
© 2021 Imperas Software Limited www.OVPworld.org Page 1 of 114

Simulation Control of Platforms and Modules
User Guide

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author:
Version: 2.5
Filename: Simulation_Control_of_Platforms_and_Modules_User_Guide.doc
Project: Simulation Control of Platforms and Modules User Guide
Last Saved: October 11, 2021
Keywords: Module Platform API

mailto:docs@imperas.com

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 2 of 114

Copyright Notice
Copyright © 2021 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 3 of 114

Table of Contents

1 Preface... 7

1.1 Notation... 7
1.2 Related Documentation... 7
1.3 Glossary / Terminology .. 7

2 Introduction... 9
2.1 Prerequisites .. 9
2.2 Obtaining & installing the OP API ... 9
2.3 Compiling Examples described in this Document.. 9
2.4 Shared Objects and executables.. 10
2.5 Platforms, Modules and Shared Objects... 10

3 Simulating Modules using harness.exe... 11
4 Imperas Simulation Overview .. 12

4.1 Simulation Environments.. 12
4.2 What are OVPsim and CpuManager?... 12
4.3 Use of OP with Imperas tools ... 13
4.4 C API and iGen... 13

5 Separation of iGen modules and C harness / testbench .. 14
6 Documentation on the OP API ... 15
7 Introducing a C harness / testbench .. 16

7.1 Writing a harness using C++ .. 18
7.2 Naming of classes and methods. ... 19
7.3 Example .. 19

8 The top level or root module... 21
9 Configuring the Simulation using parameters .. 22

9.1 Parameter Lists on a Root Module.. 22
9.1.1 The available root module parameters .. 25

9.2 Using Overrides to Set parameter values on module and component instances25
9.3 Configuring Modules and Components from Harness 26

9.3.1 Module Hardware Parameters... 26
9.3.2 Component Feature Parameters .. 27
9.3.3 Setting Parameters in the Harness... 27

9.3.3.1 Parameter List ... 27
9.3.3.2 OP_PARAMS Macro.. 28

9.3.4 Running Example.. 29
9.4 Special parameter values... 31

9.4.1 MIPS parameter .. 31
9.4.2 Endian parameter .. 31

9.5 Common error messages related to parameters .. 31
10 Controlling the simulation using the Command Line... 33

10.1 standardCommandLineParser example .. 33
10.2 Verbose Output ... 34

10.2.1 Simulation Time Statistics .. 34
10.3 Passing arguments into application programs... 35

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 4 of 114

10.4 Use of debugging options ... 36
10.5 Adding harness specific command line options.. 37

10.5.1 Argument Conflicts... 39
10.6 Other useful command line options .. 39

11 Writing your own harness.exe .. 42
12 Monitoring / Tracing during simulation ... 47

12.1 Processor Model Tracing Operations.. 47
12.1.1 Tracing control on the command line ... 47
12.1.2 Tracing control with CPU model parameters ... 48
12.1.3 Tracing control with OP functions.. 49

12.2 Processor Instruction Tracing Example .. 49
12.3 Peripheral model parameters... 51

12.3.1 Obtaining parameter lists (using --showoverrides)................................... 51
12.3.2 Configuration .. 52
12.3.3 Diagnostics.. 54

12.3.3.1 On a single Instance .. 54
12.3.3.2 On all instances in a design... 55

12.4 Adding your own monitors in a harness ... 55
12.4.1 Monitoring nets with callbacks... 56

12.4.1.1 Finding nets and declaring net callbacks .. 56
12.4.1.2 Simulating with net callbacks ... 57
12.4.1.3 monitoringNets/harness/harness.c full listing................................... 58

12.4.2 Monitoring Bus / Memory / Processor Address accesses using Callbacks59
12.4.2.1 Find buses and memories and attach callbacks................................. 59
12.4.2.2 Running the example .. 60

12.4.3 Adding a command to show module contents .. 61
12.5 Writing a Monitor module .. 62

13 Simulating Processor Exceptions.. 63
13.1 Example of Simulating an Unaligned Access Exception 63
13.2 Enabling simulation of exceptions with overrides on command line 64
13.3 Enabling simulation of exceptions in modules ... 65
13.4 Enabling simulation of exceptions in a C harness .. 65

14 Semihosting and Intercept Libraries ... 66
14.1 Selecting semihost libraries .. 66

14.1.1 Specifying a semihost library in the module.op.tcl................................... 66
14.1.2 An assembler test program.. 66
14.1.3 Adding imperasExit semihost library to harness.c 67

15 Imperas built-in Application Intercepts .. 68
16 Simulator Control Files... 70

16.1 Specify use of Control File on the simulator command line 70
16.2 Specify use of Control File using IMPERAS_TOOLS 70
16.3 Specify use of Control File in a C harness.. 71

17 Loading an Application Program file ... 72
17.1 Load Address Support... 72

17.1.1 LMA vs VMA... 73
17.1.2 Load Physical.. 73

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 5 of 114

17.2 Program Load Options.. 73
17.2.1 Set Start Address... 73
17.2.2 Zero BSS Section.. 73

17.3 Loading a Program onto Processors using the Command Line 74
17.3.1 Loading onto single or multiple processors .. 74
17.3.2 Modification to Load Address .. 74
17.3.3 Specifying the start Address ... 75
17.3.4 Provide Arguments to Applications.. 76

17.4 Common Program Memory .. 76
17.5 Loading an application from the harness .. 77

17.5.1 Application Loader Controls... 77
17.5.2 Onto a Processor Instance... 77
17.5.3 Onto a Bus Instance .. 77
17.5.4 Onto a Memory Instance... 78

17.6 Getting Information of Loaded Applications.. 78
17.7 Example .. 78
17.8 Loading Program Symbolic information .. 81

17.8.1 Command Line.. 81
17.8.2 In a Harness... 81

17.9 Defining a hardware resident program ... 81
17.10 Custom Application Loaders .. 82

17.10.1 Writing a custom reader.. 82
17.11 Custom Loader using Standard Object Reader... 82

18 Attaching a debugger .. 84
18.1 Introduction... 84
18.2 Debug with GDB .. 84

18.2.1 Starting GDB debug session on a single processor 85
18.2.1.1 Command line... 85
18.2.1.2 Root module instance.. 85

18.2.2 Selecting Processor(s) to debug with GDB .. 85
18.2.2.1 Using command line options .. 85
18.2.2.2 In a C harness.. 85

18.2.3 Configuring GDB.. 86
18.2.4 Using GDB with eGui Graphical User Interface 87

18.3 Debug with MPD .. 87
18.3.1 Configure MPD... 88

18.3.1.1 Debug Peripheral model constructors... 88
18.3.1.2 Add to source search path ... 88

18.3.2 Using MPD with eGUI ... 88
18.3.3 MPD Batch Mode ... 88

18.4 Manual Debug connection specifying port ... 89
18.4.1 Do not wait for debug connection... 89

18.5 Using Control Files ... 89
18.6 Example of Debugging Applications.. 90

18.6.1 Debug all processors ... 91
18.6.1.1 Using gdbconsole.. 91

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 6 of 114

18.6.1.2 Using MPD with the Imperas Professional Simulator 92
19 Imperas eGui Graphical Debug Environment... 95
20 Controlling Record and Replay of Virtualized Peripheral Input 96

20.1 Example for Record Replay operation.. 96
20.2 Simple CPU Memory and UART module .. 96
20.3 Application.. 97
20.4 Harness that configures UART and controls operation 97
20.5 Using instance parameters .. 99
20.6 From the command line .. 100

21 OP API Compatibility with deprecated ICM API .. 101
21.1 Interoperability.. 101
21.2 API tracing .. 101

22 ICM to OP API Function Conversion... 102

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 7 of 114

1 Preface
The Imperas simulators can use models described in C or C++ and the models can be
exported to be used in simulators and platforms using C, C++, SystemC or SystemC
TLM2.

This document describes how the simulator is controlled, how virtual platforms are
loaded and simulated, how testbenches and harnesses are written.

This document specifically describes how the OVP OP C API is used in C programs for
use with Imperas and OVP virtual platform simulators and tools.

1.1 Notation
Code Text representing code, a command or output from iGen.
keyword A word with special meaning.

1.2 Related Documentation

There are several documents available as PDF:

Getting Started

• Imperas Installation and Getting Started Guide

Interface, API, and iGen related

• OVP Peripheral Modeling Guide
• OVPsim Using OVP Models in SystemC TLM2.0 Platforms
• iGen Model Generator Introduction
• iGen Platform and Module Creation User Guide
• Imperas Peripheral Generator Guide (using iGen)

Usage of Modules and Peripherals created using iGen

• Simulation Control of Platforms and Modules User Guide
• Advanced Simulation Control of Platforms and Modules User Guide

1.3 Glossary / Terminology

OP API - OVP Platforms API - C API used for creating and controlling virtual
platforms. 2nd generation API, replaces ICM API. iGen creates modules/platforms in C
using this API.

iGen - Imperas productivity tool that has a powerful script-based function API that is
used to create C/C++/SystemC models and templates. Described in the iGen Model
Generator Introduction, and for platforms, in the iGen Platform and Module Generator
User Guide.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 8 of 114

OVPsim - Simulator for Open Virtual Platforms that executes platforms and models
coded in the OVP APIs

CpuManager - Imperas commercial simulator that fully implements the APIs defined by
OVP (OVPsim implements a subset)

Platform / Module – a collection of components connected together into a level of
hierarchy in a system to be simulated. This is a program in C/C++ making calls into OP
API and normally compiled into a shared object/dynamically linked library and loaded by
the simulator at run time.

Testbench / Harness – (used interchangeably) – A program in C/C++ making calls into
the OP API to connect and control OVP components. It is normally linked to the
simulator to provide an .exe binary that can be executed. Used to instance one or more
platforms/modules and controls their execution. The main difference, from a
platform/module, is that a testbench or harness includes a definition of the function
main(), may include a command line parser and is linked to create an executable binary
(.exe) file.

Root Module - used to describe the initial platform/module that instances one or more
platforms/modules and controls their execution. Used in the testbench / harness.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 9 of 114

2 Introduction
Imperas simulation technology enables very high-performance simulation, debug and
analysis of platforms containing multiple processors and peripheral models. The
technology is designed to be extensible: you can create your own platforms, new models
of processors, and other platform components using interfaces and libraries supplied by
Imperas. Platform models developed using this technology can be used both with Imperas
simulation products and the freely-available OVPsim platform simulator.

Simulations are controlled by using the provided harness.exe program, or for more
sophisticated control, and bespoke harness or testbench is written in C/C++ using the
OVP OP API.

This document explains the usage of the OP API to write harnesses / testbenches. It
explains the structure of modules and the different simulator phases, and how they are
controlled.

2.1 Prerequisites
Since harnesses and testbenches for use with Imperas and OVP tools are written in C, an
important prerequisite is that you must be proficient in the C language. If you want to use
C++ then it is expected that you are proficient in the use of C++ and how it uses a C API.

2.2 Obtaining & installing the OP API
The OP API is part of all Imperas / OVP installations and thus you should already have it
installed and be ready for use.

2.3 Compiling Examples described in this Document
The examples use modules, processors, component models and tool chains, available to
download from the www.OVPworld.org website or as part of an Imperas installation.

The compilation of the examples utilizes the use of a Makefile, the instructions for which
indicate the use of the command make, on Windows systems the MinGW mingw32-make
command should be used in its place.

The Makefiles referred to in this document are written for GNU make. Standard
Makefiles supplied by Imperas support compilation and linking using GNU tools on both
Windows and Linux.

Example scripts will be referred to as (for example) example.sh, this being the extension
used on Linux or for Windows MSYS shells. On Windows the script would be called
example.bat

SystemC TLM2.0 models can be used on Linux with gcc or on Windows with
MinGW/MSys (since SystemC release v2.3.0) or MSVC 8.0. It is assumed that users of

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 10 of 114

this environment will be familiar with SystemC, TLM2.0 and will have obtained this
software from www.accellera.org or similar.

2.4 Shared Objects and executables
The shared objects referred to in this document are either Linux shared objects, with
suffix .so or Windows dynamic link libraries with suffix .dll.

The executables referred to in this document are either Linux or Windows programs and
have the suffix .exe

2.5 Platforms, Modules and Shared Objects
Modules are created by writing scripts in tcl using iGen API calls and then running iGen
to create C code which calls functions from the OP API. A Makefile is provided that will
take as input the module.op.tcl and run iGen, gcc etc. This will then create the
model.so/.dll shared objects.

This model.so/.dll shared object can then be simulated using the harness.exe program
provided, or by writing and compiling a bespoke test harness in C.

In this document we will either use binary modules and components from the Imperas
provided library, or we will provide them as source in the example directories.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 11 of 114

3 Simulating Modules using harness.exe
For many platforms and modules, the harness.exe program will be sufficient to load and
execute a simulation and it is not necessary to write your own C testbench / harness.

The harness.exe program is provided in the binary directory which is found, after
environment initialization, on the execution PATH. To invoke the program and show the
command arguments which are available, type:

> harness.exe --help

The simplest mode of invocation is to load a module and an application for the processors
in the module to execute:

> harness.exe --modulefile module/model.so \
 --program application/application.OR1K.elf

The argument --modulefile <filename> states which shared object module to load.

The argument --program <filename> states which application program binary to load and
run on the simulated processor(s) in the module.

There are a number of examples in Examples/PlatformConstruction that show different
modules being created and executed with harness.exe. Some of the examples instead
create their own bespoke testbench / harness.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 12 of 114

4 Imperas Simulation Overview
Before starting to create models for use with the Imperas simulation environment, you
must understand how the components used in that environment interact. This section
describes this in detail.

4.1 Simulation Environments
There are currently two simulation environments available that can be used with models
and platforms that you create:

• OVP allows component models created using OVP modeling technology to be
used in C harness, platform and testbench files to create executables, which
represent real hardware. These include processor and other behavioral
components. The executable can be used to run binary application files compiled
and linked for the processors whose models are included. OVP can be used in 3rd
party simulation environments (for example, SystemC). It can be used to create a
test harness to help validate processor models under construction, or even to
create custom simulation environments. OVP has less functionality than the
Imperas Professional Simulator Products in some areas and has restricted
commercial usage as stipulated in the OVP click-through license agreement.

• Imperas Professional Simulator Products enhance the basic capabilities provided

by OVPsim, particularly in the areas of debugger integration, tool integration and
multiprocessor simulation support (including QuantumLeap parallel simulation).
Contact Imperas for more information.

4.2 What are OVPsim and CpuManager?
OVP provides the OVPsim simulator and the Imperas Professional product provides the
CpuManager simulator as dynamic linked libraries (.so suffix on Linux, .dll suffix on
Windows) implementing Imperas simulation technology. The shared objects contain
implementations of the OP interface functions described later in this document. The OP
functions enable instantiation, interconnection and simulation of complex multiprocessor
platforms using multicore processors, advanced peripheral devices and complex memory
topologies.

Processor models for use with CpuManager and OVPsim are created using the OVP
Virtual Machine Interface (VMI) API, and are available for download from the
www.OVPworld.org website. This API enables the creation of processor models that run
at very high simulation speeds (typically hundreds of millions of simulated instructions
per second). The use of the API is described in the OVP Processor Modeling Guide, also
available for download from the www.OVPworld.org website.

The CpuManager simulator is part of the commercial/professional product offering
available from Imperas. OVPsim is the freely-available (for Non-Commercial usage)
version of the simulator. The simulator can be selected at runtime by the

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 13 of 114

IMPERAS_RUNTIME environment variable. If it is not set or is set to OVPsim the
OVPsim library (which requires an OVP license) will be used. If it is set to CpuManager
the CpuManager library (which requires an Imperas license) will be used.

The legacy ICM API is supported by the same products, providing a subset of the
functionality offered by OP. In fact, the ICM API is implemented using OP so will be
supported for the foreseeable future.

A subset of OP functionality can be used in SystemC TLM2.0. The TLM2.0 C++
interface code is available as source for processor and peripheral models, allowing the
use of these models in SystemC TLM2.0 platforms.

4.3 Use of OP with Imperas tools
A program using the OP or ICM APIs must be linked with the Imperas RuntimeLoader
library to perform runtime dynamic loading of either the CpuManager or OVPsim
dynamic linked libraries, to produce a stand-alone executable. This allows the runtime
selection of the CpuManager simulator for any defined platform and so enabling the use
of the Imperas tools.

4.4 C API and iGen
An OVP module is written in C code and compiled and linked on the host computer to
produce a shared object. An OVP testbench/harness, is written in C code, compiled and
linked with the RuntimeLoader (libRuntimeLoader.so) link library on the host computer
to produce an executable.

iGen is a program from Imperas that can create either outline or substantially complete C
code for a module or testbench/harness using a description written using iGen function
calls. Use of iGen is described elsewhere and used in the examples in this document.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 14 of 114

5 Separation of iGen modules and C harness /
testbench

Even though both the activities of creating a design / module and creating the harness /
testbench ultimately make calls into the simulators OP C API there are two distinct usage
flows.

A module starts as a script as input to iGen which generates C code that makes calls to
the OP API. The iGen function API and use of iGen provide a powerful and easy to use
approach to building the structure of your virtual platform to be simulated.

Harnesses and testbenches are written in C and instances modules and tell the simulator
how to simulate them. This can include loading programs, loading data files, setting
values into registers, scheduling the execution and controlling the interaction with other
simulators or with bespoke debug solutions. The OP API has been designed to provide a
very efficient and powerful way to specify and control simulations.

For now, assume that:
 module creation is done in tcl with iGen
 and harnesses / testbenches are written in C using the OP API.

Advanced users can use the OP calls in many different ways and can write code that will
not adhere to these assumptions. For more details see the Advanced Simulation Control
of Platforms and Modules User Guide.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 15 of 114

6 Documentation on the OP API
Provided in the installation is the online OP API Function Reference documentation. This
is Doxygen-like API documentation available at:

 IMPERAS_HOME/doc/api/op/html/index.html

It includes per function references:

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 16 of 114

7 Introducing a C harness / testbench
For a first example, we will introduce the simplest module and application we can and
then concentrate on the harness we are going to evolve.

Take of a copy of the example, Examples/SimulationControl/minimalHarness :

> cp -r $IMPERAS_HOME/Examples/SimulationControl/minimalHarness .
> cd minimalHarness
> ls
application harness module

Examine the application source

> cat application/application.c
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) {
 printf("Hello world application\n");
 return 0;
}

Compile the application

> make -C application
Compiling application.c
Linking application.OR1K.elf

Examine the module source

> cat module/module.op.tcl
ihwnew -name simpleCpuMemory
ihwaddbus -instancename mainBus -addresswidth 32
ihwaddprocessor -instancename cpu1 -vendor ovpworld.org \
 -library processor -type or1k -version 1.0 \
 -semihostname or1kNewlib -variant generic
ihwconnect -bus mainBus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus mainBus -instancename cpu1 -busmasterport DATA
ihwaddmemory -instancename ram1 -type ram
ihwconnect -bus mainBus -instancename ram1 -busslaveport sp1 \
 -loaddress 0x0 -hiaddress 0xffffffff

Generate the module C code and compile the module

> make -C module
iGen Create OP MODULE module
Host Compiling Module obj/Linux64/module.igen.o
Host Linking Module object model.dll

If you have worked through the iGen Platform and Module Creation User Guide then
you should be familiar with the application and simple module, filenames and use of
make etc.

The most minimal test harness needs to instance a module and start simulation.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 17 of 114

If we examine the harness in the file harness/harness.c, we can see it contains a main
function:

int main(int argc, const char *argv[]) {
 opSessionInit(OP_VERSION);

 opCmdParseStd (argv[0], OP_AC_ALL, argc, argv);

 optModuleP mi = opRootModuleNew(0, 0, 0);
 opModuleNew(mi, "module", "u1", 0, 0);

 opRootModuleSimulate(mi);

 opSessionTerminate();
 return 0;
}

It is a normal C main() which provides access to the command line arguments passed into
the executable using argc, and argv.

The opSessionInit() must be at the beginning to initialize and the opSessionTerminate()
must be at the end to terminate. These are mandatory as the first and last function calls in
main() and must encompass all other calls to the OP API. OP_VERSION, which is passed
to the opSessionInit() call us defined in op.h and is used to verify that the API version
used in this executable matches the version in the dynamically loaded simulator library.

The call to opCmdParseStd() tells the simulator to use a standard command line parser

 opCmdParseStd (argv[0], OP_AC_ALL, argc, argv);

Using the command line parser allows you to put arguments on the command line to
control the simulator (for example to load an application program). You may use the
--help argument to see the supported arguments. All the available arguments are
described in the Imperas Simulation Guide. It is also possible to add harness-specific
arguments to the standard command line parser, this is described later.

The call to opRootModuleNew tells the simulator to create an empty root module and it
returns a pointer 'mi' to the created module.

 optModuleP mi = opRootModuleNew(0, 0, 0);

The call to opModuleNew instances a module under this root module, using the 'mi'
pointer and finds the module shared object in the directory below us called 'module', and
gives it the instance name of 'u1'.

 opModuleNew(mi, "module", "u1", 0, 0);

Finally, we call the simulator to execute the specified root module:

 opRootModuleSimulate(mi);

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 18 of 114

It is compiled and linked, using the provided Makefile, with:

> make -C harness
Host Compiling Harness obj/Linux64/platform.o
Host Linking Harness object model.dll
Host Linking Harness harness.Linux64.exe

Then we can run it passing the program to be loaded for execution by the processor
model in the module:

> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf

OVPsim started: Mon Jan 04 17:23:43 2016
Hello world application
OVPsim finished: Mon Jan 04 17:23:43 2016

Also, don't forget, you can pass in standard built-in command line arguments to your
harness, for example enable tracing of the instruction execution:

> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf \
 --trace --tracechange

OVPsim started: Mon Jan 04 17:23:43 2016
...
Info SR 00008401 -> 00008001
Info u1/cpu1', 0x0000000000000f38(_main+c): l.sw 0x0(r1),r9
Info 'u1/cpu1', 0x0000000000000f3c(_main+10): l.movhi r3,0x0
Info 'u1/cpu1', 0x0000000000000f40(_main+14): l.ori r3,r3,0x493c
Info R3 00000000 -> 0000493c
Info 'u1/cpu1', 0x0000000000000f44(_main+18): l.jal 0x000016fc
Info R9 00000fb0 -> 00000f4c
Info 'u1/cpu1', 0x0000000000000f48(_main+1c): l.nop 0x0
Info 'u1/cpu1', 0x00000000000016fc(_puts): l.addi r1,r1,0xfffffff8
Info R1 ffffffe4 -> ffffffdc
Info SR 00008001 -> 00008401
...
OVPsim finished: Mon Jan 04 17:23:43 2016

We have provided an example.sh script (example.bat for Windows) which generates the
module and compiles the application and harness.

