
© 2020 Imperas Software Limited www.OVPworld.org Page 1 of 27 

 
 
 
 
 
 
 
 
 
 
                      
 
 
 
 
 
 

Writing Platforms and Modules in C User Guide 
 
 
 

Imperas Software Limited 
Imperas Buildings, North Weston, 

Thame, Oxfordshire, OX9 2HA, UK 
docs@imperas.com 

 
 
 
 
 
 
 
Author: Imperas Software Limited 
Version: 2.0.1 
Filename: Writing_Platforms_and_Modules_in_C_User_Guide.doc 
Project: Writing Platforms and Modules in C User Guide 
Last Saved: Monday, 13 January 2020  



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 2 of 27 

Copyright Notice 
Copyright © 2020 Imperas Software Limited All rights reserved. This software and 
documentation contain information that is the property of Imperas Software Limited. The 
software and documentation are furnished under a license agreement and may be used or 
copied only in accordance with the terms of the license agreement. No part of the 
software and documentation may be reproduced, transmitted, or translated, in any form or 
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written 
permission of Imperas Software Limited, or as expressly provided by the license 
agreement. 
 
Right to Copy Documentation 
The license agreement with Imperas permits licensee to make copies of the 
documentation for its internal use only. Each copy shall include all copyrights, 
trademarks, service marks, and proprietary rights notices, if any. 
 
Destination Control Statement 
All technical data contained in this publication is subject to the export control laws of the 
United States of America. Disclosure to nationals of other countries contrary to United 
States law is prohibited. It is the reader’s responsibility to determine the applicable 
regulations and to comply with them. 
 
Disclaimer 
IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY 
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 3 of 27 

Table of Contents 
 
 
 
1 Preface........................................................................................................................ 4 

1.1 Related Documentation....................................................................................... 4 
1.2 Notation............................................................................................................... 4 
1.3 Glossary / Terminology ...................................................................................... 5 

2 Introduction................................................................................................................ 6 
2.1 Platform construction & simulation approaches................................................. 6 
2.2 Prerequisites ........................................................................................................ 6 
2.3 Obtaining & Installing the OP API..................................................................... 6 
2.4 Compiling Examples described in this Document.............................................. 7 
2.5 Shared Objects and Executables ......................................................................... 7 

3 Imperas Simulation Overview ................................................................................... 8 
3.1 Simulation Environments.................................................................................... 8 
3.2 What are OVPsim and CpuManager?................................................................. 8 
3.3 Use of OP with Imperas tools ............................................................................. 9 
3.4 C API and iGen................................................................................................... 9 

4 Documentation on the OP API ................................................................................ 10 
5 C harness and platform in one file (Combined Approach) ...................................... 12 
6 C harness and separate platform (Module Approach) ............................................. 21 

6.1 Module written in C using OP .......................................................................... 21 
6.2 Harness in C using OP instancing a separate module....................................... 24 

7 Using harness.exe to simulate modules ................................................................... 27 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 4 of 27 

1 Preface 
The Imperas simulators can use models described in C or C++ and the models can be 
exported to be used in simulators and platforms using C, C++, SystemC or SystemC 
TLM2. 
  
This introductory document describes how to use the OVP C APIs to write simple 
platforms and modules and to control the simulator with test harnesses also written in C. 
 
It describes how the OVP OP C API is used in C programs for use with Imperas and OVP 
virtual platform simulators. 

1.1 Related Documentation 
There are two related documents that focus on controlling the simulators using the OVP 
OP C API. If your interest is running simulations of existing platforms/models, more 
advanced test harnesses, or debugger/3rd party simulator integration then these 
documents should be your focus: 
 

• Simulation Control of Platforms and Modules User Guide 
• Advanced Simulation Control of Platforms and Modules User Guide 

 
If you are creating platforms or subsystems/modules of components, then you need to 
look at using iGen. There are two documents that describe the use of iGen to create 
platforms and modules using its advanced, high level input script. With iGen script, 
larges, complex platforms and modules can be created with very few lines of code: 
 

• iGen Model Generator Introduction 
• iGen Platform and Module Creation User Guide 

 
There are several other relevant documents available: 
 
Getting Started 

• Imperas Installation and Getting Started Guide 
 
Interface, API, and iGen related 

• OVP Peripheral Modeling Guide 
• OVPsim Using OVP Models in SystemC TLM2.0 Platforms 
• Imperas Peripheral Generator Guide (using iGen) 

