify 
messages printed from the application and also the mode in which this test application is 
running, reading or writing. 
 
To enable standard Imperas function intercepts like impProcessorId, 
ICM_ENABLE_IMPERAS_INTERCEPTS must be passed using the 2nd argument of 
icmInitPlatform. We also set ICM_VERBOSE in this example, which enables simulation 
runtime statistics at the end of simulation: 
 
    // initialize CpuManager - require Imperas intercepts because the 
    // application uses impProcessorId() to get processor id 
    icmInitPlatform(ICM_VERSION, ICM_VERBOSE|ICM_ENABLE_IMPERAS_INTERCEPTS, 0, 0, 0); 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 77 of 168 
. 

Compile the test platform and application as before using the following commands in the 
multiprocessor directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the multiprocessor directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 
You should see the following output as the two processors execute the application. cpu0 
is generating the Fibonacci series with cpu1 reading the results from the shared memory: 
 
bus1 CONNECTIONS 
BUS MASTERS: 2 
   PORT 'DATA' of 'cpu0' 
   PORT 'INSTRUCTION' of 'cpu0' 
BUS SLAVES: 2 
   0x00000000:0xefffffff: PORT 'mp1' of 'shared' 
   0xf0000000:0xffffffff: PORT 'mp1' of 'local1' 
 
bus2 CONNECTIONS 
BUS MASTERS: 2 
   PORT 'DATA' of 'cpu1' 
   PORT 'INSTRUCTION' of 'cpu1' 
BUS SLAVES: 2 
   0x00000000:0xefffffff: PORT 'mp2' of 'shared' 
   0xf0000000:0xffffffff: PORT 'mp1' of 'local2' 
 
CPU 1 starting... 
CPU 0 starting... 
CPU 0: fib(0) = 0 
CPU 1: munge(0) = 0 
CPU 0: fib(1) = 1 
CPU 1: munge(1) = 0 
CPU 0: fib(2) = 1 
CPU 1: munge(1) = 0 
CPU 0: fib(3) = 2 
CPU 1: munge(2) = 1 
CPU 0: fib(4) = 3 
CPU 1: munge(3) = 3 
CPU 0: fib(5) = 5 
CPU 1: munge(5) = 10 
 
... etc ... 
 
CPU 0: fib(33) = 3524578 
CPU 1: munge(3524578) = 800566737 
CPU 0: fib(34) = 5702887 
CPU 1: munge(5702887) = 711033285 
processor0 has executed 1658900172 instructions 
processor1 has executed 1658997966 instructions 
Info  
Info ------------------------------------------------- 
Info CPU 'cpu1' STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1dcc 
Info   Simulated instructions: 1,658,997,966 
Info   Simulated MIPS        : 781.2 
Info CPU 'cpu0' STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1dcc 
Info   Simulated instructions: 1,658,900,172 
Info   Simulated MIPS        : 781.2 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 78 of 168 
. 

Info TOTAL 
Info   Simulated instructions: 3,317,898,138 
Info   Simulated MIPS        : 1562.4 
Info ------------------------------------------------- 
Info  
Info ------------------------------------------------- 
Info SIMULATION TIME STATISTICS 
Info   Simulated time        : 16.59 seconds 
Info   User time             : 2.12 seconds 
Info   System time           : 0.00 seconds 
Info   Elapsed time          : 2.12 seconds 
Info   Real time ratio       : 7.81x faster 
Info ------------------------------------------------- 

15.2 Verbose Output 
Note that the log from example multiprocessor includes output at the end giving 
statistics about the number of instructions executed by each processor, the simulated 
MIPS rate for each processor, and the total instructions and MIPS rate. This information 
is present because ICM_VERBOSE was specified as an option to icmInitPlatform: 
 
    icmInitPlatform(ICM_VERSION, ICM_VERBOSE|ICM_ENABLE_IMPERAS_INTERCEPTS, 0, 0, “plt1”); 

 
The actual performance reported may vary and depends on the performance of the native 
host. In this example (run on a 3.4Ghz Dell Core i7-3770 desktop machine) the overall 
simulation speed is about 1560 simulated OR1K MIPS, approximately half for each 
processor. 

15.2.1 Simulation Time Statistics 
In verbose mode the simulator writes information about simulated and elapsed time. Four 
time values appear in the SIMULATION TIME STATISTICS paragraph: 
 
Info ------------------------------------------------- 
Info SIMULATION TIME STATISTICS 
Info   Simulated time        : 16.59 seconds 
Info   User time             : 2.12 seconds 
Info   System time           : 0.00 seconds 
Info   Elapsed time          : 2.12 seconds 
Info   Real time ratio       : 7.81x faster 
Info ------------------------------------------------- 

 
Simulated time is the duration of the simulation in simulated time. This corresponds 
exactly to the notion of time in a simulation language such as Verilog and VHDL; it is 
entirely unrelated to wall-clock time. 
 
User time is the time that the simulation process spent executing instructions on the host 
machine; system time is the time the host machine spent in the system while executing 
instructions on behalf of the simulation process. Elapsed time is the overall time taken by 
the simulation process on the host from start to finish. All three of these times will vary 
from run to run, depending on the host load average and other factors. Real time ratio 
shows how much faster than real time this simulation ran. 
 
For each processor, the simulated MIPS line gives the rate at which instructions for that 
processor were executed in wallclock time. In other words, the simulated MIPS number 
for a processor is calculated by dividing the number of instructions executed by that 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 79 of 168 
. 

processor by the elapsed time for the simulation process. In this example, the reported 
simulated MIPS for cpu1 is calculated by dividing the simulated instructions 
(1,658,997,966) by the elapsed time (2.12 seconds) to give 781.2: 
 
Info CPU 'cpu1' STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1dcc 
Info   Simulated instructions: 1,658,997,966 
Info   Simulated MIPS        : 781.2 

 
Provided that a processor does not halt during a simulation, then the simulation ran faster 
than real time if simulated MIPS exceeds nominal MIPS, and slower than real time if 
nominal MIPS exceeds simulated MIPS. 
 
When optimizing an application, you should be looking at and minimizing simulated 
time. When optimizing a model for efficiency, you should be looking at elapsed time.  

15.3 Standard Multiprocessor Scheduling Algorithm 
This example used the standard multiprocessor scheduling algorithm built-in to the 
simulator under icmSimulatePlatform. This works as follows: 

1. Simulation time is broken into time slices. By default, each time slice is 0.001 
seconds (one millisecond). 

2. The simulator selects the first processor and simulates it for one time slice. It in 
fact does this by calculating the number of instructions that should be executed by 
that processor in a time slice, and then simulating for that number of instructions. 
The number of instructions in a time slice is: 
    (processor nominal MIPS rate) x 1e6 x (time slice duration) 
In this example, each processor has the default nominal MIPS rate of 100 MIPS. 
This means that each processor will execute 100 x 1e6 x 0.001 = 100,000 
instructions per time slice 

3. When the first processor has simulated for 100,000 instructions, it is suspended 
and the next processor is simulated for the time slice. 

4. When all processors have simulated the time slice, simulated time is moved on 
and the next slice is started. 

 
This algorithm is an approximation designed to give realistic simulation results with very 
high simulator performance: the simulator is not designed to be cycle accurate. 
 
The simulation algorithm is configurable in several ways: 

15.3.1 Changing the Time Slice Size 
The size of the time slice (in seconds) can be set with: 
 
Bool icmSetSimulationTimeSlice(icmTime newSliceSize); 
 
where type icmTime is a long double. Shorter time slices may approximate real system 
behavior more closely, but degrade simulator performance. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 80 of 168 
. 

15.3.2 Changing Processor Nominal MIPS Rate 
The nominal MIPS rate for each processor can be set with a user attribute. See section 6 
for an example of this. 

15.3.3 Writing Custom Scheduling Algorithms 
If the standard multiprocessor scheduling algorithm does not do what is required, a 
custom algorithm can be built around calls to icmSimulate for each processor. This 
function will simulate a specified processor for an exact number of instructions. 
 
Please note: 

1) The user must ensure that the appropriate number of instructions are executed on 
each processor, in a multicore platform. 

2) When a platform also includes peripheral models time must be updated at an 
appropriate rate. 

 
Please see section 10 Simulator Scheduler for more information on creating a  custom 
scheduler. 

15.4 Many Core Example 
This example shows the instantiation of many (default 24) processors in a platform and is 
found in the manycore directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/manycore 
 
The following shows the instantiation of many processors in a loop as part of a sub-
system with local memory. 
 
The processors are instantiated with individual names and Id numbers.  
 
   for (i=0; i<PROCESSOR_COUNT; i++ ) { 
      // create processor cpu<i> 
      sprintf(name, "cpu%d", i); 
      processor[i] = icmNewProcessor( 
            name,               // CPU name 
            "or1k",             // CPU type 
            i,                  // CPU cpuId 
            0,                  // CPU model flags 
            32,                 // address bits 
            model,              // model file 
            "modelAttrs",       // morpher attributes 
            SIM_ATTRS,          // simulation attributes. enable tracing etc 
            0,                  // user-defined attributes 
            semihosting,        // semi-hosting file 
            "modelAttrs"        // semi-hosting attributes 
      ); 

 
The busses are created, one for each processor, and connected to the processors: 
 
   // create the processor busses 
   sprintf(name, "bus%d", i); 
   bus[i] = icmNewBus(name, 32); 
 
   // connect the processor busses 
   icmConnectProcessorBusses(processor[i], bus[i], bus[i]); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 81 of 168 
. 

 
This example has a single memory for each sub-system. These are created and connected 
to the processor busses: 
 
   // create memory 
   sprintf(name, "memory%d", i); 
   memory[i] = icmNewMemory(name, ICM_PRIV_RWX, 0xffffffff); 
 
   // connect memory 
   icmConnectMemoryToBus(bus[i], "mp1", memory[i], 0x00000000); 

 
We load the program into each processor’s memory and set the start address to the entry 
indicated in the program file loaded. If the program is not loaded successfully we print an 
error message and exit. 
 
   icmLoaderAttrs loadAttrs = ICM_LOAD_VERBOSE|ICM_SET_START; 
   if(!icmLoadProcessorMemory(processor[i], argv[1], loadAttrs, False, True) 
   ) { 
      icmMessage("E", "PLATFORM_LOAD", "Failed to load %s onto processor %d", argv[1], i); 
      // terminate simulation and free simulation data structures 
      icmTerminate(); 
      return -1; 
   } 

 
The platform is then simulated to completion using icmSimulatePlatform: 
 
    // run simulation 
    icmSimulatePlatform(); 

 
Compile the test platform and application (fibonacci) as before using the following 
commands in the manycore directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the multiprocessor directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/fibonacci.OR1K.elf 

 
You should see the following output as the processors execute the application. 
 
Each processor sub-system bus is printed 
 
BUS[0] CONNECTIONS 
BUS MASTERS: 2 
   PORT 'DATA' of 'platform/cpu0' 
   PORT 'INSTRUCTION' of 'platform/cpu0' 
BUS SLAVES: 1 
   0x00000000:0xffffffff: PORT 'mp1' of 'memory0' 

 
Each processor loads the program into its local memory in its sub-system. 
 
Info (OR_OF) Target 'platform/cpu0' has object file read from 
'application/fibonacci.OR1K.elf' 
Info (OR_PH) Program Headers: 
Info (OR_PH) Type           Offset     VirtAddr   PhysAddr   FileSiz    MemSiz     Flags 
Align 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 82 of 168 
. 

Info (OR_PD) LOAD           0x00002000 0x00000000 0x00000000 0x0000e080 0x0000e194 RWE   
2000 

 
Each processor starts executing the program as it is scheduled (only partial output is 
shown). 
 
 
CPU 23 starting... 
fib(0) = 0 
fib(1) = 1 
fib(2) = 1 
fib(3) = 2 
fib(4) = 3 
fib(5) = 5 
fib(6) = 8 
... snip ...  
fib(13) = 233 
CPU 21 starting... 
fib(0) = 0 
fib(1) = 1 
fib(2) = 1 
... snip ...  
fib(12) = 144 
fib(13) = 233 
CPU 20 starting... 
fib(0) = 0 
fib(1) = 1 
... snip ...  
fib(12) = 144 
fib(13) = 233 
CPU 19 starting... 
... snip ...  
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(18) = 2584 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 83 of 168 
. 

fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(19) = 4181 
fib(20) = 6765 
fib(20) = 6765 
fib(20) = 6765 
fib(20) = 6765 
fib(20) = 6765 
fib(20) = 6765 
fib(20) = 6765 
fib(20) = 6765 
fib(20) = 6765 
fib(20) = 6765 
fib(20) = 6765 
... snip ...  
fib(31) = 1346269 
CPU 23 finishing... 
fib(31) = 1346269 
CPU 22 finishing... 
fib(31) = 1346269 
CPU 21 finishing... 
fib(31) = 1346269 
... snip ...  
fib(31) = 1346269 
CPU 0 finishing... 

 
Output statistics are shown for each processor with the overall platform simulation 
statistics shown last. 
 
Info --------------------------------------------------- 
Info CPU 'platform/cpu23' STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1ab4 
Info   Simulated instructions: 353,720,711 
Info   Simulated MIPS        : 30.8 
Info --------------------------------------------------- 
Info  
Info --------------------------------------------------- 
Info CPU 'platform/cpu22' STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1ab4 
Info   Simulated instructions: 353,720,711 
Info   Simulated MIPS        : 30.8 
Info --------------------------------------------------- 
... snip ...  
Info  
Info --------------------------------------------------- 
Info CPU 'platform/cpu0' STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1ab4 
Info   Simulated instructions: 353,719,241 
Info   Simulated MIPS        : 30.8 
Info --------------------------------------------------- 
Info  
Info --------------------------------------------------- 
Info TOTAL 
Info   Simulated instructions: 8,489,280,698 
Info   Simulated MIPS        : 738.2 
Info --------------------------------------------------- 
Info  
Info --------------------------------------------------- 
Info SIMULATION TIME STATISTICS 
Info   Simulated time        : 3.54 seconds 
Info   User time             : 11.49 seconds 
Info   System time           : 0.01 seconds 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 84 of 168 
. 

Info   Elapsed time          : 11.78 seconds 
Info --------------------------------------------------- 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 85 of 168 
. 

16 QuantumLeap Multiprocessor Support 
As of VMI version 6.0.0, Imperas Professional Simulation products implement a parallel 
simulation algorithm called QuantumLeap, which enables multicore platform simulation 
to be distributed over separate threads on multiple cores of the host machine for improved 
performance. 
 
QuantumLeap allows for the parallel execution of both processor and peripheral models 
on host processors. This section describes its use with processors; refer to the OVP 
Peripheral Modeling Guide for information about parallelization of peripherals. 

16.1 Example 
This example is again found in the multiprocessor directory. 
 
$IMPERAS_HOME/Examples/PlatformsICM/multiprocessor 
 

NOTE 
OP API example showing the same feature are available as  

PlatformConstruction/twoProcessorsSharedMemory 
 
Refer to section 15 for a detailed description of the application and platform. Compile the 
test platform and application as before using the following commands in the 
multiprocessor directory: 
 
make –C platform 
make –C application 

 
Enable the QuantumLeap algorithm using a control file (control files are described in 
section 25): 
 
echo ‘—parallel’ > control.ic 
export IMPERAS_TOOLS=control.ic 
export IMPERAS_RUNTIME=CpuManager 

 
Note that QuantumLeap is only supported as a licensed feature of the Imperas 
Professional Tools; contact Imperas for details. 
 
To run the simulation, in the multiprocessor directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 
You should see the following output as the two processors execute the application. cpu0 
is generating the Fibonacci series with cpu1 reading the results from the shared memory: 
 
CpuManagerMulti Parallel started: Fri Nov 29 09:32:32 2013 
 
. . .  
 
bus1 CONNECTIONS 
BUS MASTERS: 2 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 86 of 168 
. 

   PORT 'DATA' of 'cpu0' 
   PORT 'INSTRUCTION' of 'cpu0' 
BUS SLAVES: 2 
   0x00000000:0xefffffff: PORT 'mp1' of 'shared' 
   0xf0000000:0xffffffff: PORT 'mp1' of 'local1' 
 
bus2 CONNECTIONS 
BUS MASTERS: 2 
   PORT 'DATA' of 'cpu1' 
   PORT 'INSTRUCTION' of 'cpu1' 
BUS SLAVES: 2 
   0x00000000:0xefffffff: PORT 'mp2' of 'shared' 
   0xf0000000:0xffffffff: PORT 'mp1' of 'local2' 
 
CPU 1 starting... 
CPU 0 starting... 
CPU 0: fib(0) = 0 
CPU 1: munge(0) = 0 
CPU 0: fib(1) = 1 
CPU 1: munge(1) = 0 
CPU 0: fib(2) = 1 
CPU 1: munge(1) = 0 
CPU 0: fib(3) = 2 
CPU 1: munge(2) = 1 
CPU 0: fib(4) = 3 
CPU 1: munge(3) = 3 
CPU 0: fib(5) = 5 
CPU 1: munge(5) = 10 
 
... etc ... 
 
CPU 0: fib(33) = 3524578 
CPU 1: munge(3524578) = 800566737 
CPU 0: fib(34) = 5702887 
CPU 1: munge(5702887) = 711033285 
processor0 has executed 1658900172 instructions 
processor1 has executed 1658997966 instructions 
Info  
Info ------------------------------------------------- 
Info CPU 'cpu1' STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1dcc 
Info   Simulated instructions: 1,660,597,974 
Info   Simulated MIPS        : 1300.3 
Info CPU 'cpu0' STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1dcc 
Info   Simulated instructions: 1,660,600,176 
Info   Simulated MIPS        : 1300.3 
Info TOTAL 
Info   Simulated instructions: 3,321,198,150 
Info   Simulated MIPS        : 2600.7 
Info ------------------------------------------------- 
Info  
Info ------------------------------------------------- 
Info SIMULATION TIME STATISTICS 
Info   Simulated time        : 16.61 seconds 
Info   User time             : 2.19 seconds 
Info   System time           : 0.35 seconds 
Info   Elapsed time          : 1.28 seconds 
Info   Real time ratio       : 13.00x faster 
Info ------------------------------------------------- 
 
CpuManagerMulti Parallel finished: Fri Nov 29 09:32:33 2013 

 
Note that the banners emitted at the start and end of simulation include an indication that 
QuantumLeap parallel simulation is now enabled. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 87 of 168 
. 

16.2 QuantumLeap Results 
The actual performance reported may vary and depends on the performance of the native 
host. In this example (run on a 3.4Ghz Dell Core i7-3770 desktop machine) the overall 
simulation speed is about 2600 simulated OR1K MIPS, approximately half for each 
processor. This is almost twice as fast as the same application run without QuantumLeap 
in section 15. 

16.3 QuantumLeap Scheduling Algorithm 
The QuantumLeap scheduling algorithm is similar in many respects to the standard 
multiprocessor scheduling algorithm described in section 15.3. The exact details of the 
algorithm are proprietary, but some general characteristics are given here. 
 
Time moves forward in quanta which are calculated in exactly the same way as for the 
standard algorithm. During each quantum, processors may run in parallel in independent 
native threads, but they are all synchronized at the quantum end before the next quantum 
is started. Any processor may also cause the simulation to revert to synchronous mode 
during a quantum if the simulator detects that synchronous operation is required (for 
example, execution of a test-and-set instruction). In such a case, all other processors are 
safely stopped while the atomic action is carried out on the processor requiring 
synchronization. 
 
Provided that synchronizing instructions and accesses to shared registers are correctly 
described, the simulation is deterministic in the absence of unguarded spin locks 
(demonstrate this by running this example simulation several times: instruction counts for 
each processor will remain the same from run to run). See the OVP Processor Modeling 
Guide for a detailed description of how to make processor models compatible with 
QuantumLeap. 
 
The actual simulation results can differ between the normal multiprocessor algorithm and 
the QuantumLeap algorithm, because of detailed scheduling differences. In the normal 
multiprocessor algorithm, preceding processors in the schedule list for this quantum will 
all have finished the quantum before an intermediate processor runs, and subsequent 
processors will not have run any instructions at all. In the QuantumLeap algorithm, all 
other processors can be in some deterministic intermediate state between the start and end 
of the quantum when an intermediate processor interacts with them. This usually affects 
instruction counts and sometimes program results, but in a correctly-designed program 
the standard and QuantumLeap results represent alternative legal paths through the 
parallel program. If you examine instruction counts for this example program running 
with and without QuantumLeap, you will see that they differ slightly, but the results are 
the same. 
 
Any instruction that is intercepted is guaranteed to be run in synchronous mode with all 
other processors stopped. This means that legacy intercept libraries can be used with 
QuantumLeap without modification. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 88 of 168 
. 

Sometimes QuantumLeap results are non-deterministic. This can either be due to legal 
constructs such as unguarded spin locks (often used to defer expensive synchronization 
instructions) or by real program synchronization bugs. QuantumLeap determinism can be 
a useful tool for validating parallel algorithm correctness. 

16.4 QuantumLeap Options 
Control file arguments –-parallelopt, –-parallelthreads and –-parallelmax can 
be used to control details of the simulation, as described below. 

16.4.1 Option -parallelopt 
QuantumLeap  algorithm behavior can be modified using option --parallelopt in a 
control file. This option is a bitfield, which currently defines the following bits: 
 
Bit 0: enable nice scheduling behavior 
When this bit is 0, QuantumLeap operates in a greedy mode, in which the algorithm 
assumes that it can freely use all resources of the host to achieve the fastest possible 
simulation. Setting this bit enables nice mode, which suspends native threads more 
frequently so that more resources are available to other processes on the host machine. 
 
The effect of nice mode depends on the operating system type and version. Often, 
QuantumLeap simulation runs little or no slower; on some operating system versions, the 
effect may be to slow simulation more significantly. Validate performance on your 
operating system before deciding whether it is appropriate to use this option. 
 
Bit 1: don’t fix affinity 
When this bit is 0, QuantumLeap attempts to fix the affinity of a simulated core to a 
particular native core to avoid costs involved in synchronizing caches that can occur 
when native processes are moved from one native core to another. Setting this bit disables 
affinity fixing so that simulated core processes can migrate between native cores. 
 
The default value of –parallelopt is 1, specifying nice mode simulation and fixed 
affinities. 
 
Example 
To rerun the previous simulation with greedy scheduling behavior and no fixed affinities: 
 
echo ‘—parallel’ > control.ic 
echo ‘—parallelopt 2’ >> control.ic 
export IMPERAS_TOOLS=control.ic 
export IMPERAS_RUNTIME=CpuManager 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

16.4.2 Option -parallelthreads 
QuantumLeap option -parallelthreads can be used in a control file to specify the 
maximum number of parallel threads that should simulate at once. This option can be 
useful in (for example) regression test runs, to restrict a particular simulation to use of a 
smaller-than-normal set of the available processor resources, to ensure that some 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 89 of 168 
. 

resources are available for other runs that might be occurring in parallel on the same 
machine. 
 