> ./example.sh

7.1 Writing a harness using C++
Imperas provides a simple C++ interface to the OP API. Note that this is not a complete
C++ class-based implementation, but a set of wrappers for the existing API. The interface
is provided as source to be compiled with your own compiler. Source is in:

$IMPERAS_HOME/ImpPublic/source/host/op/op.cpp

The header is in:
$IMPERAS_HOME/ImpPublic/include/host/op/op.hpp

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 19 of 114

7.2 Naming of classes and methods.
Naming follows the scheme used in C in op.h e.g. the C function opProcessorSimulate()
has in op.hpp the equivalent C++ method simulate() in the class processor.

7.3 Example
An example of a simple C++ harness is in:

$IMPERAS_HOME/Examples/PlatformConstruction/CPP/minimalHarness

Take a copy of the example

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/CPP/minimalHarness .
> cd minimalHarness

Examine the C++ harness file harness/harness.cpp:

#include <iostream>
using namespace std;

#include "op/op.hpp"

using namespace op;

int main(int argc, const char *argv[]) {

 cout << "\nRunning C++ harness..." << endl;

 session s;
 message m;
 parser p(argc, argv);

 module mi;
 module u1(mi, "module", "u1");

 mi.simulate();

 cout << "\nFinished running C++ harness." << endl;

 return (m.errors() ? 1 : 0);
}

The source file uses the OP C++ header op/op.hpp

The OP has its own name space: op

It is necessary to construct an OP session object s to call opSessionInit().
An instance of the message class gives access to the message methods; it is not required
for the simulator to run. Similarly, the parser class gives access to the parser methods but
is only required if the parser is to be used.

Creating an instance of module mi without arguments creates the root module. This
becomes the parent of the working modules, and is used to operate on the root module
instance, calling mi.simulate() in this example.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 20 of 114

To build and run the example use the command:

> ./example.sh
Compiling application.c
Linking application.OR1K.elf
rm application.o
iGen Create OP MODULE module
Copying STUBS module.c.igen.stubs to module.c
Host Depending obj/Linux32/module.d
Host Compiling Module obj/Linux32/module.o
Host Linking Module object model.so
Host Compiling Platform obj/Linux32/harness.o
Host Linking Platform harness.Linux32.exe
Host Linking Platform object model.so

Running C++ harness...
...

OVPsim started: Mon Feb 22 21:58:16 2016

Hello world application from C++ harness

OVPsim finished: Mon Feb 22 21:58:16 2016
...

Finished running C++ harness.

The C++ interface layer is generally complete; any OP function that does not have a C++
equivalent can be used directly; an OP pointer can be obtained using the handle() method
from the appropriate C++ class.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 21 of 114

8 The top level or root module
A root module must be created (using opRootModuleNew) in the main function. This root
module can either:

1. be a self-contained single level combined harness and design by containing all the
components in the system (this is how a legacy ICM platform is constructed as it
has no hierarchy).

2. be a harness / testbench by creating an instance of the top level of the design (for
example, instance a module) and supplying any testbench functionality required to
run the design. In fact, it could create instances of several designs and run then
independently to perform step and compare testing.

3. include both a modelAttrs definition, so that this module may be instanced within
a higher-level design, and contain a main function (with a command line parser, if
required) so that it can be used as a top-level design. There will be both a module
shared object and a design executable created.

The test harness in the previous example (section 7 “Introducing a C harness / testbench”)
is about the simplest that can be created. It is in the form of the 2nd use case above: A
main() function makes calls to the different OP simulation control capabilities.

It may be necessary to create a harness / testbench in the style of module creation using
OP - i.e. as per the 3rd use case above.

We have provided the example SimulationControl/simpleHarness to demonstrate this
approach.

All the other harnesses in this document will use the approach of not using the
modelAttrs table, i.e. we are going to focus on the 2nd use case, where we are writing
harnesses that instance other modules.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 22 of 114

9 Configuring the Simulation using parameters
To increase the flexibility and reusability of a module, it can accept parameters which
may be set by the module that creates the instance of this module (its parent) and whose
values can be obtained by code in the module, to influence its behavior. Parameter values
can be passed to its components (including sub-modules) or can influence the execution
of its code. Parameter types include Boolean, Integer, Floating point and String.

9.1 Parameter Lists on a Root Module
There are many parameters that are only for use with the root module and these affect the
whole simulation. For example installing a ctrl-C signal handler, or suppressing the
simulator's banner, or running in verbose mode. Parameters are described in the HTML
documentation; go to:

 Imperas/doc/api/op/html/index.html

search for ’OP_FP_’. And look for parameters that must be applied to a rootmodule.

We will look at the example Examples/SimulationControl/configureRootModule (which
is a copy of minimalHarness introduced above).

Take a local copy to edit:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/configureRootModule .
> cd configureRootModule
> ls
application harness module

and then generate the module C code and compile and run with the provided example
script:

> ./example.sh

The harness has a few extra lines of code in the main() to set the parameters on the
creation of the root module.

#define MODULE_DIR "module"
#define MODULE_INSTANCE "u1"
#define CPU_INSTANCE "cpu1"

int main(int argc, const char *argv[]) {
 opSessionInit(OP_VERSION);
 opCmdParseStd (argv[0], OP_AC_ALL, argc, argv);

 // root module / simulation wide parameters
 // opParamBoolOverride(0, OP_FP_SHOWFORMALS, 1);
 // opParamBoolOverride(0, OP_FP_SHOWBUSES, 1);
 // opParamBoolOverride(0, OP_FP_SHOWDOMAINS, 1);
 // opParamBoolOverride(0, OP_FP_SUPPRESSBANNER, 1);
 // opParamBoolOverride(0, OP_FP_ENABLEIMPERASINTERCEPTS, 1);

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 23 of 114

 opParamBoolOverride(0, OP_FP_STOPONCONTROLC, 1);
 opParamBoolOverride(0, OP_FP_VERBOSE, 1);
 optModuleP mi = opRootModuleNew(0, 0, 0);

 // processor instance parameters
 // opParamBoolOverride(mi, MODULE_INSTANCE "/" CPU_INSTANCE "/" OP_FP_TRACE,
1);
 // opParamBoolOverride(mi,
 MODULE_INSTANCE "/" CPU_INSTANCE "/" OP_FP_TRACESHOWICOUNT, 1);

 opParamDoubleOverride (mi, MODULE_INSTANCE "/" CPU_INSTANCE "/" OP_FP_MIPS,
200);
 opModuleNew (mi, MODULE_DIR, MODULE_INSTANCE, 0, 0);

 opRootModuleSimulate(mi);
 opSessionTerminate ();
 return 0;
}

We create some definitions for the root module name and the module directory name to
find the module's shared object, and the instance names for the module and cpu of
interest.

We can override the value of a parameter of an object before we instance it by using the
correct override function for the type, for example opParamBoolOverride function for a
Boolean type (there are functions for all the supported types). We make use of the gnu C
feature of string concatenation which creates a hierarchical name string to point at the
object of interest.

The definitions OP_FP_’ are macros to define the built-in parameters, for example
OP_FP_VERBOSE is "verbose", so we are passing the string "verbose" as the 2nd
argument and ‘1’ (true) as the 3rd to set the simulator in verbose mode.

 opParamBoolOverride(0, OP_FP_STOPONCONTROLC, 1);
 opParamBoolOverride(0, OP_FP_VERBOSE, 1);

Also, for the CPU instance "u1/cpu1", we are setting the ‘MIPS’ rating to 200:

 opParamDoubleOverride(mi, MODULE_INSTANCE "/" CPU_INSTANCE "/" OP_FP_MIPS,
200);

but note this is relative to the root module 'mi' (first argument), so we will have set
"u1/cpu1/mips" to 200.

If we now build the harness:

> make -C harness

and run it:

> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 24 of 114

We will see the simulator output will provide the verbose simulation statistics and the
‘nominal MIPS’ for the processor was set to 200:

...
OVPsim started: Tue Jan 12 10:48:05 2016

Info (OP_AL) Found attribute symbol 'modelAttrs' in file
'/home/graham/itest/Regression_Tests/OVPsim/Examples/OP/singletest.3095/0/module
/model.so'
Info (OP_AL) Found attribute symbol 'modelAttrs' in file
'/home/graham/Imperas/lib/Linux64/ImperasLib/ovpworld.org/processor/or1k/1.0/mod
el.so'
Info (OP_AL) Found attribute symbol 'modelAttrs' in file
'/home/graham/Imperas/lib/Linux64/ImperasLib/ovpworld.org/semihosting/or1kNewlib
/1.0/model.so'
Info (OR_OF) Target u1/cpu1' has object file read from
'application/application.OR1K.elf'
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz
Flags Align
Info (OR_PD) LOAD 0x00002000 0x00000000 0x000051b8 0x000052d4 RWE
2000
Hello world application
Info
Info ---
Info CPU 'u1/cpu1' STATISTICS
Info Type : or1k (generic)
Info Nominal MIPS : 200
Info Final program counter : 0x1774
Info Simulated instructions: 2,112
Info Simulated MIPS : run too short for meaningful result
Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 0.00 seconds
Info User time : 0.01 seconds
Info System time : 0.00 seconds
Info Elapsed time : 0.01 seconds
Info ---

OVPsim finished: Tue Jan 12 10:48:05 2016

Now if we change the harness to remove the previous changes so that we now have the
parameter to suppress the banner:

 opParamBoolOverride(0, OP_FP_SUPPRESSBANNER, 1);

after we re-build the harness

> make -C harness

and then run it, we will see the output without any banner information and just see the
semihosted printf from the application:

> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 25 of 114

Hello world application

9.1.1 The available root module parameters
The complete up-to-date list of available parameters is defined in the API documentation
at IMPERAS_HOME/doc/api/op/html/index.html. Click on 'globals' in the left hand pane,
then 'b' in the right hand pane, to see all the OP_FP_* parameters. Click on
OP_FP_DEBUGPSECONSTRUCTORS to see the first in the list that is applicable to root
modules.

Some to try out are:

OP_FP_FINISHTIME
OP_FP_GDBCONSOLE, OP_FP_GDBEGUI,
OP_FP_MPDCONSOLE, OP_FP_MPDEGUI,
OP_FP_SHOWBUSES, OP_FP_SHOWDOMAINS
OP_FP_WALLCLOCK, OP_FP_WALLCLOCKFACTOR

Most of these are set with opParamBoolOverride, but there are also functions to set
parameters that are Enum, Int32, String, Uns32 etc.

Most of the above options are best done from the command line or from control files but
can also be added to the harness if they are required permanently.
For example, to set the simulation to always run with a wallclock factor of 5x we can use
OP_FP_WALLCLOCKFACTOR on a root module

 opParamDoubleOverride(0, OP_FP_WALLCLOCKFACTOR, 5.0);

9.2 Using Overrides to Set parameter values on module and
component instances

You can set any parameter in your design from the command line or from the C harness.
It is often better to set parameters from the command line.

By using the command line --showoverrides we can see that there are some parameters
on the CPU instance in the module we have instanced:

> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf -
-showoverrides
...
--override u1/cpu1/enableimperasintercepts=0 (Boolean) Enable Imperas
intercepts
--override u1/cpu1/simulateexceptions=0 (Boolean) Simulate exceptions
--override u1/cpu1/trace=0 (Boolean) Enable instruction trace
--override u1/cpu1/traceshowicount=0 (Boolean) Print count with trace
--override u1/cpu1/mips=100.000000 (Double) Set the mips rate for this
instance.
...

So we can then set some of these:

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 26 of 114

 opParamBoolOverride(mi, MODULE_INSTANCE "/" CPU_INSTANCE "/"
OP_FP_TRACE, 1);
 opParamBoolOverride(mi, MODULE_INSTANCE "/" CPU_INSTANCE "/"
OP_FP_TRACESHOWICOUNT, 1);
 opParamDoubleOverride(mi, MODULE_INSTANCE "/" CPU_INSTANCE "/" OP_FP_MIPS,
200);
 opModuleNew(mi, MODULE_DIR, MODULE_INSTANCE, 0, 0);

9.3 Configuring Modules and Components from Harness
In this section we will look at the use of parameters to modify the hardware definition
and the component configuration from the harness.

This will use the example

 $IMPERAS_HOME/Examples/SimulationControl/moduleParametersWithHarness

9.3.1 Module Hardware Parameters
The module is the hardware definition and typically this is fixed. However, some aspects
of the module may be configured using parameters when it is instanced. In this example
we will configure the base address at which a peripheral model is instanced.

The parameter to be configured must be defined as a formal parameter of the module on
which you wish to apply it. It may also be defined at higher levels and used to configure
the lower level modules when they are instanced. The choice of where to apply the
parameter depends upon the hierarchy in the design and the level at which the
configuration should be made.

Defining the parameters when the module is instanced is illustrated in the topmodule
(topmodule/module.op.tcl) for each of the submodules it contains

ihwaddformalparameter -name subUart0Address -type address
iadddocumentation -name Description -text "Set base address of UART in sub-
system 0"
ihwaddformalparameter -name subUart1Address -type address
iadddocumentation -name Description -text "Set base address of UART in sub-
system 1"

which is used to set the configuration parameter on the module when it is instanced.

configure parameters
ihwsetparameter -handle subUart0 -name baseAddress -value {subUart0Address} -
type uns64
ihwsetparameter -handle subUart1 -name baseAddress -value {subUart1Address} -
type uns64

In this case we are defining two formal parameters to independently set the base address
for the two uarts in the sub modules, we could equally base both of the uart from a single
formal parameter.

configure parameters

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 27 of 114

ihwsetparameter -handle subUart0 -name baseAddress -value {subUart0Address}
-type uns64
ihwsetparameter -handle subUart1 -name baseAddress -value {subUart0Address+0x10}
-type uns64

We must define the formal parameter in the lowest level at which it is applied. This is
shown in the submodule (submodule/module.op.tcl) in which the formal is defined

ihwaddformalparameter -name baseAddress -type address
iadddocumentation -name Description -text "Set base address of UART"

and used to configure the base address at which the UART is instanced in the module.

ihwaddperipheral -instancename uart0 \
 -vendor national.ovpworld.org -library peripheral -type 16550 -
version 1.0
ihwconnect -instancename uart0 -bus localBus -busslaveport bport1 \
 -loaddress {baseAddress} -hiaddress {baseAddress+7}

This allows a generic module to have some configuration aspects that are defined when
the hardware platform is created.

9.3.2 Component Feature Parameters
A peripheral or processor component model can include the behavior of different
versions or types of hardware, for example a UART model can provide 16450 and 16550
behaviour. The configuration of the model can again be achieved by defining formal
parameters on the model itself and then applying these in the module definition, on the
command line or in the harness.

Defining the formal parameter for a peripheral model can be found in the documents
iGen_Peripheral_Generator_User_Guide and OVP_Peripheral_Modeling_Guide and for
a processor model in the OVP_Processor_Modeling_Guide.

9.3.3 Setting Parameters in the Harness
The harness can be used to set the parameters in modules and components using two
methods.

The opParamXXX API functions can be used to append to a parameter list of type
optParamP that is then passed to the module instance or the parameters can be applied
directly using the OP_PARAMS and type macros.

Note that the parameter names are the hierarchical names that are based upon the module
on which they are applied.

9.3.3.1 Parameter List
The following shows the parameters being applied by adding the parameters to a list

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 28 of 114

The first shows the parameter applied to the formal in the top module.

 optParamP paramList = NULL;

 // Set formal parameter on the top level module to change uart addresses
 paramList = opParamUns64Set(paramList, "subUart0Address",
0x100003e8);
 paramList = opParamUns64Set(paramList, "subUart1Address",
0x100003f8);

and the alternative is to apply directly to the sub module, rather than through the top
module

 // Set formal parameter on the top level module to change uart addresses
 paramList = opParamUns64Set(paramList, "subUart0/baseAddress",
0x100003e8);
 paramList = opParamUns64Set(paramList, "subUart1/baseAddress",
0x100003f8);

The following shows the configuration of the outfile parameter on the two uarts

 // Set parameter on instance of uarts to set logfiles
 paramList = opParamStringSet(paramList, "subUart0/uart0/outfile", "subUart0-
uart0.txt");
 paramList = opParamStringSet(paramList, "subUart1/uart0/outfile", "subUart1-
uart0.txt");

Finally, the parameter list is passed to the function creating the module.

 // instance the topmodule into the root module
 opModuleNew(mi, "./topmodule", "top", 0, paramList);

9.3.3.2 OP_PARAMS Macro

Instead of creating a parameter list the configuration can be applied directly when the
module is instanced using macros.

The equivalent of setting the base addresses and the uart outfiles using this method is
shown below

 opModuleNew(mi, "./topmodule", "top", 0,
 OP_PARAMS (
 OP_PARAM_UNS64_SET ("subUart0/baseAddress",
0x100003e8),
 OP_PARAM_UNS64_SET ("subUart1/baseAddress",
0x100003f8),
 OP_PARAM_STRING_SET ("subUart0/uart0/outfile", "subUart0-
uart0.txt"),
 OP_PARAM_STRING_SET ("subUart1/uart0/outfile", "subUart1-
uart0.txt")
)
);

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 29 of 114

9.3.4 Running Example

The example can be executed from the directory

 $IMPERAS_HOME/Examples/SimulationControl/moduleParametersWithHarness

using the provided scripts, for example on Linux

 $./example.sh

Which will generate output similar to the following
mingw32-make: Entering directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/application'
Compiling application.c
Linking application.RISCV32.elf
rm application.RISCV32.o
mingw32-make: Leaving directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/application'
mingw32-make: Entering directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/submodule'
iGen Create OP MODULE module.c.igen.stubs
No Update to existing module.c. Compare with module.c.igen.stubs if changes
made to iGen file module.op.tcl
Host Depending obj/Windows64/module.d
mingw32-make: Leaving directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/submodule'
mingw32-make: Entering directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/submodule'
No Update to existing module.c. Compare with module.c.igen.stubs if changes
made to iGen file module.op.tcl
Host Compiling Module obj/Windows64/module.o
Host Linking Module object model.dll
mingw32-make: Leaving directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/submodule'
mingw32-make: Entering directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/topmodule'
iGen Create OP MODULE module.c.igen.stubs
No Update to existing module.c. Compare with module.c.igen.stubs if changes
made to iGen file module.op.tcl
Host Depending obj/Windows64/module.d
mingw32-make: Leaving directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/topmodule'
mingw32-make: Entering directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/topmodule'
No Update to existing module.c. Compare with module.c.igen.stubs if changes
made to iGen file module.op.tcl
Host Compiling Module obj/Windows64/module.o
Host Linking Module object model.dll
mingw32-make: Leaving directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/topmodule'
mingw32-make: Entering directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/harness'
Host Depending obj/Windows64/harness.d
mingw32-make: Leaving directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/harness'
mingw32-make: Entering directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/harness'
Host Compiling Harness obj/Windows64/harness.o

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 30 of 114

Host Linking Harness harness.Windows64.exe
mingw32-make: Leaving directory
`C:/Imperas/Examples/SimulationControl/moduleParametersWithHarness/harness'

CpuManagerMulti (64-Bit) v20190225.0 Open Virtual Platform simulator from
www.IMPERAS.com.
Copyright (c) 2005-2019 Imperas Software Ltd. Contains Imperas Proprietary
Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

CpuManagerMulti started: Mon Mar 18 16:16:35 2019

Info (HARNESS) Define parameters using optParamP parameter list
Info (HARNESS) Set formal parameters on submodule

Writing to UARTs - see log files

CpuManagerMulti finished: Mon Mar 18 16:16:35 2019

CpuManagerMulti (64-Bit) v20190225.0 Open Virtual Platform simulator from
www.IMPERAS.com.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

-- subUart0-uart0.txt contents --
Hello UART0 world

-- subUart1-uart0.txt contents --
Hello UART1 world

Press any key to continue . . .

The way in which the configuration is applied can be modified in the harness and
topmodule to show the different configuration options described earlier.

In the top of harness/harness.c there are three defines

// Set the defines to show alternate ways of setting parameters
#define PARAMLIST
//#define TOPLEVEL
// Define separate formal parameters for each sub module uart (set dualbase in
topmodule/module.op.tcl)
#define DUALBASE

PARAMLIST when defined will use the list defined by optParamP to set parameters,
otherwise the OP_PARAMS macros will be used.
TOPLEVEL can only be defined when PARAMLIST is defined and will set the
parameters on the top level module
DUALBASE requires that the variable dualbase in topmodule/module.op.tcl is also set.
This controls whether the uart base addresses are both set or uart1 base address is set
relative to uart0.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 31 of 114

9.4 Special parameter values
Certain parameters are handled specially by the simulator. These are described in the
following sections.

9.4.1 MIPS parameter
All processors support a double parameter called mips, used to specify the nominal
processor speed in millions of instructions per second. This nominal mips rate is used to
apportion run time between processors in a multiprocessor simulation. The default
nominal mips rate for each processor is 100. The section above shows an example of
using a hierarchical parameter setting to configure a processor with a nominal mips rate
of 200 MIPS instead.

 opParamDoubleOverride(mi, MODULE_INSTANCE "/" CPU_INSTANCE "/" OP_FP_MIPS,
200);
 opModuleNew(mi, MODULE_DIR, MODULE_INSTANCE, 0, 0);

9.4.2 Endian parameter
The model documentation for processors includes a definition of the endianness
supported by that processor. This may be big, little or either.

If the endian is defined as either then the model will accept a user string attribute called
endian, used to specify the endianness of the processor. The endian attribute may take the
values big or little.

Some processors allow the endianness to be changed dynamically by software. The
endian attribute only sets the initial value for the endianness at the start of simulation in
this case.

You could set the endianness in the instantiation of the processor, or you could set it in
the testbench with a hierarchical parameter setting e.g.:
.
 opParamDoubleOverride(mi,
 MODULE_INSTANCE "/" CPU_INSTANCE "/" OP_FP_ENDIAN, OP_ENDIAN_BIG);
 opModuleNew(mi, MODULE_DIR, MODULE_INSTANCE, 0, 0);

Note that the OR1K used in this example does not support the endian parameter.

9.5 Common error messages related to parameters
Some of the common errors are:

Error (OP_PNF) Parameter '<hier param name>' has no formal parameter defined
in the model.
You are trying to call one of the parameter setting functions and the parameter you have
specified has not been found - reasons are often spelling mistakes or wrong level of
hierarchy. Use the command line argument --showoverrides or the root module parameter
OP_FP_SHOWFORMALS to get a list of all the possible parameters in your design that
can be set.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 32 of 114

Error (OP_DCE) <hier param name> cannot be converted from a double to a
boolean
You are setting the value of a parameter to an illegal value - for example
opParamDoubleSet needs the value to be a double etc. - so ensure the correct function is
used, e.g. opParamBoolSet, opParamDoubleSet etc. and that it matches with the value
set.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 33 of 114

10 Controlling the simulation using the Command Line
When using a testbench or harness we will want to control the simulation from the
command line, pass in arguments to configure the simulation, and set other parameters
that will change the simulation run.

There are OP functions that we can use in our harness that will provide different sets of
command line arguments. There is the option of basic or full commands, and you can
extend the command line parser with your own command line arguments.

It is also possible to pass arguments from the simulator command line into the main() of
applications running on simulated processors.

