
© 2020 Imperas Software Limited www.OVPworld.org Page 1 of 44

Visualization for Platforms, Modules, Peripherals and
Intercept Libraries

This document shows how the Imperas simulators can visualize

different aspects of components in a virtual platform.

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 1.3
Filename: Visualization_for_Platforms_Modules_Peripherals_and_Intercept_Libraries.doc
Last Saved: Monday, 13 January 2020
Keywords: Visualization

mailto:docs@imperas.com

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 2 of 44

Copyright Notice
Copyright © 2020 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 3 of 44

Table of Contents

1 Preface 5

1.1 Notation.. 5
1.2 Related Documentation.. 5
1.3 Glossary / Terminology ... 5

2 Introduction 6
2.1 Prerequisites... 6
2.2 Obtaining & installing necessary files ... 6
2.3 Compiling Examples described in this Document... 7
2.4 Shared Objects and executables... 7

3 An Introduction to Virtual Platform Visualization 8
3.1 How it works.. 8
3.2 Connection overview ... 9

3.2.1 peripheral, module and harness.. 9
3.2.2 Binary intercept library .. 10

3.3 Turning visualization on .. 10
3.3.1 Command line.. 10
3.3.2 Environment variable... 10

3.4 Connecting a browser to a components visualization HTTP port 11
3.5 Many component visualization images.. 11

4 A first example: Examples/PlatformVisualization/moduleNet 12
4.1 The structure in index.html .. 12
4.2 Compiling the C and running... 13
4.3 Code in the module .. 14

5 Adding Visualization to Virtual Platform components 16
5.1 Creating visualization in peripheral model .. 16
5.2 Creating visualization in a harness .. 16
5.3 Creating visualization in a module .. 16
5.4 Creating visualization in an binary intercept library.. 16
5.5 Creating visualization for a processor model... 16

6 Imperas Visualization using Binary Intercept Extension Libraries 17
6.1 Introduction.. 17
6.2 Using existing plugins at run time ... 17

7 Visualization using just HTML and Javascript 18
7.1 Radar Display Example ... 18

7.1.1 Overview.. 18
7.1.2 Running the example ... 19

8 Examples 20
9 Reference section 21

9.1 Overview of Visualization infrastructure... 21
9.2 Joining the dots... (how C code values are displayed as images) 23

9.2.1 Imperas visualization 'classes'.. 23
9.3 Component index.html file .. 24
9.4 Peripheral C code... 25

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 4 of 44

9.4.1 iGen Definition .. 26
9.4.2 Constructor... 26
9.4.3 BHM_HTTP_GET_FN get callback function .. 27
9.4.4 the redraw function .. 27
9.4.5 BHM_HTTP_POST_FN post callback function 28

9.5 Module and Harness C code .. 28
9.5.1 Pre-Simulation initialization .. 29
9.5.2 get callback .. 29
9.5.3 post callback... 30

9.6 Intercept Library C code .. 30
9.6.1 Constructor... 30
9.6.2 get callback .. 31
9.6.3 post callback... 32

9.7 Top Level visualization.html file... 32
9.8 C API functions for peripherals ... 33
9.9 C API functions for modules and harnesses .. 34
9.10 C API functions for intercept libraries... 34
9.11 Using iGen to help assist in creating visualization .. 35

9.11.1 iGen can create templates for peripherals.. 35
9.11.2 iGen can create templates for modules .. 36

9.12 Imperas visualization classes: class, images, values.. 36
9.12.1 ovpled... 37
9.12.2 ovpbuttonled .. 37
9.12.3 ovplcd7seg ... 37
9.12.4 ovplcd2x16... 38
9.12.5 ovpswitchtoggle ... 38
9.12.6 ovpswitchdip .. 38
9.12.7 ovpbar .. 38
9.12.8 ovpvertbar .. 39
9.12.9 ovppower.. 39
9.12.10 ovpreset .. 39
9.12.11 ovpgauge .. 40
9.12.12 ovphistogram.. 40

9.13 Adding your own visualization classes and items ... 40
10 Common Problems 43

10.1 Fixed HTTP port numbers ... 43
10.2 No index.html for component .. 43
10.3 Browser can not connect to HTTP port ... 43
10.4 Browser pop up: runtime.js sendCommand has class name not recognized 44
10.5 Browser pop up: runtime.js sendCommand error. Your C code function has an
element which is undefined in the html ... 44
10.6 Tracing HTTP port data ... 44
10.7 Other errors .. 44
10.8 How to run regression test models with visualization 44

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 5 of 44

1 Preface
The Imperas simulators can open an HTTP port and display different aspects of various
components in an HTML web browser such as Chrome, Firefox, Safari..

This document describes the usage of the Imperas visualization and walks through
several examples of platforms, modules, peripherals and intercept libraries.

This document introduces the infrastructure that provides the visualization and what is
required in the models to enable it.

1.1 Notation
code Text representing code, a command or output from iGen or other

program.
keyword A word with special meaning.

1.2 Related Documentation

This document assumes you have already created the basics of the model that you want to
add visualization to and thus you need to be aware of the relevant documents for that
task.

For example to model a peripheral you need to be aware of the iGen and BHM
documents. For the intercept libraries you will need to be aware of the VMI documents
etc.

1.3 Glossary / Terminology

OCL API – is a C API that provides common functionality between platforms, modules
and intercept libraries. It can be used with OP, and also with VMI.

BHM API – is a C API that provides functionality in peripheral models.

HTTP - standard protocol which is the foundation of data communication for the World
Wide Web.

HTTP port - in the context of Imperas simulation - is a socket that the simulator opens
and writes/reads HTTP messages (get, post) which you can connect to a browser in which
to see the Imperas model visualization.

Browser, or HTML Browser - Imperas supports the standard internet web HTML
browsers: Chrome, Firefox, Safari.

HTML, Javascript, cascading style sheets (CSS) - normal www terms.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 6 of 44

2 Introduction
The Imperas simulators can open HTTP ports to allow an web browser to communicate
with the simulator to visualize different aspects of the simulatable models in the virtual
platform.

There are several components involved in the generation of the visualization:

• the platform, module, peripheral model, or intercept library
 calls an API to open an HTTP port
 responds to a ‘get’ callback on the HTTP port and calls an API to

construct messages for the simulator to write over the HTTP port
 responds to a ‘post’ callback on the HTTP port to read browser

generated values
• the simulator

 processes requests from the browser, loads files for the
visualization items and sends to the browser over an HTTP port

• HTML browser
 uses .html files to organize the visualization
 runs Javascript (.js scripts) to select images to display to represent

data via the HTTP port
 formats using cascading style sheets (.css)
 posts button clicks (e.g. mouse events) back to the simulator via

the HTTP port

2.1 Prerequisites
Since models and intercept libraries for use with Imperas and OVP tools are written in C,
an important prerequisite is that you must be proficient in the C language.

You need to have experience with the component type and API(s) that you want to add
visualization to. For example to add an image to the visualization of a module, you need
to be aware of how to modify the C code of the module.

Some knowledge of HTML code is also required as you will need to edit the HTML files
that provide the containers for the visualization.

It is assumed you have experience with running the Imperas harness.exe and iss.exe
programs.

You can use the provided visualizations without any prior knowledge related to Imperas
visualization.

2.2 Obtaining & installing necessary files
Visualization is a standard part of the OVP OVPsim, Imperas DEV and SDK packages.
So it is assumed you have downloaded one of these from the OVPworld.org or
Imperas.com websites and have installed it on the host machine.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 7 of 44

2.3 Compiling Examples described in this Document
The examples use models, intercept libraries and toolchains, available to download from
the www.OVPworld.org website or as part of an Imperas installation.

The compilation of the examples makes use of Makefiles and GNU make. The
instructions indicate the use of the command make on Linux systems and MinGW
mingw32-make command on Windows systems.

The Makefiles referred to in this document are written for GNU make. Standard
Makefiles supplied by Imperas support compilation and linking using GNU tools on both
Windows and Linux.

Example scripts will be referred to, for example, as example.sh. The shell (extension sh)
script files may be used on Linux and in Windows MSYS shells. The batch (extension
bat) files may be used in Windows Explorer or in a Windows command shell.

2.4 Shared Objects and executables
The shared objects referred to in this document are either Linux shared objects, with
suffix .so, or Windows dynamic link libraries, with suffix .dll.