Example 
To run a simulation in which no more than three parallel threads execute at once: 
 
echo ‘—parallel’ > control.ic 
echo ‘—parallelthreads 3’ >> control.ic 
export IMPERAS_TOOLS=control.ic 
export IMPERAS_RUNTIME=CpuManager 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 
Note that standard QuantumLeap supports up to 4 parallel threads. To specify more than 
this, a separate license is required; contact Imperas for details. 

16.4.3 Option -parallelmax 
QuantumLeap option -parallelmax can be used in a control file to specify that a 
simulation should run as many threads as possible in parallel for maximum performance. 
This option requires a separate license; contact Imperas for details. 
 
Example 
To run a simulation using maximum parallelization: 
 
echo ‘-parallel’ > control.ic 
echo ‘—parallelmax’ >> control.ic 
export IMPERAS_TOOLS=control.ic 
export IMPERAS_RUNTIME=CpuManager 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 90 of 168 
. 

17 Limiting Performance to Wall Clock Time 
In the above example, we saw that a pair of OR1K processors with a nominal speed of 
100 MIPS could be made to run at over 800 MIPS (combined). Although it is usually a 
benefit to have better-than-real-time simulation performance, there are some occasions 
when this is undesirable: for example, when simulating an OS such as Linux, processors 
are almost entirely idle when waiting at a login prompt. Unless told otherwise, the 
simulator will move simulated time rapidly forward when processors are idling. The 
effect of this is that it is impossible to log in interactively to the simulated Linux, because 
the log in times out instantly as simulated time shoots forward. 
 
It is possible to restrict maximum performance to any multiple of the real time clock 
using the function icmSetWallClockFactor: 
 
void icmSetWallClockFactor(double factor); 

 
The factor specifies the maximum multiple of real time at which the simulator should run. 
For example, a value of 3.0 implies no more than three times real time, and a value of 0.5 
specifies no more than half real time. The following example uses this function to restrict 
the multiprocessor platform performance to a fixed factor of real time. 
 

17.1.1 Example 2 – Wallclock Simulation 
This example is found in the wallclock directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/wallclock 

 
The following example is exactly the same as the previous one except that after 
initialization a new call restricts the simulation performance to no more than two times 
real time: 
 
    // limit performance to no more than 2x nominal speed 
    icmSetWallClockFactor(2); 

 
Compile the test platform and application as before using the following commands in the 
wallclock directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the multiprocessor directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 
The output should be similar to this: 
 
processor0 has executed 1658900172 instructions 
processor1 has executed 1658997966 instructions 
Info  
Info ------------------------------------------------- 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 91 of 168 
. 

Info CPU ‘cpu1’ STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1dcc 
Info   Simulated instructions: 1,658,997,966 
Info   Simulated MIPS        : 199.9 
Info CPU ‘cpu0’ STATISTICS 
Info   Type                  : or1k 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x1dcc 
Info   Simulated instructions: 1,658,900,172 
Info   Simulated MIPS        : 199.9 
Info TOTAL 
Info   Simulated instructions: 3,317,898,138 
Info   Simulated MIPS        : 399.9 
Info ------------------------------------------------- 
Info  
Info ------------------------------------------------- 
Info SIMULATION TIME STATISTICS 
Info   Simulated time        : 16.59 seconds 
Info   User time             : 6.53 seconds 
Info   System time           : 0.00 seconds 
Info   Elapsed time          : 8.30 seconds 
Info   Host utilization      : 49.0% (wallclock enabled) 
Info ------------------------------------------------- 

 
Note that each processor is now running at almost exactly 200 simulated MIPS (i.e. twice 
the specified nominal MIPS). In the simulation time statistics, elapsed time has increased, 
because the simulation had to spend some time waiting in order not to exceed the 
specified maximum multiple of real time. A new host utilization line indicates how 
heavily the host processor was used by the simulation process. In this example, a 
utilization of 49.0% indicates that the simulation process spent approximately half of its 
time waiting. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 92 of 168 
. 

18 Interrupting Simulation 
Normally, icmSimulate and icmSimulatePlatform will run until they have completed 
the requested number of simulated instructions (for icmSimulate) or time has advanced 
until the time specified by icmSetSimulationStopTime (for icmSimulatePlatform), or 
until a processor model has performed some explicit action that terminates the simulation 
loop early (for example, halting or exiting). 
 

18.1 Cntrl-C Handler 
Occasionally, it may be required that the icmSimulate call be terminated early by some 
external event. For example, the platform may implement an interrupt handler so that 
when a user presses Ctrl-C the simulation loop should immediately terminate. This can be 
done using the icmInterrupt API call from within a signal handler, shown in the 
following code snippet (Linux only): 
 
#include <signal.h> 
 
// 
// LINUX signal handler to interrupt the running simulation 
// 
static void ctrlCHandler(Int32 nativeSigNum, siginfo_t *sigInfo, void *context) { 
    icmInterrupt(); 
} 
 
// 
// Install a LINUX signal handler to trap any CtrlC 
// 
static void installCtrlCHandler(void) { 
 
    struct sigaction sa = {{0}}; 
    sa.sa_sigaction = ctrlCHandler; 
    sa.sa_flags     = SA_SIGINFO; 
    sigfillset(&sa.sa_mask); 
    sigaction(SIGINT, &sa, NULL); 
} 

 
Within the main function, the Ctrl-C handler is installed: 
 
int main(int argc, char ** argv) { 
 
    . . . 
 
    // install a signal handler to trap any CtrlC 
    installCtrlCHandler(); 
 
    . . . 
} 

 
When the user presses Ctrl-C as this example is running, a call to icmInterrupt will be 
generated. This will cause any active icmSimulate or icmSimulatePlatform call to 
return, and the stopReason for the processor that stops will be set to ICM_SR_INTERRUPT. 
This needs to be handled in the main routine, for example: 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 93 of 168 
. 

 
    icmProcessorP stoppedProcessor; 
 
    // simulate until done or ctrl-C 
    while((stoppedProcessor=icmSimulatePlatform())) { 
        if(icmGetStopReason(stoppedProcessor)==ICM_SR_INTERRUPT) { 
            icmPrintf( 
                "%s: interrupt after " FMT_64u " instructions...\n", 
                icmGetProcessorName(stoppedProcessor), 
                icmGetProcessorICount(stoppedProcessor) 
            ); 
        } else { 
            break; 
        } 
    } 

 
In this example, when an interrupt occurs, the platform prints a message and continues 
simulation by calling icmSimulatePlatform again (which will continue from where it 
was interrupted). In real cases, applications will typically enter a command interpreter 
instead at this point. 
 
In the common case that simulation needs to be interrupted on a Ctrl-C event, The ICM 
API provides a method that does not require OS-specific signal handler code: simply 
specify ICM_STOP_ON_CTRLC as an attribute in icmInitPlatform: 
 
icmInitPlatform( 
    ICM_VERSION, 
    ICM_VERBOSE|ICM_ENABLE_IMPERAS_INTERCEPTS|ICM_STOP_ON_CTRLC, 
    0, 
    0, 
    “plat1” 
); 

 
This will have exactly the same effect as an OS-specific interrupt handler calling 
icmInterrupt. 
 

18.2 Causing Processor to Yield 
It may be required that a specific processor is interrupted when it accesses an area of 
memory. This can be achieved using the icmYield API call. This will cause the simulator 
to return from the icmSimulate or icmSimulatePlatform function after the instruction in 
which the icmYield was called has completed. 
 
In this example icmYield is called when one of the processors makes a write to a specific 
address range that triggers the memory watchpoint callback. 
 
static ICM_MEM_WRITE_FN(watchWriteCB) { 
 
 
    icmPrintf( 
        "WATCHCALLBACK '%s': Writing to 0x%08x : Interrupt\n", 
        (Uns8 *)userData,  
        (Int32)address 
    );  
 
    // Calling this API function will interrupt the simulator 
    icmYield(processor);  



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 94 of 168 
. 

} 

 

18.3 Example 
This example is found in the interruptSimulation directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/interruptSimulation 
 

NOTE 
OP API example showing the same feature are available as  

SimulationControl/interruptSimulation 
 
Compile the test platform and application as before using the following commands in the 
interruptSimulation directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the interruptSimulation directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 
You should see output as in example multiprocessor as the two processors execute the 
application.  
 
After a number of iterations the application will make a write that will cause a call to 
icmInterrupt () in the platform. This will cause the simulator to return and a message will 
be generated of the form: 
 
CPU 0: Watchpoint Trigger at 18 
WATCHCALLBACK 'cpu0': Writing to 0xeffffff0 : Interrupt 
/cpu0: interrupt after 2042123 instructions...  

 
You may also press Ctrl-C repeatedly while the application runs; each time, a line will be 
generated of the form: 
 
    cpu0: yield after <number> instructions… 

or: 
    cpu1: yield after <number> instructions… 

 
depending which processor is running when the Ctrl-C is hit. 

18.4 Important Notes 
18.4.1 ICM API Usage in Ctrl-C Handler 
When in a Ctrl-C or other similar handler and you want to cause the simulation to be 
interrupted i.e. return from the icmSimulate or icmSimulatePlatform functions the 
icmInterrupt may be used. However, it is important that no other ICM API calls should be 
made from within a handler of this type. To do so may result in unexpected behavior. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 95 of 168 
. 

18.4.2 icmInterrupt Usage 
One important point about icmInterrupt is that it is not intended to be asynchronously  
thread-safe. In other words, it is not appropriate to asynchronously call icmInterrupt 
when the simulation thread is not suspended. In ICM applications with multiple 
asynchronous threads, the interrupting thread should be designed to work as follows: 

1. It should suspend the simulating thread using any appropriate means; 
2. It should call icmInterrupt to notify the suspended thread that an interrupt has 

been requested; 
3. It should restart the simulating thread so that the interrupt request can be acted on. 

If this sequence is not followed, simulator data structures may become corrupted. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 96 of 168 
. 

19 Interrupting a Specific Processor 
Processor models written using the VMI interface can be made to react to external 
interrupt events on named ports. For example, a processor model can be made to perform 
a hard reset on an event on a port (perhaps called reset). 
 
Events are signaled to processor models using nets, which can be created by icmNewNet 
and connected to processor instances using icmConnectProcessorNet. A value can be 
written to a net using icmWriteNet. 
 
The following example shows how a processor reset signal can be stimulated using nets. 

19.1 Example  
19.1.1 Reset Processor 
This example is found in the interruptProcessor directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/interruptProcessor 
 

NOTE 
OP API example showing the same feature are available as  

SimulationControl/ processorExternalInterruptControl 
 
The following CpuManager / OVPsim code creates a platform that instantiates a single 
processor running an application. The application is run for 100,000 instructions and then 
a reset by writing to a net. 
 
The main routine is as follows (with sections relevant to this example in bold): 
 
    // create processor cpu0 
    icmProcessorP processor0 = icmNewProcessor( 
        "cpu0",             // CPU name 
        “or1k”,             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,               // model file 
        0,                  // not used 
        SIM_ATTRS,          // simulation attributes 
        0,                  // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 
 
    // load the processor object file 
    icmLoadProcessorMemory(processor0, argv[1], ICM_LOAD_DEFAULT, False, True); 
 
    // create a reset net and connect it to the reset port of processor0 
    icmNetP resetNet = icmNewNet("resetNet"); 
    icmConnectProcessorNet(processor0, resetNet, "reset", ICM_INPUT); 

 
 
    // simulate for one simulated millisecond 
    icmSetSimulationStopTime(0.001); 
    icmSimulatePlatform(); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 97 of 168 
. 

 
    // write to the processor reset signal 
    icmWriteNet(resetNet, 1); 
    icmPrintf( 
        "processor0 reset after " FMT_64u " instructions\n", 
        icmGetProcessorICount(processor0) 
    ); 
 
    // simulate until completion 
    icmSimulatePlatform(); 
 
    // report the total number of instructions executed 
    icmPrintf( 
        "processor0 has executed " FMT_64u " instructions\n", 
        icmGetProcessorICount(processor0) 
    ); 
 

 
The example creates a net object and connects it to the reset input port of the OR1K 
processor instance as follows: 
 
    icmNetP resetNet = icmNewNet("resetNet"); 
    icmConnectProcessorNet(processor0, resetNet, "reset", ICM_INPUT); 

 
We then simulate for one simulated millisecond: 
 
    icmSetSimulationStopTime(0.001); 
    icmSimulatePlatform(); 

 
The reset net is then stimulated (note that this signal is level-sensitive for the OR1K 
model, so the value is written high to activate the reset and lowered afterwards): 
 
    icmWriteNet(resetNet, 1); 
    icmWriteNet(resetNet, 0); 

 
Finally, we then simulate again until the processor terminates: 
 
    icmSimulatePlatform(); 

 
Compile the test platform and application as before using the following commands in the 
interruptProcessor directory: 
 
make –C platform 
make –C application 

 
To run the simulation, in the interruptProcessor directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 
You should see output as follows: 
 
fib(0) = 0 
fib(1) = 1 
fib(2) = 1 
fib(3) = 2 
fib(4) = 3 
fib(5) = 5 
fib(6) = 8 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 98 of 168 
. 

fib(7) = 13 
fib(8) = 21 
fib(9) = 34 
fib(10) = 55 
fib(11) = 89 
fib(12) = 144 
fib(13) = 233 
processor0 reset after 100000 instructions 
fib(0) = 0 
fib(1) = 1 
fib(2) = 1 
fib(3) = 2 
fib(4) = 3 
fib(5) = 5 
fib(6) = 8 
fib(7) = 13 
fib(8) = 21 
fib(9) = 34 
fib(10) = 55 
fib(11) = 89 
fib(12) = 144 
fib(13) = 233 
fib(14) = 377 
fib(15) = 610 
fib(16) = 987 
fib(17) = 1597 
fib(18) = 2584 
fib(19) = 4181 
processor0 has executed 1258786 instructions 

 
Note that after the processor has executed 100,000 instructions, it resets and begins 
calculation of the fibonacci series again. 
 

19.1.2 Startup Reset 
This example is found in the resetControl directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/resetControl 
 

NOTE 
OP API example showing the same feature are available as  

SimulationControl/processorResetControl 
 
The following CpuManager / OVPsim code creates a platform that instantiates two 
processors each running the same application. Each processor is attached to an 
independent reset line. Before the simulation is started one reset line is release and the 
second is asserted. The application is run for 0.01 seconds and the second reset line is 
released; the simulation is then run for a further 0.01 seconds. 
 
The main routine is as follows (with sections relevant to this example in bold): 
 
 
    // create a processor 
    processor[0]= icmNewProcessor ( 
        "cpu0",             // CPU name 
        "or1k",             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 99 of 168 
. 

        0,                  // not used 
        SIM_FLAGS,          // enable tracing etc 
        userAttrs,          // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 
    // create a processor 
    processor[1] = icmNewProcessor ( 
        "cpu1",             // CPU name 
        "or1k",             // CPU type 
        1,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        SIM_FLAGS,          // enable tracing etc 
        userAttrs,          // user-defined attributes 
        semihosting,        // semi-hosting file 
        0                   // not used 
    ); 
 
 
    icmBusP bus0 = icmNewBus("bus0", 32); 
    icmBusP bus1 = icmNewBus("bus1", 32); 
 
    icmConnectProcessorBusses(processor[0], bus0, bus0); 
    icmConnectProcessorBusses(processor[1], bus1, bus1); 
 
    icmMemoryP memLow0 = icmNewMemory("memLow0", ICM_PRIV_RWX, 0x0fffffff); 
    icmConnectMemoryToBus(bus0,"sp1",memLow0, 0x00000000); 
    icmMemoryP memLow1 = icmNewMemory("memLow1", ICM_PRIV_RWX, 0x0fffffff); 
    icmConnectMemoryToBus(bus1,"sp1",memLow1, 0x00000000); 
 
    icmMemoryP memHigh0 = icmNewMemory("memHigh0", ICM_PRIV_RWX, 0xdfffffff); 
    icmConnectMemoryToBus(bus0,"sp1",memHigh0, 0x20000000); 
    icmMemoryP memHigh1 = icmNewMemory("memHigh1", ICM_PRIV_RWX, 0xdfffffff); 
    icmConnectMemoryToBus(bus1,"sp1",memHigh1, 0x20000000); 
 
    // load the processor object file 
    if(!icmLoadProcessorMemory(processor[0], argv[1], ICM_LOAD_DEFAULT, False, True)){ 
        icmPrintf("Application %s not loaded by processor0\n", argv[1]); 
        return -1; 
    } 
    if(!icmLoadProcessorMemory(processor[1], argv[1], ICM_LOAD_DEFAULT, False, True)){ 
        icmPrintf("Application %s not loaded by processor1\n", argv[1]); 
        return -1; 
    } 
 
 
    icmWriteNet(reset0, 0); 
    icmWriteNet(reset1, 1); 

 
 
    // run simulation 
 
    // Set to stop at 0.001 seconds simulation time 
    icmSetSimulationStopTime(0.01); 
 
    icmSimulatePlatform(); 
 
    icmPrintf("Simulation time: %f\n",(float)icmGetCurrentTime()); 
 
    icmWriteNet(reset1, 0); 
 
    // Set to stop at 0.002 seconds simulation time 
    icmSetSimulationStopTime(0.02); 
 
    icmSimulatePlatform(); 
 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 100 of 168 
. 

The example creates net objects and connects them to the reset input ports of each of the 
two OR1K processor instance as follows: 
 
    icmNetP reset0 = icmNewNet("reset0"); 
    icmConnectProcessorNet(processor[0], reset0, "reset", ICM_INPUT); 
    icmNetP reset1 = icmNewNet("reset1"); 
    icmConnectProcessorNet(processor[1], reset1, "reset", ICM_INPUT); 

 
We hold processor one in reset 
 
    icmWriteNet(reset1, 1); 

 
and release the reset to processor 0. 
 
    icmWriteNet(reset0, 0); 

 
We then simulate for 0.01 simulated seconds: 
 
    icmSetSimulationStopTime(0.01); 
    icmSimulatePlatform(); 

 
The reset net to processor one is then written to release the reset: 
 
    icmWriteNet(reset1, 0); 

 
Finally, we then simulate again for a further 0.01 simulated seconds: 
 
    icmSetSimulationStopTime(0.02); 
    icmSimulatePlatform(); 

 
Compile the test platform and application as before using the following commands in the 
resetControl directory: 
 
make –C application CROSS=OR1K 
make –C platform CROSS=OR1K 

 
To run the simulation, in the resetControl directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 
You should see output as follows: 
 
 
CPU 0: Starting ... 
CPU 0: Hello World 0 
CPU 0: Hello World 1 
CPU 0: Hello World 2 
CPU 0: Hello World 3 
Simulation time: 0.010000 
CPU 1: Starting ... 
CPU 1: Hello World 0 
CPU 0: Hello World 4 
CPU 1: Hello World 1 
CPU 0: Hello World 5 
CPU 1: Hello World 2 
CPU 0: Hello World 6 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 101 of 168 
. 

CPU 1: Hello World 3 
Simulation time: 0.020000 
 

 
Note that while processor ‘CPU 0’ has executed for 0.01 simulated seconds there is no 
output from processor ‘CPU 1’. After 0.01 seconds of simulated time has expired the 
reset line to processor ‘CPU 1’ is released and it starts execution. The simulator schedules 
execution on both processors ‘CPU 0’ and ‘CPU 1’ and output from both is generated. 
 

19.1.3 Reset Wire (net) 
This example is found in the resetControlPeripheral directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/resetControlPeripheral 
 

NOTE 
OP API example showing the same feature are available as  

SimulationControl/processorResetControlPeripheral 
 
This example includes a platform that instantiates one processor and one peripheral 
model. A reset line connects to both the peripheral and the processor and is driven by the 
peripheral. 
The processor is running a fibonacci application which includes the generation of code at 
the reset vector so that on a reset it branches back to the initial entry point at ‘_start’. 
The peripheral model opens a socket, using the support included in the BHM API calls, 
and monitors characters received over the socket. 
 
The main routine of the peripheral, peripheral/user.c, is as follows: 
 
 
    // open a tcp/ip socket using standard socket features 
    // set parameter 'console' to open terminal and connect to port 
    // set parameter 'portnum' to a port number to open and await manual connection 
    Int32 channel = bhmSerOpenAuto(); 
 
    if (channel) { 
 
        bhmSerWriteN(channel, startMessage, sizeof(startMessage)); 
 
        while (1) { 
            // 
            // Non Blocking read 
            // 
            Uns8 buffer[MAXREAD]; 
            Uns8 bytes = bhmSerReadN(channel, buffer, 1); 
 
            if (bytes) { 
                // echo value back to terminal 
                bhmSerWriteN(channel, buffer, 1); 
 
                if (buffer[0] == 'r') { 
                    bhmMessage("I", "RESET", "Generate Reset"); 
                    ppmWriteNet(handles.resetOut, 1); 
                    ppmWriteNet(handles.resetOut, 0); 
                } 
                if (buffer[0] == 'q') { 
                    bhmFinish(); 
                } 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 102 of 168 
. 

            } 
            // polling delay 
            bhmWaitDelay(100); 
 
        } 
    } 

 
Open a socket, waiting for a connection to be made  
 
    bhmSerOpenAuto(); 

 
Attempt to read a single character from the socket. This is a non-blocking read (there is 
an equivalent blocking read, bhmSerReadN) so if nothing is available it returns with 
result 0. 
 
    bhmSerReadN(channel, buffer, 1); 

 
If a character is available and it is ‘r’ the peripheral toggles the ‘reset’ net 
(handles.resetOut is the handle to the opened port on the peripheral to which the reset 
line is connected) to generate a reset signal causing the processor to reset. 
 
    ppmWriteNet(handles.resetOut, 1); 
    ppmWriteNet(handles.resetOut, 0); 

 
Compile the test platform, peripheral and application as before using the following 
commands in the resetControlPeripheral directory: 
 
make –C platform NOVLNV=1 
make –C peripheral NOVLNV=1 
make –C application CROSS=ARM7TDMI 

 
To run the simulation, in the resetControlPeripheral directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe \ 
        --program application/fibonacci.ARM7TDMI.elf \ 
        --override systemReset/resetGeneration/console=1 \ 
        --override systemReset/resetGeneration/finishOnDisconnect=1  \ 
        --override systemReset/resetGeneration/outfile=uart.log \ 
        --output imperas.log 
      

 
You should see output as follows: 
 
Simulator log, showing we reset four times and then quit the simulation. 
 