10.1 standardCommandLineParser example
Let’s start with a Command Line Parser (CLP), this is the standard command line parser
that could be used to add custom arguments. It is configured to include all standard
arguments.

If we have a look at the example (which is a copy of minimalHarness introduced above)
by making a local copy to edit:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/standardCommandLineParser .
> cd standardCommandLineParser
> ls
application harness module

There are two places that are related to the CLP in harness/harness.c:

static void cmdParser(optCmdParserP parser) {
}

and in main():

 optCmdParserP parser = opCmdParserNew(HARNESS_NAME, OP_AC_ALL);
 cmdParser(parser);
 opCmdParseArgs(parser, argc, argv);

and we can compile and run as normal using the provided example script. This time we
have put a '--help' in the example script so we can see what command line arguments the
simulator is allowing:

> ./example.sh

and we will see the full set of allowed options - this is due to the choice of OP_AC_ALL
in the opCmdParserNew call creating the parser.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 34 of 114

If we change this to OP_AC_NONE, or OP_AC_BASIC and run the example script we
will see that we get only very basic arguments allowed. Note you get an error with this
basic level of the command line parser because the argument --program is not allowed!
This choice would be useful when you want to control the usage of your harness/system
such that users could only use the built in programs etc. This would be used when you are
defining and using your own arguments.

A more useful set would be: OP_AC_SIM.

To see a full list, use --help with either your own harness/platform or the provided
simulators: harness.exe, iss.exe etc. To get a more detailed explanation of the different
arguments, please read the Control File User Guide.

The above example has shown the creation of a new command line parser using a call to
the function opCmdParserNew which returns a parser object parser. This object can be
used to add new command line arguments before the command line is processed with
calls to opCmdParseArgs.

When you do not wish to add new custom command line arguments, i.e. you only want
the standard command line arguments provided by the simulator, the function
opCmdParseStd can be used in place of the above two functions as shown below

int main (int argc, const char *argv[]) {
 …
 opCmdParseStd(argv[0], OP_AC_SIM, argc, argv);
 …
}

The first argument is used in messages and can be the name of the program, argv[0], as
shown or can be any constant string. The second argument controls the arguments that
will be available.

10.2 Verbose Output
When verbose output is selected output is generated at the end of simulation giving
statistics about the number of instructions executed by each processor, the simulated
MIPS rate for each processor, and the total instructions and MIPS rate. This information
is present when --verbose is specified on the command line.

The actual performance reported may vary and depends on the performance of the native
host. In a typical example the overall simulation speed is apportioned across each
processor based upon the nominal MIPS rate configured for each processor.

10.2.1 Simulation Time Statistics
In verbose mode the simulator writes information about simulated and elapsed time. Four
time values appear in the SIMULATION TIME STATISTICS paragraph:

Info ---

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 35 of 114

Info SIMULATION TIME STATISTICS
Info Simulated time : 16.59 seconds
Info User time : 2.12 seconds
Info System time : 0.00 seconds
Info Elapsed time : 2.12 seconds
Info Real time ratio : 7.81x faster
Info ---

Simulated time is the duration of the simulation in simulated time. This corresponds
exactly to the notion of time in a simulation language such as Verilog and VHDL; it is
entirely unrelated to wall-clock time.

User time is the time that the simulation process spent executing instructions on the host
machine; system time is the time the host machine spent in the system while executing
instructions on behalf of the simulation process. Elapsed time is the overall time taken by
the simulation process on the host from start to finish. All three of these times will vary
from run to run, depending on the host load average and other factors. Real time ratio
shows how much faster than real time this simulation ran.

For each processor, the simulated MIPS line gives the rate at which instructions for that
processor were executed in wallclock time. In other words, the simulated MIPS number
for a processor is calculated by dividing the number of instructions executed by that
processor by the elapsed time for the simulation process. In this example, the reported
simulated MIPS for cpu1 is calculated by dividing the simulated instructions
(1,658,997,966) by the elapsed time (2.12 seconds) to give 781.2:

Info CPU 'cpu1' STATISTICS
Info Type : or1k
Info Nominal MIPS : 100
Info Final program counter : 0x1dcc
Info Simulated instructions: 1,658,997,966
Info Simulated MIPS : 781.2

Provided that a processor does not halt during a simulation, then the simulation ran faster
than real time if simulated MIPS exceeds nominal MIPS, and slower than real time if
nominal MIPS exceeds simulated MIPS.

When optimizing an application, you should be looking at and minimizing simulated
time. When optimizing a model for efficiency, you should be looking at elapsed time.

10.3 Passing arguments into application programs
When running a simulation it is often useful to be able to pass arguments into the main()
of the application running on the simulated processor.

Take a copy of the example

> cp -r $IMPERAS_HOME/Examples/SimulationControl/passingArgvIntoApplications .
> cd passingArgvIntoApplications

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 36 of 114

And examine the application file application/application.c:

int main(int argc, char **argv) {
 char *str = (argc >= 2) ? "(Got an Arg)" : "()" ;
 int num = (argc >= 2) ? atoi(argv[1]) : 10; // assume one numerical argument
 // and a default of 10 if not set.
 printf("Passing argument into application. %s num(%d)\n", str, num);
 return 0;
}

This shows that the application is expecting and testing for arguments to be passed into it.

If we run without passing in any arguments, as performed in the standard script, we get:

> ./example.sh

OVPsim started: Tue Jan 5 13:53:17 2016

Passing argument into application. (no args) num(10)

OVPsim finished: Tue Jan 5 13:53:17 2016

We can pass arguments from the simulator command line to the application argv with the
simulator's --argv command line argument.

Any arguments on the example.sh command line are passed to the harness executable
command line in the script, so we can add additional arguments to the harness as shown:

> ./example.sh --argv 21

OVPsim started: Tue Jan 5 13:53:17 2016

Passing argument into application. (Got an Arg) num(21)

OVPsim finished: Tue Jan 5 13:53:17 2016

Two important things to note:

• The --argv argument MUST BE THE LAST SIMULATOR ARGUMENT ON
THE COMMAND LINE as all arguments following it are passed down to all the
processors applications without further processing

• The semihost libraries for some processors do not support this feature
 (most do support this feature)

10.4 Use of debugging options
There are many different standard debugging options and they are discussed in detail in
the various provided debugger documents.

There are options related to GDB, for example:

> harness.exe --help | grep gdb
 --debugprocessor -p processor Select processor to attach gdb
 --gdbcommandfile strings GDB will run this startup script. e.g..
des/cpu1=gdb.cmd

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 37 of 114

 --gdbconsole [platform] Pop up gdb(s) in console window(s)
 --gdbegui [platform] Start gdb debug in Eclipse (eGui)
 --gdbflags strings Pass additional flags to a gdb e.g.
des/cpu1=special_flag
 --gdbinit strings Pass a file to the gdb to execute
before the prompt is displayed
 --gdbpath strings Set the gdb path for a processor. e.g.
des/cpu1=/usr/bin/or1k/gdb

and MPD (these are only available in the Imperas simulator, not OVPsim):

> harness.exe --help | grep mpd
 --mpdconsole [platform] Pop up mpd in a console window
 --mpdegui [platform] Start MPD debug in eGui (Eclipse)

and eGui:

 --eguioptions string Pass these options onto the command
line of GUI when started
 --eguicommands string Pass these commands to the GUI at startup

Please use the --help option on your harness or one of the simulators or look in the
Control File User Guide.

For more information on tracing, please see the section on tracing below.

10.5 Adding harness specific command line options
Often you want to add your own arguments to control a simulation, setting options,
providing filenames, etc.

It is easy to use the standard argument parser and to augment it with your own arguments
and use them in your harness.

NOTE
It is recommended that all new arguments are added using only lower case characters, for
example add an argument as ‘--mynewargument’ rather than using ‘--myNewArgument’.
Although upper case characters can be used they are converted internally to lower case to

prevent problems when moving between different host machine operating systems.

Take a local copy to edit:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/addingNewCommandLineArguments .
> cd addingNewCommandLineArguments

If we look at harness/harness.c we see we added some storage to hold the values of our
new arguments:

struct optionsS {
 Bool myarg;
 const char* newString;

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 38 of 114

} options = {
 .myarg = 0,
 .newString = NULL,
};

We add the new arguments to the cmdParser function using calls to opCmdParserAdd to
define them:

static void cmdParser(optCmdParserP parser) {
 opCmdParserAdd(parser, "myarg" , "m", "bool", "myargs group" ,
 OP_FT_BOOLVAL , &options.myarg,
 "This is my description [default:
0]",
 OP_AC_ALL, 0, 0);
 opCmdParserAdd(parser, "newstring", 0 , "string", "myargs group" ,
 OP_FT_STRINGVAL ,
&options.newString,
 "New String",
 OP_AC_ALL, 0, 0);
}

and we have defined a bool argument --myarg, with a short version --m, and will put its
value into options.myarg.

We have also declared a string argument --newstring and will hold its value in
options.newString.

They have both been given the group name 'myargs group' for grouping in the --help
listing.

We have added a new function to check the status of the arguments:

static void cmdParserCheck(optCmdParserP parser) {
 if (!opCmdArgUsed (parser,"program")) {
 opMessage("F", HARNESS_NAME, "Argument '--program' must be specified");
 }
 if (options.myarg) {
 opMessage("I", HARNESS_NAME, "Argument 'myarg' selected (%d)",
options.myarg);
 }
 if (options.newstring) {
 opMessage("I", HARNESS_NAME, "Argument 'newstring' selected (\"%s\")",
options.newString);
 }
}

and to print out their status. Note that we are also now forcing the rule that the --program
argument must be specified.

And in the main function we now have the following that relates to the command line
parser:

 optCmdParserP parser = opCmdParserNew(HARNESS_NAME, OP_AC_ALL);
 cmdParser(parser);
 if (!opCmdParseArgs(parser, argc, argv)) {

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 39 of 114

 opMessage("E", HARNESS_NAME, "Command line parse incomplete");
 }
 cmdParserCheck(parser);

If we now run:

./example.sh

We see nothing from the arguments as the script is applying the minimum argument
--program that we require, but if we just invoke the harness executable:

> harness/harness.$IMPERAS_ARCH.exe

we get:

Fatal (harness) Argument '--program' must be specified

and if we run:

> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf
\
 -m -newstring "my new string is here..."

Info (harness) Argument 'myarg' specified
Info (harness) Argument 'newstring' specified ("my new string is here...")
...

Of course, now that the values are in C in your harness, you can use them as controlling
parameters on modules, processors etc.

10.5.1 Argument Conflicts
The command line parser module checks for duplicate commands at runtime. This
mechanism will detect if the user’s argument names clash with each other or with built in
arguments. If this happens and you get the error message as shown below indicating you
need to use a different name.

Error (CM_DF) This program is trying to install command line flag 'verbose'
which is already in use.
Please study the list below then select another name.
 flag short argument description
…

10.6 Other useful command line options
Some of the most useful command line options not already discussed are listed here:

There are a list of 'show' commands used to give visibility of the contents of a design, the
commands available, and the contents of a library :

To show design information of the loaded design

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 40 of 114

 --showbuses [root] List all (static) bus connections
 --showdomains [root] List the (initial) state of each memory
domain

To show system, model and other parameters than can be changed in the system, on the
command line before the simulation start

 --showmodeloverrides [root] List overrides requested by models in
the platform
 --showoverrides [root] List all possible platform overrides
 --showsystemoverrides [root] List overrides in the platform provided
by the simulator

To show commands that are available in the design that can be called

 --showcommands [root] List commands that can be called with --
callcommand

To show system environment variables that may be set to control operations of the
simulator

 --showenvvars List all environment variables read by Imperas
products

To show a list of items in the VLNV library (set by the IMPERAS_VLNV environment
variable):

--showlibraryextensions Semihost and other intercept libraries
--showlibrary All models and platforms
--showlibrarymmcs Memory model components (caches)
--showlibrarymodules Modules
--showlibraryperipherals Peripherals
--showlibraryplatforms Platform executables
--showlibraryprocessors Processor models

To convert warnings to errors so that simulation cannot continue past a message at a
Warning level

--werror

To modify the interaction between the user and the simulation or between components in
the simulation

--quantum
--timeprecision
--wallclock, --wallclockfactor

To control how long the simulation will run

--finishafter, --finishtime

To automatically install a ctrl-C handler into the simulation platform

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 41 of 114

--stoponcontrolc

For complete information on these and other arguments please see the explanation in the
Control File User Guide.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 42 of 114

11 Writing your own harness.exe
As a more complete example, let’s walk through the code that we used to implement
harness.exe. We have provided it as an example, so you can understand it and also so you
can copy it and use it as the basis for other bespoke harnesses.

> cp -r $IMPERAS_HOME/Examples/SimulationControl/dynamicHarness .
> cd dynamicHarness

The module and application are the same as those used in the simpleHarness example, so
we will just look here at the file harness/harness.c.

The example uses the first style of a test harness as described in section 8 in that it does
not use an attrsTable and makes OP calls from the main function.

It adds commands to the command line parser to allow user selection of a module shared
object either from a VLNV path or from a direct path.

So here is the full file, interspersed with some explanations of some of the more pertinent
sections.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "op/op.h"

Declare some type definitions to hold the data:

typedef struct vlnvSpecS {
 const char *vendor;
 const char *library;
 const char *name;
 const char *version;
} vlnvSpec;

typedef struct modelSpecS {
 vlnvSpec vlnv;
 const char *file;
 const char *variant;
 const char *endian;
 optArgStringListP parameters;
 Uns32 instcount;
} modelSpec;

Provide some extra help information in a string:

const char *helpMessage =
 "To see all command line options:\n"
 " harness.exe --help\n"
 "To see the list of models:\n"
 " harness.exe --showlibrarymodules\n"
 "To execute a platform from the library:\n"

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 43 of 114

 " harness.exe --modulevendor <vendor> --modulelibrary <library> --
modulename <name> "
 " --version <version>\n"
 "To execute a platform from a local directory:\n"
 " harness.exe --modulefile <file>\n"
 "To see the parameters that can be overridden platform:\n"
 " harness.exe --modulefile <file> --showoverrides \n"
 "To trace instructions:\n"
 " --trace\n"
 "To use the graphical debugger:\n"
 " --mpdegui\n"
 "To see more output:\n"
 " --verbose\n"
 "Examples:\n"
 " harness.exe --modulevendor arm.ovpworld.org --modulename ARMv8-A-
FMv1\n"
 "or harness.exe --modulefile mymodule." IMPERAS_SHRSUF "\n";

Provide a function used when we have any errors and we want to end the simulation:

static void exitWithErrors(void) {
 opSessionExit(1);
}

Provide a function to test for an environment variable being present and if not increment
an error variable:

static Uns32 errors = 0;

static void reportEnvironment(const char *program, const char *variable) {
 if(!getenv(variable)) {
 printf("%s: Please set environment variable '%s'\n", program, variable);
 errors++;
 }
}

Provide a function that will check for all the required environment variables and exit if
any are not found:

static void checkEnvironment(const char *program) {
 reportEnvironment(program, "IMPERAS_HOME");
 reportEnvironment(program, "IMPERAS_VLNV");
 if(errors) {
 exit(1);
 }
}

The main function:

int main(int argc, const char **argv) {

 checkEnvironment(argv[0]);

 opSessionInit(OP_VERSION);

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 44 of 114

Use the standard command parser with the simulation and library options:

 optCmdParserP parser = opCmdParserNew(argv[0], OP_AC_SIM | OP_AC_LIB);

provide an extra user message to the command line parser that will be appended at the
end of the –help output:

 opCmdUsageMessage(parser, helpMessage);

initialize our data structures to default values:

 modelSpec model = { .vlnv={0, "module", 0, "1.0"}, .file=0,
.parameters=NULL, .instcount=1};

add extra command line arguments, defining their type, values, groups, etc.:

 opCmdParserAdd (parser, "modulevendor", "V", 0, " harness",
OP_FT_STRINGVAL, \
 &model.vlnv.vendor, "Module vendor", OP_AC_ALL,
0, 0);
 opCmdParserAdd (parser, "modulelibrary", "L", 0, " harness",
OP_FT_STRINGVAL, \
 &model.vlnv.library, "Module library (not usually required)", OP_AC_ALL,
0, 0);
 opCmdParserAdd (parser, "modulename", "N", 0, " harness",
OP_FT_STRINGVAL, \
 &model.vlnv.name, "Module name", OP_AC_ALL,
0, 0);
 opCmdParserAdd (parser, "moduleversion", "S", 0, " harness",
OP_FT_STRINGVAL, \
 &model.vlnv.version, "Module version (not usually required)", OP_AC_ALL,
0, 0);
 opCmdParserAdd (parser, "modulefile", 0, 0, " harness",
OP_FT_STRINGVAL, \
 &model.file, "Path to a a module" , OP_AC_ALL,
0, 0);
 opCmdParserAdd (parser, "parameter", 0, 0, " harness",
OP_FT_PAIRLIST, \
 &model.parameters, "Module model parameters" , OP_AC_ALL,
0, 0);
 opCmdParserAdd (parser, "instancecount", 0, 0, "harness",
OP_FT_UNS32VAL, \
 &model.instcount, "Number of instances of the module" ,
OP_AC_ALL, 0, 0);

parse the command line, returning with errors if needed:

 Bool ok = opCmdParseArgs(parser, argc, argv);
 if(!ok) {
 exitWithErrors();
 }

 const char *path;

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 45 of 114

generate an error message if we don't have either --modulename or --modulefile specified
on the command line:

 if(!model.vlnv.name && !model.file) {
 opMessage("E", "HAR_NPRC", "No module was specified. Suggest --
modulename <module> "
 "or --modulefile <filename>");
 opPrintf("%s", helpMessage);
 exitWithErrors();
 }

process the arguments to set the path to the modules directory path using either the VLNV
or the direct path from --modulefile

 if(model.vlnv.name) {
 path = opVLNVString(
 0, // use the default VLNV path
 model.vlnv.vendor,
 model.vlnv.library,
 model.vlnv.name,
 model.vlnv.version,
 OP_MODULE,
 1 // report errors
);
 if(!path) {
 exitWithErrors();
 }

 } else {
 path = model.file;
 }

create a new root module (without an attrsTable by specifying the first argument is 0)

 optModuleP mi = opRootModuleNew(0, 0, 0);

and then iterate to create the number of instances specified on the command line by the --
instancecount parameter

 // Create number of instances of the module specified on the command line
 Uns32 i;
 for (i = 0; i < model.instcount; i++) {

For each iteration create a unique name for the instance

 // Create unique name for this instance
 char instName[16];
 snprintf(instName, sizeof(instName), "m%d", i);

If any --parameter options were specified on the command line, create a unique
parameter list with a copy of them for this instance

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 46 of 114

 // Create parameter list with any parameters specified on command line
 // (Note: unique parameter list required for each opModuleNew call)
 optParamP paramList = NULL;
 optArgStringListP p;
 for (p = model.parameters; p; p= p->next) {
 paramList = opParamStringSet(paramList, p->name, p->value);
 }

and create each instance of the module into the root model mi:

 if (!opModuleNew(mi, path, instName, 0, paramList)) {
 exitWithErrors();
 }
 }

then we simulate and terminate to clean up once complete:

 opRootModuleSimulate(mi);
 opSessionTerminate();
 exit(0);
}

Quite simple really... and we can compile and run the examples with the provided script
or pass the --help argument to see the help using:

> ./example.sh
> ./example.sh --help

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 47 of 114

12 Monitoring / Tracing during simulation
There are many different ways to monitor the progress of a simulation. You could
monitor the instruction execution of the processors, your could monitor writes to
peripherals, you could monitor changes to nets, and with the Imperas Verification,
Analysis and Profiling (VAP) tools you could monitor higher level items such as function
calls/returns, operating system tasks/schedule switches, user application creation and
deletion, and more.

In this chapter we will cover the built-in simulator trace capabilities and what can easily
be added in a harness / testbench using the OP API. We leave the advanced usage and
VAP tools to other manuals.

12.1 Processor Model Tracing Operations
Tracing may be enabled for all or individual processors. By enabling tracing for a
processor instance instruction-by-instruction output for that processor instance is
generated using the disassembler built in to the processor model.

The trace change mode writes the value of all modified registers when instruction tracing
is enabled. Changed values are detected by maintaining a record of all values readable
using the register access API at the completion of every instruction.

The register tracing ‘before’ dumps the current processor register state, again using the
model-specific register dump format, when tracing is enabled. The order of events for
each instruction is:

1. The register state of the processor is dumped;
2. The instruction about to be executed is shown in disassembled form;
3. The instruction is executed.

The register tracing ‘after’ dumps the current processor register state, again using the
model-specific register dump format, when tracing is enabled. The order of events for
each instruction is:

1. The instruction about to be executed is shown in disassembled form;
2. The instruction is executed;
3. The register state of the processor is dumped.

To keep instruction trace information separate from other simulator output, use
-tracefile <filename>.

12.1.1 Tracing control on the command line
The following command line arguments are used to control the tracing that is output
when each instruction is executed.

--trace -t [processor] Trace instructions as they are executed
--traceafter <number> Start tracing instructions after this many have
executed
--tracechange [processor] Trace changed registers

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 48 of 114

--tracecount <number> Trace this number of instructions
--tracefile <filename> Direct all trace output to this
file
--tracepse [pse] Trace instructions executed by this peripheral
model
--traceregs [processor] Dump registers after each instruction is
executed
--traceregsafter [processor] Dump registers after each instruction is
executed
--traceregsbefore [processor] Dump registers before each instruction
is executed
--traceshareddata [processor] Trace the use of vmirtWriteListeners
--traceshowicount [processor] Show instruction count with each instruction

The following turns on the trace buffer which is a special instruction trace mode provided
to limit the output to the last N instructions executed before the buffer is flushed or the
simulation terminates.

--tracebuffer [processor] Enable the trace buffer

It is also possible to enable further tracing of the processor and peripheral models in the
simulation by enabling levels of diagnostics on the models.

for processor models:
--cpuflags [processor] CPU processor model specific trace flags

for peripheral models:
--modeldiags [pse] Turn on peripheral type specific diagnostics

12.1.2 Tracing control with CPU model parameters
The following CPU model parameters can be set both on the processor instance and on
the command line. It is recommended, for flexibility, that unless specifically required
these are used from the command line and not ‘fixed’ in the processor instance in the
module.

To control the tracing that is output when each instruction is executed:

OP_FP_TRACE
OP_FP_TRACEREGSAFTER
OP_FP_TRACEREGSBEFORE
OP_FP_TRACESHOWICOUNT
OP_FP_TRACESTART
OP_FP_TRACECHANGE
OP_FP_TRACECOUNT

The following illustrates how these model parameters can be applied within a harness to a
processor instance named ‘cpu1’ within a module named ‘u1’ to control tracing of the
instruction execution.

 opParamBoolOverride(mi, “u1/cpu1/” OP_FP_TRACE, 1); // enable
instruction tracing
 opParamBoolOverride(mi, “u1/cpu1/” OP_FP_TRACESHOWICOUNT, 1); // display
instruction count

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 49 of 114

 opParamUns64Override(mi, “u1/cpu1/” OP_FP_TRACESTART, 2000); // start
after 2000 instructions

This is specific to processor model testing.