1.2 Notation 
Code Text representing code, a command or output. 
keyword A word with special meaning. 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 5 of 27 

1.3 Glossary / Terminology 
 
OP API - OVP Platforms API - C API used for creating and controlling virtual 
platforms. 2nd generation API, replaces ICM API. iGen creates modules/platforms in C 
using this API. 
 
iGen - Imperas productivity tool that has a powerful script based function API that is 
used to create C/C++/SystemC models and templates. Described in the iGen Model 
Generator Introduction, and for platforms/modules, in the iGen Platform and Module 
Generator User Guide. 
 
OVPsim - Simulator for Open Virtual Platforms that executes platforms and models 
coded in the OVP APIs 
 
CpuManager - Imperas commercial simulator that fully implements the APIs defined by 
OVP (OVPsim implements a subset) 
 
Platform / Module – a collection of components connected together into a level of 
hierarchy in a system to be simulated. This is a program in C/C++ making calls into OP 
API and normally compiled into a shared object/dynamically linked library and loaded by 
the simulator at run time. 
 
Testbench / Harness  – (used interchangeably) –  A program in C/C++ making calls into 
the OP API to connect and control OVP components. It is normally linked to the 
simulator to provide an .exe binary that can be executed. Used to instance one or more 
platforms/modules and controls their execution. The main difference, from a 
platform/module, is that a testbench or harness includes a definition of the function 
main(), may include a command line parser and is linked to create an executable binary 
(.exe) file. 
 
Root Module - used to describe the initial platform/module that instances one or more 
platforms/modules and controls their execution. Used in the testbench / harness. 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 6 of 27 

2 Introduction 
Imperas simulation technology enables very high performance simulation, debug and 
analysis of platforms containing multiple processors and behavioral peripheral models. 
The technology is designed to be extensible: you can create your own platforms, new 
models of processors, and other platform components using interfaces and libraries 
supplied by Imperas. Platform models developed using this technology can be used both 
with Imperas simulation products and the freely-available OVPsim platform simulator. 

2.1 Platform construction & simulation approaches 
There are two ways to construct and simulate designs: 

• Combined approach: the platform and the test harness that controls it can be 
created in C as one compilation unit. This is a combined approach and is the same 
as the usage of the deprecated ICM platform modeling API. 

• Module approach: the platform and the test harness that controls it can be 
created as separate compilable objects using OP API modules.  (The modules can 
be written directly in C using OP API calls, or created from iGen script.) 

 
If using a module based approach (separate platform and test harness), then there are two 
ways of making a test harness: 

• Bespoke test harness: a test harness can be written in C using the OP API. 
• harness.exe: In the Imperas / OVP release packages, there is a program provided, 

harness.exe, which removes the need for writing a C test harness. harness.exe 
simulates modules directly. 

 
This introductory document explains the basic usage of the OP API to write harnesses / 
test benches and simple modules. For all but simple platforms/modules, iGen should be 
used. Please consult the documents referred to above. 
 
For a description and example of the combined approach, please see chapter 5. 
 
For a description and example of the module approach, with bespoke harness, please 
see chapter 6. 
 
For a description and example of the module approach, using the provided harness.exe 
program, please see chapter 7. 

2.2 Prerequisites 
Since harnesses and test benches for use with Imperas and OVP tools are written in C, an 
important prerequisite is that you must be proficient in the C language. If you want to use 
C++ then it is expected that you are proficient in the use of C++ and how it uses a C API. 

2.3 Obtaining & Installing the OP API 
The OP API is part of all Imperas / OVP installations and thus you should already have it 
installed and be ready for use. 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 7 of 27 

2.4 Compiling Examples described in this Document 
The examples use modules, processors, component models and tool chains, available to 
download from the www.OVPworld.org website or as part of an Imperas installation. 
 
The compilation of the examples utilize a Makefile, the instructions for which indicate 
the use of the command make, on Windows systems the MinGW mingw32-make 
command should be used in its place. 
 
The Makefiles referred to in this document are written for GNU make. Standard 
Makefiles supplied by Imperas support compilation and linking using GNU tools on both 
Windows and Linux. 
 