 
OVPsim (32-Bit) v20150901.0 Open Virtual Platform simulator from www.OVPworld.org. 
Copyright (c) 2005-2015 Imperas Software Ltd.  Contains Imperas Proprietary Information. 
Licensed Software, All Rights Reserved. 
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions. 
 
OVPsim started: Fri Oct 02 14:09:36 2015 
 
 
starting... 
fib(0) = 0 
fib(1) = 1 
fib(2) = 1 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 103 of 168 
. 

fib(3) = 2 
fib(4) = 3 
... snip ... 
fib(25) = 75025 
fib(26) = 121393 
fib(27) = 196418 
Info (RESET) systemReset/resetGeneration: Generate Reset 
starting... 
fib(0) = 0 
fib(1) = 1 
fib(2) = 1 
... snip ... 
fib(31) = 1346269 
fib(32) = 2178309 
Info (RESET) systemReset/resetGeneration: Generate Reset 
starting... 
fib(0) = 0 
fib(1) = 1 
fib(2) = 1 
... snip ... 
fib(31) = 1346269 
fib(32) = 2178309 
Info (RESET) systemReset/resetGeneration: Generate Reset 
starting... 
fib(0) = 0 
... snip ... 
fib(27) = 196418 
fib(28) = 317811 
fib(29) = 514229 
Info (RESET) systemReset/resetGeneration: Generate Reset 
starting... 
fib(0) = 0 
... snip ... 
fib(32) = 2178309 
fib(33) = 3524578 
 
OVPsim finished: Fri Oct 02 14:09:40 2015 
 
 
OVPsim (32-Bit) v20150901.0 Open Virtual Platform simulator from www.OVPworld.org. 
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions. 
 

 
UART output 
 
Example Peripheral Reset Generation 
type 'r' to force reset 
     'q' to finish simulation 
 rrrrq 
 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 104 of 168 
. 

20 Integration with Client Debuggers 
It is a common requirement to be able to integrate ICM platforms with client debuggers. 
To support this requirement, additional capabilities are supported in the Imperas 
Professional Tools product (not OVPsim), as described in the following sections. 

20.1 Memory Access 
The functions icmDebugReadProcessorMemory and icmDebugWriteProcessorMemory 
should be used to examine or modify memory without causing side effects. See the 
section on Memory Operations. 

20.2 Register Query 
Debuggers often need to know the processor registers supported, so that they can be 
presented to the user and watchpoints can be set on register value changes (see section 
20.9.1 for more information about watchpoints). The supported processor registers can be 
found using the processor register iterator: 
 
icmRegInfoP icmGetNextReg(icmProcessorP processor, icmRegInfoP previous); 

 
The iterator should be passed NULL as the previous argument on the first call. On 
subsequent calls, it should be passed the value returned on the previous call. For each 
non-NULL value returned, the register name, width in bits, usage and group can be found 
using these functions: 
 
const char* icmGetRegInfoName(icmRegInfoP regInfo); 
Uns32 icmGetRegInfoBits(icmRegInfoP regInfo); 
icmRegUsage icmGetRegInfoUsage(icmRegInfoP regInfo); 
icmRegGroupP icmGetRegInfoGroup(icmRegInfoP regInfo); 

 
The register group (icmRegGroupP) allows allocation of registers into model-specific 
sets, to ease presentation for processors that contain many registers (see the next section). 

20.3 Register Group Query 
Debuggers often need to know the processor register groups supported. Register groups 
are model-specific sets into which registers are allocated to ease presentational problems 
when a processor model contains a large number of registers. The supported processor 
register groups can be found using the processor register group iterator: 
 
icmRegGroupP icmGetNextRegGroup(icmProcessorP processor, icmRegGroupP previous); 

     
The iterator should be passed NULL as the previous argument on the first call. On 
subsequent calls, it should be passed the value returned on the previous call. For each 
non-NULL value returned, the group name can be found using: 
 
const char *icmGetRegGroupName(icmRegGroupP group); 

 
The registers within a group can be found using the by-group register iterator: 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 105 of 168 
. 

 
icmRegInfoP icmGetNextRegInGroup ( 
    icmProcessorP processor, 
    icmRegGroupP  group, 
    icmRegInfoP   previous 
); 

Like the other iterators, the iterator should be passed NULL as the previous argument on 
the first call. On subsequent calls, it should be passed the value returned on the previous 
call. 

20.4 Mode State Query 
Debuggers often need to know the processor modes supported, so that they can be 
presented to the user and watchpoints can be set on mode changes (see section 20.9.1 for 
more information about watchpoints). The supported processor modes can be found using 
the processor mode iterator: 
 
icmModeInfoP icmGetNextMode(icmProcessorP processor, icmModeInfoP previous); 

 
The iterator should be passed NULL as the previous argument on the first call. On 
subsequent calls, it should be passed the value returned on the previous call. For each 
non-NULL value returned, a string name and processor-specific code can be found using 
these two functions: 
 
const char *icmGetModeInfoName(icmModeInfoP modeInfo); 
Uns32 icmGetModeInfoCode(icmModeInfoP modeInfo); 

 
The current processor mode description can be found using: 
 
icmModeInfoP icmGetMode(icmProcessorP processor); 

20.5 Exception State Query 
Debuggers often need to know the processor exceptions supported, so that they can be 
presented to the user and watchpoints can be set on exception events (see section 20.9.1 
for more information about watchpoints). The supported processor exceptions can be 
found using the processor exception iterator: 
 
icmExceptionInfoP icmGetNextException( 
    icmProcessorP     processor, 
    icmExceptionInfoP previous 
); 

 
The iterator should be passed NULL as the previous argument on the first call. On 
subsequent calls, it should be passed the value returned on the previous call. For each 
non-NULL value returned, a string name and processor-specific code can be found using 
these two functions: 
 
const char *icmGetExceptionInfoName(icmExceptionInfoP exceptionInfo); 
Uns32 icmGetExceptionInfoCode(icmExceptionInfoP exceptionInfo); 

 
The current processor exception description can be found using: 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 106 of 168 
. 

icmExceptionInfoP icmGetException(icmProcessorP processor); 

20.6 Processor Freezing 
Two routines allow specific processors in a multiprocessor platform to be frozen and 
unfrozen: 
 
void icmFreeze(icmProcessorP processor); 
void icmUnfreeze(icmProcessorP processor); 

 
When in a frozen state, a processor in a multiprocessor simulation will not be scheduled 
when icmSimulatePlatform is called. It is therefore possible to restrict simulation to a 
subset of processors in a multiprocessor platform by freezing those processors that should 
not be run. A function is also available to test the frozen state of a specific processor: 
 
Bool icmIsFrozen(icmProcessorP processor); 

20.7 Address Breakpoints 
Two routines allow breakpoints to be set and cleared for a specific processor and address: 
 
void icmSetAddressBreakpoint(icmProcessorP processor, Addr simAddress); 
void icmClearAddressBreakpoint(icmProcessorP processor, Addr simAddress); 

 
When a breakpoint has been set for a specific address, any attempt by the processor to 
execute at that address will cause icmSimulatePlatform or icmSimulate to return with 
the processor’s stopReason set to ICM_SR_BP_ADDRESS. 

20.8 Instruction Count Breakpoints 
Two routines allow a breakpoint to be set and cleared that causes a processor to stop 
executing after a specific number of instructions: 
 
void icmSetICountBreakpoint(icmProcessorP processor, Uns64 delta); 
void icmClearICountBreakpoint(icmProcessorP processor); 

 
Once the specified number of instructions has elapsed, icmSimulatePlatform or 
icmSimulate will return with the processor’s stopReason set to ICM_SR_BP_ICOUNT. 

20.9 Memory, Bus and Processor Watchpoints 
A powerful watchpoint API is implemented specifically aimed at debugger integration.  

20.9.1 Watchpoint Creation and Deletion 
Three routines are available to set read, write or access (either read or write) watchpoints 
on a range of memory addresses in a memory: 
 
icmWatchPointP icmSetMemoryReadWatchPoint( 
    icmMemoryP       memory, 
    Addr             low, 
    Addr             high, 
    void            *userData, 
    icmMemNotifierFn notifierCB 
); 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 107 of 168 
. 

icmWatchPointP icmSetMemoryWriteWatchPoint( 
    icmMemoryP       memory, 
    Addr             low, 
    Addr             high, 
    void            *userData, 
    icmMemNotifierFn notifierCB 
); 
 
icmWatchPointP icmSetMemoryAccessWatchPoint( 
    icmMemoryP       memory, 
    Addr             low, 
    Addr             high, 
    void            *userData, 
    icmMemNotifierFn notifierCB 
); 

 
Three more routines allow watchpoints to be specified on a bus range: 
 
icmWatchPointP icmSetBusReadWatchPoint( 
    icmBusP          bus, 
    Addr             low, 
    Addr             high, 
    void            *userData, 
    icmMemNotifierFn notifierCB 
); 
 
icmWatchPointP icmSetBusWriteWatchPoint( 
    icmBusP          bus, 
    Addr             low, 
    Addr             high, 
    void            *userData, 
    icmMemNotifierFn notifierCB 
); 
 
icmWatchPointP icmSetBusAccessWatchPoint( 
    icmBusP          bus, 
    Addr             low, 
    Addr             high, 
    void            *userData, 
    icmMemNotifierFn notifierCB 
); 

 
Three routines allow watchpoints to be specified on a processor address range. For each, 
an isPhysical argument specifies whether the address range is in processor physical 
memory (if True) or virtual memory (if False)4: 
 
icmWatchPointP icmSetProcessorReadWatchPoint( 
    icmProcessorP    processor, 
    Bool             isPhysical, 
    Addr             low, 
    Addr             high, 
    void            *userData, 
    icmMemNotifierFn notifierCB 
); 
 
icmWatchPointP icmSetProcessorWriteWatchPoint( 
    icmProcessorP    processor, 
    Bool             isPhysical, 
    Addr             low, 
    Addr             high, 
    void            *userData, 
    icmMemNotifierFn notifierCB 
); 
 

                                                 
4 See the section 20.11.2 for a definition of what exactly virtual and physical mean in this context. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 108 of 168 
. 

icmWatchPointP icmSetProcessorAccessWatchPoint( 
    icmProcessorP    processor, 
    Bool             isPhysical, 
    Addr             low, 
    Addr             high, 
    void            *userData, 
    icmMemNotifierFn notifierCB 
); 

 
One routine allows a watchpoint to be established on a register in a processor: 
 
icmWatchPointP icmSetRegisterWatchPoint( 
    icmProcessorP    processor, 
    icmRegInfoP      regInfo, 
    void            *userData, 
    icmRegNotifierFn notifierCB 
); 

 
One routine allows a watchpoint to be established on a processor mode switch: 
 
icmWatchPointP icmSetModeWatchPoint( 
    icmProcessorP    processor, 
    void            *userData, 
    icmRegNotifierFn notifierCB 
); 

 
Finally, one routine allows a watchpoint to be established on a processor exception: 
 
icmWatchPointP icmSetExceptionWatchPoint( 
    icmProcessorP    processor, 
    void            *userData, 
    icmRegNotifierFn notifierCB 
); 

 
Each function returns an icmWatchPointP opaque type pointer for the watchpoint that 
was created. The userData argument allows a client-specific data pointer to be 
associated with the watchpoint object for later use (see below). A previously-created 
watchpoint can be deleted using: 
 
void icmDeleteWatchPoint(icmWatchPointP watchpoint); 

 
The notifierCB arguments to the watchpoint addition functions above allow a notifier 
callback function to be associated with each watchpoint that decides whether the 
watchpoint should be triggered or not (i.e., it allows the specification of conditional 
watchpoints). For memory watchpoints, the prototype of the notifier is: 
 
#define ICM_MEM_NOTIFIER_FN(_NAME) Bool _NAME( \ 
        icmProcessorP  processor,   \ 
        icmWatchPointP watchpoint,  \ 
        Addr           PA,          \ 
        Addr           VA,          \ 
        Uns32          bytes,       \ 
        void          *userData,    \ 
        const void    *value        \ 
    ) 
     
typedef ICM_MEM_NOTIFIER_FN((*icmMemNotifierFn)); 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 109 of 168 
. 

In this case, the notifier is passed the physical and virtual addresses of the memory 
access, the number of bytes being accessed and a pointer to a buffer containing those 
bytes. For other watchpoint types, the prototype of the notifier is: 
#define ICM_REG_NOTIFIER_FN(_NAME) Bool _NAME( \ 
        icmWatchPointP watchpoint,  \ 
        icmProcessorP  processor,   \ 
        void          *userData     \ 
    ) 
     
typedef ICM_REG_NOTIFIER_FN((*icmRegNotifierFn)); 

 
In both cases, if the notifier is NULL or returns False then any processor triggering the 
watchpoint will stop before it executes its next instruction with stopReason 
ICM_SR_WATCHPOINT. Otherwise, if the notifier returns True, the triggering processor will 
not stop but instead continue executing normally. 
 

20.9.2 Watchpoint Attribute Query 
There are various functions that allow watchpoint attributes to be queried. The type of a 
watchpoint can be found using: 
 
typedef enum icmWatchpointTypeE { 
  ICMWP_MEM_READ,     // Memory read watchpoint. 
  ICMWP_MEM_WRITE,    // Memory write watchpoint. 
  ICMWP_MEM_ACCESS,   // Memory access watchpoint. 
  ICMWP_REGISTER,     // Register watchpoint. 
  ICMWP_MODE,         // Mode change watchpoint. 
  ICMWP_EXCEPTION     // Exception watchpoint. 
} icmWatchpointType; 
 
icmWatchpointType icmGetWatchPointType(icmWatchPointP watchpoint); 

 
The client data pointer that was associated with the watchpoint when it was created can 
be found using: 
 
void *icmGetWatchPointUserData(icmWatchPointP watchpoint); 

 
For memory address range watchpoints, the bounding addresses can be found using: 
 
Addr icmGetWatchPointLowAddress(icmWatchPointP watchpoint); 
Addr icmGetWatchPointHighAddress(icmWatchPointP watchpoint); 

 
These functions return zero for other watchpoint types. For processor register 
watchpoints, the register which is being watched can be found using: 
 
icmRegInfoP icmGetWatchPointRegister(icmWatchPointP watchpoint); 

 
This function returns NULL for other watchpoint types. For processor register and mode 
change watchpoints, there are query functions which return pointers to the current and 
previous value of the register being watched, or the current and previous mode (a pointer 
of type icmModeInfoP): 
 
void *icmGetWatchPointCurrentValue(icmWatchPointP watchpoint); 
void *icmGetWatchPointPreviousValue(icmWatchPointP watchpoint); 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 110 of 168 
. 

20.9.3 Handling Triggered Watchpoints 
When a watchpoint triggers (because a processor does a read or write to the address range 
over which it is sensitive, or because the processor register or mode it is watching 
changes, or an exception occurs), icmSimulatePlatform or icmSimulate will return 
with the processor’s stopReason set to ICM_SR_WATCHPOINT. Because watchpoints can 
be specified with overlapping ranges and on multiple registers and other events 
simultaneously, it is possible for multiple watchpoints to be triggered by a single 
processor instruction. To enable these all to be handled, a function is available that 
returns the first triggered watchpoint: 
 
icmWatchPointP icmGetNextTriggeredWatchPoint(void); 

 
Once the first triggered watchpoint has been handled by the debugger, it must be reset 
using: 
 
void icmResetWatchPoint(icmWatchPointP watchpoint); 

 
Then a subsequent call to icmGetNextTriggeredWatchPoint will return the next 
triggered watchpoint that has not been reset, and so on until all watchpoints have been 
handled by the client debugger. For each triggered watchpoint, the processor which 
triggered it can be found using: 
 
icmProcessorP icmGetWatchPointTriggeredBy(icmWatchPointP watchpoint); 

20.10 Handling Simultaneous Debug Events 
It is possible that execution of a single processor instruction could potentially cause an 
address breakpoint, an instruction count breakpoint and a watchpoint all to trigger. In this 
case, the priority order is as follows: 

1. The instruction count breakpoint is triggered first, causing the processor to be 
stopped for stopReason ICM_SR_BP_ICOUNT before the instruction is executed; 

2. When simulation is resumed by icmSimulate or icmSimulatePlatform, the 
address breakpoint is triggered next, causing the processor to be stopped for 
stopReason ICM_SR_BP_ADDRESS, again before the instruction is executed; 

3. When simulation is resumed by icmSimulate or icmSimulatePlatform, the 
instruction completes. After completion, the processor is stopped for stopReason 
ICM_SR_WATCHPOINT, at which point the triggered watchpoints can be found and 
reset using icmGetNextTriggeredWatchPoint and icmResetWatchPoint. 

20.11 Debugger Examples 
There are two examples using the address breakpoint, instruction count breakpoint and 
watchpoint constructs in the debuggerIntegration directory: 
 
$IMPERAS_HOME/Examples/PlatformsICM/debuggerIntegration 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 111 of 168 
. 

NOTE 
OP API example showing the same feature are available as  

SimulationControl/addingWatchpoints 
SimulationControl/processorModelSaveRestoreValidation 

SimulationControl/moduleSaveRestore 
 
The first example uses the two-processor Fibonacci application first seen in the 
multiprocessor example. The platform file, platform1.c, has been extensively modified 
to exercise the breakpoint and memory watchpoint debugger integration commands (see 
section 20.11.1). 
 
The second example uses a simpler single-processor assembler example to exercise the 
mode change and exception watchpoints (see section 20.11.2). 
 

20.11.1 Debugger Integration Example 1 
 
20.11.1.1 Establishing Watchpoints 
The platform for this example is platform1.c in the example platforms directory. 
 
Once processor memory has been loaded, the platform establishes watchpoint addresses 
on the shared memory between the two processors as follows: 
 
    applyWatchpoints(shared); 

 
The platform also establishes some register watchpoints in processor0 only using: 
 
    applyRegWatchpoints(processor0); 

 
Function applyWatchpoints is as follows: 
 
static void applyWatchpoints(icmMemoryP memory) { 
 
    Uns32 address; 
    Uns32 i; 
    Uns32 id = 0; 
 
    for(i=0; (address=watchpoints[i].address); i++) { 
 
        icmWatchPointP rwp = icmSetMemoryReadWatchPoint( 
            memory, address, address+watchpoints[i].size-1, (void *)(id++), 0 
        ); 
 
        icmWatchPointP wwp = icmSetMemoryWriteWatchPoint( 
            memory, address, address+watchpoints[i].size-1, (void *)(id++), 0 
        ); 
 
        icmPrintf("READ watchpoint is %u\n", getWatchpointId(rwp)); 
        icmPrintf("WRITE watchpoint is %u\n", getWatchpointId(wwp)); 
    } 
} 

 
The function iterates across a static array of watchpoint objects creating a separate read 
and write watchpoint object for each one (obviously in a real debugger product the list 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 112 of 168 
. 

would not be static and perhaps an access watchpoint would be used). The list of 
watchpoints actually contains just a single entry: 
 
typedef struct watchpointS { 
    Uns32 address; 
    Uns32 size; 
} watchpoint; 
 
const static watchpoint watchpoints[] = { 
    {0xe3b4, 4},    // fibres 
    {0} 
}; 

 
The watchpoint is made on a four-byte address that happens to correspond to the address 
of the fibres static in the application. In a real debugger, the address and object size 
would of course be found by the debugger from the object file. 
 
Function applyRegWatchpoints is as follows: 
 
static void applyRegWatchpoints(icmProcessorP processor) { 
 
    icmWatchPointP rwp1 = icmSetRegisterWatchPoint( 
        processor, icmGetRegByName(processor, "r3"), (void *)(id++), 0 
    ); 
 
    icmWatchPointP rwp2 = icmSetRegisterWatchPoint( 
        processor, icmGetRegByName(processor, "r9"), (void *)(id++), 0 
    ); 
 
    icmWatchPointP rwp3 = icmSetRegisterWatchPoint( 
        processor, icmGetRegByUsage(processor, ICM_REG_SP), (void *)(id++), 0 
    ); 
 
    icmPrintf("REGISTER watchpoint 1 is %u\n", getWatchpointId(rwp1)); 
    icmPrintf("REGISTER watchpoint 2 is %u\n", getWatchpointId(rwp2)); 
    icmPrintf("REGISTER watchpoint 3 is %u\n", getWatchpointId(rwp3)); 
} 

 
This function establishes register change watchpoints on three registers; two are found by 
name (r3 and r9) and the third is found by usage (the OR1K stack register, r1). In a real 
debugger, the registers would of course be selected dynamically. 
 
The platform also demonstrates how to query the registers by register group. Function 
queryRegisters lists all registers found on the processor, by group: 
 
static void queryRegisters(icmProcessorP processor) { 
 
    icmPrintf("%s REGISTERS\n", icmGetProcessorName(processor, "/")); 
 
    icmRegGroupP group = NULL; 
 
    while((group=icmGetNextRegGroup(processor, group))) { 
 
        icmPrintf("  GROUP %s\n", icmGetRegGroupName(group)); 
 
        icmRegInfoP reg = NULL; 
 
        while((reg=icmGetNextRegInGroup(processor, group, reg))) { 
            icmPrintf("    REGISTER %s\n", icmGetRegInfoName(reg)); 
        } 
    } 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 113 of 168 
. 

} 

 
20.11.1.2 Running the Simulator 
The simulator is run in a loop which calls icmSimulatePlatform. There are two modes 
of operation: a normal mode (which runs to the next debug event or termination) and an 
instruction step mode (used to single-step past an address breakpoint): 
 
    Bool          stepOver      = False; 
    icmProcessorP stopProcessor = NULL; 
 
    for(;;) { 
 
        if(stepOver) { 
            icmSetICountBreakpoint(stopProcessor, 1); 
            stopProcessor = icmSimulatePlatform(); 
            stepOver = False; 
        } else { 
            applyBreakpoints(processor0); 
            applyBreakpoints(processor1); 
            stopProcessor = icmSimulatePlatform(); 
            clearBreakpoints(processor0); 
            clearBreakpoints(processor1); 
        } 
 
        … actions depending on stopReason here 
    } 
 
In the single step mode, an instruction count breakpoint is set for one instruction and then 
the platform is simulated: 
 
            icmSetICountBreakpoint(stopProcessor, 1); 
            stopProcessor = icmSimulatePlatform(); 
            stepOver = False; 

 
In the normal mode, address breakpoints are established, the simulation is run until the 
next debug event or termination and then address breakpoints are removed: 
 
            applyBreakpoints(processor0); 
            applyBreakpoints(processor1); 
            stopProcessor = icmSimulatePlatform(); 
            clearBreakpoints(processor0); 
            clearBreakpoints(processor1); 

 
In this simple example, all address breakpoints are applied to both processors, though 
there is no reason why this has to be the case: each processor can have a distinct set of 
breakpoints. The routines to set and clear breakpoints are as follows: 
 
static void applyBreakpoints(icmProcessorP processor) { 
 
    Uns32 i; 
 
    for(i=0; breakpoints[i]; i++) { 
        icmSetAddressBreakpoint(processor, breakpoints[i]); 
    } 
} 
 
static void clearBreakpoints(icmProcessorP processor) { 
 
    Uns32 i; 
 
    for(i=0; breakpoints[i]; i++) { 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 114 of 168 
. 

        icmClearAddressBreakpoint(processor, breakpoints[i]); 
    } 
} 

 
The breakpoint addresses for this simple example are specified in a static list, and 
correspond to the addresses of routines in the application. Again, a real debugger would 
read these from the application ELF file and not rely on fixed addresses: 
 
const static Uns32 breakpoints[] = { 
    0x0fdc,         // munge 
    0x1330,         // main 
    0x108c,         // writer 
    0x1204,         // reader 
    0               // terminator 
}; 

 
Each time icmSimulatePlatform returns, the loop decides what to do next depending on 
the system state. 
 