The executables referred to in this document are either Linux or Windows programs and
both have the suffix .exe.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 8 of 44

3 An Introduction to Virtual Platform Visualization

3.1 How it works
When running a simulation it is often desirable to see a representation of the values of
certain variables. The Imperas Platform Visualization provides this. Also you might want
to interactively input some information to a running simulation - for example toggle a
switch, cause an interrupt, or hold a processor in reset. The Imperas Platform
Visualization also provides a simple input mechanism.

In the C code of a peripheral, module, harness or binary intercept library, calls can be
made into API functions that open HTTP ports and send/receive formatted data. You can
then connect up a standard web HTML browser to access the visualization.

Each model instance can open one HTTP port.

Your web browser will need to connect to this port, and if there are several model
instances and thus several ports, then you need to either connect a different browser page
instance to each port, or use HTML frames to have one page with each port connected to
its own frame.

If you only have one HTTP port being used in the visualization you can connect the
browser directly to the port with no need to create any HTML with frames, etc.

The different provided examples illustrate these different approaches.

The basic operational mechanism is that when the simulator starts and visualization is
being used, the simulator monitors requests on its HTTP ports. If no browser connects,
then there is no HTTP activity. When a browser connects to the HTTP port, the simulator
sends HTML pages to the browser and then at the chosen refresh interval the HTML page
requests data so that it can redraw the page.

Thus the browser is sampling the data that is being written from the simulator's models.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 9 of 44

3.2 Connection overview
3.2.1 peripheral, module and harness
Below is a picture of a visualization of one peripheral. This is provided as an example in
Examples/Models/Peripherals/visualization/switches.

HTTP Port

Memory
(ram1)

OR1KOR1K Memory
(ram2)

logfile

Application : read display switches

peripheral

module

.elf file

HTML Browser

A module or harness would be connected in a similar way and can provide visualization
for any values it has access to. An example of a harness visualization is provided in:
Examples/PlatformVisualization/processorReset.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 10 of 44

3.2.2 Binary intercept library
There is a processor monitor intercept library provided with the Imperas products that can
be used with single, SMP, or AMP processors to monitor the status of the processor. This
can be seen in the provided demonstration: Demo/Platforms/Linux_ARMv8-A-
FMv1/visualization and is shown below:

VirtioBlkMMIO

UART0 PL011

SysControl

Sysregs

RAMRAM

FlashFlash

DDRDDR

UART1 PL011

UART1 PL011

SMSC91C111

ARMv8-A-FMv1 Platform

Cortex™-Axx

IMPERASIMPERASIMPERAS i HTTP
Ports

SMP Linux OS running

HTML Browser

quad-core Cortex-AxxMPx4

3.3 Turning visualization on
If you run the simulation, by default, no visualization will be enabled.

If a component has visualization, then it must be enabled with either a command line
option or with an environment variable.

If components have visualization and it is either not enabled, or enabled and not
connected to a browser, then there is no overhead in the simulation run time.

When the visualization is enabled and connected to a browser, there is simulation
overhead that is dependent upon the amount of data transferred (though this is usually
minimal).

3.3.1 Command line
The command line option to use is

 --httpvis

This enables all components' HTTP ports.

3.3.2 Environment variable
The environment variable to use is

 IMPERAS_HTTP=1

This enables all components' HTTP ports.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 11 of 44

3.4 Connecting a browser to a components visualization HTTP
port

In the component's C code that opens an HTTP port there will be a default port number.
This is either provided explicitly by the user, or built into the simulator code. You can use
the simulator command line argument

 --showoverrides

to see the name of the parameter, and its default value. You can then use the --override
command to set it at run time. You can, of course, also set a peripheral or module's
parameters during platform construction.

To connect a browser to an HTTP port on the same computer, use the url:

 http://localhost:8000

And use the required port number, for example port 8000 shown above.

You can open different browsers or browser tabs to different HTTP ports in your
platform.

If your simulation is on another host computer (not your local machine), then use the IP
address or hostname in the url, for example machine in the following:

 http://machine:8002

If you want to see several components HTTP ports (visualizations) in one browser
window, see the section (9.7) describing the use of a top level visualization.html file.

3.5 Many component visualization images
There are many different items provided as part of the simulator that can be displayed.
Below is a simple illustration of some of those available:

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 12 of 44

4 A first example:
Examples/PlatformVisualization/moduleNet

This section introduces an example of adding visualization to a module. For details and
reference please see later sections in this document.

In this example we are going to monitor a net and add a button so we can terminate the
simulation from the connected browser. The visualization in the browser will look like:

4.1 The structure in index.html
In the module directory is also the httpvis directory that includes the index.html file
which defines the structure of what will be displayed.

The index.html file is listed here. It includes:

the header calling up the .js and .css files:
<html lang="en">
<link rel="icon" type="image/icon" href="/imperas.ico">

<head>
 <title>Imperas Simulation</title>
 <meta charset="utf-8"/>
 <link rel="stylesheet" href="normal.css" type="text/css"/>
 <script language="JavaScript" src="runtime.js" ></script>
</head>

(See section 9.1 for info on the normal.css and runtime.js files)

The periodic refresh:
<body onload="startRefresh('/', 500);">

A block (fieldset) including a table with rows and data to structure the page:
 <fieldset><legend>Module processorExternalInterrupt</legend>
 <table>

A row with text:
 <tr>
 <td class='ovplabel'>Module:</td>
 <td class='ovptext' id="moduleInstName0" ></td>

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 13 of 44

 <td class='ovplabel'>: Time :</td>
 <td class='ovptext' id="moduleSimTime0" ></td>
 </tr>

Another row with text:
 <tr>
 <td class='ovplabel'>Interrupt net:</td>
 <td class='ovptext' id="netName0" ></td>

And the LED placeholder (id=led0):
 <td class='ovpled' id="led0" ></td>

And the value placeholder (id=netValue0):
 <td class='ovptext' id="netValue0" ></td>
 </tr>
 <tr><td><hr></td></tr>

And the power button placeholder (id=power0):
 <tr><td class='ovplabel'>Power Button </td></tr>
 <tr><td><div class='ovppower' id="power0"
onmousedown="ovpswitchclicked(event)" title='click to quit
simulation'>SIMULATION NOT RUNNING</div></td></tr>
 </table>
 </fieldset>

<div class='console' id='console'></div>
</body>
</html>

4.2 Compiling the C and running
We will need the or1k.toolchain and OVPpse.toolchain packages installed.

 First copy the example to a local directory:

> cp /Examples/PlatformVisualization/moduleNet .
> cd moduleNet
> ls
application example.sh module peripheral

And look at the example.sh script which will compile up the application, module, and
peripheral:
CROSS=OR1K
make -C application CROSS=${CROSS}
make -C module NOVLNV=1
make -C peripheral NOVLNV=1

Then there is code to ask the user if they want to start a browser to see the visualization,
and then it runs the module and application using harness.exe:
harness.exe --modulefile module \
 --objfilenoentry application/asmtest.OR1K.elf \
 --override processorExternalInterrupt/timerPeripheral/diagnosticlevel=3 \
 --override processorExternalInterrupt/httpvisportnum=8000 \
 --verbose --wallclock --output imperas.log \
 --httpvis \

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 14 of 44

 $*

Note the enabling of the HTTP port with --httpvis, and the override of the module's
httpvisportnum.

The application is written in assembler for the OR1K and after resetting the processor and
initializing a peripheral timer, it loops and responds to interrupts. The timer interrupts the
processor using a net, tickInterrupt. It is tickInterrupt in the module that we are going
to monitor.