OP_FP_TRACENOANNUL

This parameter turns on tracing of the shared-data interface used by processors,
peripherals and platforms to exchange data without using platform features such as buses
and nets.

OP_FP_TRACESHAREDDATA

The following turns on the trace buffer which is a special instruction trace mode provided
to limit the output to the last N instructions executed before the buffer is flushed or the
simulation terminates.

OP_FP_TRACEBUFFER

12.1.3 Tracing control with OP functions
The type of tracing required can be configured using the processor instance parameters or
on the command line and then controlled from the C code of the harness.

In general, if you want a setting to be permanent, use a parameter, if temporary, use
--override on the command line, and if you want to turn it on and off during simulation,
use the API.

The instructions that are traced can be selected between instruction numbers using the
opProcessorTraceOnAfter and opProcessorTraceOffAfter functions.

The trace buffer can be controlled using the opProcessorTraceBufferEnable and
opProcessorTraceBufferDisable functions and a trace of the last 512 instructions can be
output at any time, after the trace buffer is enabled, using opProcessorTraceBufferDump.

12.2 Processor Instruction Tracing Example
The control of instruction tracing is illustrated in the example provided as
Examples/SimulationControl/controllingTracing which shows both the control by
configuring the processor instance and also using the command line.

Take a copy of the example.

> cp -r $IMPERAS_HOME/Examples/SimulationControl/controllingTracing .
> cd controllingTracing

The harness includes a command line parser that has one additional command
‘configurecpuinstance’ to allow the control of whether to apply the overrides to control

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 50 of 114

tracing on the processor instance. This allows the same example to be used to show
tracing enabled in the harness and using the standard command line arguments.

 opCmdParserAdd(parser, "configurecpuinstance", 0, "bool", "user",
OP_FT_BOOLVAL,
 &options.configurecpuinstance,
 "Add configuration for trace to CPU instance",
 OP_AC_ALL, 0, 0);

When this argument is set, the processor instance is configured to enable instruction
tracing and register change tracing. The current instruction count is included in the
instruction tracing output. The tracing is controlled so that it does not start until
instruction 2000 is executed.

This technique allows you to execute a large number of instructions at high speed, then
focus on a few instructions of interest which, with tracing turned on will execute less
quickly.

 // use a custom argument to control if we add to the processor instance
configuration
 if (options.configurecpuinstance) {
 opMessage("I", HARNESS_NAME, "Adding trace overrides to cpu instance
%s",
 MODULE_INSTANCE "/" CPU_INSTANCE);
 // enabling instruction tracing
 opParamBoolOverride(mi, MODULE_INSTANCE "/" CPU_INSTANCE "/"
OP_FP_TRACE, 1);
 // display the instruction count
 opParamBoolOverride(mi, MODULE_INSTANCE "/" CPU_INSTANCE "/"

OP_FP_TRACESHOWICOUNT, 1);
 // start tracing after 2000 instructions
 opParamUns64Override(mi, MODULE_INSTANCE "/" CPU_INSTANCE "/"

OP_FP_TRACESTART, 2000); }

Compile the application, module and harness

> make -C application
> make -C module
> make -C harness

The harness can be executed in two ways, first the processor instance is configured to
enable tracing after 2000 instructions have been executed

> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf \
 --
configurecpuinstance

This generates the following trace output

Info (top) Adding trace overrides to cpu instance u1/cpu1
Hello world application
Info 2000: 'u1/cpu1', ADDRESS(___sclose+20): l.lwz r3,0x0(r3)

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 51 of 114

Info 2001: 'u1/cpu1', ADDRESS(__close_r): l.addi r1,r1,ADDRESS
Info 2002: 'u1/cpu1', ADDRESS(__close_r+4): l.sw 0x4(r1),r2
…
Info 2104: 'u1/cpu1', ADDRESS(_exit+40): l.ori r3,r10,0x0
Info 2105: 'u1/cpu1', ADDRESS(__exit): *** INTERCEPT *** (__exit)

And secondly, the standard command line arguments are used to perform the same
tracing

> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf \
 --trace \
--traceshowicount \
--traceafter 2000

This produces the same trace output

Hello world application
Info 2000: 'u1/cpu1', ADDRESS(___sclose+20): l.lwz r3,0x0(r3)
Info 2001: 'u1/cpu1', ADDRESS(__close_r): l.addi r1,r1,ADDRESS
Info 2002: 'u1/cpu1', ADDRESS(__close_r+4): l.sw 0x4(r1),r2
…
Info 2104: 'u1/cpu1', ADDRESS(_exit+40): l.ori r3,r10,0x0
Info 2105: 'u1/cpu1', ADDRESS(__exit): *** INTERCEPT *** (__exit)

The compilation and execution of the harness in both manners shown above is also
provided in the example script, example.sh(.bat)

12.3 Peripheral model parameters
A peripheral model can be configured from the harness or on the command line using
overrides.

12.3.1 Obtaining parameter lists (using --showoverrides)
The available configuration parameters for a peripheral model can be obtained from

1) examination of the peripheral model source code or documentation
2) by running the platform and enabling the parameter overrides output

The following shows an example of obtaining the list of available parameters from a
module using the --showoverrides argument.

We will use the Example we have seen previously described in the document iGen
Platform and Module Creation User Guide, simpleCpuMemoryUart

> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/simpleCpuMemoryUart .
> cd simpleCpuMemoryUart
> make -C application
> make -C module
> harness.exe --modulefile module/model.so --showoverrides

which when executed provides the following output including the list of parameter
configuration overrides (we are only showing those associated with the peripheral model
periph0

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 52 of 114

…
OVPsim started: Wed Jan 13 09:28:59 2016
...
--override simpleCpuMemoryUart/periph0/diagnosticlevel=0 (Uns32) (default=0) model
diagnostics
--override simpleCpuMemoryUart/periph0/trace=F (Boolean) (default=F) Enable instruction
trace
--override simpleCpuMemoryUart/periph0/enabletoolspse=F (Boolean) (default=F) Imperas VAP
tools
--override simpleCpuMemoryUart/periph0/directReadWrite=F (Boolean) (default=F) Enable the
use of the DirectRead and DirectWrite connections
--override simpleCpuMemoryUart/periph0/fifoSize=0 (Uns32) (default=0) Size of fifos
(default 128)
--override simpleCpuMemoryUart/periph0/moduleClkFreq=0 (Uns32) (default=0) Frequency (in
hertz) of module clock used in baud rate calculation (default=10.2 MHz)
--override simpleCpuMemoryUart/periph0/console=F (Boolean) (default=F) If specified, port
number is ignored, and a console pops up automatically
--override simpleCpuMemoryUart/periph0/portnum=0 (Uns32) (default=0) If set, listen on
this port. If set to zero, allocate a port from the pool and listen on that.
--override simpleCpuMemoryUart/periph0/infile=(null) (String) (default=(null)) Name of
file to use for device source
--override simpleCpuMemoryUart/periph0/outfile=uartTTY0.log (String) (default=(null)) Name
of file to write device output
--override simpleCpuMemoryUart/periph0/portFile=(null) (String) (default=(null)) If
portnum was specified as zero, write the port number to this file when it's known
--override simpleCpuMemoryUart/periph0/log=F (Boolean) (default=F) If specified, serial
output will go to simulator log
--override simpleCpuMemoryUart/periph0/finishOnDisconnect=F (Boolean) (default=F) If set,
disconnecting the port will cause the simulation to finish
--override simpleCpuMemoryUart/periph0/connectnonblocking=F (Boolean) (default=F) If set,
simulation can begin before the connection is made
--override simpleCpuMemoryUart/periph0/record=(null) (String) (default=(null)) Record
external events into this file
--override simpleCpuMemoryUart/periph0/replay=(null) (String) (default=(null)) Replay
external events from this file
...

12.3.2 Configuration
A peripheral model in the platform may operate in several modes and you may wish to
change the mode of operation in the harness.

In the previous section we obtained the list of all the parameters that can be used to
configure and/or modify the behaviour of the peripheral model.

Two of those parameters, we will look at, are portnum and connectnonblocking which
controls the opening of a port for an external connection and how the UART peripheral
model starts up respectively. portnum, when set, will control the UART peripheral
opening of a port and connectnonblocking will control if it waits for a connection to be
made on the port before allowing the simulation to continue i.e. by default the simulation
is blocked until the port connection is made.

First we run the example and add the portnum parameter to control the opening of a port
for external connection of a terminal, we should see that the simulation waits for a
connection to be made

> ./example.sh --override simpleCpuMemoryUart/periph0/portnum=1234

OVPsim started: Wed Jan 13 09:50:22 2016

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 53 of 114

Info (PSE_SER) 'simpleCpuMemoryUart/periph0' Waiting for connection on port 1234

The simulation is now waiting for a connection, and will not move forward until a
connection is made.

In another terminal (on Linux) we can make the connection

> telnet localhost 1234
Trying 127.0.0.1...

In the simulator terminal we see that the connection is made and the simulation continues
to completion

Info (PSE_SER) 'simpleCpuMemoryUart/periph0' Connected to 1234
Initializing KinetisUART
Writing to uart - see log file

OVPsim finished: Wed Jan 13 09:53:07 2016

The script also outputs the UART logfile that is generated

Hello UART0 world

And in the telnet terminal we see that the UART has connected and sent a message prior
to the simulation completing and closing the port.

Connected to localhost.
Escape character is '^]'.
Hello UART0 world

Connection closed by foreign host.

Now we also add the connectnonblocking parameter

> ./example.sh --override simpleCpuMemoryUart/periph0/portnum=1234 \
 --override simpleCpuMemoryUart/periph0/connectnonblocking=1

the simulation continues (until completion) even if a connection is not made while the
UART model is listening to see if a connection is made in the future.

OVPsim started: Wed Jan 13 10:02:21 2016

Info (PSE_SER) 'harness/simpleCpuMemoryUart/periph0' Listening for connection on
port 1234
Initializing KinetisUART
Writing to uart - see log file

OVPsim finished: Wed Jan 13 10:02:21 2016

The script also outputs the UART logfile that is generated

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 54 of 114

Hello UART0 world

12.3.3 Diagnostics
When there is one or more peripheral model in the platform definition it is often useful to
be able to turn on diagnostics to see

1) the internal behavior of the peripheral
2) accesses to the peripheral registers

The actual level of diagnostics that are present in a peripheral model is determined and
created by the peripheral model designer.

Typically there are three levels of diagnostics designed into the peripheral (PSE) model
that can be set to provide information with further diagnostics enabled for peripheral
model native code. Please see the Peripheral Modeling User Guide for further
information on the diagnostic levels and their meaning.

12.3.3.1 On a single Instance
The diagnostics can be set for an individual peripheral model using a model parameter,
diagnosticlevel, as we saw previously when we displayed the available configuration
parameters.

--override simpleCpuMemoryUart/periph0/diagnosticlevel=0 (Uns32) model
diagnostics

so if we run the example we see additional diagnostic information from the UART
model:

> ./example.sh --override simpleCpuMemoryUart/periph0/diagnosticlevel=2

Info (UART_UIS) simpleCpuMemoryUart/periph0: Uart initialized in serial channel
mode
Initializing KinetisUART
Info (UART_BRC) simpleCpuMemoryUart/periph0: Baud rate changed to 19921
Info (UART_BRC) simpleCpuMemoryUart/periph0: Baud rate changed to 19577
Info (UART_TFT) simpleCpuMemoryUart/periph0: Transmitter fifo threshold set to 1
Info (UART_RFT) simpleCpuMemoryUart/periph0: Receiver fifo threshold set to 1
Info (UART_UW) simpleCpuMemoryUart/periph0: Write to Data register: data=0x0d ('
')
Writing to uart - see log file

Info (UART_UW) simpleCpuMemoryUart/periph0: Write to Data register: data=0x48
('H')
Info (UART_UW) simpleCpuMemoryUart/periph0: Write to Data register: data=0x65
('e')
…
Info (UART_UW) simpleCpuMemoryUart/periph0: Write to Data register: data=0x64
('d')
…

Overrides can accept wildcards to cause them to be applied to several instances with
similar names. For instance thing/uart*/modeldiags.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 55 of 114

12.3.3.2 On all instances in a design
The diagnostic level for all models in the simulation can be set using the simulator
argument --modeldiags

> ./example.sh --modeldiags 2

Info (UART_UIS) simpleCpuMemoryUart/periph0: Uart initialized in serial channel
mode
Initializing KinetisUART
Info (UART_BRC) simpleCpuMemoryUart/periph0: Baud rate changed to 19921
Info (UART_BRC) simpleCpuMemoryUart/periph0: Baud rate changed to 19577
Info (UART_TFT) simpleCpuMemoryUart/periph0: Transmitter fifo threshold set to 1
Info (UART_RFT) simpleCpuMemoryUart/periph0: Receiver fifo threshold set to 1
Info (UART_UW) simpleCpuMemoryUart/periph0: Write to Data register: data=0x0d ('
')
Writing to uart - see log file

Info (UART_UW) simpleCpuMemoryUart/periph0: Write to Data register: data=0x48
('H')
Info (UART_UW) simpleCpuMemoryUart/periph0: Write to Data register: data=0x65
('e')
…
Info (UART_UW) simpleCpuMemoryUart/periph0: Write to Data register: data=0x6c
('l')
Info (UART_UW) simpleCpuMemoryUart/periph0: Write to Data register: data=0x64
('d')
…

12.4 Adding your own monitors in a harness
Monitors are different from watchpoints. Monitors are used by tools to monitor a
platform without affecting its behavior. They should not be used to stop the simulator.

Watchpoints are used to stop the simulator when particular conditions are met. They are
used to implement a debugger.

Monitors are added as callback functions using the following sets of functions. The sets
differ in their treatment of the address arguments.

On processor instances

opProcessorReadMonitorAdd
opProcessorWriteMonitorAdd
opProcessorFetchMonitorAdd

The address parameters refer to virtual addresses on the processor’s data domain.

On bus instances
opBusReadMonitorAdd
opBusWriteMonitorAdd
opBusFetchMonitorAdd

The address parameters refer to physical addresses on the bus. Zero is the lowest address
on the bus in whichever device on the bus it is decoded at zero (if one exists).

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 56 of 114

On memory instances
opMemoryReadMonitorAdd
opMemoryWriteMonitorAdd
opMemoryFetchMonitorAdd

The address parameters refer to physical addresses in the memory. Zero is the first
address in the memory, no matter what address the memory is decoded at.

These functions all utilize a callback of type OP_MONITOR_FN and are used for
monitoring accesses in the system. More than one monitor can be applied to fully or
partially overlapping regions; they operate independently. This allows tools to be written
to monitor and report different aspects of a platform’s operation. The tools can be used
simultaneously without interference.

The simulator will call all callbacks but does not guarantee a particular order.

On net instances

opNetWriteMonitorAdd

This function utilizes a callback of type OP_NET_WRITE_FN and is used for monitoring
nets being written in the system.

The following sections show examples of some of these callbacks being used.

12.4.1 Monitoring nets with callbacks

This example is based on the modules and applications described in the example above
PlatformConstruction/simpleHierarchy. It is a design with two UARTs connected with
nets driven by two processors.

We will add harness.c to control it. The harness is based on the harness.c in
SimulationControl/minimalHarness.

This example will show the use of opNetWriteMonitorAdd. It will also show use of some
OP introspection functions.

First, take a copy of the example:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/monitoringNets .
> cd monitoringNets
> ls harness
harness.c Makefile

12.4.1.1 Finding nets and declaring net callbacks

In the harness we define one function to be called when the net changes:

static OP_NET_WRITE_FN(netCallback) {

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 57 of 114

 optNetP net = userData;
 opPrintf("netCallback(%s) = %c\n", opObjectName(net), value);
}

OP_NET_WRITE_FN is a macro that declares the callback function we are providing. It
gives us the value that has been written to the net, and the userData we will pass in when
registering the callback on the net. In our case the userData is a pointer to the net.

We need another function to be called before simulation starts to find the nets and register
the callbacks:

static void monitorNets(optModuleP mi) {
 optModuleP mod;
 if (!(mod = opObjectByName (mi, MODULE_INSTANCE, OP_MODULE_EN).Module)) {
 opMessage ("F", "HN_MNE", "Can not find module(%s)",
 MODULE_INSTANCE);
 }

 optNetP net = 0;
 while ((net = opNetNext(mod, net))) {
 opPrintf ("monitorNets(%s)\n", opObjectHierName(net));
 opNetWriteMonitorAdd (net, netCallback, net);
 }
}

This returns a pointer to the module instance, then scans for all nets within it. For each
found net it prints a message, and then registers a callback which will be called whenever
the net is written.

Nets passing through module hierarchy are bonded together (flattened) by the simulator
to make propagation more efficient at run-time. Net monitoring callbacks have the same
effect wherever they are connected to a net.

12.4.1.2 Simulating with net callbacks

To test the callbacks:

> ./example.sh
...
OVPsim started: Wed Jan 6 18:56:21 2016

monitorNets(simpleHierarchy/write0to1)
monitorNets(simpleHierarchy/write1to0)

[application1] Initializing KinetisUART
[application1] Reading from uart

[application0] Initializing KinetisUART
[application0] Writing to uart

netCallback(write0to1) = H
netCallback(write0to1) = e
netCallback(write0to1) = l
netCallback(write0to1) = l
netCallback(write0to1) = o
netCallback(write0to1) =

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 58 of 114

netCallback(write0to1) = U
netCallback(write0to1) = A
netCallback(write0to1) = R
netCallback(write0to1) = T
netCallback(write0to1) =
netCallback(write0to1) = w
netCallback(write0to1) = o
netCallback(write0to1) = r
netCallback(write0to1) = l
netCallback(write0to1) = d
netCallback(write0to1) =

Hello UART world
netCallback(write0to1) =

netCallback(write0to1) = x
[application1] Read termination char(x) from uart

OVPsim finished: Wed Jan 6 18:56:22 2016

12.4.1.3 monitoringNets/harness/harness.c full listing

#include <string.h>
#include <stdlib.h>

#include "op/op.h"

#define HARNESS_NAME "harness"
#define MODULE_DIR "topmodule"
#define MODULE_INSTANCE "simpleHierarchy"

static OP_NET_WRITE_FN(netCallback) {
 optNetP net = userData;
 opPrintf("netCallback(%s) = %c\n", opObjectName(net), value);
}

static void monitorNets(optModuleP mi) {
 optModuleP mod;
 if (!(mod = opObjectByName (mi, MODULE_INSTANCE, OP_MODULE_EN).Module)) {
 opMessage ("F", "HN_MNE", "Can not find module(%s)", MODULE_INSTANCE);
 }

 optNetP net = 0;
 while ((net = opNetNext(mod, net))) {
 opPrintf ("monitorNets(%s)\n", opObjectHierName(net));
 opNetWriteMonitorAdd(net, netCallback, net);
 }
}

int main(int argc, const char *argv[]) {
 opSessionInit(OP_VERSION);

 opCmdParseStd (HARNESS_NAME, OP_AC_ALL, argc, argv);

 optModuleP mi = opRootModuleNew(0, 0, 0);
 opModuleNew(mi, MODULE_DIR, MODULE_INSTANCE, 0, 0);

 monitorNets(mi);

 opRootModuleSimulate(mi);

 opSessionTerminate();

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 59 of 114

 return 0;
}

12.4.2 Monitoring Bus / Memory / Processor Address accesses using

Callbacks

This example is based on the modules and applications described in the previous example
PlatformConstruction/simpleHierarchy. It is a design with two UARTs connected with
nets driven by two processors.

We will add a harness.c to control it. The harness is based on the harness.c in
SimulationControl/minimalHarness.

This example will show the use of opBusFetchMonitorAdd, opBusReadMonitorAdd and
opBusWriteMonitorAdd to set callbacks across the complete bus address space. The
equivalent memory watchpoint functions are also used to watch memory accesses and the
equivalent processor callbacks could be used to monitor specific processor accesses.

In this example we have a single processor with a single bus connecting to a memory, so
in this case the three different types of monitors will likely show the same information. In
a more complex design the different monitor types can be chosen to provide the specific
information required.

The example will also make use of some OP introspection functions.

Take a copy of the example:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/monitoringAccesses .
> cd monitoringAccesses
> ls harness
harness.c Makefile

12.4.2.1 Find buses and memories and attach callbacks

We define a function to be called back when an access we are interested in is triggered.
The function will print the information:

static OP_MONITOR_FN(monitorCallback) {
 opMessage ("I", PREFIX "_MT",
 "Monitor triggered: "
 "callback '%s': processor '%s' : "
 "type '%s' : bytes %u : "
 "address Physical 0x" FMT_A0Nx" Virtual 0x" FMT_A0Nx,
 __FUNCTION__,
 processor ? opObjectName(processor) : "artifact", // if no processor
this is an artifact access
 (const char*)userData,
 bytes,
 addr,
 VA
);

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 60 of 114

}

OP_MONITOR_FN is a macro that declares the callback function we are providing. It
gives us all the information associated with the access for which we were notified, for
example the processor object, the physical and virtual address, the size etc. The userData
is set to a string indicating if this callback was registered on a bus or a memory.

The monitorBus function is shown below which iterates over objects of type bus found in
the module and installs a callback for any access. The monitorMemory function is similar
but iterates over object of type memory found in the module.:

static void monitorBus(optModuleP mi) {

 optModuleP mod;

 if (!(mod = opObjectByName (mi, MODULE_INSTANCE, OP_MODULE_EN).Module)) {
 opMessage ("F", PREFIX "_NFW", "Can not find module(%s)",
MODULE_INSTANCE);
 }

 // iterate across all buses found in module
 optBusP bus = 0;
 while ((bus = opBusNext(mod, bus))) {

 Addr max = MAX_ADDRESS;

 opMessage("I", PREFIX "_BM", "Add monitor for '%s' (0x" FMT_A0Nx " to
0x" FMT_A0Nx ")\n",
 opObjectHierName(bus), (Addr)0, max);

 if (options.busshow) {
 opBusShow(bus); // print the bus connections for each bus found
 }

 opBusFetchMonitorAdd(bus, 0, MIN_ADDRESS, max, monitorCallback, "bus-
fetch");
 opBusReadMonitorAdd (bus, 0, MIN_ADDRESS, max, monitorCallback, "bus-
read");
 opBusWriteMonitorAdd(bus, 0, MIN_ADDRESS, max, monitorCallback, "bus-
write");

 }
}

12.4.2.2 Running the example

> ./example.sh

Info (BUS_MON_BM) Add monitor for 'simpleHierarchy/mainBus' (0x0000000000000000 to
0x00000000ffffffff)
Info (BUS_MON_BM) Add monitor for 'simpleHierarchy/ram1' (0x0000000000000000 to
0x00000000ffffffff)
Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type
'bus-fetch' : bytes 4 : address Physical 0x0000000000000100 Virtual 0x0000000000000100
Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type
'memory-fetch' : bytes 4 : address Physical 0x0000000000000100 Virtual 0x0000000000000100
Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor 'cpu1' : type
'bus-fetch' : bytes 4 : address Physical 0x0000000000000104 Virtual 0x0000000000000104
…

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 61 of 114

On occasion you will see an artifact access being reported.