1. If a NULL processor was returned, the simulation has terminated. 
2. Otherwise, if the stopReason was ICM_SR_BP_ICOUNT an instruction count 

breakpoint has been hit (the debugger is single-stepping over an address 
breakpoint location): 

            case ICM_SR_BP_ICOUNT: 
                icmPrintf( 
                    "Processor %s icount %u stopped at icount\n", 
                     icmGetProcessorName(stopProcessor, "/"), 
                    (Uns32)icmGetProcessorICount(stopProcessor) 
                ); 
                break; 

3. Otherwise, if the stopReason was ICM_SR_BP_ADDRESS an address breakpoint 
has been hit. In this case, the simulation switches mode to step for one instruction 
to get past the breakpoint address: 

            case ICM_SR_BP_ADDRESS: 
                icmPrintf( 
                    "Processor %s icount %u stopped at address 0x%08x\n", 
                    icmGetProcessorName(stopProcessor, "/"), 
                    (Uns32)icmGetProcessorICount(stopProcessor), 
                    icmGetPC(stopProcessor) 
                ); 
                stepOver = True; 
                break; 

4. Otherwise, if the stopReason was ICM_SR_WATCHPOINT a watchpoint has 
triggered. In this case, the triggered watchpoints are scanned and reported: 

            case ICM_SR_WATCHPOINT: 
                icmPrintf( 
                    "Processor %s icount %u stopped at watchpoint\n", 
                     icmGetProcessorName(stopProcessor, "/"), 
                    (Uns32)icmGetProcessorICount(stopProcessor) 
                ); 
                handleWatchpoints(); 
                break; 

5. Otherwise, the stopReason is reported and simulation continues (no other 
stopReasons are expected in this simulation). 

 
Function handleWatchpoints reports and resets all triggered watchpoints. The function 
iterates over all triggered but unhandled watchpoints, finding the watchpoint id and the 
processor that caused the watchpoint to trigger: 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 115 of 168 
. 

 
static void handleWatchpoints(void) { 
 
    icmWatchPointP wp; 
 
    while((wp=icmGetNextTriggeredWatchPoint())) { 
 
        Uns32         id        = getWatchpointId(wp); 
        icmProcessorP processor = icmGetWatchPointTriggeredBy(wp); 

 
It uses the watchpoint type to disambiguate the register and address watchpoint cases. If 
this is a register watchpoint, details about it are printed, together with the old and new 
values of the register:  
 
        switch(icmGetWatchPointType(wp)) { 
 
            case ICMWP_REGISTER: { 
 
                // a register watchpoint was triggered 
                icmRegInfoP reg       = icmGetWatchPointRegister(wp); 
                Uns32      *newValueP = icmGetWatchPointCurrentValue(wp); 
                Uns32      *oldValueP = icmGetWatchPointPreviousValue(wp); 
 
                // indicate old and new value of the affected register 
                icmPrintf( 
                    "  watchpoint %u (processor %s:%s) triggered 0x%08x->0x%08x\n", 
                    id, 
                    icmGetProcessorName(processor, "/"), 
                    icmGetRegInfoName(reg), 
                    *oldValueP, 
                    *newValueP 
                ); 

 
If register watchpoints have fired more than 100 times, any one that fires is deleted the 
next time it is triggered, otherwise it is reset: 
 
            // delete watchpoint after 100 triggers 
            if(regWatchPointCount++>100) { 
                icmDeleteWatchPoint(wp); 
            } else { 
                icmResetWatchPoint(wp); 
            } 

 
(This behavior would not be required in a real debugger integration – it is done here 
simply so that the example output is not swamped by register change callback messages). 
 
If the watchpoint is a memory read, write or access one, information about the address 
range is printed and the watchpoint reset: 
 
            case ICMWP_MEM_READ: 
            case ICMWP_MEM_WRITE: 
            case ICMWP_MEM_ACCESS: 
 
                // a memory watchpoint was triggered 
                icmPrintf( 
                    "  watchpoint %u (range 0x%08x:0x%08x) triggered by processor %s\n", 
                    id, 
                    (Uns32)icmGetWatchPointLowAddress(wp), 
                    (Uns32)icmGetWatchPointHighAddress(wp), 
                    icmGetProcessorName(processor, "/") 
                ); 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 116 of 168 
. 

                icmResetWatchPoint(wp); 
 
                break; 

 
The userData associated with a watchpoint is used to record an arbitrary watchpoint id 
number: 
 
static Uns32 getWatchpointId(icmWatchPointP watchpoint) { 
    return (Uns32)icmGetWatchPointUserData(watchpoint); 
} 

 
20.11.1.3 Compiling and Running the Example 
Compile the test platform and application as before using the following commands in the 
debuggerIntegration directory: 
 
make –C platform SRC=platform1.c 
make –C application 

 
To run the simulation, in the debuggerIntegration directory, run: 
 
./platform/platform1.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf 

 
You should see the following output 
 
READ watchpoint is 0 
WRITE watchpoint is 1 
REGISTER watchpoint 1 is 2 
REGISTER watchpoint 2 is 3 
REGISTER watchpoint 3 is 4 
/cpu0 REGISTERS 
  GROUP GPR 
    REGISTER R0 
    REGISTER R1 
    REGISTER R2 
 
    . . . many similar lines deleted . . . 
 
    REGISTER R29 
    REGISTER R30 
    REGISTER R31 
  GROUP System 
    REGISTER PC 
    REGISTER SR 
    REGISTER EPCR 
    REGISTER EEAR 
    REGISTER EXCPT 
Processor /cpu1 icount 45 stopped at address 0x00001330 
Processor /cpu1 icount 46 stopped at icount 
CPU 1 starting... 
Processor /cpu1 icount 2136 stopped at address 0x00001204 
Processor /cpu1 icount 2137 stopped at icount 
Processor /cpu0 icount 2 stopped at watchpoint 
  watchpoint 2 (processor /cpu0:R3) triggered 0xdeadbeef->0x00000000 
Processor /cpu0 icount 8 stopped at watchpoint 
  watchpoint 3 (processor /cpu0:R9) triggered 0xdeadbeef->0x00000000 
Processor /cpu0 icount 31 stopped at watchpoint 
  watchpoint 4 (processor /cpu0:R1) triggered 0x00000000->0xffff0000 
Processor /cpu0 icount 32 stopped at watchpoint 
  watchpoint 4 (processor /cpu0:R1) triggered 0xffff0000->0xfffffffc 
Processor /cpu0 icount 37 stopped at watchpoint 
  watchpoint 4 (processor /cpu0:R1) triggered 0xfffffffc->0xffffffec 
Processor /cpu0 icount 44 stopped at watchpoint 
  watchpoint 3 (processor /cpu0:R9) triggered 0x00000000->0x00001434 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 117 of 168 
. 

Processor /cpu0 icount 44 stopped at address 0x00001330 
Processor /cpu0 icount 45 stopped at watchpoint 
 
. . . many similar lines deleted . . . 
 
Processor /cpu0 icount 526 stopped at watchpoint 
  watchpoint 2 (processor /cpu0:R3) triggered 0x00000000->0x0000e4d0 
Processor /cpu0 icount 542 stopped at watchpoint 
  watchpoint 3 (processor /cpu0:R9) triggered 0x00003e40->0x000040d0 
Processor /cpu0 icount 543 stopped at watchpoint 
  watchpoint 4 (processor /cpu0:R1) triggered 0xfffff8b0->0xfffff8a8 
Processor /cpu0 icount 552 stopped at watchpoint 
  watchpoint 3 (processor /cpu0:R9) triggered 0x000040d0->0x0000d66e 
Processor /cpu0 icount 601 stopped at watchpoint 
  watchpoint 2 (processor /cpu0:R3) triggered 0x0000e4d0->0x00000000 
CPU 0 starting... 
Processor /cpu0 icount 1551 stopped at address 0x0000108c 
Processor /cpu0 icount 1552 stopped at icount 
CPU 0: fib(0) = 0 
Processor /cpu0 icount 4026 stopped at watchpoint 
  watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu0 
Processor /cpu1 icount 100018 stopped at watchpoint 
  watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu1 
Processor /cpu1 icount 100034 stopped at address 0x00000fdc 
Processor /cpu1 icount 100035 stopped at icount 
CPU 1: munge(0) = 0 
CPU 0: fib(1) = 1 
Processor /cpu0 icount 102435 stopped at watchpoint 
  watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu0 
Processor /cpu1 icount 200021 stopped at watchpoint 
  watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu1 
Processor /cpu1 icount 200037 stopped at address 0x00000fdc 
Processor /cpu1 icount 200038 stopped at icount 
CPU 1: munge(1) = 0 
CPU 0: fib(2) = 1 
Processor /cpu0 icount 202442 stopped at watchpoint 
  watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu0 
Processor /cpu1 icount 300017 stopped at watchpoint 
  watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu1 
Processor /cpu1 icount 300033 stopped at address 0x00000fdc 
Processor /cpu1 icount 300034 stopped at icount 
CPU 1: munge(1) = 0 
CPU 0: fib(3) = 2 
 
. . . many similar lines deleted . . . 
 
CPU 1: munge(89) = 3916 
CPU 0: fib(12) = 144 
Processor /cpu0 icount 1204648 stopped at watchpoint 
  watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu0 
Processor /cpu1 icount 1300016 stopped at watchpoint 
  watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu1 
Processor /cpu1 icount 1300032 stopped at address 0x00000fdc 
Processor /cpu1 icount 1300033 stopped at icount 
CPU 1: munge(144) = 10296 
CPU 0: fib(13) = 233 
Processor /cpu0 icount 1304695 stopped at watchpoint 
  watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu0 
Processor /cpu1 icount 1400011 stopped at watchpoint 
  watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu1 
Processor /cpu1 icount 1400027 stopped at address 0x00000fdc 
Processor /cpu1 icount 1400028 stopped at icount 
CPU 1: munge(233) = 27028 
CPU 0: fib(14) = 377 
Processor /cpu0 icount 1404712 stopped at watchpoint 
  watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu0 
Processor /cpu1 icount 1500016 stopped at watchpoint 
  watchpoint 0 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu1 
Processor /cpu1 icount 1500034 stopped at address 0x00000fdc 
Processor /cpu1 icount 1500035 stopped at icount 
CPU 1: munge(377) = 70876 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 118 of 168 
. 

The example first shows the result of the register group iterator and the by-group register 
iterator: there are two groups (GPR and System) containing the OR1K GPRs and system 
registers, respectively. 
 
Each address breakpoint that is encountered is reported with lines of this form: 
 
Processor /cpu1 icount 45 stopped at address 0x00001330 

 
Instruction count breakpoints are reported with lines of this form: 
 
Processor /cpu1 icount 46 stopped at icount 

 
Register watchpoints are reported by a pair of lines of this form, giving the old and new 
values of the affected register: 
 
Processor /cpu0 icount 2 stopped at watchpoint 
  watchpoint 2 (processor /cpu0:R3) triggered 0xdeadbeef->0x00000000 

 
Memory watchpoints are reported by a pair of lines of this form: 
 
Processor /cpu0 icount 4037 stopped at watchpoint 
  watchpoint 1 (range 0x0000e3b4:0x0000e3b7) triggered by processor /cpu0 

 

20.11.2 Semantics of Physical and Virtual Watchpoints 
The functions icmSetProcessorReadWatchPoint, icmSetProcessorWriteWatchPoint 
and icmSetProcessorAccessWatchPoint each take an argument isPhysical which 
indicates whether the watch point should be physical or virtual. The semantics of these 
are as follows: 
 
20.11.2.1 Physical Watchpoints 
Physical watchpoints are created on the externally-connected processor bus. Creating a 
physical watchpoint is therefore equivalent to creating a bus watchpoint on the processor 
data bus. 
 
When a physical memory watch point is set, it applies to the addressed physical memory 
irrespective of the route by which that is accessed. For example, if you set a physical 
watch point on address 0x10000, the watch point will trigger if the processor is in a non-
TLB mapped mode and accesses address 0x10000, or if it is a TLB mapped mode where 
VA=0x50000 (say) maps to 0x10000 and an access is made to VA=0x50000. 
 
20.11.2.2 Virtual Watchpoints 
When a virtual memory watch point is set, it applies to the memory addressed by the 
virtual address range as viewed from the current processor mode. As a contrived 
example: 

1. Suppose that a processor is currently in TLB-mapped kernel mode, and that 
virtual address 0x50000 maps to physical address 0x10000. 

2. A watch point is set using icmSetProcessor*WatchPoint for virtual address 
VA=0x50000. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 119 of 168 
. 

3. The watch point is triggered by any accesses to VA=0x50000 in TLB-mapped 
kernel mode (as expected), or any aliased access to PA=0x10000. 

4. The mapping for VA=0x50000 in TLB-mapped kernel mode is changed to 
PA=0x20000. 

5. The watch point is still triggered by any accesses to 0x50000 in TLB-mapped 
kernel mode (as expected). Note that the physical memory for the watch point has 
changed from 0x10000 to 0x20000. Accesses that change memory at 
PA=0x10000 by any route no longer trigger the watch point. 

6. The processor enters TLB-mapped user mode. Say that in this mode 
VA=0x50000 is mapped to PA=0x60000 and VA=0x70000 is mapped to 
PA=0x20000. 

7. The processor accesses VA=0x50000 in TLB-mapped user mode. The watch 
point does not trigger because VA=0x50000 maps to PA=0x60000, which does 
not correspond to VA=0x50000/PA=0x20000 in TLB-mapped kernel mode. 

8. The processor accesses VA=0x70000 in TLB-mapped user mode. The watch 
point triggers because VA=0x70000 maps to PA=0x20000. 

 
These semantics avoid much spurious watch point triggering when processors switch 
modes. When a user places a memory watch point at virtual address 0x20000, he almost 
always means virtual address 0x20000 in the current mode. 

20.11.3 Debugger Integration Example 2 
 
20.11.3.1 Establishing Watchpoints 
The platform for this example is platform2.c in the example platforms directory. The 
platform has a similar structure to platform1.c, but instances only a single processor. 
 
Once processor memory has been loaded, the platform establishes processor mode 
change watchpoints as follows: 
 
    applyModeWatchpoints(processor); 

 
It also establishes exception watchpoints as follows: 
 
    applyExceptionWatchpoints(processor); 

 
Function applyModeWatchpoints is as follows: 
 
static void applyModeWatchpoints(icmProcessorP processor) { 
    icmWatchPointP mwp = icmSetModeWatchPoint(processor, (void *)(id++), 0); 
    icmPrintf("MODE watchpoint 1 is %u\n", getWatchpointId(mwp)); 
} 

 
The function creates a single mode change watchpoint with an arbitrary id number. 
 
Function applyExceptionWatchpoints is as follows: 
 
static void applyExceptionWatchpoints(icmProcessorP processor) { 
    icmWatchPointP ewp = icmSetExceptionWatchPoint(processor, (void *)(id++), 0); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 120 of 168 
. 

    icmPrintf("EXCEPTION watchpoint 1 is %u\n", getWatchpointId(ewp)); 
} 

 
This also creates a single exception watchpoint with an arbitrary id number. 
 
20.11.3.2 Running the Simulator 
The simulator loop is similar to that in platform1.c. The only significant difference is in 
function handleWatchpoints. The function once more iterates over all triggered but 
unhandled watchpoints, finding the watchpoint id and the processor that caused the 
watchpoint to trigger: 
 
static void handleWatchpoints(void) { 
 
    icmWatchPointP wp; 
 
    while((wp=icmGetNextTriggeredWatchPoint())) { 
 
        Uns32         id        = getWatchpointId(wp); 
        icmProcessorP processor = icmGetWatchPointTriggeredBy(wp); 

 
In this platform, it uses the watchpoint type to disambiguate the mode and exception 
watchpoint cases. If this is a mode change watchpoint, details about it are printed, 
together with the old and new mode, and the watchpoint is reset:  
 
        switch(icmGetWatchPointType(wp)) { 
 
            case ICMWP_MODE: { 
 
                // a mode switch watchpoint was triggered 
                icmModeInfoP *oldValueP = icmGetWatchPointPreviousValue(wp); 
                icmModeInfoP *newValueP = icmGetWatchPointCurrentValue(wp); 
                icmModeInfoP  oldValue  = *oldValueP; 
                icmModeInfoP  newValue  = *newValueP; 
 
                icmPrintf( 
                    "  watchpoint %u (processor %s:mode) triggered %s->%s\n", 
                    id, 
                    icmGetProcessorName(processor, "/"), 
                    icmGetModeInfoName(oldValue), 
                    icmGetModeInfoName(newValue) 
                ); 
 
                icmResetWatchPoint(wp); 
 
                break; 
            } 

 
If this is an exception watchpoint, information about the exception name is printed and 
the watchpoint reset. Note that exception watchpoints have no notion of previous and 
current value: 
 
            case ICMWP_EXCEPTION: { 
 
                icmExceptionInfoP exception = icmGetException(processor); 
 
                // an exception watchpoint was triggered 
                icmPrintf( 
                    "  watchpoint %u (processor %s:exception) triggered ->%s\n", 
                    id, 
                    icmGetProcessorName(processor, "/"), 
                    icmGetExceptionInfoName(exception) 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 121 of 168 
. 

                ); 
 
                icmResetWatchPoint(wp); 
 
                break; 
            } 

 
20.11.3.3 Compiling and Running the Example 
Compile the test platform and application using the following commands in the 
debuggerIntegration directory: 
 
make –C platform SRC=platform2.c 
make –C application 

 
To run the simulation, in the debuggerIntegration directory, run: 
 
./platform.platform2.${IMPERAS_ARCH}.exe --program application/asmtest.OR1K.elf 

 
You should see the following output 
 
MODE watchpoint 1 is 0 
EXCEPTION watchpoint 1 is 1 
Info 'cpu0', 0x0000000000010000(_start): l.ori    r30,r0,0x0 
Info 'cpu0', 0x0000000000010004(_start+4): l.ori    r31,r0,0x0 
Info 'cpu0', 0x0000000000010008(_start+8): l.mtspr  r0,r0,32 
Info 'cpu0', 0x000000000001000c(_start+c): l.ori    r1,r0,0x2 
Info 'cpu0', 0x0000000000010010(loop1): l.mfspr  r2,r0,32 
Info 'cpu0', 0x0000000000010014(loop1+4): l.addi   r2,r2,0x1 
Info 'cpu0', 0x0000000000010018(loop1+8): l.mtspr  r0,r2,32 
Info 'cpu0', 0x000000000001001c(loop1+c): l.addi   r1,r1,0xffffffff 
Info 'cpu0', 0x0000000000010020(loop1+10): l.sfeqi  r1,0x0 
Info 'cpu0', 0x0000000000010024(loop1+14): l.bnf    0x00010010 
Info 'cpu0', 0x0000000000010028(loop1+18): l.nop    0x0 
Info 'cpu0', 0x0000000000010010(loop1): l.mfspr  r2,r0,32 
Info 'cpu0', 0x0000000000010014(loop1+4): l.addi   r2,r2,0x1 
Info 'cpu0', 0x0000000000010018(loop1+8): l.mtspr  r0,r2,32 
Info 'cpu0', 0x000000000001001c(loop1+c): l.addi   r1,r1,0xffffffff 
Info 'cpu0', 0x0000000000010020(loop1+10): l.sfeqi  r1,0x0 
Info 'cpu0', 0x0000000000010024(loop1+14): l.bnf    0x00010010 
Info 'cpu0', 0x0000000000010028(loop1+18): l.nop    0x0 
Info 'cpu0', 0x000000000001002c(loop1+1c): l.jal    0x00010048 
Info 'cpu0', 0x0000000000010030(loop1+20): l.nop    0x0 
Info 'cpu0', 0x0000000000010048(incEPC): l.mfspr  r2,r0,32 
Info 'cpu0', 0x000000000001004c(incEPC+4): l.addi   r2,r2,0x1 
Info 'cpu0', 0x0000000000010050(incEPC+8): l.mtspr  r0,r2,32 
Info 'cpu0', 0x0000000000010054(incEPC+c): l.jr     r9 
Info 'cpu0', 0x0000000000010058(incEPC+10): l.nop    0x0 
Info 'cpu0', 0x0000000000010034(loop1+24): l.mtspr  r0,r0,17 
Processor /cpu0 icount 26 stopped at watchpoint 
  watchpoint 0 (processor /cpu0:mode) triggered SUPERVISOR->USER 
Info 'cpu0', 0x0000000000010038(loop1+28): l.jal    0x00010048 
Info 'cpu0', 0x000000000001003c(loop1+2c): l.nop    0x0 
Info 'cpu0', 0x0000000000010048(incEPC): l.mfspr  r2,r0,32 
Processor /cpu0 icount 29 stopped at watchpoint 
  watchpoint 0 (processor /cpu0:mode) triggered USER->SUPERVISOR 
  watchpoint 1 (processor /cpu0:exception) triggered ->ILL 
Info 'cpu0', 0x0000000000000700(.text+700): l.addi   r30,r30,0x1 
Info 'cpu0', 0x0000000000000704(.text+704): l.sw     0xfffffffc(r31),r1 
Info 'cpu0', 0x0000000000000708(.text+708): l.mfspr  r1,r0,32 
Info 'cpu0', 0x000000000000070c(.text+70c): l.addi   r1,r1,0x4 
Info 'cpu0', 0x0000000000000710(.text+710): l.mtspr  r0,r1,32 
Info 'cpu0', 0x0000000000000714(.text+714): l.lwz    r1,0xfffffffc(r31) 
Info 'cpu0', 0x0000000000000718(.text+718): l.rfe    
Processor /cpu0 icount 36 stopped at watchpoint 
  watchpoint 0 (processor /cpu0:mode) triggered SUPERVISOR->USER 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 122 of 168 
. 