4.3 Code in the module
If we look at the end of the module/module.op.tcl there is the declaration of the parameter
for the port number:
 ihwaddformalparameter -name httpvisportnum -type Uns32 -defaultValue 8000

The code to open and write to the HTTP port is in module/module.c

We need to include the headers:
#include "op/op.h"
#include "ocl/oclhttp.h"

and declare static storage to be used by the callbacks:
typedef struct optModuleObjectS {
 // insert module persistent data here
 optModuleP mi;
 optNetP intNet;
 Uns32 intNetValue;
 const char *intNetName;
} optModuleObject;

In the pre simulate phase we need to open the HTTP port and declare our HTTP get and
post callbacks and allow the port number to be set by the module parameter:
static OP_PRE_SIMULATE_FN(modulePreSimulate) {
 Uns32 httpvisportnum = opObjectParamUns32Value (mi,"httpvisportnum",0);
 octHTTPMethods m = { .get=get, .post=post, .userData=object };
 opModuleHTTPOpen(mi, &m, httpvisportnum, "httpvis");
 object->mi = mi;
 monitorNets (object);
}

The local function, monitorNets sets up the monitors on the net in the module:
static void monitorNets(optModuleObjectP object) {
 optNetP net = opObjectByName (object->mi, "tickInterrupt", OP_NET_EN).Net;
 if (!net) {
 opMessage ("F", "NNF", "monitorNets (net not found)");
 } else {
 opPrintf ("monitorNets(%s)\n", opObjectHierName(net));
 opNetWriteMonitorAdd(net, netCallback, object);
 object->intNet = net;
 object->intNetName = opObjectName(net);
 }
}

and saves in the static object structure a handle to the net and its name.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 15 of 44

The get callback is called when the browser needs updating and the callback reads the
appropriate data and sends it to the HTTP port.
static OCL_HTTP_GET_FN(get) {
 optModuleObjectP object = userData;
 oclHTTPElementOpen(ch, "ovpelement");

 oclHTTPKeyPrintf(ch, "moduleInstName0", opObjectName(object->mi));
 oclHTTPKeyPrintf(ch, "moduleSimTime0","%g",
 (double)opModuleCurrentTime(opObjectRootModule(object->intNet)));
 oclHTTPKeyPrintf(ch, "netName0", object->intNetName);
 oclHTTPKeyPrintf(ch, "netValue0", "%d", object->intNetValue);
 oclHTTPKeyPrintf(ch, "led0", "%d", object->intNetValue);

 oclHTTPKeyPrintf(ch, "power0", "0");
 oclHTTPElementClose(ch, "ovpelement");
 oclHTTPSend(ch);
}

We are also getting simulation time as well as object variable values.

The oclHTTPKeyPrintf sends a value associated with an item's instance name, as specified
in the browser's HTML file which may be found in module/httpvis/index.html.

The post callback is called when a button/switch is clicked in the browser:
static OCL_HTTP_POST_FN(post) {
 optModuleObjectP object = userData;
 if (strstr(body, "power0=clicked")) {
 opMessage("I", PREFIX "_SW", "Power Switch pushed - terminating
simulation.");
 opModuleFinish(object->mi, 0);
 }
}

It decodes what was pushed and in this case will terminate the simulation.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 16 of 44

5 Adding Visualization to Virtual Platform components
Visualization can be added to all the different Imperas/OVP component types. Below is a
list of the available examples. Each one shows the usage of one or more visualization
items.

Have a look at the reference section (9) below and then browse the examples.

5.1 Creating visualization in peripheral model
 Examples/Models/Peripherals/visualization/power_button
 Examples/Models/Peripherals/visualization/switch_led
 Examples/Models/Peripherals/visualization/switches
 Examples/Models/Peripherals/visualization/lcd_7segment
 Examples/Models/Peripherals/visualization/lcd_2x16
 Examples/Models/Peripherals/visualization/bars
 Examples/Models/Peripherals/visualization/dial
 Examples/Models/Peripherals/visualization/time_histogram
 Examples/Models/Peripherals/visualization/local_item

5.2 Creating visualization in a harness
 Examples/PlatformVisualization/processorReset

5.3 Creating visualization in a module
 Examples/PlatformVisualization/moduleNet

5.4 Creating visualization in an binary intercept library
 Examples/BinaryInterception/Visualization/1.powerButton
 Examples/BinaryInterception/Visualization/2.monitorProcessor

5.5 Creating visualization for a processor model
 Examples/Models/Processor/Visualization/monitorProcessorSMP

(Actually this is an example of how to use an intercept library which is the best
approach as opposed to modifying the source of the model itself.)

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 17 of 44

6 Imperas Visualization using Binary Intercept
Extension Libraries

6.1 Introduction
Imperas professional products provide binary interception capabilities. This can be used
to load additional visualization features onto components in a hardware definition
without having to make any change to that definition.

See binary interception user guide for the full set of feature available; this document deals
only with the usage for visualization.

6.2 Using existing plugins at run time
In the Imperas DEV and SDK packages are two binary intercept libraries that can be used
by adding them using the command line. There is no need to modify harnesses or
platforms. They can be found in ImperasLib/imperas.com/intercept.

powerButtonHttpvis - this adds a power button to a processor
processorMonitorHttpvis - this adds processor monitoring to a processor
 Note: you need to add one monitor to each processor of an SMP core.

These are used in the same way as any other binary intercept library.

For example (from /Demo/Platforms/Linux_ARMv8-A-FMv1/visualization):
harness.exe ^
 --extlib mod0/cpu_CPU0/pm=processorMonitorHttpvis ^
 --override mod0/cpu_CPU0/pm/httpvisportnum=8000 ^
 --extlib mod0/cpu_CPU0/pb=powerButtonHttpvis ^
 --override mod0/cpu_CPU0/pb/httpvisportnum=8030 ^
 ...

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 18 of 44

7 Visualization using just HTML and Javascript
Most of the examples in the this document make use of the Imperas provided Javascript,
OVP class items and .jpg images.

You can create your own visualization, directly augmenting or replacing the Imperas
provided infrastructure.

The example below - the Radar display example, does just this - it makes use of the
HTTP port and the writing of the data from the peripheral C code, but all the display and
interactivity is provided directly in the HTML/Javascript.

7.1 Radar Display Example
7.1.1 Overview
This example is available:
 Examples/Models/Peripherals/visualization/radar

The example is an ARM7TDMI processor that has a memory and a peripheral on its bus.

The application program (application/application.c) sits in a loop with a delay loading
data from the plane traffic data file into an area of shared memory. This is representing
the loading of data from external radio sensors.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 19 of 44

The Javascript (in file peripheral/httpvis/index.html) running in the browser has a
redraw function which is called every 1,000 mSecs which makes an HTTP request to the
peripheral for the data.

The peripheral user code (in peripheral/radar.user.c) responds to the
BHM_HTTP_GET_FN(peripheralHTTPGet) request and gets the data from the processor's
shared memory (i.e. the traffic plane positional data), and sends it to the port (using the
bhmHTTPSend function).

The Javascript in the browser processes the data (in the get_traffic function called in the
redraw function) and draws the plane and other objects onto the canvas.

The Javascript responds to the local zooming and filtering buttons within its code, and
only posts the reset and exit button presses back to the peripheral code

7.1.2 Running the example
As in the other examples there is a shell script (example.sh/.bat) to compile and run the
example. It compiles the application, then uses iGen to generate the module code,
compiles the module code, and then compiles the code for the peripheral. It then prompts
if you want to see the visualization and runs the simulation.

The example uses the harness.exe to run the program:
harness.exe \
 --verbose --output imperas.log \
 --modulefile module/model.${IMPERAS_SHRSUF} \
 --program application/application.${CROSS}.elf \
 --override simpleMonitor/radar/diagnosticlevel=1 \
 \
 --httpvis \
 --override simpleMonitor/radar/httpvisportnum=8000 \
 $*

It specifies the port number and also turns on the built-in peripheral diagnostic tracing.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 20 of 44

8 Examples
This is a list of current examples that show how to use the Imperas visualization. They
are self contained and have an example.bat/.sh script that can be run to compile the
platforms, models, and applications and run them while launching a browser to allow you
to easily see what is available.

There is usually a .jpg that shows a block diagram of the simulated platform and what the
visualization looks like.

 Demo/Platforms/Linux_ARMv8-A-FMv1/visualization
 Examples/PlatformVisualization/processorReset
 Examples/PlatformVisualization/moduleNet
 Examples/Models/Processor/Visualization/monitorProcessorSMP
 Examples/BinaryInterception/Visualization/1.powerButton
 Examples/BinaryInterception/Visualization/2.monitorProcessor
 Examples/Models/Peripherals/visualization/bars
 Examples/Models/Peripherals/visualization/dial
 Examples/Models/Peripherals/visualization/lcd_2x16
 Examples/Models/Peripherals/visualization/lcd_7segment
 Examples/Models/Peripherals/visualization/local_item
 Examples/Models/Peripherals/visualization/power_button
 Examples/Models/Peripherals/visualization/switches
 Examples/Models/Peripherals/visualization/switch_led
 Examples/Models/Peripherals/visualization/time_histogram

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 21 of 44

9 Reference section

9.1 Overview of Visualization infrastructure
The Imperas HTTP visualization uses the HTML5 standards of HTML, CSS, Javascript
and JSON. To create peripheral, module, platform or intercept visualization you will need
to know the basics of HTML and CSS. You should not need to know Javascript or JSON.