Info (BUS_MON_MT) Monitor triggered: callback 'monitorCallback': processor
'artifact' : type 'memory-write' : bytes 52 : address Physical
0x00000000ffffff3c Virtual 0x00000000ffffff3c

This is an access that is not a ‘real’ access by the processor but instead is an access being
performed by the simulator or a loaded library in the system to access a current value, for
example this could be the simulator pre-loading instructions for the code morphing
engine.

12.4.3 Adding a command to show module contents
In the previous example, to help us see what the design looks like, we added command
line options. The first command was --moduleshow which uses the opModuleShow
function to dump what the simulator sees in the design hierarchy. The second command
was --showbuses which uses opBusShow function to provide details of the bus
connections. The command –shownet <net name> shows where a net is connected.
The command –shownet (without an argument) shows where each net is connected.

The arguments are added to the standard command line parser, as was previously
illustrated in section 10.5 “Adding harness specific command line options”.

When the --moduleshow argument is used in the example no simulation is performed and
only the module information is generated

> ./example.sh --moduleshow
...
Module:
 hier : ""
 name : "(null)"
 path : "(null)"
 docNode :
 Formal : [SYS] debugpseconstructors=F (Boolean) (default=F) Start the
debugger BEFORE PSE constructors have run
...
 Module:
 hier : "simpleHierarchy"
 name : "simpleHierarchy"
 path : "module"
 docNode :
 Bus:
 hier : "simpleHierarchy/mainBus"
 name : "mainBus"
 addrBits : 32
 busPortConns :
 BusPortConn : sp1
 BusPortConn : DATA
 BusPortConn : INSTRUCTION
...

When the --busshow argument is used in the example the bus connection information is
generated for each bus when adding the monitor callbacks, simulation is performed

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 62 of 114

> ./example.sh --busshow
...
Info (BUS_MON_BM) Add monitor for 'simpleHierarchy/mainBus' (0x0000000000000000
to 0x00000000ffffffff)
BUS CONNECTIONS: simpleHierarchy/mainBus (0:ffffffff)
 sp1 on simpleHierarchy/ram1 (0:ffffffff)
 DATA on simpleHierarchy/cpu1 (0:0)
 INSTRUCTION on simpleHierarchy/cpu1 (0:0)
...

12.5 Writing a Monitor module
Please see the document Advanced Simulation Control of Platforms and Modules User
Guide about writing a module that monitors its ports etc. This can then be instanced in a
harness and enabled to monitor buses and nets in the design under test.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 63 of 114

13 Simulating Processor Exceptions

By default, a simulation will stop (opRootModuleSimulate will return) if a processor
exception occurs.
Some examples of processor exceptions are:

• Executing from memory with no execute permission;
• Read, write or fetch at unaligned address (for processors that require aligned

access);
• Attempting to read or write from an address where there is no memory or the

memory has insufficient permissions.

In a harness, when opRootModuleSimulate returns for any reason other than end-of-
simulation, it returns an optProcessorP object that is the handle of the processor
that was executing when the termination condition occurred. To find the exact
reason why simulation stopped, use:
 optStopReason opProcessorStopReason(optProcessorP processor);
The optStopReason type returned by this function is an enumeration encoding the
possible reasons why simulation stopped.

Instead of stopping simulation on a simulated exception, it is possible to specify that the
processor should perform its usual exception actions instead (typically, enter kernel mode
and jump to a kernel exception handler). This is usually specified in the iGen input file
using the -simulateexceptions option of the ihwaddprocessor command, but may
alternatively be done using the OP_FP_SIMULATEEXCEPTIONS processor instance
attribute or setting the override parameter ‘simulateexceptions’ on the processor instance
using the command line or control file.

13.1 Example of Simulating an Unaligned Access Exception

This example is in the enableProcessorExceptions directory.

Take a local copy to edit:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/enableProcessorExceptions .
> cd enableProcessorExceptions

A simple module has been provided that instances a processor and memory. By default,
the processor is configured so that it does NOT have simulated exceptions enabled.

Compile the test module and application as before using the following commands:

make -C module
make -C application

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 64 of 114

To run the simulation, in the enableProcessorExceptions directory, run:

> harness.exe --modulefile module/model.so --program
application/asmtest.OR1K.elf --trace

You should see the following output:

...
Info 'simpleCpuMemory/cpu1', 0x0000000000010000(_start): l.addi r1,r0,0x0
Info 'simpleCpuMemory/cpu1', 0x0000000000010004(_start+4): l.addi r2,r0,0x1
Info 'simpleCpuMemory/cpu1', 0x0000000000010008(_start+8): l.lwz r3,0x0(r2)
Processor Exception (PC_PRX) Processor 'simpleCpuMemory/cpu1' 0x10008: l.lwz
r3,0x0(r2)
Processor Exception (PC_RAX) Misaligned 4-byte read from 0x1
...

The two lines:

Processor Exception (PC_PRX) Processor ' u1/cpu1' 0x10008: l.lwz r3,0x0(r2)
Processor Exception (PC_RAX) Misaligned 4-byte read from 0x1

shows that the load from address 0x00000001 has been detected as an unaligned load.

When this happens, opRootModuleSimulate returns the processor object handle (to
indicate that simulation stopped abnormally).

Calling opProcessorStopReason on the processor handle returned by
opRootModuleSimulate would return OP_SR_RD_ALIGN in this case, which can be
printed from the value using opStopReasonString

13.2 Enabling simulation of exceptions with overrides on
command line

Now enable simulation of exceptions by adding the parameter override to the command
line as shown:

> harness.exe --modulefile module/model.so --program
application/asmtest.OR1K.elf --trace \
 --override simpleCpuMemory/cpu1/simulateexceptions=1

You should see the following output:

...
Info 'simpleCpuMemory/cpu1', 0x0000000000010000(_start): l.addi r1,r0,0x0
Info 'simpleCpuMemory/cpu1', 0x0000000000010004(_start+4): l.addi r2,r0,0x1
Info 'simpleCpuMemory/cpu1', 0x0000000000010008(_start+8): l.lwz r3,0x0(r2)
Info 'simpleCpuMemory/cpu1', 0x0000000000000200(.text+200): l.j 0x00010024
Info 'simpleCpuMemory/cpu1', 0x0000000000000204(.text+204): l.nop 0x0
Info 'simpleCpuMemory/cpu1', 0x0000000000010024(exit): l.addi r1,r2,0x0
Processor 'simpleCpuMemory/cpu1' terminated at 'exit', address 0x10024
...

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 65 of 114

In this example we see the load instruction is executed:

Info 'cpu1', 0x0000000000010008: l.lwz r3,0x0(r2)

This causes the address of the next instruction executed to be at a processor exception
address, 0x00000200, which is the address of the alignment exception handler in the
OR1K processor:

Info 'cpu1', 0x0000000000000200: l.j 0x00010024

In this example, the code at the exception vector simply branches to the exit label, which
exits simulation.

13.3 Enabling simulation of exceptions in modules
The simulation of exceptions could alternatively be enabled when the module is created
or as an override in the harness

To enable the simulation of exceptions when adding a processor instance in a module
definition simply add the -simulateexceptions argument to the ihwaddprocessor
command in the file module/module.op.tcl:

ihwaddprocessor -instancename cpu1 -vendor ovpworld.org … -type or1k … \
 -variant generic \
 -simulateexceptions

After making this change we see the same behavior as in the previous section when
enabling exceptions from the command line:

> make -C module
iGen Create OP MODULE module
Host Compiling Module obj/Linux32/module.o
Host Linking Module object model.so
> harness.exe --modulefile module/model.so --program
application/asmtest.OR1K.elf --trace
...
Info 'simpleCpuMemory/cpu1', 0x0000000000010000(_start): l.addi r1,r0,0x0
Info 'simpleCpuMemory/cpu1', 0x0000000000010004(_start+4): l.addi r2,r0,0x1
Info 'simpleCpuMemory/cpu1', 0x0000000000010008(_start+8): l.lwz r3,0x0(r2)
Info 'simpleCpuMemory/cpu1', 0x0000000000000200(.text+200): l.j 0x00010024
Info 'simpleCpuMemory/cpu1', 0x0000000000000204(.text+204): l.nop 0x0
Info 'simpleCpuMemory/cpu1', 0x0000000000010024(exit): l.addi r1,r2,0x0
Processor 'simpleCpuMemory/cpu1' terminated at 'exit', address 0x10024
...

13.4 Enabling simulation of exceptions in a C harness
If you have created a C harness, you can enable the simulation of exceptions by using an
override on the processor instance:

 opParamBoolOverride(mi, "simpleCpuMemory/cpu1/" OP_FP_SIMULATEEXCEPTIONS, 1);

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 66 of 114

14 Semihosting and Intercept Libraries
Imperas semihosting allows the default behavior of specified functions or instructions to
be modified using a semihosting shared object library that is loaded by the simulator in
addition to the processor model.

14.1 Selecting semihost libraries
Take a local copy of the simpleSemihosting example to edit:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/simpleSemihosting .
> cd simpleSemihosting

(This a based on the example SimulationControl/minimalHarness)

14.1.1 Specifying a semihost library in the module.op.tcl

If you look at the module/module.op.tcl we can see that for the instance of the processor
we already have a semihosting library installed.

ihwaddprocessor -instancename cpu1 \
 -vendor ovpworld.org -library processor -type or1k -version 1.0 \
 -semihostname or1kNewlib \
 -variant generic

The or1kNewlib semihost library intercepts low-level standard newlib functions such as
read, write, open, close, ... and makes the application's stdout come to the simulator
console for example.

This semihost library will intercept functions such as open, read, write etc. so if we have
a C application that uses printf the output will appear on the host stdout.

Note that OVPsim only allows one intercept library, and so in this example to run with
OVPsim we would need to remove the specification of or1kNewlib on the cpu1 instance
by editing the module/module.op.tcl.

In this example we will add a second new semihost library and assume we are using
CpuManager, the professional simulator that does not have the intercept library
limitation.

Text from all semihost libraries output can be separated from other simulator output by
directing it to a file using the command line flag:

-semihostlogfile <filename>

14.1.2 An assembler test program
As a simple first example of semihosting, we have written a simple assembler test, and
we have defined a global label, exit, on the last instruction of the assembler test:

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 67 of 114

> cat application/asmtest.S

.global _start
_start:
 l.addi r1,r2,0

 l.muli r1,r2,0
.global exit
exit:
 l.addi r1,r2,0

14.1.3 Adding imperasExit semihost library to harness.c
This label can be used in conjunction with a standard Imperas semihosting shared object
library, whose source is at the following location in the Imperas VLNV library:

$IMPERAS_HOME/ImperasLib/source/ovpworld.org/modelSupport/imperasExit/1.0/model

This semihosting library terminates simulation immediately after any instruction labeled
exit. To use the semihosting library we will need to add it to the harness.c

 optModuleP mi = opRootModuleNew(0, 0, 0);
 optModuleP u1 = opModuleNew(mi, "module", "u1", 0, 0);

 optProcessorP cpu1 = opObjectByName(u1, "cpu1", OP_PROCESSOR_EN).Processor;
 const char *shpath = opVLNVString(0, "ovpworld.org", "modelSupport",
 "imperasExit", 0, OP_EXTENSION, 1);
 opProcessorExtensionNew(cpu1, shpath, "sh1", 0);

First the root module is created and then a module is instanced in it.

Then we use opObjectByName to get a pointer to the processor in the module u1.
We set up a string for the VLNV path to find the imperasExit library.
Finally, we add the extension library to cpu1, and get the message about exit being
intercepted to terminate the simulation.

> ./example.sh
...
OVPsim started: Thu Jan 7 11:54:24 2016

Processor u1/cpu1' terminated at 'exit', address 0x10000bc

OVPsim finished: Thu Jan 7 11:54:24 2016
...

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 68 of 114

15 Imperas built-in Application Intercepts

Imperas provide a number of functions that can be used in applications that are to run on
processor models in the Imperas or OVP simulation environments. These are defined in
the header file found at

$IMPERAS_HOME/ImpPublic/include/target/application/simulatorIntercepts.h

And shown here are the provided 1functions:

//
// Find the processor id from the platform configuration
//
int impProcessorId(void);

//
// Get the number of simulated instructions
//
int impProcessorInstructionCount(void);

As can be seen, these are intended to be used to add some reporting into an application
that is running on one or more processors and allow the application to identify the
processor it is running on and the progress it has made, for example a multicore
simulation to test the execution of the algorithm.

To compile the application the linker must include the Imperas library ‘libimperas’ that is
provided for a specific toolchain as part of the CrossCompiler installation.

In this example we are utilizing the OR1K processor and the OR1K CrossCompiler, so
we will see the link line include ‘-limperas’ to include the library that is found by
specifying the library directory ‘-LImperas/lib/Linux32/TargetLibraries/or32-elf’

Linking application.OR1K.elf
Imperas/lib/Linux32/CrossCompiler/or32-elf/bin/or32-elf-gcc \
 … -LImperas/lib/Linux32/TargetLibraries/or32-elf \
 Imperas/lib/Linux32/TargetLibraries/or32-elf/crt0.o \
 -o application.OR1K.elf application.o -limperas –lm

To enable the use of these function intercepts they must be enabled in the simulator. This
can be done

1) by specifying --imperasintercepts on the command line, or
2) by setting a parameter on the processor instance in the harness, using

i. -enableintercepts on the ihwnew command in the module
definition

ii. Setting OP_FP_ENABLEIMPERASINTERCEPTS in the harness
when instancing the module

1 Other functions are provided but are deprecated and should no longer be used

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 69 of 114

 The example enablingImperasApplicationIntercepts shows these options being used.

Take a copy of the example:

> cp -r
$IMPERAS_HOME/Examples/SimulationControl/enablingImperasApplicationIntercepts .
> cd enablingImperasApplicationIntercepts

When the example is run using the example.sh script the harness is executed three times

1) without Imperas application intercepts enabled
2) with Imperas application intercepts enabled using parameters in the harness
3) with Imperas application intercepts enabled using the standard simulator

command line argument --imperasintercepts

not enabled
> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf
...
Run: Imperas Intercepts not enabled
** SIMULATOR FAILED TO INTERCEPT 'impProcessorId'
** Check Simulator Initialized with Application Intercepts Enabled
** SIMULATOR FAILED TO INTERCEPT 'impProcessorInstructionCount'
** Check Simulator Initialized with Application Intercepts Enabled
APP: Processor Id 0: instructions executed 0
APP: Processor Id 0: Hello world application
** SIMULATOR FAILED TO INTERCEPT 'impProcessorInstructionCount'
** Check Simulator Initialized with Application Intercepts Enabled
APP: Processor Id 0: instructions executed 0
...

enable using configuration of CPU instance in module
> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf \
 --configurecpuinstance
...
Run: Imperas Intercepts enabled by configuration of processor instance in module
Info (harness) Adding Imperas intercept overrides to cpu instance u1/cpu1
APP: Processor Id 5: instructions executed 56
APP: Processor Id 5: Hello world application
APP: Processor Id 5: instructions executed 6211
...

enable with standard command line parser
> harness/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf -
-imperasintercepts
...
Run: Imperas Intercepts enabled by Standard command line
APP: Processor Id 5: instructions executed 56
APP: Processor Id 5: Hello world application
APP: Processor Id 5: instructions executed 6211
...

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 70 of 114

16 Simulator Control Files
The Imperas simulators can be controlled by providing command line arguments to the
command to run the simulation. You can see these with:

> harness.exe --help

You can alternatively put these commands in a simulator control file.

A simulator control file allows control of extension libraries, overrides, application
programs, modules, and model commands in environments that do not have a simulator
command line. It also allows the substitution of one VLNV reference with another,
provided the function opVLNVString is used to obtain the path.

For details of the control file refer to the OVP_Control_File_User_Guide.

These commands can be placed in a simulation control file. An example being:

A simulation control file "control.ic"

 –extlib plat1/cpu1/ext1=vapTools
 –override plat1/cpu1/ext1/functiontrace on

 –objfileuseentry plat1/cpu2=boot.elf # boot code
 –symbolfile plat1/cpu1=linux.elf # symbols for linux
 –callcommand plat1/cpu1/dumpTLB # show initial contents of TLB

end of file

16.1 Specify use of Control File on the simulator command line
A control file can be specified to the Imperas simulators using the command line
argument -controlfile. This argument can be repeated to specify multiple control files.
e.g.

> harness.exe –-vlnvname MipsMalta \
 –controlfile control1.ic \
 -controlfile control2.ic

16.2 Specify use of Control File using IMPERAS_TOOLS

Control files can be specified using the environment variable IMPERAS_TOOLS.
Filenames are separated by : (Linux) or ; (Windows) This method can be used with
CpuManager when the simulator is a shared object that has no command line e.g.

> export IMPERAS_TOOLS="control.ic:control2.ic"

> mySystemC.exe # simulator using CpuManager

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 71 of 114

16.3 Specify use of Control File in a C harness
The loading of control files can be controlled from within the C harness. Control files are
loaded using the file command parser function opCmdParseFile which must be invoked
in main after calling the new command liner parser function opCmdParserNew. The
command line parser opCmdParseArgs should also be called.

> cat $IMPERAS_HOME/Examples/SimulationControl/readControlFile/harness/harness.c

int main(int argc, const char *argv[]) {
 opSessionInit(OP_VERSION);

 optCmdParserP cmd = opCmdParserNew(argv[0], OP_AC_ALL);

 opCmdParseArgs (cmd, argc, argv);
 opCmdParseFile (cmd, "control.ic");

 optModuleP mi = opRootModuleNew(0, 0, 0);
 opModuleNew(mi, "module", "u1", 0, 0);

 opRootModuleSimulate(mi);

 opSessionTerminate();
 return 0;
}

You can use multiple control files by making multiple calls to opCmdParseFile.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 72 of 114

17 Loading an Application Program file
The simulators load application programs into a memory, onto a bus or using a processor
virtual memory mapping to the correct virtual address space occupied by a memory or
other device.

When a program is loaded onto a processor the program counter of the processor can be
set to the start (entry point) address defined in the program or otherwise will default to
the processor reset vector address. By setting the processor program counter to the start
address of the program the need for correct reset vector code is circumvented allowing
just the program (must be baremetal) to be executed, typically from _start to _exit. This
gives an ideal way of testing how well a C algorithm ports, including Cross Compiler tool
chain, between device architectures.

NOTE: As an alternative the function opProcessorPCSet can be used in the harness code
to set the PC to the initial execution address.

The simulator loader takes each section address from the application program file and
looks for memory which decodes at that address. An error is raised if no memory is
mapped at a load address.

The loader uses any address decoding available on the bus, even if the decoded memory
is shared with other processors.

There is currently built in support for the ELF, COFF2 and TI-COFF3 file formats to load
both the program and symbolic information, if present, into the simulator. Alternatively
an API is provided allowing a new ‘object loader’ to be created that can be used to load
any file type.

The following sections introduce what is available and these are illustrated in the loading
sections later.

17.1 Load Address Support
When loading a program onto an instance there are two addressing modes that can be
used:

1) Virtual Memory Addressing (VMA)
2) Load Memory Addressing (LMA)

There is also a further modifier ‘Load Physical’ that can be applied to either of these load
address modes, when used in conjunction with a processor, to bypass the processor MMU
(virtual to physical memory mapping).

2 The COFF file formats are only supported by the Imperas Professional products, OVP supports only the
ELF file format.
3 TI-COFF is a COFF format extended by TI and used by TI toolchains.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 73 of 114

17.1.1 LMA vs VMA

Each section in the loadable file has two addresses.

The first, the VMA, is the address the section will have when it runs.

The second, the LMA, is the address at which the section will be loaded into memory.

In the majority of cases the two addresses, VMA and LMA, will be the same. A typical
example of when they are not the same is when a data section is loaded into ROM, and
then copied into RAM when the program starts up i.e. the CRT0 executes. In this case the
ROM address would be the LMA and the RAM address the VMA.

17.1.2 Load Physical
When load physical is applied the load address bypasses any virtual to physical address
mapping the processor creates which would be used and translate from a VMA load
address to a physical address.

17.2 Program Load Options
17.2.1 Set Start Address
Setting the start address, initial Program Counter of the processor(s) in the design, to the
address of the entry or start symbol in the program allows a simple C program to be
executed from the C start-up code rather than from the processor's reset vector. This
provides an environment, when used with a semihosting library, which to the application
appears to have already been initialized.

It removes the need to execute the reset vector and some of the start-up code used to
initialize memory and hardware components and assumes the processor initialization is
complete but only works for basic C code ‘bare metal’ application.

It is required when using this method that a semihost library for the Cross Compiler tool
chain and associated C library being used is also installed in the simulator.

There is a separate function, opProcessorPCSet(), that allows the initial Program
Counter of a processor to be set independently from the loading a program.

NOTE: If multiple programs are loaded onto a single processor and if each has the option
set to set the start address, it is the first that is loaded that is used.

17.2.2 Zero BSS Section
In some circumstances, particularly if not starting from the reset vector and running the
memory initialization code, it may be required to zero the BSS section.

After the program has been loaded the BSS section will be cleared to zero (‘0’). This
emulates the execution of crt0 startup code zeroing the BSS section when the program is
being started from the application start and not executing crt0 code.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 74 of 114

NOTE: This can mask potential startup issues i.e. if the program is expecting the BSS
section to be zero for correct operation but (in error) it is not cleared by the crt0 startup
code, the code may appear to work correctly in simulation but fail on real hardware as the
actual values in the BSS section would be random.

17.3 Loading a Program onto Processors using the Command
Line

The simulator command line allows a program to be loaded a number of ways onto a
processor instance in the design; each sets specific criteria for the loading.

The main options to use are --program, --objfile and --objfileuseentry to load the program
onto one or more processor instances and set the start program counter for the processor
to the entry point (start address) of the application.

Alternatively, use --objfilenoentry to load the program without change to the processor
program counter i.e. the typical default is to be set to the reset vector address.

Any of the loading options above can be specified with or without a named processor
instance i.e. the program can be loaded onto one or more specified processors (globing is
supported) or onto all processors in the platform.

17.3.1 Loading onto single or multiple processors

Example: Loading onto all processors in the design and setting the initial PC to the start
address. All processors must be the same type, for example here the OR1K processor
type.

> harness.exe --modulefile module/model.so \
 --program application/app.OR1K.elf

Example: Loading specific programs onto different processors in the design and setting
the initial PC to the start address. The processors in this design are assumed to be, cpu1
an OR1K, cpu2 is an ARM and cpu3 a MIPS32

> harness.exe --modulefile module/model.so \
 --program design/cpu1=application/app1.OR1K.elf \
 --program design/cpu2=application/app1.ARM7TDMI.elf \
 --program design/cpu3=application/app1.MIPS32.elf

17.3.2 Modification to Load Address

As discussed in the introduction, by default, the program is loaded using the LMA
address of the program file. However, the VMA address may be selected from the
program file instead by specifying the --elfusevma option. The argument may be applied
to all processors or specific processors can be selected.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 75 of 114

Example: Loading specific programs onto different processors in the design and setting
the initial PC to the start address but loading one of the processors, cpu2, using the
VMA.