Info 'cpu0', 0x000000000001004c(incEPC+4): l.addi   r2,r2,0x1 
Info 'cpu0', 0x0000000000010050(incEPC+8): l.mtspr  r0,r2,32 
Processor /cpu0 icount 38 stopped at watchpoint 
  watchpoint 0 (processor /cpu0:mode) triggered USER->SUPERVISOR 
  watchpoint 1 (processor /cpu0:exception) triggered ->ILL 
Info 'cpu0', 0x0000000000000700(.text+700): l.addi   r30,r30,0x1 
Info 'cpu0', 0x0000000000000704(.text+704): l.sw     0xfffffffc(r31),r1 
Info 'cpu0', 0x0000000000000708(.text+708): l.mfspr  r1,r0,32 
Info 'cpu0', 0x000000000000070c(.text+70c): l.addi   r1,r1,0x4 
Info 'cpu0', 0x0000000000000710(.text+710): l.mtspr  r0,r1,32 
Info 'cpu0', 0x0000000000000714(.text+714): l.lwz    r1,0xfffffffc(r31) 
Info 'cpu0', 0x0000000000000718(.text+718): l.rfe    
Processor /cpu0 icount 45 stopped at watchpoint 
  watchpoint 0 (processor /cpu0:mode) triggered SUPERVISOR->USER 
Info 'cpu0', 0x0000000000010054(incEPC+c): l.jr     r9 
Info 'cpu0', 0x0000000000010058(incEPC+10): l.nop    0x0 
Info 'cpu0', 0x0000000000010040(loop1+30): l.rfe    
Processor /cpu0 icount 48 stopped at watchpoint 
  watchpoint 0 (processor /cpu0:mode) triggered USER->SUPERVISOR 
  watchpoint 1 (processor /cpu0:exception) triggered ->ILL 
Info 'cpu0', 0x0000000000000700(.text+700): l.addi   r30,r30,0x1 
Info 'cpu0', 0x0000000000000704(.text+704): l.sw     0xfffffffc(r31),r1 
Info 'cpu0', 0x0000000000000708(.text+708): l.mfspr  r1,r0,32 
Info 'cpu0', 0x000000000000070c(.text+70c): l.addi   r1,r1,0x4 
Info 'cpu0', 0x0000000000000710(.text+710): l.mtspr  r0,r1,32 
Info 'cpu0', 0x0000000000000714(.text+714): l.lwz    r1,0xfffffffc(r31) 
Info 'cpu0', 0x0000000000000718(.text+718): l.rfe    
Processor /cpu0 icount 55 stopped at watchpoint 
  watchpoint 0 (processor /cpu0:mode) triggered SUPERVISOR->USER 
Info 'cpu0', 0x0000000000010044(exit): l.nop    0x0 
Processor 'cpu0' terminated at 'exit', address 0x10044 
--------------- --------------- --------------- --------------- 
 R0 : 00000000   R1 : 00000000   R2 : 00000004   R3 : deadbeef 
 R4 : deadbeef   R5 : deadbeef   R6 : deadbeef   R7 : deadbeef 
 R8 : deadbeef   R9 : 00010040   R10: deadbeef   R11: deadbeef 
 R12: deadbeef   R13: deadbeef   R14: deadbeef   R15: deadbeef 
 R16: deadbeef   R17: deadbeef   R18: deadbeef   R19: deadbeef 
 R20: deadbeef   R21: deadbeef   R22: deadbeef   R23: deadbeef 
 R24: deadbeef   R25: deadbeef   R26: deadbeef   R27: deadbeef 
 R28: deadbeef   R29: deadbeef   R30: 00000003   R31: 00000000 
 PC : 00010048   SR : 00008000   ESR: 00008000   EPC: 00010044   
 TCR: 00000000   TMR: 00000000   PSR: 00000000   PMR: 00000000   
 BF:0 CF:0 OF:0  
--------------- --------------- --------------- --------------- 
 
processor has executed 56 instructions 

 
Each mode change watchpoint that is encountered is reported with lines of this form: 
 
Processor /cpu0 icount 26 stopped at watchpoint 
  watchpoint 0 (processor /cpu0:mode) triggered SUPERVISOR->USER 

 
Exception watchpoints are reported with lines of this form: 
 
Processor /cpu0 icount 29 stopped at watchpoint 
  watchpoint 0 (processor /cpu0:mode) triggered USER->SUPERVISOR 
  watchpoint 1 (processor /cpu0:exception) triggered ->ILL 

 
Note that exception watchpoints always occur at the same time as mode change 
watchpoints in this example, as each exception requires a switch from user to supervisor 
mode. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 123 of 168 
. 

20.12 Scheduler Notification 
Without changing the platform or the scheduler, an integrated debugger can be notified 
when significant actions occur that might require debugger intervention. This is useful 
when calls to icmSimulate or icmSimulatePlatform are made in code that is not 
accessible to the debugger - for example from a SystemC platform. Use the function 
icmSetDebugNotifiers to install callbacks on these actions. The callbacks are: 
 
Call Meaning 
icmStartSimFn Simulation is about to begin, but no peripherals or processors 

have run yet. 
icmEndConstructorsFn Peripheral constructors have run, application processors are 

about to start. 
icmEndSchedFn Called after each application processor has finished a slice. 

Should return true if simulation is to continue, false to finish. 
icmEndSchedFn Called after each PSE has finished executing. Only use this if 

you wish to debug a PSE. Should return true if simulation is to 
continue, false to finish. 

icmTimeAdvanceFn Called when a scheduler advances time. Should return true if 
simulation is to continue, false to finish. 

icmFinishFn Called when simulation is about to finish 
 
The example in Examples/Debugger/threads shows the use of this function to allow a 
platform and a debugger to run in separate thread, but in the same program. This is 
pseudo code extracted from the example: 
 
static ICM_START_SIM_FN(startSim) { 
    // called once: 
    //   Before the peripheral constructors run 
    ... 
} 
 
static ICM_END_CONSTRUCTORS_FN(endConstructors) { 
    //  called once 
    //    After the peripheral constructors run 
    //    Before the first instructions are executed on application processors 
    ... 
} 
 
 
static ICM_END_SCHED_FN(debugProc) { 
    // called after each core has executed instructions. 
    icmStopReason reason = icmGetStopReason(processor); 
    if (debuggerNeedsToActOnThisReason(reason)) { 
        ... 
    } 
    if(debuggerWantsToFinish()) { 
        return False; 
    } else { 
        return True; 
    } 
} 
 
static ICM_END_SCHED_FN(debugPSE) { 
    icmStopReason reason = icmGetStopReason(processor); 
    if (debuggerNeedsToActOnThisReason(reason)) { 
        ... 
    } 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 124 of 168 
. 

    if(debuggerWantsToFinish()) { 
        return False; 
    } else { 
        return True; 
    } 
} 
 
static ICM_TIME_ADVANCE_FN(advanceTime) { 
    // called when (and only when) time is advanced 
    ... 
    return True; 
} 
 
static ICM_FINISH_FN(finishSim) { 
    // called when no more instructions to execute, but before destruction. 
    ... 
} 
 
int main(...) { 
 
    icmDebugNotifier notify = { 
        .start     = startSim, 
        .endCons   = endConstructors, 
        .sched     = debugProc, 
        .schedPSE  = debugPSE, 
        .advance   = advanceTime, 
        .finish    = finishSim, 
        .userData  = myPointer 
    }; 
 
    // request callbacks. Note: this can be called before icmInitPlatform() 
    icmSetDebugNotifiers(&notify); 
 
    buildPlatform();  // using icmInitPlatform etc 
    ... 
 
    // Run the simulation 
    icmSimulatePlatform(); 
} 

 
icmSetSchedFn can be called before or after icmInitPlatform but must be called 
before simulation begins. There will be one call to startSim, then a call to debugProc 
each time a processor core stops executing. This might be because the simulator has 
executed all the instructions requested of this processor or it might be that a breakpoint, 
watchpoint or other simulator event has occurred. debugProc will be called if  
icmSimulatePlatform () or icmSimulate(processor) is used. If the processor has 
multiple cores, there will be callbacks for each core. 
 
The function debugProc should return True if the simulation can continue after the 
callback or False if the simulation should finish, in which case end of simulation events 
will be triggered but no more instructions will be simulated. 
 
The function finishSim will be called once, before the platform is destroyed. 
 
The function debugPSE is required only if you wish to debug PSE code. Leave the 
callback pointer null if not required. The userData field will be passed to the callback. It 
should return True if the simulation can continue after the callback or False if the 
simulation should finish. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 125 of 168 
. 

The function advanceTime will be called when the simulator moves simulated time 
forwards. It should return True if the simulation can continue after the callback or False 
if the simulation should finish. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 126 of 168 
. 

21 Peripherals 
ICM supports the inclusion of multiple peripherals in a platform. A peripheral is modeled 
using a Peripheral Simulation Engine (PSE) and/or an Intercept library. The creation of a 
PSE is described in detail in the OVP Peripheral Modeling Guide. 
 
This section provides information on how a peripheral is includes and used within an 
ICM platform. 

21.1 Adding a Peripheral 
The peripheral is instantiated in the platform and connected to the bus using one or more 
ports. The name of the port, used when connecting onto the bus, must match the name 
used when the port is created within the peripheral model. Within the peripheral a port 
has a size but has no address, it is only when it is connected to the bus that it is given an 
address. 

21.1.1 Instantiating a Peripheral 
The peripheral is instantiated using the icmNewPSE or icmNewPSEWithHandle function 
calls. This function returns a handle to the PSE instance that is used by other functions. 
 
    // instantiate the peripheral  
    icmPseP vga = icmNewPSE("vga", vgaPse, vgaAttrs, NULL, NULL); 

 

21.1.2 Attach a peripheral to a Bus 
A peripheral can be connected at a fixed address on a bus or it can be attached 
dynamically.  
 
21.1.2.1 Fixed Bus 
When connecting to a fixed bus the peripherals port is connected as either a master or 
slave port between a specific address range. The port name and its address range must 
match that defined in the peripheral model 
 
    icmConnectPSEBus(vga, bus, "config", False, 0x180003b0, 0x180003df); 

 
21.1.2.2 Dynamic Bus 
A port can be dynamically connected to a bus. This is the case when modeling a 
peripheral device that connects to a dynamic bus, such as PCI, that is configured at run 
time.  
 
The address to which the peripheral will respond is coded within the behavioral code of 
the peripheral model and not within the platform. 
 
    icmConnectPSEBusDynamic(vga, bus, "memory", False); 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 127 of 168 
. 

21.2 Enabling Diagnostics 
A peripheral can be designed to provide diagnostics information during its execution. The 
diagnostics can be defined by the model developer using the modeling equivalent of 
printf within the model (model diagnostics) or provided from the simulation system 
(system diagnostics).  
 

21.2.1 Model Diagnostics 
The model diagnostics are controlled by setting the diagnostic level of the peripheral 
model. This is enabled in the platform after the PSE has been instantiated using the 
icmSetPSEdiagnosticLevel function call. 
 
It is standard to provide 3 levels of diagnostics within the model diagnostics, each higher 
level providing a super set of lower level diagnostics.  
For a PSE based peripheral the diagnostics would be controlled by values of 0, 1, 2, or 3 
being written. 

0 No diagnostics 
1 Low diagnostics 
2 Medium diagnostics 
3 High diagnostics 
4 System diagnostics. At this level (and above) the simulator automatically 

reports net and register callbacks, without the addition of code to the model.  
 

The example code below would set the diagnostics to the highest level and so provide the 
most verbose output. This could provide details down to the individual register level. 
 
  icmSetPSEdiagnosticLevel(vga, 4); 

 

21.2.2 Intercept Library Diagnostics 
 
When the peripherals behavior is created using native code within an interception library 
the diagnostics must be passed through the PSE part of the model using the same 
mechanism as for the model diagnostics, mentioned earlier.  
 
The recommended approach is to use high order bits in the diagnostic level for the 
intercept library. So, for example, to turn on the highest diagnostics level for both the 
PSE and Native elements of a peripheral model, we can use bits 0 and 1 for the PSE and 
4 and 5 for the Native. 
 
 
#define PSE_DIAG_HIGH       3 
#define PSE_DIAG_MEDIUM     2 
#define PSE_DIAG_LOW        1 
#define INT_DIAG_HIGH      (3<<4) 
#define INT_DIAG_MEDIUM    (2<<4) 
#define INT_DIAG_LOW       (1<<4) 
 
...   
 
icmSetPSEdiagnosticLevel(vga, INT_DIAG_HIGH | PSE_DIAG_HIGH); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 128 of 168 
. 

 

21.2.3 PSE Debugger Support 
When simulating a platform in the Imperas simulator, a GDB executable can be 
associated with each PSE so that full symbolic debug is available for PSE. 
 
Two methods of association are used: 

• The PSE model in the Imperas component library specifies a gdb path. This will 
work if the Imperas simulator is supplied with its standard component library. 

• The function icmSetPSEGdbPath can set the path 
 
// set the gdb path 
icmSetPSEGdbPath( 
    icmPseP pse,          // handle to the PSE 
    const char *path,     // full path to the GDB executable 
    const char *flags     // any flags to be appended to the GDB invocation 
); 

21.3 Passing Attributes 
A configurable peripheral model uses attributes passed from the platform to the 
peripheral model to change its behavior. There are three types of attributes that can be 
passed to and read by the peripheral model, unsigned 64 bit, double and string. They are 
passed as an attribute list and added to that declared list using different functions. 
 
An empty attribute list is created using the icmNewAttrList function and then populated 
with attributes using the three functions icmAddUns64Attr, icmAddUns64Attr and 
icmAddStringAttr. The list is then added to the PSE instance when it is instantiated. 
 
 
    icmAttrListP vgaAttrs = icmNewAttrList(); 
    icmAddUns64Attr(vgaAttrs, "scanDelay", 50000); 
    icmAddUns64Attr(vgaAttrs, "PCIslot", 18); 
    icmAddUns64Attr(vgaAttrs, "noGraphics", noGraphics); 
    icmAddStringAttr(vgaAttrs, "title", "OVPsim MIPS32 Malta"); 
    icmPseP vga = icmNewPSE("vga", vgaPse, vgaAttrs, NULL, NULL); 
 

 

21.4 Simulating a Platform 
21.4.1 Default Scheduling Algorithm 
 
The platforms created using the ICM API would normally make use of the default 
scheduling algorithm. By using the default algorithm the ICM platform can be directly 
imported into the Imperas professional tools without any modification.  
 
The default scheduling is performed by a call to the icmSimulatePlatform function. 
This runs all processor and peripheral instances in the platform. 
 

21.4.2 Custom Scheduling Algorithm 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 129 of 168 
. 

A custom scheduling algorithm is created using the icmSimulate and icmAdvanceTime 
functions in place of the icmSimulatePlatform function. 
 
The function icmSimulate is applied to only one processor instance. To simulate the 
platform all processors and peripherals in the platform must be scheduled. The function 
icmSimulate is used for each processor instance in turn to make them execute a fixed 
number of instructions. The number of instructions a processor can execute in a given 
slice of time is a product of the performance of the processor and the length of time the 
time slice occupies.  
 
The sequence to simulate a platform is to schedule each processor to execute the number 
of instructions it can nominally achieve in the time slice. Once all processors have 
executed any instructions they should perform in a time slice the platform time is moved 
forward in time by the appropriate amount using the icmAdvanceTime function. In 
moving time forward any peripheral functionality that is waiting for an amount of time to 
expire within this time slice will execute its behavior. icmAdvanceTime returns False if 
the new time is at or beyond a requested stop time (see icmSetSimulationStopTime). 
 
 
#define INST_PER_SECOND      100000000 
#define TIME_SLICE           0.01 
#define INST_PER_TIME_SLICE (INST_PER_SECOND*TIME_SLICE) 
 
... 
 
    icmTime myTime; 
    icmStopReason rtnVal = ICM_SR_SCHED; 
    Bool outOftime = False;  
    for(myTime=TIME_SLICE;rtnVal==ICM_SR_SCHED || rtnVal==ICM_SR_HALT;myTime+=TIME_SLICE){ 
        rtnVal= icmSimulate(processor, INST_PER_TIME_SLICE); 
        outOfTime = !icmAdvanceTime(myTime); 
    } 
... 
 

 

21.5 Adding an Extension Intercept Library 
 
Intercept libraries may be used to extend the functionality of a peripheral model. This 
allows some of the model behavior to be modeled using native host code. This used when 
the peripheral model makes use of host features, such as Ethernet, keyboard, graphics or 
USB connections. 
 
The intercept library is loaded automatically by the peripheral model, though this 
function can be overridden by specifying the path to the extension library as the forth 
argument to icmNewPSE or icmNewPSEWithHandle. 
 
The following is the instantiation of a VGA peripheral model that uses an intercept 
library for part of its behavior. The variable vgaIntercept is a string providing the path 
to the library to be loaded. 
 
Const char *vgaExtension = “localDir/model”;  // the .so or .dll is assumed. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 130 of 168 
. 

    icmPseP vga = icmNewPSE("vga", vgaPse, vgaAttrs, vgaExtension, 0); 
 

 

21.5.1 Adding more Intercept Libraries 
Intercept libraries can be added to an existing PSE instance using 
icmAddPseInteceptObject (only available in Imperas Professional products). 
 
 
icmPseP vga = icmNewPSE("vga", vgaPse, vgaAttrs, NULL, NULL,); 
icmAddPseInterceptObject( 
    vga,                           // PSE handle 
    "intercept1",                  // intercept library instance name 
    "/home/library/intercept",     // path to shared object or DLL 
    0,                             // not used 
    0                              // optional list of user defined attributes 
                                   // used to control the intercept library 
); 
 

 
21.5.2 Example platform 
 
An example of a peripheral that uses an intercept library for implementing native 
behavior may be found in following directory:  
 
$IMPERAS_HOME/Examples/Models/Peripherals/creatingDMAC/5.nativeBehaviour 
 
The example shows a peripheral with a native semihost instantiated into the platform in 
the file platform/platform.c: 
 
 
... 
    //////////////////////////////////////////////////////////////////////////// 
    // DMAC Peripheral 
    //////////////////////////////////////////////////////////////////////////// 
 
    // instantiate the peripheral 
    icmAttrListP config = icmNewAttrList(); 
    icmAddUns64Attr(config, "enableNative", 1); 
 
    icmPseP dmac = icmNewPSE("dmac", "peripheral/pse/pse.pse", config, 0, 0); 
... 
 

 
In the peripheral's source file, peripheral/pse/dmac.attrs.igen.c, the semihost library to be 
loaded is defined with the extension member of the ppmModelAttr structure: 
 
 
... 
ppmModelAttr modelAttrs = { 
 
    .versionString = PPM_VERSION_STRING, 
    .type          = PPM_MT_PERIPHERAL, 
 
    .busPortsCB    = nextBusPort, 
    .netPortsCB    = nextNetPort, 
    .paramSpecCB   = nextParameter, 
 
    .vlnv          = { 
        .vendor  = "ovpworld.org", 
        .library = "peripheral", 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 131 of 168 
. 

        .name    = "dmac", 
        .version = "1.0" 
    }, 
 
    .family    = "ovpworld.org", 
    .extension = "../model/model" 
 
}; 
 

 
Compile the test platform and application as before using the following commands in the 
5.nativeBehaviour directory: 
 
make -C peripheral/pse   NOVLNV=1  
make -C peripheral/model NOVLNV=1  
make -C platform         NOVLNV=1 
make -C application 

 
To run the simulation, in the memory directory, run: 
 
./platform/platform.${IMPERAS_ARCH}.exe --program application/dmaTest.elf 

 
You should see the following output (some repetitive parts have been removed): 
 
 
OVPsim started: Thu Mar 26 22:09:51 2015 
 
 
Info (ICM_AL) Found attribute symbol 'modelAttrs' in file 
'/Imperas/lib/Linux32/ImperasLib/ovpworld.org/semihosting/or1kNewlib/1.0/model.so' 
Info (ICM_AL) Found attribute symbol 'modelAttrs' in file 
'/Imperas/lib/Linux32/ImperasLib/ovpworld.org/processor/or1k/1.0/model.so' 
Info (OR_OF) Target 'platform/CPU1' has object file read from 'application/dmaTest.elf' 
Info (OR_PH) Program Headers: 
Info (OR_PH) Type           Offset     VirtAddr   PhysAddr   FileSiz    MemSiz     Flags 
Align 
Info (OR_PD) LOAD           0x00002000 0x00000000 0x00000000 0x00012544 0x00012664 RWE   
2000 
Info (ICM_AL) Found attribute symbol 'modelAttrs' in file 
'/home/straus/tmp/5.nativeBehaviour/peripheral/model/model.so' 
Info (INIT) platform/dmac: Use Native data on channel 1 
Info (PP_STUBS) platform/dmac: User initialization 
Info (INIT) 'MWRITE', hi 0 lo ffffffff master 1 dynamic 0 
Info (INIT) platform/dmac: Semihost Initialized 
Info (DMAC) platform/dmac:  ch 0 waiting 
Info (DMAC) platform/dmac:  ch 1 waiting 
Info (DMAC) platform/dmac: configWr 0x02 (2) burst size 4 
TEST DMA: initial dst1 '1111111111111111111111111111111111' dst2 
'2222222222222222222222222222222222' 
TEST DMA: dmaBurst ch:0  bytes:13 
Info (DMAC) platform/dmac: regWr32 0xffffefe4 (4294963172) 
Info (DMAC) platform/dmac: regWr32 0xffffdfe4 (4294959076) 
Info (DMAC) platform/dmac: regWr32 0x0000000d (13) 
Info (DMAC) platform/dmac: configCh0Wr 0x00008001 enable 1 interrupts 1 halt 0 
Info (DMAC) platform/dmac:  ch 0 running 
Info (DMAC) platform/dmac:  ch 0 13 bytes burst size 4 from ffffefe4 to ffffdfe4 
Info (DMAC) platform/dmac:  ch 0 access 4 bytes from ffffefe8 to ffffdfe8 
TEST DMA: dmaBurst ch:1  bytes:35 
Info (DMAC) platform/dmac: regWr32 0xffffcfe4 (4294954980) 
Info (DMAC) platform/dmac: regWr32 0xffffbfe4 (4294950884) 
Info (DMAC) platform/dmac: regWr32 0x00000023 (35) 
Info (DMAC) platform/dmac: configCh1Wr 0x00008001 enable 1 interrupts 1 halt 0 
Info (DMAC) platform/dmac:  ch 1 running 
Info (DMAC) platform/dmac:  ch 1 35 bytes burst size 4 from ffffcfe4 to ffffbfe4 
Info (PERIPHERAL_SEMI) Send native data 0xffffcfe4 to 0xffffbfe4 (4 bytes) 
Info (DMAC) platform/dmac:  ch 1 access 4 bytes from ffffcfe8 to ffffbfe8 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 132 of 168 
. 