Example scripts will be referred to as (for example) example.sh, this being the extension 
used on Linux or for Windows MSYS shells. On Windows the script would be called 
example.bat 
 

2.5 Shared Objects and Executables 
The shared objects referred to in this document are either Linux shared objects, with 
suffix .so or Windows dynamic link libraries with suffix .dll. 
 
The executables referred to in this document are either Linux or Windows programs and 
have the suffix .exe 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 8 of 27 

3 Imperas Simulation Overview 
Before starting to create models for use with the Imperas simulation environment, you 
must understand how the components used in that environment interact. This section 
describes this in detail. 

3.1 Simulation Environments 
There are currently two simulation environments available that can be used with models 
and platforms that you create: 
 

• OVP allows component models created using OVP modeling technology to be 
used in C harness, platform and testbench files to create executables, which 
represent real hardware. These include processor and other behavioral 
components. The executable can be used to run binary application files compiled 
and linked for the processors whose models are included. OVP can be used in 3rd 
party simulation environments (for example, SystemC). It can be used to create a 
test harness to help validate processor models under construction, or even to 
create custom simulation environments. OVP has less functionality than the 
Imperas Professional Simulator Products in some areas and has restricted 
commercial usage as stipulated in the OVP click-through license agreement. 

 
• Imperas Professional Simulator Products enhance the basic capabilities provided 

by OVPsim, particularly in the areas of debugger integration, tool integration and 
multiprocessor simulation support (including QuantumLeap parallel simulation). 
Contact Imperas for more information. 

3.2 What are OVPsim and CpuManager? 
OVP provides the OVPsim simulator and the Imperas Professional product provides the 
CpuManager simulator as dynamic linked libraries (.so suffix on Linux, .dll suffix on 
Windows) implementing Imperas simulation technology. The shared objects contain 
implementations of the OP interface functions used in this document. The OP functions 
enable instantiation, interconnection and simulation of complex multiprocessor platforms 
using multicore processors, advanced peripheral devices and complex memory 
topologies. 
 
Processor models for use with CpuManager and OVPsim are created using the OVP 
Virtual Machine Interface (VMI) API, and are available for download from the 
www.OVPworld.org website. This API enables the creation of processor models that run 
at very high simulation speeds (typically hundreds of millions of simulated instructions 
per second). The use of the API is described in the OVP Processor Modeling Guide, also 
available for download from the www.OVPworld.org website. 
 
The CpuManager simulator is part of the commercial/professional product offering 
available from Imperas. OVPsim is the freely-available (for Non-Commercial usage) 
version of the simulator. The simulator can be selected at runtime by the 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 9 of 27 

IMPERAS_RUNTIME environment variable. If it is not set or is set to OVPsim the 
OVPsim library (which requires an OVP license) will be used. If it is set to CpuManager 
the CpuManager library (which requires an Imperas license) will be used.  
 
The legacy ICM API is supported by the same products, providing a subset of the 
functionality offered by OP. In fact, the ICM API is implemented using OP so will be 
supported for the foreseeable future. 
 
A subset of OP functionality can be used in SystemC TLM2.0. The TLM2.0 C++ 
interface code is available as source for processor and peripheral models, allowing the 
use of these models in SystemC TLM2.0 platforms. 

3.3 Use of OP with Imperas tools 
A program using the OP or ICM APIs must be linked with the Imperas RuntimeLoader 
library to perform runtime dynamic loading of either the CpuManager or OVPsim 
dynamic linked libraries, to produce a stand-alone executable. This allows the runtime 
selection of the CpuManager simulator for any defined platform and so enabling the use 
of the Imperas tools. 

3.4 C API and iGen 
An OVP platform/module is written in C code and compiled and linked on the host 
computer to produce a shared object. An OVP testbench/harness, is written in C code, 
compiled and linked with the RuntimeLoader (libRuntimeLoader.so) link library on the 
host computer to produce an executable. 
 
iGen is a program from Imperas that can create either outline or substantially complete C 
code for a module or testbench/harness using a description written using iGen function 
calls. Use of iGen is described elsewhere. This document is focusing on 
platforms/modules and test harness written directly in C using the OVP OP API. 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 10 of 27 

4 Documentation on the OP API 
Provided in the installation is the online OP API Function Reference documentation. This 
is Doxygen API documentation available at: 
 
 IMPERAS_HOME/doc/api/op/html/index.html 
 

 
 
It includes per function references: 
 

 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 11 of 27 

There are hyperlinks to many complete examples that illustrate usage of the function: 
 

 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 12 of 27 

5 C harness and platform in one file (Combined 
Approach) 

This style is not the recommended approach for anything but the smallest simplest 
examples.  
 