> harness.exe --modulefile module/model.so \
 --program design/cpu1=applications/app1.CROSS_A.elf \
 --program design/cpu2=applications/app2.CROSS_B.elf \
 --elfusevma design/cpu2

The default operation is to apply the address (LMA or VMA) to be loaded to the
processor MMU/TLB, if applicable, which performs, typically, a static translation of the
program address to a physical address at which the actual load is applied on the design.

Alternatively the --loadphysical argument may be used to cause the load address to
bypass the processor MMU and instead be applied directly to the buses connected to the
processor instruction or data ports.
Example: Loading specific programs onto different processors in the design and setting
the initial PC to the start address but loading one of the processors, cpu1, using physical
addressing.

> harness.exe --modulefile module/model.so \
 --program design/cpu1=applications/app1.CROSS_A.elf \
 --program design/cpu2=applications/app2.CROSS_B.elf \
 --loadphysical design/cpu1

17.3.3 Specifying the start Address

There are two equivalent arguments to allow the start address for one or more processors
to be specified, either of --reset and --startaddress can be used to set the initial program
counter for one of more processors in a design.

Example: Loading the same program onto all processors in the design and setting the
initial PC (the start or reset address) to a specific address on one of the processors, cpu1,
using --startaddress

> harness.exe --modulefile module/model.so \
 --program applications/app1.CROSS_A.elf \
 --startaddress design/cpu1=0x00100000

and the equivalent using --reset

> harness.exe --modulefile module/model.so \
 --program applications/app1.CROSS_A.elf \
 --reset design/cpu1=0x00100000

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 76 of 114

17.3.4 Provide Arguments to Applications

An application can be provided arguments, as though it was being executed from a
command line within an operating system, using --argv which defines ALL following
arguments as those to be passed to the application executing on the processor instance(s).

For example, an application (app.c) compiled with GCC could be executed and passed
two arguments, that are printed:

Example application source

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
 int i;
 for (i=1;i<argc;i++) {
 printf("APP: arg[%u] = %s\n", i, argv[i]);
 }

 return 0;
}

Compiled and executed on host machine (for example Linux)

> gcc app.c –o app.exe
> app.exe yes no
APP: arg[1] = yes
APP: arg[2] = no

The application can be Cross Compiled to any target processor and executed on that
processor type in a virtual platform passing the same arguments. Now we have the ability
to test, for example, our C algorithm using the correct tool chain and libraries, hence the
same binary image as we can execute on the hardware but in the convenience of a virtual
platform on the host machine.

> make –C application CROSS=OR1K
Compiling
Linking

> harness.exe --modulefile module/model.so \
 --program applications/app.OR1K.elf \
 --argv yes no
APP: arg[1] = yes
APP: arg[2] = no

17.4 Common Program Memory
If more than one processor is using the same code memory, the program need be loaded
only once; When the simulator starts a processor with no explicitly loaded program, it
will look for any other processors of the same architecture with common program
memory and, if one is found, use the start address associated with that processor.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 77 of 114

17.5 Loading an application from the harness
Application files can be loaded using the C API within a harness. The application
program can be loaded onto a processor, a bus or a memory using the three functions
opProcessorApplicationLoad, opBusApplicationLoad and opMemoryApplicationLoad
respectively.

The load control is defined in each of these functions using the optLoaderControls
enumerated type, as defined in the following.

17.5.1 Application Loader Controls

Each of the application load functions is passed optLoaderControls to control how the
file is loaded. The values of the enumerated type and their descriptions follow:

OP_LDR_DEFAULT No special features

OP_LDR_ELF_USE_VMA Load the application file using the VMA addresses
rather than LMA addresses (default) from the file.

OP_LDR_PHYSICAL
(processor only) Do not use the processor MMU to
translate the load addresses. Load directly to the
addresses specified.

OP_LDR_SET_START (processor only) Set the PC of the target processor to
the start address.

OP_LDR_NO_ZERO_BSS Do not zero the BSS section after loading.

OP_LDR_SYMBOLS_ONLY No program will be loaded i.e. no modification to the
system, only the symbolic information will be loaded.

OP_LDR_FAIL_IS_ERROR
If an error occurs the simulation will not execute. By
default even if only a partial program is loaded
correctly the simulation will start execution.

OP_LDR_VERBOSE Loader will report sections as they are loaded

One or more of the options may be used when a program is loaded.

17.5.2 Onto a Processor Instance

Use opProcessorApplicationLoad to load an application elf file onto a processor.

 procLocal = opObjectByName(mi, "u1/cpu1", OP_PROCESSOR_EN).Processor;
 const char *myApp = “application/app.OR1K.elf”;
 opProcessorApplicationLoad (procLocal, myApp, OP_LDR_DEFAULT , 0);

17.5.3 Onto a Bus Instance

Use opBusApplicationLoad to load an application elf file onto a bus.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 78 of 114

 busLocal = opObjectByName(mi, "u1/bus1", OP_BUS_EN).Bus;
 const char *myApp = “application/app.OR1K.elf”;
 opBusApplicationLoad (busLocal, myApp, OP_LDR_DEFAULT , 0);

17.5.4 Onto a Memory Instance

Use opMemoryApplicationLoad to load an application elf file onto a memory.

 memoryLocal = opObjectByName(mi, "u1/mem1", OP_MEMORY_EN).Memory;
 const char *myApp = “application/app.OR1K.elf”;
 opMemoryApplicationLoad (memoryLocal, myApp, OP_LDR_DEFAULT , 0);

17.6 Getting Information of Loaded Applications

Each of the application load functions return an application object pointer that can be
used to interrogate the loaded application for:

• the attributes with which the application was loaded, opApplicationControls
• the elf code for the application pointed to by the object, opApplicationElfCode
• the data endian used in the compilation of the application, opApplicationEndian
• the entry address for the application, opApplicationEntry
• the path from which the file was loaded, opApplicationPath

There is a functions to iterate across all the application objects that may be loaded onto
each instance type, processor, bus or memory; opObjectApplicationNext.

17.7 Example

The example Examples/SimulationControl/loadingApplicationPrograms contains the
ability to load an application onto a processor, a memory or a bus instance and to find the
loaded applications and report their information.

Take a local copy to edit:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/loadingApplicationPrograms .
> cd loadingApplicationPrograms
> make -C application
> make -C module
> make -C harness

See the file harness/harness.c, which can be controlled to perform the loading of the
application program onto the different instance types in the module by using the
command line.

Load application using the command line argument --program:

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 79 of 114

> harness/harness.${IMPERAS_ARCH}.exe --program application/application.OR1K.elf

Load the application using the processor instance in the harness:

> harness/harness.${IMPERAS_ARCH}.exe --loadprocessor \
 --application application/application.OR1K.elf

which executes the code in harness.c:

...
 if (options.loadprocessor) {

 // load on processor, setting start address
 opProcessorApplicationLoad(
 proc, options.application, OP_LDR_VERBOSE|OP_LDR_SET_START, 0
);
...

Load the application using the memory instance in the harness:

> harness/harness.$IMPERAS_ARCH.exe --loadmemory \
 --application application/application.OR1K.elf

Which executes code in harness.c which also must set the start PC for the processor to the
entry point of the application:

 ... if (options.loadmemory) {

 // load on first Memory (assumes a single memory module)
 optMemoryP mem = opMemoryNext(ui, NULL);
 thisApp = opMemoryApplicationLoad(mem, options.application,
OP_LDR_VERBOSE, 0);

 }
...

 // Must advance to next phase for the API calls that follow
 opRootModulePreSimulate(mi);

 if (thisApp) {
 // Loaded on bus or memory so set start address manually
 opProcessorPCSet(proc, opApplicationEntry(thisApp)); // set start
address to application entry
 }

Load the application using the bus instance in the harness:

> harness/harness.$IMPERAS_ARCH.exe --loadbus \
 --application application/application.OR1K.elf

Which executes code in harness.c which also must set the start PC for the processor to
the entry point of the application:

 ... if (options.loadbus) {

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 80 of 114

 // load on first Bus (assumes a single bus module)
 optBusP bus = opBusNext(ui, NULL);
 thisApp = opBusApplicationLoad(bus, options.application, OP_LDR_VERBOSE,
0);

 }

 // Must advance to next phase for the API calls that follow
 opRootModulePreSimulate(mi);

 if (thisApp) {
 // Loaded on bus or memory so set start address manually
 opProcessorPCSet(proc, opApplicationEntry(thisApp)); // set start
address to application entry
 }

When the argument --analyzeinstances is used it will report information as shown below
about the application loaded onto the instance:

 // use a custom argument to control if we analyze the application programs
loaded on the instance
 if (options.analyzeinstances) {
 optObjectP object;
 if (options.loadmemory) {
 object = opObjectByName(
 mi, MODULE_INSTANCE "/" MEM_INSTANCE, OP_MEMORY_EN
);
 } else if (options.loadbus) {
 object = opObjectByName(
 mi, MODULE_INSTANCE "/" BUS_INSTANCE, OP_BUS_EN
);
 } else {
 object = opObjectByName(
 mi, MODULE_INSTANCE "/" CPU_INSTANCE, OP_PROCESSOR_EN
);
 }

 opMessage("I", MODULE_INSTANCE, "Analyzing Loaded Applications");
 optApplicationP thisApp = NULL;
 while ((thisApp=opObjectApplicationNext(object, thisApp))) {

 optLoaderControls controls = opApplicationControls(thisApp);
 Uns32 elfCode = opApplicationElfCode(thisApp);
 optEndian endian = opApplicationEndian(thisApp);
 Addr entry = opApplicationEntry(thisApp);
 const char *path = opApplicationPath(thisApp);

 opMessage(
 "I", MODULE_INSTANCE,
 "%s : controls %x: elf 0x%x: endian %u: entry 0x" FMT_Ax ": path
'%s'\n",
 opObjectHierName(object),
 controls,
 elfCode,
 endian,
 entry,
 path
);
 }
 }

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 81 of 114

17.8 Loading Program Symbolic information
This is required for debugging and also for the Imperas tools to be able to analyze the
executing application.

When the standard command line options or C API functions are used to load a program
into simulated memory, the loader also reads the symbol tables included in the file, and
records the address-to-symbol mappings. These mapping can then be used:

 When issuing tracing information
 When intercepting a function by name

Sometimes object code may be loaded by another method (e.g. using a boot-loader
running on a simulated processor) in which case the simulator has no opportunity to read
the symbols. In this situation we can separately associate symbols with a processor
without loading the code.

17.8.1 Command Line

Using --symbolfile can be used to select an elf file from which the symbolic information
can be read and stored as shown in the following example (that also assumes the use of an
alternative loader for an s-record file format without symbolic information)

> harness.exe --modulefile module/model.so \
 --loadsrecord applications/app.OR1K.srec \
 --symbolfile applications/app.OR1K.elf

17.8.2 In a Harness

The function opProcessorApplicationLoad can be used to load the symbolic information
from a file. It also allows specific symbol type to be separately specified. When using the
program load function the optLoaderControls is set to OP_LDR_SYMBOLS_ONLY so
that only the symbolic information is loaded.
Alternatively individual symbols can be defined and added to the simulator using the
opProcessorApplicationSymbolAdd function.

17.9 Defining a hardware resident program
There may be a program that is always present in the design, for example, a boot loader
program, that is always executed (by default) at startup. A program can be defined when
a design is created i.e. in the module definition by attaching it to the processor, bus,
memory or other instance using ihwaddimage in the iGen script that defines the module.

ihwaddimage --handle cpuInstance --filename bootloader.OR1K.elf --name
bootloader

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 82 of 114

17.10 Custom Application Loaders
If you wish to load application files of a format not supported by CpuManager, the
Imperas Professional Simulator, you can write your own loader and install it in the
simulator.

An application file can be tested in a harness with opApplicationHeaderRead to see if a
specific file format could be read. This function will test the built-in loaders and any
installed custom loaders to see if any accept the file type.

A new reader is installed using opApplicationLoaderInstall. Take a local copy of the
custom application loader example:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/customApplicationLoader .
> cd customApplicationLoader
> make -C application
> make -C loader
> make -C module
> make -C harness

This example creates a Motorola S record file (.s19 suffix) from a compiled ‘Hello
World’ application. The custom application loader is created to load a Motorola S record
file into memory, including the loading of symbolic information.

The custom loader is found in the loader directory.

In harness/harness.c the custom application loader is installed before the processor
memory is loaded (otherwise the loader will not be available).

 // install the new application loader
 const char *loader = "loader/loader." IMPERAS_SHRSUF;
 if (!opApplicationLoaderInstall(loader)) {
 opMessage("F", HARNESS_NAME, "Failed to load application loader '%s'",
loader);
 }

The simulator tries to read the file "hello.OR1K.s19" using the new loader before trying
the built-in loaders.

> harness/harness.$IMPERAS_ARCH.exe --program application/hello.OR1K.s19
…
Info (harness) Loaded application loader 'loader/loader.so'
Hello
…

17.10.1 Writing a custom reader
This is covered in the Imperas document Custom_Object_Reader.pdf.

17.11 Custom Loader using Standard Object Reader

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 83 of 114

opProcessorApplicationRead works in a similar way to the opProcessorApplicationLoad
but instead of using one of the installed object readers to load directly it calls a set of
callback functions for each section that is identified in the application to load. This allows
custom actions for each section of the application file while using the standard readers to
read them from the file.

Each of the following callbacks must be provided by the user:

ordSectionFn listSection
ordLoadMemoryFn loadSection
ordAddSymbolFn addSymbol
ordPrintFn print
ordMessageFn message

Please see the document Imperas_Custom_Object_Reader, that is provided with the
Imperas professional product packages, for detailed information on how this should be
used.

Please contact Imperas if you wish to write your own custom loader using the standard
object reader and an example may be provided to you that is not part of the normally
published source code.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 84 of 114

18 Attaching a debugger

18.1 Introduction
The simulator can be connected to a debugger sockets (socket is a Unix term though
sockets are also supported on Linux and Windows).
The debugger could be one of

1) Standard processor GDB
2) Imperas MPD (Multi-Processor Debugger)
3) Imperas eGui; GUI based debugging interfaces utilizing GDB or MPD
4) Any other debugger that supports the GDB Remote Serial Protocol through a

socket.

Depending upon the simulator that is being used, OVPsim or CpuManager, different
feature and connection options are supported.

The debug connection can be used:

1) for the debug of application code on processors;
2) the debug and development of peripheral model behavioral code;

If the Imperas Multi-processor debugger4 is being used it can also:

3) debug of a C platform definition;
4) debug and development of binary interception and tool libraries;
5) debug the native semihost behavior of a peripheral model

When the OVPsim simulator is being used only a single processor may be selected for
application debugging; when CpuManager is being used up to 8 processors5 can be
simultaneously debugged, using multiple GDB Remote Serial Protocol

It is required to have a version of GDB specific to the target processor. The OVPworld
web site can supply a GDB for most processor models available.

The debug port can be configured so that it waits for a connection (or multiple
connections) to be made before starting simulation or to start simulation without waiting
and then allow subsequent connections.

18.2 Debug with GDB
A GDB debugger is connected to a single processor instance in the simulation platform.
Multiple GDB debuggers can be used to connect to one or more processors. This allows

4 Also requires the availability of a compatible host GDB debugger.
5 This figure is chosen as a realistic maximum number of processors that it is possible to debug
interactively with a console per processor. There is no limit to the number of processor applications that
could be debugged simultaneously.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 85 of 114

standard processor centric visibility of the software running on each of the processors and
its debugging.
NOTE: When using multiple GDBs the user must ensure that ALL the processors are in
‘run’ mode in order for the simulation to move forward. If one (or more) GDB debuggers
are stopped at an interactive prompt the simulator will remain blocked.

18.2.1 Starting GDB debug session on a single processor
To start a GDB debug sessions on a single processor system is very easy. It can be done
from the command line, when instancing a module, or in the harness using parameters.

18.2.1.1 Command line
A debug session is started from the command line using the --gdbconsole argument. This
can be added to any command line and will start a GDB session, using the processor's
default GDB, for each processor in the design.

> harness.exe --modulefile module/model.so --program
application/application.OR1K.elf --gdbconsole

As an argument to --gdbconsole a rootmodule may be provided. This allows the selection
of the processor within one of potentially several rootmodules, that may exist in the
harness, to be debugged.

18.2.1.2 Root module instance
Alternatively, the debug of processor applications can be started using
OP_FP_GDBCONSOLE applied as a parameter to the rootmodule of a design.

 //enable debugging
 mi = opRootModuleNew(0, HARNESS_NAME,
 OP_PARAMS (OP_PARAM_BOOL_SET(OP_FP_GDBCONSOLE, 1)
);

18.2.2 Selecting Processor(s) to debug with GDB
When there are a number of processors in the design and only a specific selection of them
should be debugged the --debugprocessor argument is used to specify each instance of
the processor to be debugged.

18.2.2.1 Using command line options
For example, if we have a number of processors in the design, cpu0 to cpu7 and we wish
to debug the applications only on cpu1 and cpu4 we would modify the command line as
shown:

> harness.exe --modulefile module/model.so --program
application/application.OR1K.elf --gdbconsole \
 --debugprocessor u1/cpu1 \
 --debugprocessor u1/cpu4

18.2.2.2 In a C harness
In a C harness we can make the same selection using the opProcessorDebug function.
This is applied to each processor instance in the design that we wish to debug. The

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 86 of 114

following example shows selecting the processor instances which we know by name
within the hierarchy

 // select the processor to debug
 optProcessorP proc;
 proc = opObjectByName(mi, "u1/cpu1", OP_PROCESSOR_EN).Processor;
 opProcessorDebug(proc);
 proc = opObjectByName(mi, " u1/cpu7", OP_PROCESSOR_EN).Processor;
 opProcessorDebug(proc);

Alternatively, we could search the module we have instanced for a specific matching
processor name and when we get a match select the processor for debug

 //enable debugging
 mi = opRootModuleNew(0, 0, OP_PARAMS
(OP_PARAM_BOOL_SET(OP_FP_GDBCONSOLE, 1)));
 optModuleP u1 = opModuleNew(mi, MODULE_DIR, MODULE_INSTANCE, 0, 0);

 optProcessorP proc = NULL;
 while ((proc = opProcessorNext(u1, proc))) {
 opPrintf("found %s\n", opObjectName(proc));
 if (strcmp(CPU_INSTANCE, opObjectName(proc)) == 0) {
 opProcessorDebug(proc);
 }
 }

18.2.3 Configuring GDB
The GDB that is used and its basic configuration for each specific variant is held within
each processor model. In some circumstances it may be required to change the default
initialization, add additional configuration or run some common commands at startup.

The following can be specified, on the command line or as part of the processor instance
configuration in a harness.

Every processor model supplied by Imperas has been tested with the gdb supplied in the
appropriate GNU toolchain. This gdb is usually in your Imperas installation and its path
embedded in the processor model. The simulator uses this path to select the correct gdb
for the model automatically. However, it is possible to override this mechanism. Select
an alternate GDB to be used instead of the default GDB by specifying the full path the
GDB executable with --gdbpath or OP_FP_ALTERNATEGDBPATH.

To run a set of commands on the GDB, after GDB initialization a command file can be
specified that provides a list of commands that are executed before the GDB prompt is
displayed with --gdbcommandfile or OP_FP_GDBCOMMANDFILE

To initialize the GDB before the prompt is displayed a file can be provided with --gdbinit
or OP_FP_GDBINIT.

Special flags may be added onto the command line of the invoked GDB with --gdbflags
or OP_FP_ALTERNATEGDBFLAGS.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 87 of 114

For example, to specify an alternative GDB and provide a custom initialization file the
following could be used on the command line

> harness.exe --modulefile module/model.so --program
application/application.OR1K.elf --gdbconsole \
 --debugprocessor u1/cpu1 \
 --debugprocessor u1/cpu4 \
 --gdbpath u1/cpu1=/path/to/my/new/gdb/gdbexe \
 --gdbinit u1/cpu1=gdb.init

Or applied on the processor in the harness using

 // set a new GDB to use
 opParamStringOverride(mi, “u1/cpu1/" OP_FP_ALTERNATEGDBPATH,
"/path/to/my/new/gdb/gdbexe");
 // set new initialization file
 opParamStringOverride(mi, "u1/cpu1/” OP_FP_GDBINIT, "gdb.init");

18.2.4 Using GDB with eGui Graphical User Interface

Imperas provide a graphical user interface eGui, based upon the Eclipse IDE.

One of the use methods, that is described in this section, is for the GUI to be invoked by
the simulator. In GDB mode the GUI will communicate with one or more GDBs which
will then communicate to the Imperas simulator. When the OVPsim simulator is used the
--debugprocessor argument must be used to specify which processor is to be debugged.
When the CpuManager simulator is used, if the number of processor exceeds the number
of connections available, the --debugprocessor argument must be used to specify which
processors are to be debugged.

To start from the command line for eGui add --gdbegui.

This can also be done in the harness by specifying parameters on the rootmodule:

 mi = opRootModuleNew(0, 0, OP_PARAMS (OP_PARAM_BOOL_SET(OP_FP_GDBEGUI,
1)));

18.3 Debug with MPD
MPD is the Imperas Multi-Processor Debugger, provided with the M*SDK product
package. It allows applications to be debugged on any of the processors within the design
and also the debug and development of peripheral model behavioral code within a single
consistent environment. It is described in more detail, in the document “Imperas
Debugger User Guide”

The MPD can be started in a separate console using --mpdconsole from the command
line or by adding OP_FP_MPDCONSOLE to a root module in the harness.

> harness.exe --modulefile module/model.so --program
application/application.OR1K.elf --mpdconsole

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 88 of 114

Please refer to the Imperas Multiprocessor Debugger User Guide.

18.3.1 Configure MPD

18.3.1.1 Debug Peripheral model constructors
By default, when debugging the Peripheral (PSE), the constructors are executed before
getting to a debug prompt. The peripheral constructors generate the peripheral model
programmers view information so until these are executed no information regarding the
peripheral is available to MPD.
However, you may wish to debug the code from the peripheral model constructors. This
is enabled by adding the flag --debugpseconstructors to the command line or by adding
OP_FP_DEBUGPSECONSTRUCTORS to a root module.

> harness.exe --modulefile module/model.so --program
application/application.OR1K.elf \
 --mpdconsole \
 --debugpseconstructors

18.3.1.2 Add to source search path
The debug information contained in a file will indicate the source location at which the
file was originally located when compiled. If the source has been moved it is possible to
indicate alternative locations to search for source using the --searchpath argument.