TEST DMA: Waiting for interrupts 
Info (DMAC) platform/dmac:  ch 0 access 4 bytes from ffffefec to ffffdfec 
Info (PERIPHERAL_SEMI) Send native data 0xffffcfe8 to 0xffffbfe8 (4 bytes) 
Info (DMAC) platform/dmac:  ch 1 access 4 bytes from ffffcfec to ffffbfec 
 
... 
 
Info (DMAC) platform/dmac: ch 1 status=0x3 
Info (DMAC) platform/dmac:  ch 1 waiting 
TEST DMA: Interrupt 
Info (DMAC) platform/dmac: regRd32 0x01800000 (25165824) 
Info (DMAC) platform/dmac: regRd32 0x01800000 (25165824) 
TEST DMA: Interrupt ch0 0x8001 
Info (DMAC) platform/dmac: configCh0Wr 0x00000000 enable 0 interrupts 0 halt 0 
Info (DMAC) platform/dmac: regRd32 0x01800000 (25165824) 
Info (DMAC) platform/dmac: regRd32 0x01800000 (25165824) 
TEST DMA: Interrupt ch1 0x8001 
Info (DMAC) platform/dmac: configCh1Wr 0x00000000 enable 0 interrupts 0 halt 0 
TEST DMA: 2 interrupts received 
TEST DMA: DMA result dst1 'Hello world.' dst2 'The whole world spread before you.' 
 
OVPsim finished: Thu Mar 26 22:09:52 2015 

21.6 Selecting using VLNV 
 
A peripheral model can be uniquely referenced by including the path in the platform 
description at compile time but this builds a platform that is not portable. Much more 
useful is to be able to specify the model using Vendor Library Name and Version 
(VLNV) information and then at run-time reference the root of a library to use.  
 
The icmGetVlnvString function allows a path to be generated using VLNV information 
and an environment variable, IMPERAS_VLNV, to specify the root of the library and select 
a specific model. 
 
The arguments to icmGetVlnvString are: 
    char *rootDirectory NULL, root directory or directories 
    char vendor vendor directory or "*" 
    char library library directory or "*" 
    char name name directory or "*" 
    char version version directory or "*" 
    char file filename or "pse" or "model" 
   
Setting rootDirectory to NULL specifies the model directory from the product 
installation. Alternatively, a string in the format of the PATH environment variable can be 
used; this is a ‘:’ separated list of paths on Linux, a ‘;’ separated list on Windows. 
icmGetVlnvString() will search the directories in order. 
 
Setting vendor, library or name to an empty string (not NULL) or to “*” specifies a 
wild-card for this directory. 
 
Setting version to an empty string (not NULL) or to “*” specifies the latest numeric 
version. Note that "1.1.1" is later than "1.1" and that "zzz" is later than any number. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 133 of 168 
. 

file should be set to the exact filename expected or to the special strings "pse" or 
"model" to make the search platform independent. Note that Imperas peripheral models 
are always named "pse.pse" and processor and intercept models are names "model.so" 
on Linux or "model.dll on Windows. 
 
icmGetVlnvString will return the expanded string if a match is found, or NULL  if there 
is zero or more than one match. If NULL is returned, an error message is printed. 
 
If you wish to try several VLNV searches, use icmTryVlnvString. This is identical to 
icmGetVlnvString but does not produce an error message (or change the simulator's error 
status). 

21.6.1 Example VLNV searches 
 
 
// On Linux find the latest PSE model called uart in any library by chipco.com 
s1 = icmGetVlnvString("/home/models:/home/users", "chipco.com", "", "uart", "", "pse"); 
 
// On Windows find the latest OVP or1k processor model – note that OS-dependent suffix 
// (.so or .dll) is omitted for portability 
s2 = icmGetVlnvString("c:\ovp\models;c:\local", "ovpworld.org", "", "or1k", "", "model"); 
 
// Find the non-intrusive code coverage module 
s3 = icmGetVlnvString(NULL, "imperas.com", "intercept", "icov", "", "model"); 
 
// select a 16450 UART version 1.7 from the default ovpworld.org peripheral library. 
s4 = icmGetVlnvString(NULL, "national.ovpworld.org", "peripheral", "16450", "1.7", "pse"); 
 
 
// Try several places without producing an error 
if (!(s = icmTryVlnvString(path, v1, l1, m1, "", "model))) { 
    s = icmTryVlnvString(path, v2, l2, m2, "", "model); 
} 
if(!s) { 
    icmPrintf("Could not find your model in the usual places\n"); 
    return; 
} 
 
 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 134 of 168 
. 

22 Nets connecting models 
A single- or multi-bit wire can be modeled using a net. Interrupts and reset signals are 
typically implemented this way. Note that although it is possible to construct a signal-
level model of a bus using ICM, this style of modeling is discouraged; no attempt has 
been made to optimize the net object, so the performance of a signal-level model would 
be disappointing. 
 
Nets are created then connected to processor and peripheral models. The arguments to 
icmConnectProcessorNet and icmConnectPSENet are as follows: 
 
icmConnectProcessorNet 
    icmProcessorP   processor     Handle returned when creating the processor instance. 
    icmNetP         net           Handle returned when created the net. 
    const char      *portName     Name of the port as it appears in the model 
    icmDirection    direction     ICM_INPUT or ICM_OUTPUT. 

 
icmConnectPSENet 
    icmPseP       pse          Handle returned when creating the PSE instance. 
    icmNetP       net          Handle returned when created the net. 
    const char   *portName     Name of the port as it appears in the model 
    icmDirection  direction    ICM_INPUT or ICM_OUTPUT. 

 
 

22.1 Example 
This example shows the connection of the interrupt output from a UART to the interrupt 
input of the OR1K processor.  
… 
icmNetP     intNet = icmNewNet("int1");    // UART  
 
const char *uartPse = icmGetVlnvString(NULL, "ovpworld.org", "", "16450", "", "pse"); 
icmPseP     uart1   =  icmNewPSE("uart1", uartPse, NULL, NULL, NULL); 
 
const char *or1kModel  = icmGetVlnvString(vlnvRoot, "ovpworld.org","","or1k","","model"); 
 
icmProcessorP processor = icmNewProcessor( 
    "cpu1",             // CPU name 
    "or1k",             // CPU Type 
    0,                // CPU cpuId 
    0,                // CPU model flags 
    32,               // address bits 
    or1kModel,         // model file 
    0,                    // not used 
    0,              // simulation attributes 
    0,             // user-defined attributes 
    0,                // semi-hosting file 
    0             // not used 
); 
 
icmConnectProcessorNet(processor, intNet, "intr0", ICM_INPUT); 
 
icmConnectPSENet(uartPSE, intNet, "intOut", ICM_OUTPUT); 
… 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 135 of 168 
. 

23 Detecting changes on a net 
Code can be triggered when a net is written by a model. A function is declared using the 
NET_WRITE_FN prototype macro, then connected to a net using icmAddNetCallback. 
Note that the trigger occurs if the net is written. It is up to the application to decide if the 
net value has changed. 

23.1 Example 
Any change on an interrupt port is made to print a line to the simulator log stream. Note 
the use of the userData field to pass a pointer to the recorded old value. 
 
NET_WRITE_FN(intNetWritten) { 
    Uns32 *old = userData; 
    if(value != *old) { 
        icmPrintf(“Net changed to %d\n”, value); 
        *old = value; 
    } 
} 
 
void construct() { 
    . . . 
 
    // create a net and connect it to the interrupt port of a peripheral 
    Uns32 oldValue = 0; 
    icmNetP intNet = icmNewNet("intNet"); 
    icmConnectPSENet(pse10, intNet, "interrupt", ICM_OUTPUT); 
 
    icmAddNetCallback(intNet, intNetWritten, &oldValue); 
 
    // simulate for one simulated second 
    icmSetSimulationStopTime(1.0); 
    icmSimulatePlatform(); 
 
    . . . 
} 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 136 of 168 
. 

24 Packetnets 
Models that communicate with Ethernet, USB CAN, GSM etc. can use the packetnet 
abstraction of a packet based network. A packet transaction is modeled as an 
instantaneous event; network speed and latency must be modeled in the transmitting or 
receiving devices. A packetnet communicates by callbacks and shared memory. The 
transmitting model creates a packet in its local memory then calls the transmit function. 
This causes a notification function to be called in each receiving model in turn, passing a 
pointer to and number of bytes in the packet. The notification function can modify the 
data if required. When every notification function has returned, the transmit function 
returns, then the transmitting model can examine the packet if required. 
 
Note that peripheral models each occupy their own address spaces. Therefore the 
simulator copies the data as and when required, so the models must not rely on pointers in 
the data. The contents of a received packet should not be used after the notification 
function has returned. 
 
The order that the connected models receive a packet is determined by the order of 
construction in the ICM code, but should not be relied on. 
 
The peripheral model API can send and receive through the packetnet interface. The ICM 
API is used to create connections during platform construction, but can also be a test-
bench by sending and receiving packets. 

24.1 Packetnet Direction 
A packetnet is bidirectional; a model can send and receive from the same packetnet 
(though it does not have to). 

24.2 Packetnet ports 
A named packetnet port represents the connection between a packetnet and a peripheral 
model instance. The ICM test-bench does not use packetnet ports. 

24.3 Recursion 
Common to several methods of communication between models, it is possible by 
carelessly connecting packetnets to create a loop so that a call in one model results in a 
call back into the same function in that model. The simulator detects and prevents deep 
recursion on any packetnet.  
 
A peripheral model will not receive notification for a packet that it is sending, an ICM 
notifier function in the test-bench will not receive packets sent by the test-bench. 

24.4 Packet size 
Physical networks have a maximum packet size. Larger data are broken into smaller units 
handled by the protocol stack. A peripheral model must specify the maximum number of 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 137 of 168 
. 

bytes to be sent in one packet when it connects to a packetnet, though it can send fewer 
bytes if needed. All peripheral models on one packetnet must define the same maximum 
size. The ICM interface can connect models together without knowing the maximum 
size, but it is an error for the test-bench to transmit a packet larger than the size set by 
peripherals on the packetnet. 

24.5 Packetnet functions 
 
Create an instance of a packetnet in the platform (returns a handle to the new packetnet): 
 
icmPacketnetP icmNewPacketnet(const char *packetnetName) 

 
Connect a packetnet to a packetnet port on an instance of a peripheral: 
 
icmConnectPSEPacketnet(icmPSEP pse, icmPacketnetP net, const char *portName) 
 

 
Send a packet to all receivers on a packetnet: 
 
void icmWritePacketnet(icmPacketnetP net, void *data, Uns32 bytes) 

 
packetnet notification callback definition using macro defining the prototype, and 
function to bind the callback to a packetnet instance. 
 
static ICM_PACKETNET_NOTIFIER_FN(cb) { 
   ... 
} 
 
void icmAddPacketnetCallback(icmPacketnetP net, icmPacketnetNotifierFn cb, void *userData) 

 

24.6 Example 
An example using a packetnet is in: 
 
$IMPERAS_HOME/Examples/Models/Peripherals/packetnet 

 
The example uses imperas igen to construct most of the code for the platform and 
peripheral models. Take a copy of the example: 
 
cp $IMPERAS_HOME/Examples/Models/Peripherals/packetnet . 

 
Construct and compile the platform and peripheral models and compile the application: 
 
make all 

 
The packetnet is created and connected to the peripheral model instances in code 
generated by igen here:  
 
platform/platform.constructor.igen.h    (look for the CONNECTIONS comment) 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 138 of 168 
. 

The packetnet notifier function, its installer, and code to send a packet over the packetnet 
is in hand-written code here: 
 
platform/platform.c    (look for pktGotData and writePkt) 

 
Run the example: 
 
make simulate 

 
Referring to the output: 
 
The application code starts running 
Info PACKETNET TEST Application 

 
Writing to the tx register in peripheral pktmodel1 calls the callback txWrite (see 
peripheral/user.c) which makes pktModel1 send a packet using ppmPacketnetWrite. 
The packet is received by pktModel2 and the callback pktGotData in the platform. Then 
the txWrite function in pktModel1 returns: 
 
Info (PKT_PSETXS) testpacketnet/pktModel1: PSE to packetnet START {77} {PSE} {00}  
Info (PKT_PSERXD) testpacketnet/pktModel2: Peripheral PKT model Trigger ... 
Info (PKT_ICMRXD) testpacketnet/top: Platform PKT testbench Trigger ... 
Info (PKT_PSETXE) testpacketnet/pktModel1: PSE to packetnet DONE  {77} {PSE} {02}  
 

 
Then the application makes pktModel2 transmit in the same way: 
 
Info (PKT_PSETXS) testpacketnet/pktModel2: PSE to packetnet START {88} {PSE} {00}  
Info (PKT_PSERXD) testpacketnet/pktModel1: Peripheral PKT model Trigger ... 
Info (PKT_ICMRXD) testpacketnet/top: Platform PKT testbench Trigger  ... 
Info (PKT_PSETXE) testpacketnet/pktModel2: PSE to packetnet DONE  {88} {PSE} {02}  
 
Info PACKETNET TEST Application DONE 

 
When the application finishes, the test-bench sends a packet which is received by the 
peripherals. 
 
Info (PKT_ICMTXS) testpacketnet/top: writePkt packetbus1 START {01}, {ICM}, {00} 
Info (PKT_PSERXD) testpacketnet/pktModel1: Peripheral PKT model Trigger ... 
Info (PKT_PSERXD) testpacketnet/pktModel2: Peripheral PKT model Trigger ... 
Info (PKT_ICMRXD) testpacketnet/top: Platform PKT testbench Trigger ... 
Info (PKT_ICMTXE) testpacketnet/top: writePkt packetbus1 DONE {01}, {ICM}, {03} 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 139 of 168 
. 

25 Simulator Control Files 
Simulator control files are supported by CpuManager and OVPsim. 
 
A simulator control file allows control of extension libraries, overrides, application 
programs and model commands in environments that do not have a simulator command 
line. It also allows the substitution of one VLNV reference with another, provided the 
function icmGetVlnvString is used to obtain the path. 
 
For details of the control file refer to the OVP_Control_File_User_Guide. 
 
Control files are loaded using icmAddControlFile() which must be invoked before 
calling icmInitPlatform(). 
 
... 
 
icmAddControlFile( "control1.ic" ); 
icmAddControlFile( "control2.ic" ); 
 
icmInitPlatform(...); 
 
icmSimulatePlatform(); 

 
Control files can also be specified using the environment variable IMPERAS_TOOLS. 
Filenames are separated by : (Linux) or ; (Windows) e.g. 
 
shell> export IMPERAS_TOOLS="controlfile1.ic;controlfile2.ic" 
 
shell> mySystemC.exe    # simulator using CpuManager.so 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 140 of 168 
. 

26 Encapsulating Models for use in other Environments 
An essential purpose of the ICM API is to allow Imperas simulation models to be 
exported to other environments (for example, SystemC).  

26.1 SystemC 
The ICM API allows the Imperas models to be exported into a SystemC environment. 
There are two levels at which the ICM API can be used: C and C++. It is the C++ API 
that is utilized in the SystemC environment. Once exported, an Imperas model can be 
controlled from the SystemC interface by, for example, allowing it to be clocked one 
instruction at a time. 
 
The following code example illustrates a few of the basic principles when using the ICM 
API to encapsulate a model for use in a SystemC environment. Specifically, we cover 
how to: 

• Create a processor instance 
• Attach external memory 
• Register callbacks 

 
The example code is found in the directory systemC. It consists of an application to be 
run on the processor model (in the application directory) and a SystemC platform (in the 
platform directory).  
 
The example instantiates a single processor and, depending upon build commands, an 
external memory modeled as a SystemC module. 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 141 of 168 
. 

26.1.1 Create Processor Instance 
The processor is created using constructs in the file platform/impProcessor.hpp that 
create a SystemC module using the SC_MODULE macro. 
 
This file contains the processor constructor and destructor: 
 
   ///// 
   //  
   // Constructor 
   // 
   theProcessor(sc_module_name instname, sc_clock &ck) 
   { 
      _init = false; 
      _proc = NULL; 
      _inclk(ck); 
 
      SC_METHOD(runner); 
      sensitive << _inclk.neg();  
      dont_initialize(); 
   } 
 
   ///// 
   //  
   // Destructor 
   // 
   ~theProcessor()  
   { 
      if (_init && _proc) { 
         delete _proc; 
     _proc = NULL; 
         _init = false; 
      } 
   } 

 
An initialization routine is created separately from the constructor. This allows it to be 
explicitly called and better error handling. 
 
As part of the initialization routine a simulation stop callback is registered, using the C++ 
API function icmRegisterSimStopHandler. Without this function added the SystemC 
environment would not terminate and continue to clock the CpuManager model even 
after the simulation has finished. Now when simulation finishes CpuManager makes a 
call into the supplied function which can be used to cleanly terminate the SystemC 
simulation. 
 
   ///// 
   // 
   // Init function 
   // 
   bool init( const char *procName, 
              const char *typeName, 
              int         cpuId, 
              const char *morpherFile, 
              const char *morpherSymbl, 
              const char *semiHostFile, 
              const char *semiHostSymbol ) 
   { 
      bool retcode = false; 
 
      char busName[strlen(procName)+10]; 
      sprintf(busName, "%s_bus", procName); 
 
      _bus  = new icmBusObject( 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 142 of 168 
. 

                     busName,       // bus name 
                     32             // address bits 
                  ); 
 
      _proc = new icmProcessorObject ( 
                     procName,      // processor name 
                     typeName,      // processor type 
                     cpuId,         // processor ID 
                     0,             // processor model flags 
                     32,            // address bits 
                     morpherFile,   // processor model file 
                     morpherSymbol, // morpher attributes 
                     0,             // processor attributes 
                     0,             // user-defined attributes 
                     semiHostFile,  // semi-hosting library file 
                     semiHostSymbol // semi-hosting attributes 
                   ); 
 
      _proc->connectBusses(*_bus, *_bus); 
 
      if (_proc) { 
         // register a handler for the simulator stop conditions 
         _proc->icmRegisterSimStopHandler(_shandle); 
 
         retcode = true; 
      } 
 
      return retcode; 
   } 

 
The application code is loaded by overloading the << operator.  
 
   ///// 
   // 
   // Load the object file into processor memory 
   // 
   void objfile(const char *objfile) 
   { 
      // If processor was successfully created then  
      // load the program image into its memory 
      if (_proc) { 
         // load object file 
         (*_proc) << objfile; 
      } 
   } 

 
The processor model is stepped using the overloaded << operator. The number to the 
right specifies the number of instructions to step. 
 
 
   ///// 
   // 
   // The SC_METHOD connected to the clock 
   // 
   void runner(void) 
   { 
     // step processor 
     (*_proc) << 1;  
   } 

 
An external memory creation function (extMem) is also in this file. This function calls the 
ICM C++ API function mapExternalMemory to map the external SystemC memory 
region into the address space of the processor. This actually attaches two callback 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 143 of 168 
. 

functions, rcb and wcb, that are used by the simulator to perform the access into the 
SystemC memory, for reads and writes respectively. 
 
   ///// 
   // 
   // Maps a memory range to a memory manager outside the simulator. 
   //  
void extMem(Addr loaddr, Addr hiaddr, icmMemWriteFn wcb, icmMemReadFn rcb, impMemory *mem) 
   { 
      _bus->mapExternalMemory( 
        "external", 
        ICM_PRIV_RW, 
        loaddr, 
        hiaddr, 
        wcb, 
        rcb, 
        mem 
    ); 
   } 

 

26.1.2 External SystemC Memory  
In this section we are defining a SystemC memory and its access functions used by the 
ICM platform. For convenience we are defining our own SystemC memory but any 
SystemC memory could have been used. 
 
The memory is defined using constructs in the file platform/impMemory.hpp that create 
a SystemC module using the SC_MODULE macro. 
 
This file contains the memory constructor and destructor functions. Note that the memory 
has a SystemC clock but this is not used in this example. The memory model could be 
extended using the SystemC clock to provide latency generation on the memory accesses. 
 
   impMemory(sc_module_name instname, sc_clock &ck) 
   { 
      _init = false; 
      _mem  = NULL; 
 
      _inclk(ck); 
   } 
 
   ~impMemory() 
   { 
      if (_init && _mem) { 
         delete _mem; 
     _mem = NULL; 
     _init = false; 
      } 
   } 

 
The memory initialization routine declares a byte array to be used for storage and defines 
the configuration (address and size) of the memory block. 
 
 
   bool init( Addr baseAddr, Uns32 size) 
   { 
      bool retcode = false; 
 
      _mem = new char[size]; 
      if (_mem) { 
         _init         = true; 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 144 of 168 
. 

         _base         = baseAddr; 
         _size         = size; 
         retcode    = true; 
      } 
 
      return retcode; 
   } 
 

 
The read and writes to the memory are contained within a single function; separate read 
and write functions could have been used. Within this function is also included some 
basic range checking for the accesses. The data size (bytes) is transferred between the 
local memory byte array and the pointer passed as void *value. 
 
   bool inline inrange(Addr a) 
 
      return ( (a>=_base) && (a<=(_base+_size-1)) ) ? true: false; 
   } 
 
   typedef enum { tWrite, tRead } trans_t; 
 
   bool transaction(trans_t tr, Addr address, void *value, Uns32 bytes) 
   { 
      bool retcode = false; 
 
      if (_init) { 
         if ( inrange(address) && inrange(address+bytes-1) ) { 
            Addr adr = address - _base; 
            char *src, *dst; 
            switch (tr) { 
               case tWrite: 
                  src = (char*)value; 
                  dst = &(_mem[adr]); 
                  break; 
               case tRead: 
                  src = &(_mem[adr]); 
                  dst = (char*)value; 
                  break; 
               default: 
                  assert(0); 
                  break; 
            } 
 
            memcpy(dst, src, bytes); 
 
            retcode = true; 
         } 
      } 
 
      return retcode; 
   } 

 
The ICM platform accesses these callback functions whenever a read or write access is 
made to an address which falls in a region that has been mapped as external using the 
mapExternalMemory function we saw earlier. The simulator uses the callback functions 
rather than using the local memory space. 
 
using namespace icmCpuManager; 
 
extern "C" { 
 
static ICM_MEM_WRITE_FN(memWriteCB) 
{ 
   if (processor) { 
      impMemory *m = (impMemory*) userData; 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 145 of 168 
. 

      if (m) m->transaction(impMemory::tWrite, address, value, bytes); 
   } 
} 
 
static ICM_MEM_READ_FN(memReadCB) 
{ 
   if (processor) { 
      impMemory *m = (impMemory*) userData; 
      if (m) m->transaction(impMemory::tRead, address, value, bytes); 
   } 
} 

 

26.1.3 Example Platform 
 
The example platform uses the functions defined in the previous sections to create a 
system containing: one OR1K processor instance and one SystemC memory instance. 
An application binary executed on the processor initializes an array in the external 
memory and then uses the values in this array as indexes for accessing a local dictionary 
of words to create an output sentence. The SystemC clock is used to control the 
operation. 
 