There are several files that make up the infrastructure used by the Imperas HTTP
visualization.

These are in three layers/levels:

1) At the top is the HTML browser displaying the top level platform/harness file
 <runDir>/visualization.html file

This file is not necessary for single component visualization. For displaying
multiple components, HTML frames are used to position the different component
displays in the browser screen.

2) In the middle is the simulator visualization internals
 ImperasLib/httpvis/{runtime.js, normal.css, *.jpg, *.png}

These are files provided by Imperas as part of the simulator infrastructure. They
are the image files that will be displayed (*.jpg, *.png), the cascading style sheet
(normal.css) that formats the images and text, and the Javascript file (runtime,js)
that takes the data written by the models to the HTTP port and displays the
appropriate images.

3) The lowest layer is the individual component visualization.
 <modelDir>/httpvis/index.html
 <modelDir>/user.c

This comprises two parts, first the HTML file that defines which items are to be
displayed and where they are to be located on the screen/frame. The second is the C
code in the component (e.g. the peripheral) that writes the values to the HTTP port.

To display a single component the browser is connected to the HTTP port opened by that
single component as shown here:

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 22 of 44

Single component visualizationSingle component visualization

simulator

index.html
model.so
index.html
model.so

logfile

runtime.js

normal.css

localhost:8000

library
components
(VLNV)

simulator
infrastructure

model C code
that writes values

ImperasLib/httpvis

HTTP Port

HTML browser
connecting to
HTTP port #

model html code
that positions images

If you have several components that are opening HTTP ports, you could use several
HTML browser windows and connect to each HTTP in a different browser window.

Alternately, you can use the HTML frame concept and using one HTML file (by
convention called visualization.html) in one browser window, you can connect to
multiple components/HTTP ports, as shown here:

Multiple component visualizationMultiple component visualization

simulator

index.html
model.so
index.html
model.so

logfile

runtime.js

normal.css

visualization.html

iframe
localhost:8000

iframe
localhost:800x

library
components
(VLNV)

…

…

simulator
infrastructure

model C code
that writes values

ImperasLib/httpvis

HTTP PortHTTP Port …

index.html
model.so
index.html
model.so

platform/harness
locating component
displays

model html code
that positions images

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 23 of 44

9.2 Joining the dots... (how C code values are displayed as
images)

The way the visualization works is very simple and straightforward.

The C code for a component opens an HTTP port.

The user starts a web browser and connects to that HTTP port.

The simulator sends an HTML file which defines items to be displayed.

During simulation the C code for the component will update its internal current
values/variables based on normal simulation operation/updating (e.g. writes to the
component etc.).

The HTML file includes a periodic timeout that requests data (using 'get's) to be
displayed from the HTTP port. Thus the browser is periodically requesting data for it to
display.

The C code in the component responds to these periodic requests for data from the HTTP
port and sends current values of the items to be displayed. (The browser is thus sampling
(at its periodic refresh rate) the current values that the component is maintaining.)

Also some of the component HTML pages have buttons/switches and other inputs that
when clicked in the browser send HTTP commands ('post's) to the C code in the
component allowing it to respond and update values in the component.

9.2.1 Imperas visualization 'classes'
The link between the component C code writing a value and an image being displayed in
the browser is handled via the Imperas visualization 'classes' and the instances of them.

The component index.html file creates object placeholders that include a class type and
an instance name.

The component C code writes key value pairs, {instance name, value} to the HTTP port
(in JSON format, but that is hidden from the user).

The Javascript runtime.js, running in the browser looks up the HTML for that instance
name and determines its class. Based on its class and the current value, the Javascript
writes to the HTML different appropriate values/images (that it finds in the
ImperasLib/httpvis directory).

So the connection between the HTML placeholder and the Javascript is the class name
and the connection between the component C code, the HTML placeholder is the
instance name.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 24 of 44

Operation: pseudo codeOperation: pseudo code

constructor:
openHTTP ()

getValuesCallback:
write {name,value}
write {ledA, 1}
write {seg7A, 0xE}

…

If (class(name) == ‘ovpled’) {
if (value == 0) display(name, black_led.jpg)
else display (name, red_led.jpg)

} else if (class(ledA) == ‘ovp7seg’) {
…

component C code javascript runtime.js

<div class='ovpled' id=‘ledA’></div>

Component HTML code

result

User writes User writessimulator infrastructure
(defines the classes)

The only items that can be displayed by writing values from the component C code are
instances of the Imperas visualization classes. These are defined in the
ImperasLib/httpvis/runtime.js file.

The section (9.12) below lists the available classes, shows the value range that are
allowed, and shows various visualization displays and images.

Section (9.13) below explains how to extend the system and add your own user defined
classes.

9.3 Component index.html file
This is the same for peripherals, modules, intercept libraries, and harnesses.

This file is in the Imperas ImperasLib VLNV library tree next to the model binary, in a
directory httpvis/ and must be called index.html. It provides the structure for this
component to be displayed in an the HTML browser.

This file defines which items are to be displayed and where they are to be located on the
screen/frame. It includes the Javascript file (runtime.js) to perform the displaying and
the cascading style sheet file (normal.css) to format the output.

The mandatory parts of this file are shown here:

<html lang="en">
<link rel="icon" type="image/icon" href="/imperas.ico">
<head>
 <title>Imperas Simulation</title>
 <meta charset="utf-8"/>
 <link rel="stylesheet" href="normal.css" type="text/css"/>
 <script language="JavaScript" src="runtime.js" ></script>
</head>
<body onload="startRefresh('/', 500);">

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 25 of 44

<!-- your class instances here in <div> blocks -->

<div class='console' id='console'></div>
</body>
</html>

An example class instance for a simple LED would be:

 <div class='ovpled' id='led0'></div>

this has a class of ovpled, and an instance name (id) of led0.

For a power button it could be:

 <div class='ovppower' id="power0"
onmousedown="ovpswitchclicked(event)"></div>

Note that for input items, there is the class to be displayed, the instance id name, and the
onmousedown Javascript function that is to be called. (it must be
'ovpswitchclicked(event)').

For an item to be displayed it must have an instance name in the HTML file with a
known class. (And the component C code must match and write appropriate values.)

The line:

 <body onload="startRefresh('/', 500);">

indicates that every 500 msecs the browser should call the 'startRefresh' Javascript
function (which updates the screen value by getting data from the HTTP port and thus the
component C code call back).

The line:

<div class='console' id='console'></div>

is used for tracing if needed, so it is a good idea to include.

9.4 Peripheral C code
To add visualization to a peripheral you need to add code in three places; In the
constructor to open the HTTP and declare your call backs, in the callback for the 'get'
function to send display data, and in the 'post' function to process switch clicks, button
pushes etc.

The code below is extracted from the example
/Examples/Models/Peripherals/visualization/switch_led.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 26 of 44

9.4.1 iGen Definition
The peripheral model is created using the iGen model generation tool.

This file defines the peripheral model

set vendor ovpworld.org
set library peripheral
set name SwitchLed
set version 1.0

imodelnewperipheral -name $name -imagefile pse.pse \
 -library $library -vendor $vendor -version $version \
 -constructor constructor \
 -destructor destructor

iadddocumentation \
 -name Description \
 -text "Simple LED and Switch"

iadddocumentation \
 -name Licensing \
 -text "Open Source Apache 2.0"

The interface for connectivity of the peripheral

imodeladdbusslaveport -name bport -mustbeconnected -size 0x8
imodeladdaddressblock -name reg -port bport -size 0x8 -offset 0 -width 32

imodeladdmmregister -addressblock bport/reg -name sw -width 32 \
 -offset 0 -access r -readfunction ReadSwitch
imodeladdmmregister -addressblock bport/reg -name led -width 32 \
 -offset 4 -access w -writefunction WriteLed

It must also include the following formal macros to define the configuration parameters
that are included with the visualization.