> harness.exe --modulefile module/model.so --program
application/application.OR1K.elf \
 --mpdconsole \
 --searchpath /path/to/new/source/directory

18.3.2 Using MPD with eGUI
Imperas provide a graphical user interfaces eGui, based upon the Eclipse IDE.

One of the use methods, that is described in this section, is for the GUI to be invoked by
the simulator. In MPD mode the GUI will communicate with MPD which will then
communicate to the Imperas simulator.

To start from the command line using eGui, add --mpdegui.

This can also be done in the harness by specifying parameters on the rootmodule:

 mi = opRootModuleNew(0, 0, OP_PARAMS (OP_PARAM_BOOL_SET(OP_FP_MPDEGUI,
1)));

18.3.3 MPD Batch Mode
MPD provides both interactive and batch modes of operation. All commands that can be
applied interactively can also be added to a file and provided for batch file operation.

When MPD is operating interactively the commands being applied into the shell are
captured into a log file (idebug.log), this can be used as a basis for creating a batch file.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 89 of 114

Once a batch file has completed executing, the simulation will either terminate or return
to an interactive shell.

The file to execute as a batch file is specified using --batch on the command line

harness.exe --modulefile module/model.so --program
application/application.OR1K.elf \
 --mpdconsole \
 --batch mpd.batch

or by applying the parameter OP_FP_BATCH to a root module.

 mi = opRootModuleNew(0, 0,
 OP_PARAMS (OP_PARAM_STRING(OP_FP_BATCH,
“mpd.batch”)));

18.4 Manual Debug connection specifying port
So far we have seen that we can start a simulation and connect a debug client
automatically using the command line or by configuring the root module. We can also
open a specified port and manually connect a debug client.

The port is specified using the --port argument on the command line or the parameter
OP_FP_ PORT applied to a root module. If a value of 0 is used the next available port is
selected by the OS from its pool, otherwise the nominated port will be opened if
available.

If the environment variable IMPERAS_PORT_FILE is set to a filename before starting
the simulation then the port number, once opened, will also be written to this file.

18.4.1 Do not wait for debug connection
The default operation is for a listening debug port to be opened and for a connection to be
made (blocking mode) before simulation can progress. Alternatively, by applying --
nowait to the command line or by adding the parameter OP_FP_RSPNOWAIT to a root
module, simulation will progress (non-blocking mode) and a debug connection can be
made by GDB or MPD at a later time.

18.5 Using Control Files
As well as specifying arguments on the command line, they may also be included in a
control file. This allows, for example, a simulation platform which does not contain the
Imperas command line parser to be controlled with command line arguments. The control
file is defined using the IMPERAS_TOOLS environment variable and its contents are
loaded and parsed directly by the simulator. Control files contain the same syntax as
arguments provided on the command line and are described in more detail in the
document “OVP Control File User Guide”.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 90 of 114

18.6 Example of Debugging Applications
Take a local copy of the example:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/startingApplicationDebug .
> cd startingApplicationDebug

The example consists of a harness, a hardware design (module) and some application
software. The design comprises two processors, running application software that can be
debugged.

There is a script, example.sh (.bat for Windows) that can be used to build the example
and run the same debug session twice, the first time using the command line to invoke
and the second time using parameters on the root module to invoke.

> make -C application
> make -C module
> make -C harness

In both of the following cases the gdbconsole is invoked for a single processor instance,
cpu1. At the GDB command line we issue the following debugger commands

break main
break fib
continue
continue
delete 2
continue
quit

This results in the following GDB output

0x00000100 in start ()
Breakpoint 1 at 0xf9c: file fibonacci.c, line 32.
Breakpoint 2 at 0xf48: file fibonacci.c, line 26.

Breakpoint 1, main () at fibonacci.c:32
32 printf("APP: Fibonacci starting...\n");

Breakpoint 2, fib (i=0) at fibonacci.c:26
26 return (i>1) ? fib(i-1) + fib(i-2) : i;

Program exited normally.

When invoked from the command line

> harness/harness.$IMPERAS_ARCH.exe \
 --program application/fibonacci.OR1K.elf \
 --gdbconsole --debugprocessor u1/cpu1

...
Info (GDBT_PORT) Host: hostname, Port: 33947
Info (GDBT_WAIT) Waiting for remote debugger to connect...
Info (GDBT_CONNECTED) Client connected
APP: Fibonacci starting...

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 91 of 114

APP: fib(0) = 0
APP: fib(1) = 1
...
APP: fib(29) = 514229
APP: finishing...
APP: fib(29) = 514229
APP: finishing...
...

And when invoked from the root module parameter

> harness/harness.$IMPERAS_ARCH.exe \
 --program application/fibonacci.OR1K.elf \
 --configurecpuinstance

...
Info (top) Adding GDB Console override to root module and selecting u1/cpu1 for
debug
found cpu1
found cpu2
Info (GDBT_PORT) Host: nostname, Port: 50795
Info (GDBT_WAIT) Waiting for remote debugger to connect...
Info (GDBT_CONNECTED) Client connected
APP: Fibonacci starting...
APP: fib(0) = 0
APP: fib(1) = 1
...
APP: fib(29) = 514229
APP: finishing...
APP: fib(29) = 514229
APP: finishing...
...

18.6.1 Debug all processors

18.6.1.1 Using gdbconsole
If we now invoke the following command line, in which we do not specify the processor
to be debugged, we indicate that we wish to debug all the processors in the design using
the chosen method, in this case a GDB Console.

> harness/harness.$IMPERAS_ARCH.exe \
 --program application/fibonacci.OR1K.elf \
 --gdbconsole

Simultaneous debug of multiple processors is only supported in the Imperas professional
simulator. When we are configured to use the OVPsim simulator
(IMPERAS_RUNTIME=OVPsim) the command above will result in an error indicating
that only one processor can be debugged and one processor should be selected using the -
-debugprocessor option:

Info (GDBT_PORT) Host: lnx34.impinternal.com, Port: 42623
Error (OP_TMD) There are too many processors (2 when the maximum allowed is 1)
to debug.
Suggest using -debugprocessor no more than the maximum.
Candidate processors:
 u1/cpu1

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 92 of 114

 u1/cpu2

When we are configured for the Imperas professional simulator
(IMPERAS_RUNTIME=CpuManager), two debug consoles are started, one attached to
cpu1 and the second to cpu2, allowing the debug of both (all) applications.

When the same breakpoints are set on the processors, and BOTH processor GDBs are set
to run mode, we see:

Info (GDBT_PORT) Host: lnx34.impinternal.com, Port: 44008
Info (GDBT_WAIT) Waiting for remote debugger to connect...
Info (GDBT_CONN) Client connected to 'u1/cpu1'
Info (GDBT_CONN) Client connected to 'u1/cpu2'
Info (GDBT_R) Simulator started
Info (GDBT_S) Simulator stopped
Info (GDBT_R) Simulator started
Info (GDBT_S) Simulator stopped
Info (GDBT_R) Simulator started
APP: Fibonacci starting...
APP: fib(0) = 0
APP: fib(1) = 1
…
APP: fib(13) = 233
Info (GDBT_S) Simulator stopped
Info (GDBT_R) Simulator started
Info (GDBT_S) Simulator stopped
Info (GDBT_R) Simulator started
APP: Fibonacci starting...
APP: fib(0) = 0
APP: fib(1) = 1
…
APP: fib(28) = 317811
APP: fib(28) = 317811
APP: fib(29) = 514229
APP: finishing...
APP: fib(29) = 514229
APP: finishing...
Info (GDBT_S) Simulator stopped

The logging information is now also showing the points at which the simulator starts and
stops. This is useful in this mode because ALL GDBs must be put into run mode before
the simulation can continue. In this case the points at which the simulation stops are
caused by breakpoints being hit.

18.6.1.2 Using MPD with the Imperas Professional Simulator

> harness/harness.$IMPERAS_ARCH.exe \
 --program application/fibonacci.OR1K.elf \
 --mpdconsole

This starts a single debug session with both processors available, in which we can invoke
commands on both processors and run the simulation with a single continue command.

Details of the use of the Imperas MPD may be found in the document Imperas Debugger
User Guide.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 93 of 114

MPD (32-Bit) 20151203.0 Multiprocessor debugger from www.IMPERAS.com.
Copyright (c) 2005-2015 Imperas Software Ltd. Contains Imperas Proprietary
Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

Info (MPD_SCS) Connecting
Info (MPD_SC) Socket connected
Info (MPD_VC) Server is compatible
idebug (cpu1) > processor
Current processor 'cpu1'
Processors in platform:
 cpu2
 cpu1
idebug (cpu2) > processor cpu1
idebug (cpu1) > break main
Created breakpoint 1 at 0x00000f9c: file fibonacci.c, line 32

idebug (cpu1) > processor cpu2
idebug (cpu2) > break main
Created breakpoint 2 at 0x00000f9c: file fibonacci.c, line 32
idebug (cpu2) > continue
Breakpoint 2 at main triggered for processor cpu2
main () at fibonacci.c:32
32 printf("APP: Fibonacci starting...\n");
idebug (cpu2) > continue

Breakpoint 1 at main triggered for processor cpu1
main () at fibonacci.c:32
32 printf("APP: Fibonacci starting...\n");
idebug (cpu1) > continue
exit (code=0) at ../../../../../../src/gcc-3.4.2/newlib/libc/stdlib/exit.c:64
64 in ../../../../../../src/gcc-3.4.2/newlib/libc/stdlib/exit.c
idebug (cpu1) > ::exit

This sequence of commands in MPD provides the following simulator output

...
Info (GDBT_PORT) Host: lnx34.impinternal.com, Port: 42885
Info (GDBT_WAIT) Waiting for remote debugger to connect...
Info (GDBT_MPD) Client connected to platform
APP: Fibonacci starting...
APP: fib(0) = 0
APP: fib(1) = 1
APP: fib(2) = 1
APP: fib(3) = 2
APP: fib(4) = 3
APP: fib(5) = 5
...
APP: fib(13) = 233
APP: Fibonacci starting...
APP: fib(0) = 0
APP: fib(1) = 1
APP: fib(2) = 1
...
APP: fib(28) = 317811
APP: fib(29) = 514229
APP: finishing...
APP: fib(29) = 514229
APP: finishing...
Info (GDBT_KILL) Client requested shutdown
...

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 94 of 114

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 95 of 114

19 Imperas eGui Graphical Debug Environment

The Imperas eGui product is a GUI built on Eclipse that enables you to debug your
embedded systems in a standard, easy to use, coherent, use-model built on the Eclipse
CDT debug interface.

eGui can be used with GDB for single core software development, or for Imperas
professional tools users, eGui can control the Imperas Multi Processor Debugger. The
Imperas Multi Processor Debugger enables the simultaneous debugging of host code,
cross compiled software running on target CPUs, and the programmers view and source
code of peripheral behavioral models.

To use eGui, you will need to have installed the eGui package.
Further information can be found in the document eGui Eclipse User Guide.

eGui screen shot

The Imperas eGui is started using one of the simulator command line arguments --
gdbegui or --mpdegui,, as discussed briefly in sections 18.2.4 “Using GDB with eGui
Graphical User Interface” and 18.3.2 “Using MPD with eGUI”.

There is a user manual that describes the full capabilities available as eGui Eclipse User
Guide.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 96 of 114

20 Controlling Record and Replay of Virtualized
Peripheral Input

If a peripheral model communicates with the outside world, e.g. through a real keyboard
interface, a simulation may be affected by inputs which cannot be exactly reproduced in
subsequent simulation sessions. This makes regression testing or reproduction of
particular failures very close to impossible. To overcome this problem, the BHM API
presents a simple interface to a record/replay mechanism. It is the responsibility of the
peripheral model writer to use this API if replay is required and to ensure that a model
using replay does appear to the rest of the system to behave exactly as in the original
simulation.

Record/Replay can be controlled from the command line or with instance parameters.

20.1 Example for Record Replay operation
Take a local copy of the recordReplay example:

> cp -r $IMPERAS_HOME/Examples/SimulationControl/recordReplay .
> cd recordReplay

20.2 Simple CPU Memory and UART module
The module for this example is a modified version of

 PlatformConstruction/simpleCpuMemoryUart

with the removal of the nets and log file. It uses the Freescale KinetisUart (which can
communicate using either nets, or be virtualized and connect to a console via a socket).

> cat module/module.op.tcl
ihwnew -name cpuMemUart

ihwaddbus -instancename mainBus -addresswidth 32

ihwaddprocessor -instancename cpu1 -vendor ovpworld.org -library processor -type
or1k \
 -version 1.0 -semihostname or1kNewlib -variant generic
ihwconnect -bus mainBus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus mainBus -instancename cpu1 -busmasterport DATA

ihwaddmemory -instancename ram1 -type ram
ihwconnect -bus mainBus -instancename ram1 -busslaveport sp1 -loaddress 0x0 -
hiaddress 0x0fffffff

ihwaddmemory -instancename ram2 -type ram
ihwconnect -bus mainBus -instancename ram2 -busslaveport sp1\
 -loaddress 0x20000000 -hiaddress 0xffffffff

ihwaddperipheral -instancename uart0 -vendor freescale.ovpworld.org \
 -library peripheral -type KinetisUART -version 1.0
ihwconnect -bus mainBus -instancename uart0 -busslaveport bport1\
 -loaddress 0x100003f8 -hiaddress 0x100013f7

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 97 of 114

No parameters are set when instancing the peripheral (we will do this in the harness).
Note that the UART sits between two RAMs in the address space.

20.3 Application
The application initializes the UART and then writes a banner to the UART, then loops
reading and echoing input until an 'x' is read, whereupon it exits.

> cat application/application.c
...
int main(int argc, char **argv) {

 initFreeScaleKinetisUart(UART0_BASE);

 if ((argc == 2) && !strcmp (argv[1],"replay")) { // if 'replay' is arg to
application
 printf ("[application] Reading from uart (replay) [type 'x' to
exit']\n\n");
 writeMessFreescaleKinetisUart (UART0_BASE, "in REPLAY MODE.\n\n");
 } else {
 printf ("[application] Reading from uart (record) [type 'x' to
exit']\n\n");
 writeMessFreescaleKinetisUart (UART0_BASE, "Reading from UART.\n Type
chars to be recorded. [type 'x' to exit']\n\n");
 }

 char c;
 while ((c = uart_getchar ()) != 0) {
 if (c == 'x') {
 printf ("[application1] Read termination char(x) from uart\n\n");
 break;
 }
 printf ("uartGetChar(%c)\n", c);
 char s[] = {c, '\0'};
 writeMessFreescaleKinetisUart (UART0_BASE, s);
 }
 return 0;
}

20.4 Harness that configures UART and controls operation

File harness/harness.c shows how record and replay may be controlled from a simulation
harness. Firstly, we need to declare we are going to have command line arguments for
control:

struct optionsS {
 Bool record;
 Bool replay;
 Bool useport;
} options = {
 .record = 0,
 .replay = 0,
 .useport = 0,
};

static void cmdParser(optCmdParserP parser) {

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 98 of 114

 opCmdParserAdd(parser, "myrecord", "", "bool", "myargs group",
OP_FT_BOOLVAL,
 &options.record, "Record from UART to file", OP_AC_ALL, 0, 0);
 opCmdParserAdd(parser, "myreplay", "", "bool", "myargs group" ,
OP_FT_BOOLVAL,
 &options.replay, "Replay UART from file", OP_AC_ALL, 0, 0);
 opCmdParserAdd(parser, "myuseport", "", "bool", "myargs group" ,
OP_FT_BOOLVAL,
 &options.useport, "Use manual port connection", OP_AC_ALL, 0, 0);
}

int main(int argc, const char *argv[]) {
 opSessionInit(OP_VERSION);

 optCmdParserP parser = opCmdParserNew(ROOT_NAME, OP_AC_ALL);
 cmdParser(parser);
 opCmdParseArgs(parser, argc, argv);

Then we set some parameters, first for the simulation on the root module:

 opParamBoolOverride(0, OP_FP_STOPONCONTROLC, 1);

And then set some parameters on the peripheral instance putting it into record or replay
depending on command line arguments. We are also defining the directory/file name
where the recordings will be stored:

 if (options.record) {
 opParamStringOverride(0,
 MODULE_INSTANCE "/" PERIPHERAL_INSTANCE "/" "record",
 "recdir/uart0.record");
 } else if (options.replay) {
 opParamStringOverride(0,
 MODULE_INSTANCE "/" PERIPHERAL_INSTANCE "/" "replay",
 "recdir/uart0.record");
 }

Depending upon the command line argument given when running the simulation, we will
connect it to the UART with port numbers or the built-in console:

 if (options.useport) {
 opParamUns32Override(0,
 MODULE_INSTANCE "/" PERIPHERAL_INSTANCE "/" "portnum", 0);
 } else {
 opParamBoolOverride(0,
 MODULE_INSTANCE "/" PERIPHERAL_INSTANCE "/" "console", 1);
 }

The 'console' parameter configures the peripheral instance to pop up a console window
for us to type into.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 99 of 114

If instead we use the --myuseport command line argument, then we would be telling the
UART to use a TCP port. In this mode, the UART would open a port and wait for us to
connect something to it, such as the provided terminal.exe. The use of 'console' simply
makes this easier and uses our provided console window automatically, resolving port
numbers, etc. [Note that if you start the simulation in this mode, and the UART is
awaiting a connection to a port - you either need to connect to the port and exit, or kill the
simulation process to exit.]

For more information on the parameters that this UART can use, please see the
documentation on it which may be found in:

$IMPERAS_HOME/ImperasLib/source/freescale.ovpworld.org/peripheral/KinetisUART/1.
0/doc/OVP_Peripheral_Specific_Information_KinetisUART.pdf

Then we instance the root module and design module as normal:

 optModuleP mi = opRootModuleNew(0, 0, 0);
 opModuleNew(mi, MODULE_DIR, MODULE_INSTANCE, 0, 0);

 opRootModuleSimulate(mi);

 opSessionTerminate();
 return 0;
}

20.5 Using instance parameters
We saw in the harness above, that we configured the specific UART instance to be set to
record or replay mode.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 100 of 114

 if (options.record) {
 opParamStringOverride(0,
 MODULE_INSTANCE "/" PERIPHERAL_INSTANCE "/" "record",
 "recdir/uart0.record");
 } else if (options.replay) {
 opParamStringOverride(0,
 MODULE_INSTANCE "/" PERIPHERAL_INSTANCE "/" "replay",
 "recdir/uart0.record");
 }

Record or replay can be turned on / off for each peripheral instance that requires this
behavior. It is usual to set record or replay for all peripherals or no peripherals so that the
whole simulation behaves consistently.

20.6 From the command line
If you are using an Imperas simulator, record / replay can be turned on from the
command line:

> harness/harness.$IMPERAS_ARCH.exe \
 --program u1/cpu1=application/application.OR1K.elf \
 --modelrecorddir recdir

Replay is similar; a directory is specified which contains pre-recorded events:

> harness/harness.$IMPERAS_ARCH.exe \
 --program u1/cpu1=application/application.OR1K.elf \
 --modelreplaydir recdir \
 --argv replay

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 101 of 114

21 OP API Compatibility with deprecated ICM API
The OP API replaces the ICM API used in earlier Imperas products. A version of the
ICM provides ongoing support for existing designs, implemented internally using OP
functions. Therefore all necessary ICM functions will be supported for as long as they are
required.

There is no need to convert an ICM platform to an OP module unless:

• The platform must be modified to use sub-modules
• The platform must be modified to be included in an OP design.

21.1 Interoperability
A design must use either OP or ICM. The two styles must not be mixed. OP modules can
load other OP modules, but not ICM. ICM cannot load OP modules.

The processor, peripheral and intercept APIs have not changed. All leaf level models and
plug-ins can be used with OP or ICM.

The GDB RSP interface, the multiprocessor debugger and other Imperas tools support
platforms that use ICM or OP.

OP introduces a new way to construct a platform. Once constructed, the execution and
scheduling of processor, peripheral and other modules is unchanged from previous
versions of the simulator.

21.2 API tracing
Set the environment variables IMPERAS_OP_TRACE=1 to turn on tracing of entry to,
and exit from OP functions. Output is to the standard output of the console or shell that
invokes the simulator.

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 102 of 114

22 ICM to OP API Function Conversion
The ICM API is being replaced by the OP API.

To help with converting between the two APIs a conversion table has been provided,
ICM_to_OP_ConversionTable.html, please see below.

This table is correct as of the date of this document.