The following code provides an example of the instantiation of a single OR1K processor 
that is clocked using a SystemC sc_clock object. There is a single memory in the 
SystemC environment that is mapped into a region of external memory and accessed via 
callback functions. 
 
A SystemC clock is created with a 1uS period. In this example the clock frequency is 
arbitrary and has no effect on the simulation. 
 
       // define clock period 
    const sc_time clk_period(1, SC_US); 
 
    systemClock = new sc_clock("SYSCLK", clk_period); 

 
Create a new processor named ‘cpu1’ with the SystemC clock attached. Perform 
initialization of the processor. 
 
       proc = new theProcessor("cpu1", *systemClock);  
 
       retCode = proc->init( 
           "CPU1", 
           “or1k”, 
           0, 
           model,       
           0,        
           semihosting, 
           0 
        ); 

 
If the processor was created successfully we then create a memory and register the 
callback functions so that it can be accessed by the simulator. There is code here to allow 
the memory to be either specified using SystemC memory or using simulator memory, 
depending on whether EXTMEM_BASEADDR is non-zero: 
 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 146 of 168 
. 

       if (retCode && EXTMEM_BASEADDR) { 
 
       // Create a memory object 
       extMemory = new impMemory("EXTMEM", *systemClock); 
       retCode = extMemory->init(EXTMEM_BASEADDR, EXTMEM_SIZE); 
 
       icmPrintf( 
               "SYSTEMC: Creating memory at %08x, size %d bytes\n", 
               EXTMEM_BASEADDR, EXTMEM_SIZE 
           );  
 
            if (retCode) { 
                icmPrintf("SYSTEMC: Callback routines registered\n"); 
                proc->localMem("local1", 0, EXTMEM_BASEADDR-1); 
                proc->localMem("local2", EXTMEM_BASEADDR+EXTMEM_SIZE, 0xffffffff); 
                proc->extMem( 
                    EXTMEM_BASEADDR, 
                    (EXTMEM_BASEADDR+EXTMEM_SIZE-1), 
                    memReadCB, 
                    memWriteCB, 
                    extMemory 
                  ); 
            } 
 
        } else { 
 
            proc->localMem("local", 0, 0xffffffff); 
        } 

 
Next, we load the application code to be executed.  
 
(Note: If any of the application code resides in the external memory, the simulator will 
use the callback functions to access the memory and perform the program initialization.) 
 
        if (retCode) { 
           proc->objfile(PROC_OBJFILE); 
        } 

 
Simulation is started using the SystemC sc_start() function. This will cause the 
simulation to run continuously while there are events being generated. As the platform is 
generating clocks this simulation would not stop, even after the application program had 
completed, without the simStopHandler having been registered.  
 
        // Processor and memory ready to simulate 
        if (retCode) { 
       icmPrintf("\nSYSTEMC: Starting Simulation ... \n");  
       sc_start(); 
        } 

 
26.1.3.1 Running the SystemC Example 
 
The example is found in the systemC directory.  
 
$IMPERAS_HOME/Examples/PlatformsICM/systemC 
 
This example require the availability of a systemC installation pointed to by an 
environment variable SYSTEMC_HOME 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 147 of 168 
. 

26.1.3.2 Platform with local Memory 
 
Compile the systemC platform and the test application using the following command in 
the systemC directory 
 
make –C application 
make 

 
Run the systemC platform using the following command in the systemC directory 
 
impSimulation.exe --program application/application.OR1K.elf 

 
An output similar to the following should be seen: 
 
 
             SystemC 2.3.0-ASI --- Aug  1 2012 13:30:30 
        Copyright (c) 1996-2012 by all Contributors, 
        ALL RIGHTS RESERVED 
 
OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org. 
Copyright (c) 2005-2015 Imperas Software Ltd.  Contains Imperas Proprietary Information. 
Licensed Software, All Rights Reserved. 
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions. 
 
OVPsim started: Wed Dec 12 17:35:46 2012 
 
 
Simulation started with the following parameters: 
MORPHER_FILE:Imperas/lib/Linux32/ImperasLib/ovpworld.org/processor/or1k/1.0/model.so 
SEMIHOST_FILE:Imperas/lib/Linux32/ImperasLib/ovpworld.org/semihosting/or1kNewlib/1.0/model
.so 
APPLICATION_OBJFILE:    application/application.OR1K.elf 
 
 
SYSTEMC: Starting Simulation ...  
 
1) Internal memory allocated for string 
 
Array 'extIndex' defined at address 0xeff0 with size 0x14 
 
2) Copied indices from internal memory to 'extIndex' 
 
3) Use data from 'extIndex' to index internal dictionary 
 
extIndex[0]=3 
extIndex[1]=1 
extIndex[2]=2 
extIndex[3]=4 
extIndex[4]=0 
 
String from memory: 'Imperas: Multicore design simplified' 
 
EXIT instructions 25400 
 
Info: /OSCI/SystemC: Simulation stopped by user. 
 
OVPsim finished: Wed Dec 12 17:35:46 2012 
 
 
OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org. 
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions. 
 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 148 of 168 
. 

26.1.3.3 Platform with SystemC Memory 
 
When the previous example is run, the application prints out the location of the buffer 
“extIndex” to which the string is written.  
 
Array 'extIndex' defined at address 0xeffc with size 0x14 

 
In this example a systemC memory will be created at this address and this region mapped 
as external memory in the platform. 
 
In the Makefile find the section that defines membase and memsize. Uncomment the 
fields and add the information found from the previous run of the application. 
 
# Makefile Options 
ifeq (1,${EXTMEMORY}) 
   # !! Change membase and memsize if you are building with EXTMEMORY=1 
   #membase = 0xeffc 
   #memsize = 0x14 

 
The SystemC memory is created in the file, platform/impSimulation.cpp and the region 
mapped as external. 
 
       // If PROC was successfully created then attach some external memory to it 
        if (retCode && EXTMEM_BASEADDR) { 
 
            // Create a memory object 
            extMemory = new impMemory("EXTMEM", *systemClock); 
            retCode = extMemory->init(EXTMEM_BASEADDR, EXTMEM_SIZE); 
 
            icmPrintf( 
                "SYSTEMC: Creating memory at %08x, size %d bytes\n", 
                EXTMEM_BASEADDR, EXTMEM_SIZE 
            ); 
 
            if (retCode) { 
                icmPrintf("SYSTEMC: Callback routines registered\n"); 
                proc->localMem("local1", 0, EXTMEM_BASEADDR-1); 
                proc->localMem("local2", EXTMEM_BASEADDR+EXTMEM_SIZE, 0xffffffff); 
                proc->extMem( 
                    EXTMEM_BASEADDR, 
                    (EXTMEM_BASEADDR+EXTMEM_SIZE-1), 
                    memReadCB, 
                    memWriteCB, 
                    extMemory 
                  ); 
            } 

 
The same application will work if the internal array 'extIndex' is now mapped to external 
systemC memory. After the array address and size have been specified in the Makefile 
rebuild the simulator. 
 
make clean 
make EXTMEMORY=1 

 
That will build a SystemC simulation that uses external memory that can be run using the 
command 
 
impSimulation.exe --program application/application.OR1K.elf 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 149 of 168 
. 

 
The following output should now be seen 
 
 
 
             SystemC 2.3.0-ASI --- Aug  1 2012 13:30:30 
        Copyright (c) 1996-2012 by all Contributors, 
        ALL RIGHTS RESERVED 
 
OVPsim (32-Bit) v20150205 Open Virtual Platform simulator from www.OVPworld.org. 
Copyright (c) 2005-2015 Imperas Software Ltd.  Contains Imperas Proprietary Information. 
Licensed Software, All Rights Reserved. 
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions. 
 
OVPsim started: Wed Dec 12 17:35:46 2012 
 
 
Simulation started with the following parameters: 
MORPHER_FILE:Imperas/lib/Linux32/ImperasLib/ovpworld.org/processor/or1k/1.0/model.so 
SEMIHOST_FILE:Imperas/lib/Linux32/ImperasLib/ovpworld.org/semihosting/or1kNewlib/1.0/model
.so 
APPLICATION_OBJFILE:    application/application.OR1K.elf 
 
 
SYSTEMC: Starting Simulation ...  
 
SYSTEMC: Creating memory at 0000effc, size 20 bytes 
SYSTEMC: Callback routines registered 
 
 
1) Internal memory allocated for string 
 
Array 'extIndex' defined at address 0xeffc with size 0x14 
 
2) Copied indices from internal memory to 'extIndex' 
 
3) Use data from 'extIndex' to index internal dictionary 
 
extIndex[0]=3 
extIndex[1]=1 
extIndex[2]=2 
extIndex[3]=4 
extIndex[4]=0 
 
String from memory: 'Imperas: Multicore design simplified' 
 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 150 of 168 
. 

27 Using Native Memory 
Some applications of ICM require that simulated memory be allocated by the application 
rather than using icmNewMemory. The function icmMapNativeMemory enables such use of 
native memory in a platform. 
 
Note that since each call to icmMapNativeMemory requires a contiguous block of 
memory, this method is not suitable for modeling memory of size is similar to or larger 
than the memory of the host machine. Conversely, memories created using 
icmNewMemory can be specified to be as large as desired, and backing store for such 
memories is allocated sparsely on demand. 

27.1 Example 
 
icmBusP    bus    = icmNewBus("bus", 32); 
 
// a very large (1Gb) ICM memory. 
icmMemoryP mem1   = icmNewMemory("mem1", ICM_PRIV_RW, 0x40000000); 
 
// A small (64K) area of native memory 
Uns32      msize = 0x1000; 
void      *mem2  = malloc(msize); 
 
// connect both memories 
icmConnectMemoryToBus(bus, "p1", mem1, 0x80000000); 
icmMapNativeMemory(bus, 0, msize-1, mem2); 
 
// A processor connected to 'bus' will see memory mapped at 
// 0x0-0xFFF and 0x80000000-0xBFFFFFFF 

 
⇒ Making the native memory smaller than the boundaries described by 

icmMapNativeMemory can cause memory corruptions, because the simulator may 
attempt to write beyond the bounds of the allocated space. 

 
The simulator's object loader can be used to load external memory using 
icmLoadNativeMemory: 
 
icmBusP       bus  = icmNewBus(...); 
icmProcessorP proc = icmNewProcessor(...); 
 
// (64K) area of native memory 
Uns32      msize = 0x1000; 
void      *mem  = malloc(msize); 
Addr       base = 0x0; 
 
// connect memory to bus 
 
icmMapNativeMemory(bus, base, msize-1, mem); 
 
// load it with a program 
icmLoadNativeMemory(mem, msize, base, "myprog.elf", 0, True, 0, proc);  

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 151 of 168 
. 

27.2 Combining External and Native Memory 
Occasionally, it can be useful to specify memory regions that combine aspects of 
mapping using external callbacks and mapping using native memory pointers (in other 
words, a combination of the effects of icmMapExternalMemory and 
icmMapNativeMemory). For example, it might be the case that a memory region should 
be mapped natively for read accesses, but use a callback for write accesses. In such cases, 
function icmMapExternalNativeMemory can be used: 
 
void icmMapExternalNativeMemory ( 
    icmBusP       bus, 
    const char*   portName, 
    icmPriv       priv, 
    Addr          lowAddr, 
    Addr          highAddr, 
    icmMemReadFn  readCB, 
    icmMemWriteFn writeCB, 
    void*         memory, 
    void*         userData 
); 

 
To specify how the memory is used, three arguments may be used in various 
combinations: 

1. readCB: if non-NULL, this indicates that read accesses to the memory should use 
this callback. If NULL, then read accesses should be performed directly using 
pointer memory. 

2. writeCB: if non-NULL, this indicates that write accesses to the memory should use 
this callback. If NULL, then write accesses should be performed directly using 
pointer memory. 

3. memory: this is a native pointer to be used for read or write accesses when either 
the read or write callback function is NULL. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 152 of 168 
. 

28 Simulation Optimization 
A simulator using the ICM interface is at liberty to pre-read code that is going to 
simulate, then make internal optimization to run that code a quickly as possible. If that 
code is then modified by another processor or PSE model, or by an ICM API call (e.g.. 
icmWriteProcessorMemory()), then the simulator must discard and re-generate its 
optimizations.  If however, the code is stored in memory created using 
icmMapNativeMemory() and modified by an agent external to ICM, the simulator will 
not know its code is invalid. The Programmer must therefore notify the simulator using 
icmFlushProcessorMemory(). 

28.1 Example 
 
 
icmBusP       bus   = icmNewBus("bus", 32); 
icmProcessorP proc  = icmNewProcessor(……); 
 
// A 64K area of native memory 
Uns32      msize = 0x1000; 
void      *mem2  = malloc(msize); 
 
// connect memory 
icmMapNativeMemory(bus, 0, msize-1, mem2); 
 
// connect processor 
icmConnectProcessorBusses(proc, bus, bus) 
… 
// . . . during simulation . . . 
 
memcpy(mem2, newData, msize); 
icmFlushProcessorMemory(proc, 0, msize-1); 
 
// When proc is allowed to continue, it will re-optimize any code that has been 
// executed from this memory. 

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 153 of 168 
. 

29 Plugin Commands 
A processor model or an intercept object or plugin can install its own commands to be 
executed as required during simulation. Commands are typically used to enable or disable 
functionality in the model or plugin or to extract analysis data that the model or plugin 
has been accumulating. 
 
Commands are installed in a processor model using vmirtAddCommand(). See 
OVP_VMI_Run_Time_Function_Reference.doc. 
 
Commands are installed in a plugin using vmiosAddCommand(). See 
OVP_VMI_OS_Support_Function_Reference.doc, and icmAddInterceptObject() 
in this document. 
 
Commands are called using icmCallCommand(). A command can be called any time 
after it has been installed and before the simulation terminates, but the user needs to be 
aware of when installation occurs. Models and plugins are recommended to install their 
commands in their constructors, in which case the earliest  'safe' time to call a command 
is immediately before icmSimulate() or icmSimulatePlatform(). 
This example calls two commands; before simulation and before shutdown. 
 
int main(int argc, char ** argv) { 
 
    const char *vlnvRoot  = NULL; 
    const char *model     = icmGetVlnvString(vlnvRoot, 
                            "ovpworld.org", "processor", "or1k", "1.0", "model"); 
    const char *intercept = icmGetVlnvString(vlnvRoot, 
                            "myco.org", "intercepts", "countThings", 0, "model"); 
 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “platform”); 
 
    icmProcessorP processor = icmNewProcessor( 
        "cpu1",             // CPU name 
        "or1k",             // CPU type 
        0,                  // CPU cpuId 
        0,                  // CPU model flags 
        32,                 // address bits 
        model,              // model file 
        0,                  // not used 
        0,                  // enable tracing etc 
        0,                  // user-defined attributes 
        0,                  // no semihost or intercept library 
        0                   // not used 
    ); 
 
    icmAddInterceptObject( 
        processor, 
        "plugin1", 
        intercept, 
        0,                   // not used 
        0 
    );     
 
    icmLoadProcessorMemory(processor, "program.elf", ICM_LOAD_DEFAULT, False, True); 
 
 
 
 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 154 of 168 
. 

    // Call this command before simulation 
    char *argv[2] = { "logging", "-on" }; 
     
    icmCallCommand( 
        "cpu1",      // instance that has the command 
        0,           // it's in the processor, not in its plugin 
        argv[0]      // name of the command 
        2,           // number of arguments 
        argv         // argument array (by convention including the command) 
    ); 
 
    icmSetSimulationStoptime(0.37);  // stop after this many seconds 
    icmSimulatePlatform(); 
 
    // stopped again after 0.37 secs 
    argv[0] = "showResults"; 
    argv[1] = "-all"; 
 
    // Call this command during simulation 
    icmCallCommand( 
        "cpu1",      // instance 
        "plugin1",   // name of plugin containing the command 
        argv[0]      // name of the command 
        2,           // number of arguments 
        argv         // argument array (by convention including the command) 
    ); 
 
    icmTerminate(); 
 
    // do NOT try calling a command here 
 
    return 0; 
} 
 
 

Note that although each command can use its arguments in any way, it is normal practice 
to use the Unix convention of passing the command name as the first argument. Thus 
argv[0] is the command name and argv[1] is the first true argument.  
 
 
An example of calling commands that are created within a processor model is in  
 
$IMPERAS_HOME/Examples/PlatformsICM/callCommand. 

 
NOTE 

OP API example showing the same feature are available as  
SimulationControl/callingInstalledCommands 

 
This uses the MIPS32 model commands. 
 
In platform/platform.c an array is defined for the arguments for the command. This is a 
Linux like argv, argc array; with argument zero the name of the command 
 
    const char *cmd1Argv[] = {"mipsCOP0", "16", "0"}; 

 
When calling the command this array is passed to the icmCallCommand function.  
 
    result = icmCallCommand("cpu1", NULL, cmd1Argv[0], 3, &cmd1Argv[0]);  

 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 155 of 168 
. 

The result returned from the icmCallCommand function is a string passed back from the 
command itself after execution. It can represent success or failure of the command or it 
can be an information string; this is command dependent. 
 
This example also shows setting the “pluginInstanceName” argument to NULL when the 
command is on a model itself rather than on a plugin loaded onto a model. 

29.1 Discovering Installed Commands 
An ICM application can discover what commands are available, for the whole platform 
or for a particular processor model. 
 
An example of discovering commands that are created within a processor model is in  
 
Imperas/Examples/PlatformsICM/callCommand. 

 
NOTE 

OP API example showing the same feature are available as  
SimulationControl/callingInstalledCommands 

 
 This uses the MIPS32 model commands. 
 
A function is declared using the provided prototype macro. Arguments to the function 
are: platform name (if supplied), model name, plugin name (if from a plugin), command 
name short help string (if supplied) and user data. 
 
static ICM_INSTALLED_COMMAND_FN(printCommand) { 
... 
} 

 
The function printCommands will be called for every installed command, in the platform: 
 
 icmGetAllPlatformCommands(printCommand, userData); 

 
... or in a particular  processor: 
 
icmProcessorP proc = icmFindProcessorByName(procName); 
 
icmGetAllProcessorCommands(proc, printCommand, userData); 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 156 of 168 
. 

30 Multicore (SMP) Support 
Multicore processors have information at their 'root' level  - accessed from the handle 
returned during construction, and also on processor objects under the root level - accessed 
through handles obtained by iterator or callback functions. Each sub-processor has a 
unique name and a description which indicates its function within the multicore model. 
This is a summary of the functions used to access a multicore processor: 
 
function use 
icmGetSMPParent Return the parent of the given processor. 
icmGetSMPChild Return the first child of the given processor. 
icmGetSMPPrevSibling Return the previous sibling of the given processor 
icmGetSMPNextSibling Return the next sibling of the given processor 
icmGetSMPIndex Return the index number of the given processor 
icmSMPIsLeaf Return true if  the given processor has no children 
icmIterAllChildren Call the given function on each child of the given processor; 

finds all processor at one level. 
icmIterAllDescendants Call the given function on each descendant of the given 

processor. From the root, this will find the whole hierarchy, 
except the root 

icmIterAllProcessors Call the given function on each descendant of the given 
processor. From the root, this will find the whole hierarchy, 
including the root 

icmGetProcessorDesc Return a string describing the type of the given processor. 
Can be null. 

icmGetProcessorName Return the (unique) name of the current processor 

 
30.1.1 Controlling an SMP  
This is a summary of operations that can be applied to the root of an SMP and to sub-
processors (if they exist): 
 
operation allowed on root allowed on children 
icmTraceOnAfter, etc. y (applies to all children) y 
icmDebugThisProcessor y n 
icmSetGdbPath y n 
icmReadProcessorMemory etc y (uses current TLB state) y (uses current TLB state) 
icmReadReg, icmSetPC etc. y (if register is present) y (if register is present) 
Freeze, unfreeze etc. n y 
set/clear breakpoints y (applies to all children) y 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 157 of 168 
. 

31 Processor Information 
The ICM API can be used to find information that is embedded in a processor model. 
This information is typically used by: 
 

o a debugger to present information to the user 
o on-line documentation generators 

 
All these functions require a handle to a processor instance. Any parameters passed to the 
instance when it was created (such as the variant) will be reflected in the model instance. 
 
There is an example in: 
 
$(IMPERAS_HOME)/Examples/PlatformsICM/queryProcessor 

 
NOTE 

OP API example showing the same feature are available as  
SimulationControl/processorQuery 

 
The example in platform/platform.c creates instances of various processor models from 
the library (note that some of these models might not be available on your release). It then 
uses the functions described below to extract information from the models. 

31.1 Processor Documentation  
31.1.1 Documentation Nodes 
Processor documentation is presented as a hierarchy of nodes. Each node can be a section 
title or section content and can have one or more child nodes. The 'root' node is found 
using icmGetProcessorDoc. The following functions are used to traverse the hierarchy: 
 
function use 
icmGetProcessorDoc Returns the root document node. 
icmDocNextNode Get the next sibling of the current node. 
icmDocChildNode  Get the first child of the current node. 
icmDocText Return the text from this node 
icmDocIsText Returns True if this node is text content, False if it is a title or 

heading. 
 

31.1.2 Processor Simulation Information 
These functions return information from a processor model useful to a simulator or 
debugger: 
function use 
icmGetProcesorVlnv Returns information about where the model is stored 

in an Imperas release. This information will usually 
match where the model was found in the first place. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 158 of 168 
. 

icmGetProcessorElfCode Get 1 or more the ELF codes expected by this model. 
This should normally match the type code found in 
ELF program files loaded for execution by this model. 

icmGetProcessorEndian Get the endianness supported by this model. 
icmGetProcessorGdbPath Get the path to the gdb debugger matching this 

processor in the Imperas release. 
icnGetProcessorDefaultSemihost Returns information about where the default semihost 

library for the model is stored in the Imperas release. 
 

31.2 Processor Parameters 
The behavior of a processor model can be changed by setting name/value pairs in the 
simulator prior to simulation. These pairs are referred to as attributes when being set and 
parameters when being read. Processor parameter names, types and descriptions can be 
discovered from the ICM API. Iterators and accessor use icmParamInfoP, which is a 
handle to a unique parameter of a processor. 
 
 
function use 
icmGetNextParameterInfo Return the handle of the first or subsequent parameter of 

this processor. 
icmGetParamName Return the parameter name. 
icmGetParamType Return the parameter type as an enumeration. 
icmGetParamTypeString Return the parameter type as a string. 
icmGetParamDesc Return a short description of the parameter. 
 