Formal attributes

imodeladdformalmacro -name BHM_HTTP_FORMALS
imodeladdformalmacro -name BHM_RECORD_REPLAY_FORMALS

9.4.2 Constructor

For the peripheral constructor you need to declare a static buffer (which will be used to
transfer the data from the peripheral to the HTTP port) and then you need to declare your
callback methods etc. and open the HTTP port:

#define BUFSIZE 128000
static char space[BUFSIZE];

PPM_CONSTRUCTOR_CB(constructor) {

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 27 of 44

 ...
 bhmHTTPMethods m = { .get=get, .post=post, .message=space,
 .length=BUFSIZE, .userData=0 };
 bhmHTTPOpen(&m, "httpvis");
}

The get and the post are the names of the callbacks discussed below. space is a static
buffer to hold the data being sent.

httpvis in the the bhmHTTPopen is the directory to find the index.html to use to display the
structure.

9.4.3 BHM_HTTP_GET_FN get callback function
The get callback is called when the HTTP port receives a get command from the browser
which is initiated by the periodic timeout.

The get callback just calls a function redraw (), that reads the data from C model data
structures, formats them, and then initiates an HTTP send message.

static BHM_HTTP_GET_FN(get) {
 redraw (ch);
}

9.4.4 the redraw function
The redraw function reads the local variables in the peripheral (that will have been
updated in the normal operation of the peripheral) and sends them to the HTTP port as
shown:

static void redraw (bhmHTTPChannel ch) {

 Uns32 led = bport_reg_data.led.value;
 Uns32 sw = bport_reg_data.sw.value;

 bhmHTTPElementOpen(ch, "ovpelement");
 bhmHTTPKeyPrintf(ch, "led0", "%d", led);

 bhmHTTPKeyPrintf(ch, "power0", "");

 bhmHTTPElementClose(ch, "ovpelement");
 bhmHTTPSend(ch);
}

With bhmHTTPElementOpen you are constructing the start of a JSON message. With
bhmHTTPElementClose you are ending the message and with bhmHTTPSend you send it.

Between the bhmHTTPElementOpen and bhmHTTPElementClose you use bhmHTTPKeyPrintf to
define the instances you are displaying and their values. (NOTE these instance names
must be the 'id's defined in the index.html file.)

The section (9.12) below defines the visualization classes and the value ranges they take.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 28 of 44

Note that we create the redraw code as a separate function, so that we can call it in the get
callback but also after a button has been pressed (i.e. whenever a button has been pressed
we do an immediate update of the display).

9.4.5 BHM_HTTP_POST_FN post callback function
The post callback is called when the HTTP port receives a post command from the
browser which is initiated by a button push or switch click etc. in the browser.

The post callback compares the value of the string body variable that is passed to it, and
performs the user defined appropriate action, for example setting a value of a variable in
the peripheral, or affecting the simulation such as calling termination.

If the post callback changes a value in the peripheral state, it does not explicitly change
any of the displays, but expects that the next get callback will send updated values when
it is called, updating the browser visualization.

static BHM_HTTP_POST_FN(post) {
 if (strstr(body, "sw0=clicked")) {
 bport_reg_data.sw.value = (~bport_reg_data.sw.value) & 0x01;
 } else if (strstr(body, "power0=clicked")) {
 bhmMessage("I", PREFIX "_SW",
 "Power Switch pushed - terminating simulation.");
 bhmFinish();
 }
 redraw (ch);
}

Currently the Imperas visualization classes only include simple push buttons and
switches and so they all return a string of the form '<instance name>=clicked'.

The section (9.12) below defines the visualization classes that can initiate a call to the
post callback.

Note the call to the redraw () function so that any changes made by the button click are
immediately updated in the display (as opposed to awaiting the next browser initiated
refresh).

9.5 Module and Harness C code
To add visualization to either a module or harness you need to add code in three places;
In the pre-simulation phase to open the HTTP and declare your call backs, in the
callbacks for the 'get' function to send display data, and in the 'post' function to
process switch clicks, button pushes etc.

This is very similar to the code discussed above for peripherals.

The code below is extracted from the example
/Examples/PlatformVisualization/moduleNet.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 29 of 44

9.5.1 Pre-Simulation initialization
In the pre-simulate function (OP_PRE_SIMULATE_FN) you need to declare your callback
functions etc. and open the HTTP port:

static OP_PRE_SIMULATE_FN(modulePreSimulate) {
 Uns32 httpvisportnum =
 opObjectParamUns32Value (mi, "httpvisportnum" , 0);
 octHTTPMethods m = { .get=get, .post=post, .userData=object };
 opModuleHTTPOpen(mi, &m, httpvisportnum, "httpvis");
 ...
}

The get and the post are the names of the callback functions discussed below with
object and userData being passed in (to allow the callbacks to find out what module they
are in etc.).

httpvis in the the opModuleHTTPOpen is the directory to find the index.html to use to
display the structure.

In this example, there is parameter httpvisportnum that can be set at run time with an
override that sets the port number for this component instance. This httpvisportnum is
passed into the opModuleHTTPOpen call.

9.5.2 get callback
The get callback is called when the HTTP port receives a get command from the browser
which is initiated by the periodic timeout.

The get callback reads the local variables in the component (that will have been updated
in the normal operation of the component) and sends them to the HTTP port as shown:

static OCL_HTTP_GET_FN(get) {
 optModuleObjectP object = userData;

 oclHTTPElementOpen(ch, "ovpelement");

 oclHTTPKeyPrintf(ch, "moduleInstName0", opObjectName(object->mi));
 oclHTTPKeyPrintf(ch, "moduleSimTime0","%g",
 (double)opModuleCurrentTime(opObjectRootModule(object->intNet)));
 oclHTTPKeyPrintf(ch, "netName0", object->intNetName);
 oclHTTPKeyPrintf(ch, "netValue0", "%d", object->intNetValue);
 oclHTTPKeyPrintf(ch, "led0", "%d", object->intNetValue);
 oclHTTPKeyPrintf(ch, "power0", "0");

 oclHTTPElementClose(ch, "ovpelement");
 oclHTTPSend(ch);
}

Using oclHTTPElementOpen you can construct the start of a JSON message. Using
oclHTTPElementClose you end the message and Using oclHTTPSend you send it.

Between the oclHTTPElementOpen and oclHTTPElementClose you use oclHTTPKeyPrintf to
define the instances you are displaying and their values. (NOTE these instance names
must be the 'id's in the index.html file.)

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 30 of 44

The section (9.12) below defines the visualization classes and the value ranges they take.

9.5.3 post callback
The post callback is called when the HTTP port receives a post command from the
browser which is initiated by a button push or switch click etc. in the browser.

The post callback compares the value of the string body variable that is passed to it, and
performs the user defined appropriate action, for example setting a value of a variable in
the component, or affecting the simulation such as calling termination.

If the post callback changes a value in the component state, it does not explicitly change
any of the displays, but expects that the next get callback will send updated values when
it is called, updating the browser visualization.

static OCL_HTTP_POST_FN(post) {
 optModuleObjectP object = userData;
 if (strstr(body, "power0=clicked")) {
 opMessage("I", PREFIX "_SW",
 "Power Switch pushed - terminating simulation.");
 opModuleFinish(object->mi, 0);
 }
}

Currently the Imperas visualization classes only include simple push buttons and
switches and so they all return a string of the form '<instance name>=clicked'.

The section (9.12) below defines the visualization classes that can initiate a call to the
post callback.

As there is no state change on any button click (except simulation termination), we do not
need to do a redraw after a button click.

9.6 Intercept Library C code
To add visualization to an intercept library you need to add code in three places; In the
constructor to open the HTTP and declare your call backs, in the callback for the 'get'
function to send display data, and in the 'post' function to process switch clicks, button
pushes etc.

The code below is extracted from the examples in
/Examples/BinaryInterception/Visualization.

9.6.1 Constructor
For the intercept library constructor you need to declare your callback methods etc. and
open the HTTP port:

static VMIOS_CONSTRUCTOR_FN(constructor) {
 vmiPrintf("\n" INAME " VMIOS_CONSTRUCTOR_FN(constructor): (%s)\n\n",
 vmirtProcessorName(processor));

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 31 of 44

 paramValuesP params = parameterValues;

 Uns32 port = params->httpvisportnum;

 octHTTPMethods m = { .get=get, .post=post, .userData=object };
 vmihttpOpen(object, &m, port, "httpvis");
}

The get and the post functions implement the behavior discussed below with object and
userdata variables being provided that the callbacks can use to access the processor they
are in etc.

httpvis in the vmihttpOpen is the directory to find the index.html used to display the
structure.