For most designs it is good practice to put the structure in a separate module from the 
testbench. The structure is code that creates instances of the components and connects 
them together. The testbench sets the initial conditions then runs the platform for the 
required length of time. Keeping the two separate allows the structure to be used in 
different test scenarios or  as part of a larger design. For most designs the Imperas iGen 
tool should be used to create the C platform/modules from a concise tcl iGen input script. 
Please see the documents described above for more information. 
 
You can develop your design as one C program combining the harness, the instance of 
the processors, peripherals buses etc, all in one compilable program. 
 
> cp -r $IMPERAS_HOME/Examples/SimulationControl/simplePlatformInHarnessUsingOP . 
> cd simplePlatformInHarnessUsingOP 
> ls 
application   harness    example.sh 
 
The application is a simple hello world writing to a UART it has initialized: 
 
> cat application/application.c 
... 
int main(int argc, char **argv) { 
 
    initFreeScaleKinetisUart(UART0_BASE); 
 
    printf ("Writing to uart - see log file\n\n"); 
 
    writeMessFreescaleKinetisUart(UART0_BASE,  
    "Hello UART0 world with design written in C using OP API instanced directly in the harness.\n\n"); 
 
    return 0; 
} 
 
Where initFreeScaleKinetisUart sets up the UART for writing and 
writeMessFreescaleKinetisUart writes the message.  
 
It is cross compiled using make to create the binary .elf file: 
 
> make -C application 
# Compiling application.c 
# Linking application.OR1K.elf 
 
The platform is an OR1K cpu with memory and UART: 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 13 of 27 

 
 
As this is an example of the harness and platform being combined, there is one C file that 
describes both the platform and the harness. 
 
At the bottom of harness/harness.c is the call to main: 
 
int main(int argc, const char *argv[]) { 
    opSessionInit(OP_VERSION); 
    opCmdParseStd (argv[0], OP_AC_ALL, argc, argv); 
 
    optModuleP mi = opRootModuleNew(0, 0, 0); 
    constructPlatform (mi); 
     
    opRootModuleSimulate(mi); 
    opSessionTerminate(); 
    return 0; 
} 
 
We can see we initialize the session, make a call to the standard command parser and 
then instance the root module of the design. 
 
We then call our function (constructPlatform) that constructs the platform, call 
opRootModuleSimulate to simulate the root module (mi) and then terminate the session. 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 14 of 27 

The platform is constructed in the call to constructPlatform declared at the top of 
harness/harness.c: 
 
We first declare the bus and two nets: 
 
static void constructPlatform (optModuleP mi) { 
 
    optBusP mainBus_b = opBusNew(mi, "mainBus", 32, 0, 0); 
 
    optNetP directWrite_n = opNetNew(mi, "directWrite", 0, 0); 
    optNetP directRead_n = opNetNew(mi, "directRead", 0, 0); 
 
The processor with VLNV ovpworld.org/processor/or1k/1.0 is selected from the library. 
It is given the name “cpu1”. 
The  'generic' variant is selected. 
 
const char *cpu1_path = opVLNVString( 
        0, // use the default VLNV path 
        "ovpworld.org", 
        "processor", 
        "or1k", 
        "1.0", 
        OP_PROCESSOR, 
        1   // report errors 
    ); 
 
    optProcessorP cpu1_c = opProcessorNew( 
        mi, 
        cpu1_path, 
        "cpu1", 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "INSTRUCTION"), 
                OP_BUS_CONNECT(mainBus_b, "DATA") 
            ) 
        ), 
        OP_PARAMS( 
             OP_PARAM_STRING_SET("variant", "generic") 
        ) 
    ); 
 
We define its semihost library so that any calls to printf (for simulation monitoring) are 
displayed in the simulation console: 
 
    const char *or1kNewlib_0_expath = opVLNVString( 
        0, // use the default VLNV path 
        0, 
        0, 
        "or1kNewlib", 
        0, 
        OP_EXTENSION, 
        1   // report errors 
    ); 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 15 of 27 

 
    opProcessorExtensionNew( 
        cpu1_c, 
        or1kNewlib_0_expath, 
        "or1kNewlib_0", 
 
        0 
    ); 
 