Parameter types are as follows: 
 
enumeration string use 
ICM_PT_BOOL Boolean True if set to 1,y or t;   false otherwise 
ICM_PT_INT32 Int32 32 bit signed integer 
ICM_PT_UNS32 Uns32 32 bit unsigned integer 
ICM_PT_UNS64 Uns64 64 bit unsigned integer, also used for addresses. 
ICM_PT_DOUBLE Double Double precision floating point. 
ICM_PT_STRING String Arbitrary text string 
ICM_PT_ENUM Enumeration String whose value must be one of a specified 

set. 
ICM_PT_ENDIAN Endian enumeration with values 'big' or 'little' 
 
The enumeration names and values of a parameter of type ICM_PT_ENUM can be 
obtained using the icmParamEnumP handle. Note that the mapping of the string to an 
integer is private to the model. 
 
function use 
icmGetNextParamEnum Return the handle of the 1st or subsequent enumeration 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 159 of 168 
. 

icmGetParamEnumName Return the name (string value) of the enumeration 
icmGetParamEnumValue Return the integer value of the enumeration. 
icmGetParamEnumDesc Return a short a description of the enumeration. 
 

31.3 Processor Ports 
Processor bus, net and FIFO ports can be discovered from the ICM API. The three port 
types are distinct and are accessed through different handle types. 
 
handle use 
icmBusPortInfoP handle to a bus port description 
icmNetPortInfoP handle to a net port description 
icmFifoPortInfoP handle to a FIFO port description 
 
 
 
 

31.3.1 Bus ports  
These functions are used to query a model's bus ports. Note that most processor models 
have two bus ports; INSTRUCTION and DATA; DSP and other special processors might 
have others. 
 
function use 
icmGetNextBusPortInfo Return the next bus port information handle 
icmGetBusPortName Return the name of the bus port. 
icmGetBusPortType Return the type of bus port as an enumeration 
icmGetBusPortTypeString Return the type of bus port as a string 
icmGetBusPortDomainType Return the domain type of bus port as an enumeration 
icmGetBusPortDesc Return a short description of the bus port 
icmGetBusPortAddrBits Return the width of the address bus, in bits. 
 
Types of bus port: 
 
type string description 
ICM_BPT_MASTER Bus master creates bus transactions 
ICM_BPT_SLAVE Bus slave responds to bus transactions 
ICM_BPT_MASTERSLAVE Bus master/slave creates and responds  
 
Types of bus domain: 
 
type string description 
ICM_DOM_CODE Code domain Used to fetch program code 
ICM_DOM_DATA Data domain Used to read write data 
ICM_DOM_OTHER Other domain Other uses. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 160 of 168 
. 

 
 
 

31.3.2 Net ports  
These functions are used to query a model's net ports. The most common use of net ports 
are for reset and for interrupt inputs. 
 
function use 
icmGetNextNetPortInfo Return the next net port information handle 
icmGetNetPortName Return the name of the net port. 
icmGetNetPortType Return the type of net port as an enumeration 
icmGetNetPortTypeString Return the type of net port as a string 
icmGetNetPortDesc Return a short description of the net port 
 
Types of Net port: 
 
type string description 
ICM_NPT_INPUT Input Input pin 
ICM_NPT_OUTPUT Output Output pin 
ICM_NPT_INOUT Inout Bidirectional pin  
 
 
 
 
 

31.3.3 FIFO ports  
Some processors have serial interconnections typically used to build large processor 
arrays. The connections are modeled using FIFOs which can be queried using these 
functions: 
 
function use 
icmGetNextFifoPortInfo Return the next FIFO port information handle 
icmGetFifoPortName Return the name of the FIFO port. 
icmGetFifoPortWidth Number of bits in each word read or written 
icmGetFifoPortType Return the type of FIFO port as an enumeration 
icmGetFifoPortTypeString Return the type of FIFO port as a string 
icmGetFifoPortDesc Return a short description of the FIFO port 
 
Types of FIFO port: 
 
type string description 
ICM_FPT_INPUT Input FIFO Input 
ICM_FPT_OUTPUT Output FIFO Output 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 161 of 168 
. 

 
31.3.4 Fetching information from an SMP 
This is a summary of data that can be found on the root of an SMP and on the sub-
processors (if they exist): 
 
data appears on the root appears on sub-processors 
document node     y n 
Bus port y n 
Net Port y n 
FIFO port y n 
Parameter y n 
Name y y 
Description y y 
Index y y 
Registers y y 
 
 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 162 of 168 
. 

32 Custom Object Readers 
If you wish to load object files of a format not supported by CpuManager or the Imperas 
Simulator, you can write your own reader and install it in the simulator.  
 
A new reader is installed using icmInstallObjectReader(). An example of a 
custom reader is in: 
 
$IMPERAS_HOME/Examples/PlatformsICM/objectReader. 

 
NOTE 

OP API example showing the same feature are available as  
SimulationControl/customApplicationReader 

 
In platform/platform.c the custom reader is installed before the processor memory is 
loaded (otherwise the reader will not be available). 
 
    // install the new object reader 
    icmInstallObjectReader("loader/model.so"); 

 
The simulator tries to read the file "myprog" using the new loader before trying the built-
in loaders. 

32.1 Writing a custom reader 
This is covered in Custom_Object_Reader.pdf. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 163 of 168 
. 

33 Command Line Parsing 
A command line parser is available in the ICM API. This provides: 

• The ability to read simulator flags from the user’s command line. 
• A standard mechanism for parsing flags with boolean, string and numeric values. 
 

33.1 Simulator Flags 
In its simplest form, call icmCLParseStd() from main() BEFORE calling icmInitPlatform: 
 
int main(int argc, char ** argv) { 
 
    // Create and use the standard argument parser 
    icmCLPP parser = icmCLParser("myPlatform ", ICM_AC_ALL); 
    cmdParserAddUserArgs(parser); 
 
    icmCLParseArgs(parser, argc, argv); 
 
    // initialize CpuManager 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “myPlatform”); 
 
    … 

 
With this call, the program will parse most arguments available in the simulator control 
file (see Imperas Control File User Guide), and most arguments accepted by imperas.exe; 
–help shows all available flags. The function is specified as follows: 
 
icmCLParse ( 
    const char      *executableName,    // for use in error reports 
    icmCLPArgClass   use,               // choose which arguments to parse 
); 

 
The use argument is set as follows: 
value meaning 
ICM_AC_NONE No simulator arguments 
ICM_AC_BASIC Basic arguments 
ICM_AC_EXT1 Extended argument set 
ICM_AC_EXT2 Further extended argument set 
ICM_AC_ALL All arguments (available in some products) 
 
To set the default help and usage message (perhaps an overview of the platform and its 
controls) use: 
 
icmCLParseUsageMessage( 
    icmCLPP parser,           // Existing parser 
    const char      *message  // default message 
); 

 
This will appear as part of the –help output or when a command line error is detected. 

33.2 User-specified Flags 
To parse arguments specific to the platform use the following idiom: 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 164 of 168 
. 

 
int main(int argc, char ** argv) { 
 
    Bool goVal; 
 
    // Create the standard argument parser 
    icmCLPP parser = icmCLParser("myPlatform ", ICM_AC_ALL); 
 
    // Add your arguments here 
    icmCLParserAdd(parser, “go”, “G”, 0, ICM_AT_BOOLVAL, &goVal, “Say GO”, 0, userData); 
 
    // Parse the arguments 
    icmCLParseArgs(parser, argc, argv); 
 
    // initialize CpuManager 
    icmInitPlatform(ICM_VERSION, 0, 0, 0, “myPlatform”); 
 
    … 

 
In this example, if the program command line includes –go then the CLP sets the value 
‘goVal’.  
 
The function to add a custom argument is: 
 
icmCLParserAdd ( 
    icmCLPP          parser,       // parser handle 
    const char      *name,         // full name for the flag (without the ‘-‘) 
    const char      *shortName,    // optional short name for the flag (without the ‘-‘) 
    const char      *argDesc,      // Describe the value that follows the flag (if reqd) 
    const char      *group,        // argument group 
    icmCLPArgType    type,         // Enumeration (see below) 
    void            *ptr,          // Ptr to value or function 
    const char      *description,  // Description for –help 
    Uns32            mask,         // Set to zero 
    Uns32            userData,     // 2nd argument to callback (if required) 
    Bool             mandatory     // If set, this argument _must_ be specified 
 ); 

 
Note that the flag name and short name must not clash with existing names; a run-time 
error will be produced if they do. 
 
The group argument allows command line arguments to be grouped to clarify the output 
of –help – all arguments of the same group appear together. If group is null, the argument 
will appear in the platform group. 
 
The type argument to icmCLParserAdd specifies the argument type. Options are: 
 
Enumeration Flag is followed by Action 
ICM_AT_BOOLVAL nothing Sets a boolean variable 
ICM_AT_INT32VAL +ve or –ve integer Sets a 32bit integer variable 
ICM_AT_UNS64VAL +ve 64 bit integer Sets a 64bit integer variable 
ICM_AT_DOUBLEVAL floating point number Sets a double variable 
ICM_AT_STRINGVAL a string Sets a string variable 
ICM_AT_STRINGLIST a list of strings * Adds to a list of strings 
ICM_AT_PAIRLIST a list of pairs of the 

form name=value 
Adds to a list of name,value 
pairs 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 165 of 168 
. 

ICM_AT_FC_BOOLEAN nothing Calls a function  
ICM_AT_FC_INT32 +ve or –ve integer Calls a function taking  an Int32 
ICM_AT_FC_UNS64 +ve 64 bit integer Calls a function taking an Uns64
ICM_AT_FC_DOUBLE floating point number Calls a function taking a double 
ICM_AT_FC_STRING string Calls a function taking a string 
ICM_AT_FC_ARGV one or more strings + Calls a function taking an array 
ICM_AT_FC_ARGV_PAIR one or more pairs of 

the form name=value 
Calls a function taking two  
arrays 

  
* The ICM_AT_STRINGLIST type can be specified on the command line more than 
once. Each occurrence adds to a linked list of strings. 
+ The ICM_AT_FC_ARGV type can be followed by one or more space-separated values 
(which cannot begin with ‘-‘). 
 
If a callback action is specified the callback should be declared using the CLPA_xxxx 
prototype macros defined in icmContruct.h. 
 
If mandatory is true, the parser will report an error if the new argument is not specified. 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 166 of 168 
. 

34 Differences between CpuManager and OVPsim 
These are the differences between CpuManager and OVPsim: 

34.1 Heterogeneous Platforms 
CpuManager allows the simulation of heterogeneous platforms i.e. platforms that contain 
processors of different types. 
 The user will therefore notice that heterogeneous platforms will run faster in 
CpuManager than in OVPsim. 

34.2 Control Files 
CpuManager and OVPsim can read a simulation control file which allows modifications 
to the simulation without recompiling the platform. Some features available in 
CpuManager are not available in OVPsim. Put –help in the control file to list the 
available features. 

34.3 Debug Interface 
A remote debugger can be connected to just one processor in an OVPsim platform. 
CpuManager allows many simultaneous debugger connections. CpuManager can also be 
used with the Imperas Multi-Processor debugger. 

34.4 Verification and Analysis 
OVPsim does not support the loading of extension libraries that provide tools. OVPsim 
can load one ‘semihost’ library onto each processor that is used to intercept system calls 
to provide semihosting. 
CpuManager can load many intercept libraries onto each processor, providing the 
opportunity for comprehensive analysis and verification of application code without 
recompiling. 

34.5 ICM API Support 
OVPsim implements a subset of the Imperas CpuManager (ICM) API.  
 
Some functions in OVPsim are only implemented as stubs which will cause the simulator 
to exit with a warning message. OVPsim can simulate exactly the same platforms as 
CpuManager. However if you require comprehensive debug and analysis, you will need 
CpuManager. 
 

34.6 Simulator Feature summary 
Feature OVPsim CpuManager 
Speed Fast Fast 
Multiple processors Yes Yes  
Heterogeneous No Yes 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 167 of 168 
. 

Control files Yes Yes 
Semihost intercept Yes Yes 
Verification and Analysis No many libraries 
GDB Debug Interface Single GDB Multiple GDBs 
Tracing (disassembly) Instructions only Instruction and code labels 
API:   
Platform Construction Yes Yes 
Simulator Control Yes Yes 
Remote debug Single gdb Multiply gdb or Imperas MPD 

or user multi-debug 
Integrated Debugger No Imperas MPD 
Command Parser fewer built-in commands Yes 
 

34.7 OVPsim unsupported API functions summary 
The following CpuManager functions are NOT implemented in OVPsim: 
 
Finding and calling model commands 
icmCallCommand 
icmPrintCommands 
icmGetAllPlatformCommands 
icmGetAllProcessorCommands 
 
Passing control to a debugger 
icmSetSchedFn 
 
Freezing and releasing individual processors 
icmFreeze 
icmUnfreeze 
icmIsFrozen 
 
Breakpoints and watchpoints 
icmSetAddressBreakpoint 
icmClearAddressBreakpoint 
icmSetICountBreakpoint 
icmClearICountBreakpoint 
icmSetMemoryReadWatchPoint 
icmSetMemoryWriteWatchPoint 
icmSetMemoryAccessWatchPoint 
icmSetBusReadWatchPoint 
icmSetBusWriteWatchPoint 
icmSetBusAccessWatchPoint 
icmSetProcessorReadWatchPoint 
icmSetProcessorWriteWatchPoint 
icmSetProcessorAccessWatchPoint 



OVPsim and CpuManager User Guide 
 

© 2019 Imperas Software Limited www.OVPworld.org Page 168 of 168 
. 

Breakpoints and watchpoints 
icmSetRegisterWatchPoint 
icmSetModeWatchPoint 
icmSetExceptionWatchPoint 
icmGetWatchPointType 
icmDeleteWatchPoint 
icmGetNextTriggeredWatchPoint 
icmResetWatchPoint 
icmGetWatchPointLowAddress5

icmGetWatchPointHighAddress4

icmGetWatchPointRegister4

icmGetWatchPointCurrentValue4

icmGetWatchPointPreviousValue4

icmGetWatchPointUserData4

icmGetWatchPointTriggeredBy4

 
Callback after a delay 
icmTriggerAfter 
icmCancelTrigger 
 
Add a user-defined object file reader 
icmInstallObjectReader 
 
Add disassembler 
icmAddSymbol 
 
Verification and Analysis 
icmAddInterceptObject 
 
Save and Restore State 
icmProcessorSaveState 
icmProcessorRestoreState 
icmProcessorSaveStateFile 
icmProcessorRestoreStateFile 
icmMemorySaveState 
icmMemoryRestoreState 
icmMemorySaveStateFile 
icmMemoryRestoreStateFile 
 
Debug Control 
icmSetDebugMode 
 
## 

                                                 
5 Although these functions can be called there is no underlying watch point available to interrogate 


	1 Superseded Document Information
	1.1 Examples

	2 Introduction
	2.1 What are CpuManager and OVPsim?
	2.2 Use of ICM with Imperas tools
	2.3 Compiling Examples Described in this Document

	3 Imperas ICM Header Files
	4 Simple Single-Processor Platforms
	4.1 Simple Single-Processor Example
	4.1.1 Initialization
	4.1.2 Selecting Models from the Library
	4.1.3 Creation of a Model Instance
	4.1.3.1 Defining SemiHosting

	4.1.4 Including the Command Line Parser
	4.1.5 Loading the Application Executable
	4.1.6 Running the Simulation
	4.1.7 Clean Up

	4.2 Text Output
	4.3 Running the Example
	4.3.1 Compiling the CpuManager Platform
	4.3.2 Creating an Executable
	4.3.3 Running the Simulation
	4.3.4 Dynamic link library


	5 Simulation Options with ICM Attributes
	5.1 Model Tracing Operations
	5.1.1 Example: Simulation Tracing
	5.1.2 Controlling tracing during simulation
	5.1.3 Command Line

	5.2 Simulating Exceptions
	5.2.1 Example: Simulating an Unaligned Access Exception


	6 Attributes
	6.1 Setting Attributes
	6.2 Attribute Definitions
	6.3 Special Attributes
	6.3.1 MIPS Attribute
	6.3.2 Endian Attribute

	6.4 User-Defined Attribute Example
	6.5 Querying Attributes
	6.6 Overriding Attributes

	7 Custom Tracing using Model Access Functions
	7.1 Reading and Writing Registers
	7.2 Generating Disassembly Output
	7.3 Dumping Registers
	7.4 Instruction Counts
	7.5 Simulating for One Instruction
	7.6 Example

	8 Semihosting
	8.1 Example
	8.2 Additional intercept objects

	9 Memory Operations
	9.1 Accessing Processor Model Memory
	9.1.1 Loading object files
	9.1.1.1 Supported object formats
	9.1.1.2 Loading Symbols in object files

	9.1.2 Reading and Writing Data
	9.1.2.1 Reading and Writing Data Example

	9.1.3 Reading and writing memory without side-effects.

	9.2 Adding Memory Callbacks
	9.2.1.1 Example Adding a Memory Callback

	9.3 Explicit Local and External Memory
	9.4 Mapping an address region to a callback
	9.4.1 Invalid access
	9.4.2 Debugging Bus Connections
	9.4.3 Processor Instruction Execution
	9.4.4 Example


	10 Simulator Scheduler
	10.1.1 Example

	11 Caches
	11.1 Transparent or Full MMC Models
	11.2 MMC Operation
	11.3 Transparent Model
	11.3.1 Full Model

	11.4 Creating and connecting an MMC
	11.4.1 Transparent MMC Example
	11.4.2  Full MMC Example
	11.4.3 Cascaded MMC Example


	12 Byte Swapping (Endian Correction)
	12.1 Bus Connections
	12.2 Bus bridge
	12.2.1 Aliasing

	12.3 Performance considerations

	13 Dynamic Bus Bridges
	14 Attaching a Debugger
	14.1 Example of attaching to GDB
	14.2 Attaching to the remote multiprocessor debugger
	14.3 Automatic startup of remote debuggers.
	14.3.1 Using the control file
	14.3.1.1 Integrated debugger
	14.3.1.2 Remote debugger


	14.4 Selecting the GDB

	15 Multiprocessor Support
	15.1 Example
	15.2 Verbose Output
	15.2.1 Simulation Time Statistics

	15.3 Standard Multiprocessor Scheduling Algorithm
	15.3.1 Changing the Time Slice Size
	15.3.2 Changing Processor Nominal MIPS Rate
	15.3.3 Writing Custom Scheduling Algorithms

	15.4 Many Core Example

	16 QuantumLeap Multiprocessor Support
	16.1 Example
	16.2 QuantumLeap Results
	16.3 QuantumLeap Scheduling Algorithm
	16.4 QuantumLeap Options
	16.4.1 Option -parallelopt
	16.4.2 Option -parallelthreads
	16.4.3 Option -parallelmax


	17 Limiting Performance to Wall Clock Time
	17.1.1 Example 2 – Wallclock Simulation

	18 Interrupting Simulation
	18.1 Cntrl-C Handler
	18.2 Causing Processor to Yield
	18.3 Example
	18.4 Important Notes
	18.4.1 ICM API Usage in Ctrl-C Handler
	18.4.2 icmInterrupt Usage


	19 Interrupting a Specific Processor
	19.1 Example 
	19.1.1 Reset Processor
	19.1.2 Startup Reset
	19.1.3 Reset Wire (net)


	20 Integration with Client Debuggers
	20.1 Memory Access
	20.2 Register Query
	20.3 Register Group Query
	20.4 Mode State Query
	20.5 Exception State Query
	20.6 Processor Freezing
	20.7 Address Breakpoints
	20.8 Instruction Count Breakpoints
	20.9 Memory, Bus and Processor Watchpoints
	20.9.1 Watchpoint Creation and Deletion
	20.9.2 Watchpoint Attribute Query
	20.9.3 Handling Triggered Watchpoints

	20.10 Handling Simultaneous Debug Events
	20.11 Debugger Examples
	20.11.1 Debugger Integration Example 1
	20.11.1.1 Establishing Watchpoints
	20.11.1.2 Running the Simulator
	20.11.1.3 Compiling and Running the Example

	20.11.2 Semantics of Physical and Virtual Watchpoints
	20.11.2.1 Physical Watchpoints
	20.11.2.2 Virtual Watchpoints

	20.11.3 Debugger Integration Example 2
	20.11.3.1 Establishing Watchpoints
	20.11.3.2 Running the Simulator
	20.11.3.3 Compiling and Running the Example


	20.12 Scheduler Notification

	21 Peripherals
	21.1 Adding a Peripheral
	21.1.1 Instantiating a Peripheral
	21.1.2 Attach a peripheral to a Bus
	21.1.2.1 Fixed Bus
	21.1.2.2 Dynamic Bus


	21.2 Enabling Diagnostics
	21.2.1 Model Diagnostics
	21.2.2 Intercept Library Diagnostics
	21.2.3 PSE Debugger Support

	21.3 Passing Attributes
	21.4 Simulating a Platform
	21.4.1 Default Scheduling Algorithm
	21.4.2 Custom Scheduling Algorithm

	21.5 Adding an Extension Intercept Library
	21.5.1 Adding more Intercept Libraries
	21.5.2 Example platform

	21.6 Selecting using VLNV
	21.6.1 Example VLNV searches


	22 Nets connecting models
	22.1 Example

	23 Detecting changes on a net
	23.1 Example

	24 Packetnets
	24.1 Packetnet Direction
	24.2 Packetnet ports
	24.3 Recursion
	24.4 Packet size
	24.5 Packetnet functions
	24.6 Example

	25 Simulator Control Files
	26 Encapsulating Models for use in other Environments
	26.1 SystemC
	26.1.1 Create Processor Instance
	26.1.2 External SystemC Memory 
	26.1.3 Example Platform
	26.1.3.1 Running the SystemC Example
	26.1.3.2 Platform with local Memory
	26.1.3.3 Platform with SystemC Memory



	27 Using Native Memory
	27.1 Example
	27.2 Combining External and Native Memory

	28 Simulation Optimization
	28.1 Example

	29 Plugin Commands
	29.1 Discovering Installed Commands

	30 Multicore (SMP) Support
	30.1.1 Controlling an SMP 

	31 Processor Information
	31.1 Processor Documentation 
	31.1.1 Documentation Nodes
	31.1.2 Processor Simulation Information

	31.2 Processor Parameters
	31.3 Processor Ports
	31.3.1 Bus ports 
	31.3.2 Net ports 
	31.3.3 FIFO ports 
	31.3.4 Fetching information from an SMP


	32 Custom Object Readers
	32.1 Writing a custom reader

	33 Command Line Parsing
	33.1 Simulator Flags
	33.2 User-specified Flags

	34 Differences between CpuManager and OVPsim
	34.1 Heterogeneous Platforms
	34.2 Control Files
	34.3 Debug Interface
	34.4 Verification and Analysis
	34.5 ICM API Support
	34.6 Simulator Feature summary
	34.7 OVPsim unsupported API functions summary