Note that for intercept libraries, the open is a call to the VMI API not the OP (for
modules/harnesses) or BHM (peripherals) APIs.

Note there is also a parameter, httpvisportnum allowing the port number to be set using
overrides at runtime.

9.6.2 get callback
The get callback is called when the HTTP port receives a get command from the browser
which is initiated by the periodic timeout.

The get callback reads the local variables in the intercept library (that will have been
updated in the normal operation of the intercept library) and sends them to the HTTP port
as shown:

static OCL_HTTP_GET_FN(get) {
 vmiosObjectP object = userData;
 vmiProcessorP p = object->cpu;
 oclHTTPElementOpen (ch, "ovpelement");
 oclHTTPKeyPrintf (ch, "name0", vmirtProcessorName(p));
 oclHTTPKeyPrintf (ch, "power0", "0");
 oclHTTPElementClose (ch, "ovpelement");
 oclHTTPSend (ch);
}

Using oclHTTPElementOpen you can construct the start of a JSON message. Using
oclHTTPElementClose you end the message and with oclHTTPSend you send it.

Between the oclHTTPElementOpen and oclHTTPElementClose you use oclHTTPKeyPrintf
to define the instances you are displaying and their values. (NOTE these instance names
must be the 'id's in the index.html file.)

The section (9.12) below defines the visualization classes and the value ranges they take.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 32 of 44

9.6.3 post callback
The post callback is called when the HTTP port receives a post command from the
browser which is initiated by a button push or switch click etc. in the browser.

The post callback compares the value of the string body variable that is passed to it, and
performs the user defined appropriate action, for example setting a value of a variable in
the peripheral, or affecting the simulation such as calling termination.

If the post callback changes a value in the intercept libraries state, it does not explicitly
change any of the displays, but expects that the next get callback will send updated values
when it is called, updating the browser visualization.

static OCL_HTTP_POST_FN(post) {
 if(!strcmp(body, "power0=clicked")) {
 vmiPrintf("\n" INAME " OCL_HTTP_POST_FN(post): %s\n\n", body);
 vmirtStop();
 }
}

Currently the Imperas visualization classes only include simple push buttons and
switches and so they all return a string of the form '<instance name>=clicked'.

The section (9.12) below defines the visualization classes that can initiate a call to the
post callback.

Note that if want the display to be updated on a button click, put the code inside the
OCL_HTTP_GET_FN(get) function in a separate redraw function, and call it there and
also at the end of the OCL_HTTP_POST_FN(post) call. See the example in section 9.4.4
above.

9.7 Top Level visualization.html file
If you have several components that have visualization, you can use the HTML 5 frame's
concept to make a single html page open up several different HTTP ports in different
areas of the page, i.e. in different frames.

Uses of this are; if you have several peripherals you want to display in a harness or
module, or if you have several processors you are monitoring.

The example, Demo/Platforms/Linux_ARMv8-A-FMv1/visualization in the
Demo_Linux_ARMv8-A-FMv1 package has this file
 visualization_ARMv8-A-FMv1_arm_Cortex_A72MPx4.html:

<html>
<head>
 <title>Processor Monitoring</title>
</head>
<body>
 <iframe id="cpu0" class="monitor0" style="width:100%; height:22%" src="http://localhost:8000"></iframe>
 <iframe id="cpu1" class="monitor1" style="width:100%; height:22%" src="http://localhost:8001"></iframe>
 <iframe id="cpu2" class="monitor2" style="width:100%; height:22%" src="http://localhost:8002"></iframe>
 <iframe id="cpu3" class="monitor3" style="width:100%; height:22%" src="http://localhost:8003"></iframe>
 <iframe id="pwr" class="power" style="width:100%; height:12%" src="http://localhost:8030"></iframe>
</body>
</html>

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 33 of 44

Which produces a display appearing as:

9.8 C API functions for peripherals
The header file used to define the functions for the visualization in peripherals is part of
the BHM API, this file can be found here
ImpPublic/include/target/peripheral/bhmHttp.h

There is doxygen documentation of the API in your installation at:
doc/api/peripheral/html/index.html

The functions are:
 BHM_HTTP_GET_FN((*bhmHTTPGetFn))
 BHM_HTTP_POST_FN((*bhmHTTPPostFn))

 bhmHTTPMethods m = { .get=get, .post=post, .message=space,
 .length=BUFSIZE, .userData=0 };
 bhmHTTPOpen (bhmHTTPMethodsP methods, const char *fileRoot)
 bhmHTTPSend (bhmHTTPChannel ch)
 bhmHTTPClose (bhmHTTPChannel ch)

 bhmHTTPElementOpen (bhmHTTPChannel ch, const char *key)
 bhmHTTPKeyPrintf (bhmHTTPChannel ch, const char *key,
 const char *fmt,...)
 bhmHTTPElementClose (bhmHTTPChannel ch, const char *key)

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 34 of 44

9.9 C API functions for modules and harnesses
Most of the functions used for visualization in the C code of modules and harnesses is in
common with those used in intercept libraries and this is defined within the OCL API.

There is doxygen documentation at: doc/api/ocl/html/index.html

This header can be found here: ImpPublic/include/host/ocl/oclhttp.h

The functions are:
 OCL_HTTP_GET_FN(_name)
 OCL_HTTP_POST_FN(_name)

 octHTTPMethods m = { .get=get, .post=post, .userData=object };
 oclHTTPSend (octHTTPChannelP channel)
 oclHTTPClose (octHTTPChannelP channel)

 oclHTTPElementOpen (octHTTPChannelP channel, const char *key)
 oclHTTPKeyPrintf (octHTTPChannelP channel, const char *key,
 const char *fmt,...)
 oclHTTPElementClose (octHTTPChannelP channel, const char *key)

The function to open the HTTP is not defined within the OCL API but is specific to
modules/harnesses and is defined within the OP API.

 opModuleHTTPOpen (void *module, octHTTPMethodsP methods,
 Uns32 portNum, const char *fileRoot)

There is doxygen documentation at: doc/api/op/html/index.html

This header can be found here: ImpPublic/include/host/op/op.h

9.10 C API functions for intercept libraries
Most of the functions used for visualization in the C code of intercept libraries is in
common with those used in modules/harnesses and this is defined within the OCL API.

There is doxygen documentation at: doc/api/ocl/html/index.html

This header can be found here: ImpPublic/include/host/ocl/oclhttp.h

The callbacks are:
 OCL_HTTP_GET_FN(_name)
 OCL_HTTP_POST_FN(_name)

The functions are:

 oclHTTPSend (octHTTPChannelP channel)
 oclHTTPClose (octHTTPChannelP channel)

 oclHTTPElementOpen (octHTTPChannelP channel, const char *key)
 oclHTTPKeyPrintf (octHTTPChannelP channel, const char *key,
 const char *fmt,...)
 oclHTTPElementClose (octHTTPChannelP channel, const char *key)

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 35 of 44

The function to open the HTTP is not defined within the OCL API but is specific to
intercept libraries and is defined within the VMI API.

 octHTTPMethods methods = { .get=get, .post=post, .userData=object };

 vmihttpOpen (vmiosObjectP object, octHTTPMethodsP methods,
 Uns32 portNum, const char *fileRoot)

There is doxygen documentation at: doc/api/vmi/html/index.html

This header can be found here: ImpPublic/include/host/vmi/vmiHTTP.h

9.11 Using iGen to help assist in creating visualization
9.11.1 iGen can create templates for peripherals
When you create peripherals with iGen, you get templates for the most useful peripheral
API calls and callbacks. If you use the -httpvis argument iGen will create the
appropriate code. For example, in your peripheral.tcl:

imodelnewperipheral \
 -name pseWithHTTP \
 -version 1.0 \
 -httpvis

Will add to the pse.c.igen.stubs templates for the get and post callbacks:
BHM_HTTP_GET_FN(peripheralHTTPGet) {
 bhmHTTPElementOpen(ch, "ovpelement");
 // insert your code to add key/value pairs here. e.g.
 //
 // bhmHTTPKeyPrintf(ch, "yourkey", "%u", yourValue);

 bhmHTTPElementClose(ch, "ovpelement");
 bhmHTTPSend(ch);
}

BHM_HTTP_POST_FN(peripheralHTTPPost) {
 // insert your code to process the string 'body'
 //
}