ICM OP
icmAbortRead opProcessorReadAbort
icmAbortWrite opProcessorWriteAbort
icmAddBoolAttr opParamBoolSet
icmAddBusFetchCallback opBusFetchMonitorAdd
icmAddBusReadCallback opBusReadMonitorAdd
icmAddBusWriteCallback opBusWriteMonitorAdd
icmAddControlFile (not required)
icmAddDoubleAttr opParamDoubleSet
icmAddFetchCallback opProcessorFetchMonitorAdd
icmAddInt32Attr opParamInt32Set
icmAddInt64Attr opParamInt64Set
icmAddInterceptObject opProcessorExtensionNew
icmAddNetCallback opNetWriteMonitorAdd
icmAddPacketnetCallback opPacketnetWriteMonitorAdd
icmAddPortMapCB opBusPortConnMapNotify
icmAddProcessorDelay opProcessorDelayAdd
icmAddPseInterceptObject opPeripheralExtensionNew
icmAddPtrAttr opParamPtrSet
icmAddReadCallback opProcessorReadMonitorAdd
icmAddStringAttr opParamStringSet
icmAddSymbol opProcessorApplicationSymbolAdd
icmAddUns32Attr opParamUns32Set
icmAddUns64Attr opParamUns64Set
icmAddWriteCallback opProcessorWriteMonitorAdd
icmAdvanceTime opRootModuleTimeAdvance
icmAdvanceTimeDouble opRootModuleTimeAdvance
icmAllVlnvFiles opVLNVIter

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 103 of 114

ICM OP
icmAtExit opSessionAtExit
icmBanner opBanner
icmBridgeBuses opDynamicBridge
icmCLPDefaultObjectFile opCmdDefaultApplication
icmCLParseArgUsed opCmdArgUsed
icmCLParseArgs opCmdParseArgs
icmCLParseFile opCmdParseFile
icmCLParseStd opCmdParseStd
icmCLParser opCmdParserNew
icmCLParserAdd opCmdParserAdd
icmCLParserOld (not required)
icmCLParserUsageMessage opCmdUsageMessage
icmCallCommand opCommandStringCall
icmCancelTrigger opModuleTriggerDelete
icmClearAddressBreakpoint opProcessorBreakpointAddrClear
icmClearICountBreakpoint opProcessorBreakpointICountClear
icmConnRestoreState opFIFOStateRestore
icmConnRestoreStateFile opFIFOStateRestoreFile
icmConnSaveState opFIFOStateSave
icmConnSaveStateFile opFIFOStateSaveFile
icmConnectMMCBus opMMCBusConnect
icmConnectMemoryToBus opMemoryBusConnect
icmConnectPSEBus opPeripheralBusConnectSlave
icmConnectPSEBusDynamic opPeripheralBusConnectSlaveDynamic
icmConnectPSENet opObjectNetConnect
icmConnectPSEPacketnet opPeripheralPacketnetConnect
icmConnectProcessorBusByName opProcessorBusConnect
icmConnectProcessorBusses opProcessorBusConnect
icmConnectProcessorConn opProcessorFIFOConnect
icmConnectProcessorNet opObjectNetConnect
icmDebugReadProcessorMemory opProcessorRead
icmDebugThisProcessor opProcessorDebug
icmDebugWriteProcessorMemory opProcessorWrite
icmDeleteWatchPoint opWatchpointDelete

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 104 of 114

ICM OP
icmDerateProcessor opProcessorDerate
icmDisableTraceBuffer opProcessorTraceBufferDisable
icmDisassemble opProcessorDisassemble
icmDocChildNode opDocChildNext
icmDocIsText opDocIsTitle
icmDocNextNode opDocChildNext
icmDocSectionAdd opDocSectionAdd
icmDocText opDocText
icmDocTextAdd opDocTextAdd
icmDumpRegisters opProcessorRegDump
icmDumpTraceBuffer opProcessorTraceBufferDump
icmEnableTraceBuffer opProcessorTraceOnAfter
icmErrors opErrors
icmExit opProcessorExit
icmExitSimulation opSessionExit
icmFindInterceptObject opObjectByName
icmFindMMCByName opObjectByName
icmFindPSEInterceptObject opObjectByName
icmFindProcessorByName opObjectByName
icmFindProcessorDoubleAttribute opObjectParamNext
icmFindProcessorNetPort opObjectByName
icmFindProcessorStringAttribute opObjectByName
icmFindPseByName opObjectByName
icmFindPseNetPort opObjectNetPortConnNext
icmFinish opProcessorFinish
icmFlushMemory opMemoryFlush
icmFlushProcessorMemory opProcessorFlush
icmFreeAttrList (not required)
icmFreeBus (not required)
icmFreeBusBridge (not required)
icmFreeFifo (not required)
icmFreeMMC (not required)
icmFreeMemory (not required)
icmFreeNet (not required)

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 105 of 114

ICM OP
icmFreePSE (not required)
icmFreeProcessor (not required)
icmFreeze opProcessorFreeze
icmGetAllPlatformCommands opObjectCommandNext
icmGetAllProcessorCommands opProcessorCommandIterAll
icmGetBusHandle opParamPtrValue
icmGetBusPortAddrBits opBusPortAddrBitsDefault
icmGetBusPortAddrBitsMax opBusPortAddrBitsMax
icmGetBusPortAddrBitsMin opBusPortAddrBitsMin
icmGetBusPortBytes opBusPortAddrHi
icmGetBusPortDesc opBusPortDescription
icmGetBusPortDomainType opBusPortDomainType
icmGetBusPortDomainTypeString opBusPortDomainTypeString
icmGetBusPortMustBeConnected opBusPortMustConnect
icmGetBusPortName opObjectName
icmGetBusPortType opBusPortType
icmGetBusPortTypeString opBusPortTypeString
icmGetCurrentProcessor opProcessorCurrent
icmGetCurrentTime opModuleCurrentTime
icmGetException opProcessorExceptionCurrent
icmGetExceptionInfoCode opExceptionCode
icmGetExceptionInfoDescription opExceptionDescription
icmGetExceptionInfoName opExceptionName
icmGetFaultAddress opProcessorFaultAddress
icmGetFifoHandle opParamPtrValue
icmGetFifoPortDesc opFIFOPortDescription
icmGetFifoPortName opObjectName
icmGetFifoPortType opFIFOPortType
icmGetFifoPortTypeString opFIFOPortTypeString
icmGetFifoPortWidth opFIFOPortWidth
icmGetImagefileElfcode opApplicationElfCode
icmGetImagefileEndian opApplicationEndian
icmGetImagefileEntry opApplicationEntry
icmGetInterceptObjectName opObjectName

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 106 of 114

ICM OP
icmGetInterceptObjectReleaseStatus opObjectReleaseStatus
icmGetInterceptObjectVisibility opObjectVisibility
icmGetInterceptVlnv opObjectVLNV
icmGetMMCName opObjectName
icmGetMMCPortName opObjectName
icmGetMMCReleaseStatus opObjectReleaseStatus
icmGetMMCVisibility opObjectVisibility
icmGetMMCVlnv opObjectVLNV
icmGetMemoryHandle opParamPtrValue
icmGetMode opProcessorModeCurrent
icmGetModeInfoCode opModeCode
icmGetModeInfoDescription opModeDescription
icmGetModeInfoName opModeName
icmGetNetHandle opParamPtrValue
icmGetNetPortDesc opNetPortDescription
icmGetNetPortMustBeConnected opNetPortMustConnect
icmGetNetPortName opObjectName
icmGetNetPortType opNetPortType
icmGetNetPortTypeString opNetPortTypeString
icmGetNextBusPortInfo opObjectBusPortNext
icmGetNextEventTime opEventTimeNext
icmGetNextException opProcessorExceptionNext
icmGetNextFifoPortInfo opObjectFIFOPortNext
icmGetNextInstructionAddress opProcessorInstructionAttributes
icmGetNextInterceptParamInfo opObjectFormalNext
icmGetNextMMCBusPortInfo opObjectBusPortNext
icmGetNextMMCParamInfo opObjectFormalNext
icmGetNextMode opProcessorModeNext
icmGetNextNetPortInfo opObjectNetPortNext
icmGetNextPSEBusPortInfo opObjectBusPortNext
icmGetNextPSENetPortInfo opObjectNetPortNext
icmGetNextPSEPacketnetPort opObjectPacketnetPortNext
icmGetNextPSEParamInfo opObjectFormalNext
icmGetNextParamEnum opFormalEnumNext

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 107 of 114

ICM OP
icmGetNextProcessorBusPortInfo opObjectBusPortNext
icmGetNextProcessorFifoPortInfo opObjectFIFOPortNext
icmGetNextProcessorNetPortInfo opObjectNetPortNext
icmGetNextProcessorParamInfo opObjectFormalNext
icmGetNextReg opProcessorRegNext
icmGetNextRegGroup opProcessorRegGroupNext
icmGetNextRegInGroup opRegGroupRegNext
icmGetNextTriggeredWatchPoint opRootModuleWatchpointNext
icmGetPC opProcessorPC
icmGetPCDS opProcessorPCDS
icmGetPSEDoc opObjectDocNodeNext
icmGetPSEHandle opParamPtrValue
icmGetPSEName opObjectName
icmGetPSEReleaseStatus opObjectReleaseStatus
icmGetPSESaveRestoreSupported opObjectSaveRestoreSupported
icmGetPSEVisibility opObjectVisibility
icmGetPSEVlnv opObjectVLNV
icmGetPacketnetMaxBytes opPacketnetMaxBytes
icmGetPacketnetName opObjectName
icmGetPacketnetPortDesc opPacketnetPortDescription
icmGetPacketnetPortMustBeConnected opPacketnetPortMustConnect
icmGetPacketnetPortName opObjectName
icmGetPacketnetPortNet opPacketnetPortConnPacketnet
icmGetParamDesc opFormalDescription
icmGetParamEnumDesc opFormalEnumDescription
icmGetParamEnumName opObjectName
icmGetParamEnumValue opFormalEnumValue
icmGetParamName opObjectName
icmGetParamType opFormalType
icmGetParamTypeString opFormalTypeString
icmGetPlatformName opObjectName
icmGetPlatformPurpose opModulePurpose
icmGetPlatformReleaseStatus opObjectReleaseStatus
icmGetPlatformStopReason opRootModuleStopReason

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 108 of 114

ICM OP
icmGetProcessorAMP opProcessorAMP
icmGetProcessorClocks opProcessorClocks
icmGetProcessorClocksUntilTime opProcessorClocksUntilTime
icmGetProcessorClocksUntilTimeDouble opProcessorClocksUntilTime
icmGetProcessorDataBus opObjectBusPortConnNext
icmGetProcessorDefaultSemihost opProcessorDefaultSemihost
icmGetProcessorDelay opProcessorDelay
icmGetProcessorDesc opProcessorDescription
icmGetProcessorDoc opObjectDocNodeNext
icmGetProcessorElfcode opProcessorElfCodes
icmGetProcessorEndian opProcessorEndian
icmGetProcessorFamily opProcessorFamily
icmGetProcessorGdbFlags opProcessorGdbFlags
icmGetProcessorGdbPath opProcessorGdbPath
icmGetProcessorGroupH opProcessorGroupH
icmGetProcessorGroupL opProcessorGroupL
icmGetProcessorHandle opParamPtrValue
icmGetProcessorHelper opProcessorHelper
icmGetProcessorICount opProcessorICount
icmGetProcessorInstructionBus opObjectBusPortConnNext
icmGetProcessorLoadPhysical opProcessorLoadPhysical
icmGetProcessorName opObjectName
icmGetProcessorQLQualified opProcessorQLQualified
icmGetProcessorReleaseStatus opObjectReleaseStatus
icmGetProcessorTime opProcessorTime
icmGetProcessorVariant opProcessorVariant
icmGetProcessorVisibility opObjectVisibility
icmGetProcessorVlnv opObjectVLNV
icmGetRegByIndex opProcessorRegByIndex
icmGetRegByName opProcessorRegByName
icmGetRegByUsage opProcessorRegByUsage
icmGetRegGroupByName opProcessorRegGroupByName
icmGetRegGroupName opRegGroupName
icmGetRegInfoAccess opRegReadOnly

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 109 of 114

ICM OP
icmGetRegInfoAccessString opRegAccessString
icmGetRegInfoBits opRegBits
icmGetRegInfoDesc opRegDescription
icmGetRegInfoGdbIndex opRegIndex
icmGetRegInfoGroup opRegGroup
icmGetRegInfoName opRegName
icmGetRegInfoReadOnly opRegReadOnly
icmGetRegInfoUsage opRegUsageEnum
icmGetRegInfoUsageString opRegUsageString
icmGetSMPChild opProcessorChild
icmGetSMPData opProcessorData
icmGetSMPIndex opProcessorIndex
icmGetSMPNextSibling opProcessorSiblingNext
icmGetSMPParent opProcessorParent
icmGetSMPPrevSibling opProcessorSiblingPrevious
icmGetStatus opModuleFinishStatus
icmGetStopReason opProcessorStopReason
icmGetVlnvString opVLNVString
icmGetWatchPointCurrentValue opWatchpointRegCurrentValue
icmGetWatchPointHighAddress opWatchpointAddressHi
icmGetWatchPointLowAddress opWatchpointAddressLo
icmGetWatchPointPreviousValue opWatchpointRegPreviousValue
icmGetWatchPointRegister opWatchpointReg
icmGetWatchPointTriggeredBy opWatchpointTriggeredBy
icmGetWatchPointType opWatchpointType
icmGetWatchPointUserData opWatchpointUserData
icmHalt opProcessorHalt
icmIgnoreMessage opMessageDisable
icmInitInternal opModuleNewFromAttrs
icmInitPlatform opModuleNew
icmInstallObjectReader opApplicationLoaderInstall
icmInterrupt opInterrupt
icmInterruptRSP opInterruptRSP
icmIsFrozen opProcessorFrozen

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 110 of 114

ICM OP
icmIterAllChildren opProcessorIterChildren
icmIterAllDescendants opProcessorIterDescendants
icmIterAllModelParameters opModuleFormalsShow
icmIterAllProcessors opProcessorIterAll
icmIterAllUserAttributes opModuleFormalsShow
icmLastMessage opLastMessage
icmLegalUsageEnable (not required)
icmLoadBus opBusApplicationLoad
icmLoadModelHook opSessionInit
icmLoadProcessorMemory opProcessorApplicationLoad
icmLoadProcessorMemoryOffset opProcessorApplicationLoad
icmLoadSymbols opMemoryApplicationLoad
icmMMCRestoreState opMMCStateRestore
icmMMCRestoreStateFile opMMCStateRestoreFile
icmMMCSaveState opMMCStateSave
icmMMCSaveStateFile opMMCStateSaveFile
icmMMRegBits opMMRegisterBits
icmMMRegDescription opMMRegisterDescription
icmMMRegName opMMRegisterName
icmMMRegOffset opMMRegisterOffset
icmMapExternalMemory opBusSlaveNew
icmMapExternalNativeMemory opBusSlaveNew
icmMapLocalMemory opMemoryNew
icmMapNativeMemory opMemoryNativeDynamic
icmMemoryRestoreState opMemoryStateRestore
icmMemoryRestoreStateFile opMemoryStateRestoreFile
icmMemorySaveState opMemoryStateSave
icmMemorySaveStateFile opMemoryStateSaveFile
icmMessage opMessage
icmMessageQuiet opMessageQuiet
icmMessageSetNoWarn opMessageSetNoWarn
icmMessageSetQuiet opMessageSetQuiet
icmMessageVerbose opMessageVerbose
icmNetPortDirection opNetPortType

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 111 of 114

ICM OP
icmNetPortName opObjectName
icmNetRestoreState opNetStateRestore
icmNetRestoreStateFile opNetStateRestoreFile
icmNetSaveState opNetStateSave
icmNetSaveStateFile opNetStateSaveFile
icmNewBus opBusNew
icmNewBusBridge opBridgeNew
icmNewBusWithHandle opParamPtrSet
icmNewFifo opFIFONew
icmNewFifoWithHandle opParamPtrSet
icmNewMMC opMMCNew
icmNewMemory opMemoryNew
icmNewMemoryWithHandle opParamPtrSet
icmNewNet opNetNew
icmNewNetWithHandle opParamPtrSet
icmNewPSE opPeripheralNew
icmNewPSEWithHandle opParamPtrSet
icmNewPacketnet opPacketnetNew
icmNewProcessor opProcessorNewWithSemihost
icmNewProcessorIASAttrs opProcessorNewFromAttrs
icmNewProcessorWithHandle opParamPtrSet
icmNextBusPortMMRegInfo opBusPortMMRegisterNext
icmNextInterceptObject opObjectExtensionNext
icmNextMmc opMMCNext
icmNextProcessor opProcessorNext
icmNextProcessorNetPort opObjectNetPortConnNext
icmNextPse opPeripheralNext
icmNextPseNetPort opObjectNetPortConnNext
icmNoBanner opNoBanner
icmOverride opParamUns64Override
icmParamBoolDefaultValue opFormalBoolDefaultValue
icmParamDoubleLimits opFormaldoubleLimits
icmParamInt32Limits opFormalInt32Limits
icmParamInt64Limits opFormalInt64Limits

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 112 of 114

ICM OP
icmParamStringDefaultValue opFormalStringDefaultValue
icmParamUns32Limits opFormalUns32Limits
icmParamUns64Limits opFormalUns64Limits
icmPrintAllBusConnections opModuleShow
icmPrintAllPacketnetConnections (not required)
icmPrintBusConnections opModuleBusShow
icmPrintNetConnections opNetShow
icmPrintf opPrintf
icmProcessorIsVisible (not required)
icmProcessorRestoreState opProcessorStateRestore
icmProcessorRestoreStateFile opProcessorStateRestoreFile
icmProcessorSaveState opProcessorStateSave
icmProcessorSaveStateFile opProcessorStateSaveFile
icmReadBus opBusRead
icmReadMemory opMemoryRead
icmReadObject opProcessorApplicationRead
icmReadObjectFileHeader opApplicationHeaderRead
icmReadObjectFileHeaderInfo opApplicationHeaderRead
icmReadObjectFileInfo opProcessorApplicationRead
icmReadProcessorMemory opProcessorRead
icmReadReg opProcessorRegReadByName
icmReadRegInfoValue opProcessorRegRead
icmResetErrors opResetErrors
icmResetWatchPoint opWatchpointReset
icmSMPIsLeaf opProcessorIsLeaf
icmSetAddressBreakpoint opProcessorBreakpointAddrSet
icmSetBusAccessWatchPoint opBusAccessWatchpointNew
icmSetBusReadWatchPoint opBusReadWatchpointNew
icmSetBusWriteWatchPoint opBusWriteWatchpointNew
icmSetContextString (not required)
icmSetDebugMode (not required)
icmSetDebugNotifiers opSessionDebuggerNotifiersAdd
icmSetDebugStopTime opRootModuleSetDebugStopTime
icmSetExceptionWatchPoint opProcessorExceptionWatchpointNew

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 113 of 114

ICM OP
icmSetICountBreakpoint opProcessorBreakpointICountSet
icmSetMemoryAccessWatchPoint opMemoryAccessWatchpointNew
icmSetMemoryReadWatchPoint opMemoryReadWatchpointNew
icmSetMemoryWriteWatchPoint opMemoryWriteWatchpointNew
icmSetModeWatchPoint opProcessorModeWatchpointNew
icmSetPC opProcessorPCSet
icmSetPSEGdbPath (not required)
icmSetPSEdiagnosticLevel opPeripheralDiagnosticLevelSet
icmSetPersonality opLicPersonalitySet
icmSetPlatformStatus (not required)
icmSetProcessorAccessWatchPoint opProcessorAccessWatchpointNew
icmSetProcessorGdbBasic (not required)
icmSetProcessorGdbPath (not required)
icmSetProcessorReadWatchPoint opProcessorReadWatchpointNew
icmSetProcessorWriteWatchPoint opProcessorWriteWatchpointNew
icmSetProduct opProductSet
icmSetRegisterWatchPoint opProcessorRegWatchpointNew
icmSetSimulationRandomSeed opRootModuleSetSimulationRandomSeed
icmSetSimulationStopTime opRootModuleSetSimulationStopTime
icmSetSimulationStopTimeDouble opRootModuleSetSimulationStopTime
icmSetSimulationTimePrecision opRootModuleSetSimulationTimePrecision
icmSetSimulationTimePrecisionDouble opRootModuleSetSimulationTimePrecision
icmSetSimulationTimeSlice opRootModuleSetSimulationTimeSlice
icmSetSimulationTimeSliceDouble opRootModuleSetSimulationTimeSlice
icmSetTextOutputFn opSessionTextRedirect
icmSetWallClockFactor opRootModuleSetWallClockFactor
icmSimulate opProcessorSimulate
icmSimulatePlatform opRootModuleSimulate
icmSimulationEnding opRootModulePostSimulate
icmSimulationStarting opRootModulePreSimulate
icmTerminate opSessionTerminate
icmTraceOffAfter opProcessorTraceOffAfter
icmTraceOnAfter opProcessorTraceOnAfter
icmTriggerAfter opModuleTriggerAdd

Simulation Control of Platforms and Modules User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 114 of 114

ICM OP
icmTryVlnvString opVLNVString
icmUnbridgeBuses opDynamicUnbridge
icmUnfreeze opProcessorUnfreeze
icmVAbort opVAbort
icmVMessage opVMessage
icmVPrintf opVPrintf
icmWriteBus opBusWrite
icmWriteMemory opMemoryWrite
icmWriteNet opNetWrite
icmWriteNetPort opNetWrite
icmWritePacketnet opPacketnetWrite
icmWriteProcessorMemory opProcessorWrite
icmWriteReg opProcessorRegWriteByName
icmWriteRegInfoValue opProcessorRegWrite
icmYield opProcessorYield

	1 Preface
	1.1 Notation
	1.2 Related Documentation
	1.3 Glossary / Terminology

	2 Introduction
	2.1 Prerequisites
	2.2 Obtaining & installing the OP API
	2.3 Compiling Examples described in this Document
	2.4 Shared Objects and executables
	2.5 Platforms, Modules and Shared Objects

	3 Simulating Modules using harness.exe
	4 Imperas Simulation Overview
	4.1 Simulation Environments
	4.2 What are OVPsim and CpuManager?
	4.3 Use of OP with Imperas tools
	4.4 C API and iGen

	5 Separation of iGen modules and C harness / testbench
	6 Documentation on the OP API
	7 Introducing a C harness / testbench
	7.1 Writing a harness using C++

	8 The top level or root module
	9 Configuring the Simulation using parameters
	9.1.1 The available root module parameters
	9.3.1 Module Hardware Parameters
	9.3.2 Component Feature Parameters
	9.3.3 Setting Parameters in the Harness
	9.3.3.1 Parameter List
	9.3.3.2 OP_PARAMS Macro

	9.3.4 Running Example
	9.4.1 MIPS parameter
	9.4.2 Endian parameter

	10 Controlling the simulation using the Command Line
	10.2.1 Simulation Time Statistics
	10.5.1 Argument Conflicts

	11 Writing your own harness.exe
	12 Monitoring / Tracing during simulation
	12.1.1 Tracing control on the command line
	12.1.2 Tracing control with CPU model parameters
	12.1.3 Tracing control with OP functions
	12.3.1 Obtaining parameter lists (using --showoverrides)
	12.3.2 Configuration
	12.3.3 Diagnostics
	12.3.3.1 On a single Instance
	12.3.3.2 On all instances in a design

	12.4.1 Monitoring nets with callbacks
	12.4.1.1 Finding nets and declaring net callbacks
	12.4.1.2 Simulating with net callbacks
	12.4.1.3 monitoringNets/harness/harness.c full listing

	12.4.2 Monitoring Bus / Memory / Processor Address accesses using Callbacks
	12.4.2.1 Find buses and memories and attach callbacks
	12.4.2.2 Running the example

	12.4.3 Adding a command to show module contents

	13 Simulating Processor Exceptions
	14 Semihosting and Intercept Libraries
	14.1.1 Specifying a semihost library in the module.op.tcl
	14.1.2 An assembler test program
	14.1.3 Adding imperasExit semihost library to harness.c

	15 Imperas built-in Application Intercepts
	16 Simulator Control Files
	17 Loading an Application Program file
	17.1.1 LMA vs VMA
	17.1.2 Load Physical
	17.2.1 Set Start Address
	17.2.2 Zero BSS Section
	17.3.1 Loading onto single or multiple processors
	17.3.2 Modification to Load Address
	17.3.3 Specifying the start Address
	17.3.4 Provide Arguments to Applications
	17.5.1 Application Loader Controls
	17.5.2 Onto a Processor Instance
	17.5.3 Onto a Bus Instance
	17.5.4 Onto a Memory Instance
	17.8.1 Command Line
	17.8.2 In a Harness
	17.10.1 Writing a custom reader

	18 Attaching a debugger
	18.2.1 Starting GDB debug session on a single processor
	18.2.1.1 Command line
	18.2.1.2 Root module instance

	18.2.2 Selecting Processor(s) to debug with GDB
	18.2.2.1 Using command line options
	18.2.2.2 In a C harness

	18.2.3 Configuring GDB
	18.2.4 Using GDB with eGui Graphical User Interface
	18.3.1 Configure MPD
	18.3.1.1 Debug Peripheral model constructors
	18.3.1.2 Add to source search path

	18.3.2 Using MPD with eGUI
	18.3.3 MPD Batch Mode
	18.4.1 Do not wait for debug connection
	18.6.1 Debug all processors
	18.6.1.1 Using gdbconsole
	18.6.1.2 Using MPD with the Imperas Professional Simulator

	19 Imperas eGui Graphical Debug Environment
	20 Controlling Record and Replay of Virtualized Peripheral Input
	21 OP API Compatibility with deprecated ICM API
	22 ICM to OP API Function Conversion