And the pse.igen.c will get the code to open the HTTP port:
int main(int argc, char *argv[]) {

 diagnosticLevel = 0;
 bhmInstallDiagCB(setDiagLevel);
 periphConstructor();

 char space[1024];
 bhmHTTPMethods methods = { .get=peripheralHTTPGet, .post=peripheralHTTPPost,
 .message=space, .length=1024, .userData=0 };
 bhmHTTPOpen(&methods, "httpvis");

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
}

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 36 of 44

9.11.2 iGen can create templates for modules
When you create OP modules with iGen, you get templates for the most useful module
OP API calls and callbacks. If you use the -httpvis argument iGen will create the
appropriate code. For example:
 igen.exe --batch module.tcl -writec mod -op

with module.tcl:
ihwnew \
 -name moduleWithHTTP \
 -version 1.0 \
 -httpvis

gets the code to open the HTTP port in your constructor in module.igen.h:
static OP_CONSTRUCT_FN(moduleConstructor) {
 // igen passes the current module (mi) as user data
 octHTTPMethods methods = { .get=moduleHTTPGet, .post=moduleHTTPPost,
 .userData=mi };
 opModuleHTTPOpen(mi, &methods, 0, "httpvis");
}

and the template callbacks in module.c.igen.stubs:
OCL_HTTP_GET_FN(moduleHTTPGet) {
 oclHTTPElementOpen(ch, "ovpelement");

 // insert your code to add key/value pairs here. e.g.
 //
 // oclHTTPKeyPrintf(ch, "yourkey", "%u", yourValue);

 oclHTTPElementClose(ch, "ovpelement");
 oclHTTPSend(ch);
}

OCL_HTTP_POST_FN(moduleHTTPPost) {
 // insert your code to process the string 'body' here
 //
}

9.12 Imperas visualization classes: class, images, values
This section lists the Imperas visualization classes that are provided with the simulator.
These will be added to in future releases.

See the section below describing how to add your own visualization classes without the
need to edit the Imperas provided files (you don't want to edit these as each new release
will overwrite the files you edit).

It is the file ImperasLib/httpvis/runtime.js that defines classes and defines how they
are displayed.

When the browser needs to display data, it issues an HTTP get in the Javascript
sendCommand function. It then processes the returned data (in JSON format) and there is a
switch statement that performs the appropriate action for each of the different classes.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 37 of 44

For example, the ovpled class displays a red or black led .jpg depending on the value of
that specific ovpled instance. (It uses the normal Javascript approach of just replacing the
.innerHTML of the appropriate element in the html.)

 switch (classname) {
 case 'ovpled':
 if ((value & 0x01) == 1) {
 document.getElementById(data.ovpelement[i].idname).innerHTML=
 "";
 } else {
 document.getElementById(data.ovpelement[i].idname).innerHTML=
 "";
 }
 break;

9.12.1 ovpled

Class name: ovpled
Value range: 0 (black), 1 (red)
HTML instance code:
<div class='ovpled' id="led0"></div>

Example: Examples/Models/Peripherals/visualization/switch_led

9.12.2 ovpbuttonled

Class name: ovpbuttonled
Value range: 0 (green), 1 (red)
Click returns: '<instance id>=clicked'
HTML instance code:
<div class='ovpbuttonled' id="bled3"
onmousedown="ovpswitchclicked(event)"></div>

Example: Examples/Models/Peripherals/visualization/switches

9.12.3 ovplcd7seg

Class name: ovplcd7seg
Value range: 0 - 15 (0-F)
HTML instance code:
<div class='ovplcd7seg' id="lcd0"></div>

Example: Examples/Models/Peripherals/visualization/lcd_7segment

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 38 of 44

9.12.4 ovplcd2x16

Class name: ovplcd2x16
Value range: displays the ASCII of a 32 character string. 16 chars on each line.
HTML instance code:
<div class='ovplcd2x16' id="lcd2x16_0"></div>

Example: Examples/Models/Peripherals/visualization/lcd_2x16

9.12.5 ovpswitchtoggle

Class name: ovpswitchtoggle
Value range: 0 (up), 1 (down)
Click returns: '<instance id>=clicked'
HTML instance code:
<div class='ovpswitchtoggle' id="sw3"
onmousedown="ovpswitchclicked(event)"></div>

Example: Examples/Models/Peripherals/visualization/switches

9.12.6 ovpswitchdip

Class name: ovpswitchdip
Value range: 0 (up), 1 (down)
Click returns: '<instance id>=clicked'
HTML instance code:
<div class='ovpswitchdip' id="swt0"
onmousedown="ovpswitchclicked(event)"></div>

Example: Examples/Models/Peripherals/visualization/switches

9.12.7 ovpbar

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 39 of 44

Class name: ovpbar
Value range: 0 - 100
HTML instance code:
 <table>
 <tr>
 <td class='ovplabel'>Horizontal Bar</td>
 <td><div class='ovpbar' id="bar0"></div></td>
 </tr>
 </table>

Example: Examples/Models/Peripherals/visualization/bars

9.12.8 ovpvertbar

Class name: ovpvertbar
Value range: 0 - 100
HTML instance code:
<div class='ovpvertbar' id="bar1" height='100' width='20'
 linewidth='3' style='border: 2px solid; margin: 4px;'></div>

Example: Examples/Models/Peripherals/visualization/bars

9.12.9 ovppower

Class name: ovppower
Click returns: '<instance id>=clicked'
HTML instance code:
<div class='ovppower' id="power0" onmousedown="ovpswitchclicked(event)"
 title='click to quit simulation'>SIMULATION NOT RUNNING</div>

Example: Examples/Models/Peripherals/visualization/power_button

9.12.10 ovpreset

Class name: ovpreset
Value range: 0 (red), 1 (blue)

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 40 of 44

Click returns: '<instance id>=clicked'
HTML instance code:
<div class='ovpreset' id="reset1" onmousedown="ovpswitchclicked(event)"
 title='click to toggle reset'></div>

Example: Examples/PlatformVisualization/processorReset

9.12.11 ovpgauge

Class name: ovpgauge
File included in index.html:
 <script language="JavaScript" src="canvasgauge.js"></script>

HTML instance code:
<div>
 <canvas class='ovpgauge' id="gauge0"> </canvas>
 <script>
 var gauge0 = new Gauge("gauge0", {'mode':'needle', 'range': {'min':0, 'max':100 } });
 </script>
</div>

Value range: min - max (as defined in the html instance)
Example: Examples/Models/Peripherals/visualization/dial

9.12.12 ovphistogram

Class name: ovphistogram
Value range: 0 - 100
HTML instance code:
<div>
 <canvas class='ovphistogram' id='histo0' height='100' width='400' linewidth='3'
 style='border: 2px solid;'></canvas>
</div>

Example: Examples/Models/Peripherals/visualization/time_histogram

9.13 Adding your own visualization classes and items
To add your own visualization classes and images you need to add several files to your
component's httpvis/ directory and then make use of them.

The example:

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 41 of 44

 Examples/Models/Peripherals/visualization/local_item

shows adding a new class that will toggle an image of a plus/minus when clicked.

It has the directory:

 peripheral/httpvis

which shows these files and how to add your own classes.

You need a Javascript file (local.js) to add the display and button/switch click
processing, a css file (local.css) to style the displayed items and the images (minus.jpg,
plus.jpg) to display (though these might not be needed if are just drawing in Javascript).

First, include the new files into the peripheral/httpvis/index.html:
<head>
 <title>Imperas Simulation</title>
 <meta charset="utf-8"/>
 <link rel="stylesheet" href="normal.css" type="text/css"/>
 <link rel="stylesheet" href="local.css" type="text/css"/>
 <script language="JavaScript" src="runtime.js" ></script>
 <script language="JavaScript" src="local.js"></script>
</head>

Note the local files must be listed following the built in files.

Then instance the new item:
 <div class='localitem_a' id="local0" onmousedown="ovpswitchclicked(event)" title='clickable'></div>

In this example, the local.css simply sizes the image:
.localitem_a {
height: 40px;
width: 40px;
}

The local.js will have a function for displaying, and a function (if needed) for the
switch/button clicking.

The names of these functions is fixed (if they exist, and they are called from the built in
runtime.js to extend its code).

For the display, we are extending the class decoding:
function localClassDecoder (classname, idname, value) {
 //trace ("in localClassDecoder ("+classname+", "+idname+", "+value+")");
 switch (classname) {
 case 'localitem_a':
 if (value & 0x01 == 1) {
 document.getElementById(idname).innerHTML="<img
src=minus.jpg>";
 } else {
 document.getElementById(idname).innerHTML="";
 }
 return true; // good return, processed
 break;
 default:

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 42 of 44

 return false; // error return, not found
 break;
 }
}

It is important to return true if we have locally taken care of the class type, and false if
not - so the appropriate error can be reported.

To extend the switch/button processing:
// process local item, return true if ok, else false if not found etc
function localSwitchDecoder (classname, idname) {
 //trace ("in localSwitchDecoder ("+classname+", "+idname+")");
 switch (classname) {
 case 'localitem_a':
 var form = document.createElement("form");
 form.setAttribute("method", "post");
 form.setAttribute("action", ""); // path
 var hiddenField = document.createElement("input");
 hiddenField.setAttribute("type", "hidden");
 hiddenField.setAttribute("name", idname);
 hiddenField.setAttribute("value", "clicked");
 form.appendChild(hiddenField);
 document.body.appendChild(form);
 form.submit();
 return true; // good return, processed
 break;
 default:
 return false; // error return, not found
 break;
 }
}

The mechanism is that if it is our switch/button that is clicked (in this example the
instance name is 'localitem_a'), we use the Javascript to add a dynamic form to the
HTML page and then submit it -with the data value set to 'clicked' - so that the C code in
our component's post callback will receive '<idname>=clicked'.

It is important to return true if we have locally taken care of the class type, and false if
not - so the appropriate error can be reported.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 43 of 44

10 Common Problems

10.1 Fixed HTTP port numbers
When components are defined they will have a default HTTP port number (typically
8000). You can normally override this from the command line or when instancing the
component. If you get a port clash - i.e. two or more ports trying to be opened with the
same number, you will see the following form of error message:

Fatal (HTTP_PNIU) 'ARMv8-A-FMv1/cpu_CPU1/pm' is trying to open HTTP port number
8000 which is already being used by 'ARMv8-A-FMv1/cpu_CPU0/pm'
Info Exiting

You need to change the port numbers so they are all unique.

If you have several sessions simultaneously using the same machine/port numbers you
will get errors. Within Imperas we have solutions to this, for example during regression
testing, so please contact Imperas support for advice.

10.2 No index.html for component
The message:
Error (HTTP_FNF) Model 'test/pse0' cannot find file './index.html'

means that when looking for the httpvis/index.html for a component it could not be
found - each component needs one. It should be in the same path as the binary of the
component.

10.3 Browser can not connect to HTTP port
If you get an error in your browser similar to:
 This site can’t be reached
 localhost refused to connect.

Then either you are trying to connect to the wrong hostname/port number, or you have
not enabled the HTTP ports in the simulation run.

Did you see this in the simulation console?:
 Info (HTTP_PORT) 'test/pse0' listening on port 8000

If not - then you need to enable the simulators HTTP ports.

To enable HTTP ports either use the command line option:
 --httpvis

Or set the environment variable, for example:
 export IMPERAS_HTTP=1

or
 set IMPERAS_HTTP=1

And ensure some of the components in your simulation are opening HTTP ports.

Visualization for Platforms Modules Peripherals and Intercept Libraries

© 2020 Imperas Software Limited. www.OVPworld.org Page 44 of 44

10.4 Browser pop up: runtime.js sendCommand has class name
not recognized

This message pop up indicates that you have used a class type in your index.html that is
not recognized in the runtime.js or in any local.js decoder that you have specified.
Check your html instances to ensure that all class names are correct.

10.5 Browser pop up: runtime.js sendCommand error. Your C
code function has an element which is undefined in the html

This message pop up indicates that you are trying to write a value in your c code (with
bhmHTTPKeyPrintf or oclHTTPKeyPrintf) to an instance id/name in your index.html that is
not found. Check your html instance names to ensure that they are all the same as those
written to in the C.

You can also get this message if you run one simulation that uses an HTTP port with
certain data, and then leave that browser open (listening) and then run a different
simulation with different data being sent - with the same port number. You then have two
browsers listening to the same port, which is OK, but the problem is that the early one
has different HTML/Javascript data requirements and thus is incompatible as it can not
find the data it requires in the HTTP data received. To resolve this, always make sure you
cancel all listening browsers before starting a new simulation.

10.6 Tracing HTTP port data
To see what is happening across the HTTP ports, set the environment variable:
 IMPERAS_HTTP_TRACE=1

10.7 Other errors
Often it is informative to see what errors are reported from the browsers perspective.
Each browser is different, but they all tend to have an 'error console' or 'console output'
that you can view.

Chrome has Developer Tools->Console.

Safari has Develop->Show Error Console.

Firefox has Web Developer Tools->Web Console.

10.8 How to run regression test models with visualization
Within Imperas we have a methodology that addresses this and provides complete batch
testing of the visualization displays and also the clicking of buttons/switches. Please
contact Imperas support for more information.

	1 Preface
	1.1 Notation
	1.2 Related Documentation
	1.3 Glossary / Terminology

	2 Introduction
	2.1 Prerequisites
	2.2 Obtaining & installing necessary files
	2.3 Compiling Examples described in this Document
	2.4 Shared Objects and executables

	3 An Introduction to Virtual Platform Visualization
	3.1 How it works
	3.2 Connection overview
	3.2.1 peripheral, module and harness
	3.2.2 Binary intercept library

	3.3 Turning visualization on
	3.3.1 Command line
	3.3.2 Environment variable

	3.4 Connecting a browser to a components visualization HTTP port
	3.5 Many component visualization images

	4 A first example: Examples/PlatformVisualization/moduleNet
	4.1 The structure in index.html
	4.2 Compiling the C and running
	4.3 Code in the module

	5 Adding Visualization to Virtual Platform components
	5.1 Creating visualization in peripheral model
	5.2 Creating visualization in a harness
	5.3 Creating visualization in a module
	5.4 Creating visualization in an binary intercept library
	5.5 Creating visualization for a processor model

	6 Imperas Visualization using Binary Intercept Extension Libraries
	6.1 Introduction
	6.2 Using existing plugins at run time

	7 Visualization using just HTML and Javascript
	7.1 Radar Display Example
	7.1.1 Overview
	7.1.2 Running the example

	8 Examples
	9 Reference section
	9.1 Overview of Visualization infrastructure
	9.2 Joining the dots... (how C code values are displayed as images)
	9.2.1 Imperas visualization 'classes'

	9.3 Component index.html file
	9.4 Peripheral C code
	9.4.1 iGen Definition
	9.4.2 Constructor
	9.4.3 BHM_HTTP_GET_FN get callback function
	9.4.4 the redraw function
	9.4.5 BHM_HTTP_POST_FN post callback function

	9.5 Module and Harness C code
	9.5.1 Pre-Simulation initialization
	9.5.2 get callback
	9.5.3 post callback

	9.6 Intercept Library C code
	9.6.1 Constructor
	9.6.2 get callback
	9.6.3 post callback

	9.7 Top Level visualization.html file
	9.8 C API functions for peripherals
	9.9 C API functions for modules and harnesses
	9.10 C API functions for intercept libraries
	9.11 Using iGen to help assist in creating visualization
	9.11.1 iGen can create templates for peripherals
	9.11.2 iGen can create templates for modules

	9.12 Imperas visualization classes: class, images, values
	9.12.1 ovpled
	9.12.2 ovpbuttonled
	9.12.3 ovplcd7seg
	9.12.4 ovplcd2x16
	9.12.5 ovpswitchtoggle
	9.12.6 ovpswitchdip
	9.12.7 ovpbar
	9.12.8 ovpvertbar
	9.12.9 ovppower
	9.12.10 ovpreset
	9.12.11 ovpgauge
	9.12.12 ovphistogram

	9.13 Adding your own visualization classes and items

	10 Common Problems
	10.1 Fixed HTTP port numbers
	10.2 No index.html for component
	10.3 Browser can not connect to HTTP port
	10.4 Browser pop up: runtime.js sendCommand has class name not recognized
	10.5 Browser pop up: runtime.js sendCommand error. Your C code function has an element which is undefined in the html
	10.6 Tracing HTTP port data
	10.7 Other errors
	10.8 How to run regression test models with visualization