We instance two memories: 
 
    // Memory ram1 
 
    opMemoryNew( 
        mi, 
        "ram1", 
        OP_PRIV_RWX, 
        (0x0fffffff) - (0x0), 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "sp1", .slave=1, .addrLo=0x0, .addrHi=0x0fffffff) 
            ) 
        ), 
        0 
    ); 
 
    // Memory ram2 
 
    opMemoryNew( 
        mi, 
        "ram2", 
        OP_PRIV_RWX, 
        (0xffffffff) - (0x20000000), 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "sp1", .slave=1, .addrLo=0x20000000, .addrHi=0xffffffff) 
            ) 
        ), 
        0 
    ); 
 
The constructing function concludes with an instance of a Freescale Kinetis UART: 
 
    const char *periph0_path = opVLNVString( 
        0, // use the default VLNV path 
        "freescale.ovpworld.org", 
        "peripheral", 
        "KinetisUART", 
        "1.0", 
        OP_PERIPHERAL, 
        1   // report errors 
    ); 
 
    opPeripheralNew( 
        mi, 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 16 of 27 

        periph0_path, 
        "periph0", 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "bport1",  
  .slave=1, .addrLo=0x100003f8, .addrHi=0x100013f7) 
            ), 
            OP_NET_CONNECTIONS( 
                OP_NET_CONNECT(directWrite_n, "DirectWrite"), 
                OP_NET_CONNECT(directRead_n, "DirectRead") 
            ) 
        ), 
        OP_PARAMS( 
             OP_PARAM_STRING_SET("outfile", "uartTTY0.log") 
        ) 
    ); 
} 
 
The combined harness and platform is also compiled with the provided harness/Makefile: 
 
> make -C harness 
# Host Depending obj/Linux32/harness.d 
# Host Compiling Harness obj/Linux32/harness.o 
# Host Linking Harness harness.Linux32.exe 
 
Which creates the compiled executable: harness.Linux32.exe. 
 
The simulation is run with: 
 
> harness/harness.Linux32.exe --program application/application.OR1K.elf  
... 
OVPsim started: Tue Feb  9 00:08:44 2016 
 
Initializing KinetisUART 
Writing to uart - see log file 
 
OVPsim finished: Tue Feb  9 00:08:44 2016 
 
The log file contains the characters written by the application to the UART: 
 
> cat uartTTY0.log 
Hello UART0 world with design written in C using OP API instanced directly in the harness. 
 
The complete combined harness/harness.c is: 
 
 
#include <string.h> 
#include <stdlib.h> 
 
#include "op/op.h" 
 
#define HARNESS_NAME "harness" 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 17 of 27 

static void constructPlatform (optModuleP mi) { 
 
    // Bus mainBus 
 
    optBusP mainBus_b = opBusNew(mi, "mainBus", 32, 0, 0); 
 
    // nets 
 
    optNetP directWrite_n = opNetNew(mi, "directWrite", 0, 0); 
    optNetP directRead_n = opNetNew(mi, "directRead", 0, 0); 
 
    // Processor cpu1 
 
    const char *cpu1_path = opVLNVString( 
        0, // use the default VLNV path 
        "ovpworld.org", 
        "processor", 
        "or1k", 
        "1.0", 
        OP_PROCESSOR, 
        1   // report errors 
    ); 
 
    optProcessorP cpu1_c = opProcessorNew( 
        mi, 
        cpu1_path, 
        "cpu1", 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "INSTRUCTION"), 
                OP_BUS_CONNECT(mainBus_b, "DATA") 
            ) 
        ), 
        OP_PARAMS( 
             OP_PARAM_STRING_SET("variant", "generic") 
        ) 
    ); 
 
    // semihost library 
 
    const char *or1kNewlib_0_expath = opVLNVString( 
        0, // use the default VLNV path 
        0, 
        0, 
        "or1kNewlib", 
        0, 
        OP_EXTENSION, 
        1   // report errors 
    ); 
 
    opProcessorExtensionNew( 
        cpu1_c, 
        or1kNewlib_0_expath, 
        "or1kNewlib_0", 
 
        0 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 18 of 27 

    ); 
 
    // Memory ram1 
 
    opMemoryNew( 
        mi, 
        "ram1", 
        OP_PRIV_RWX, 
        (0x0fffffff) - (0x0), 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "sp1", .slave=1, .addrLo=0x0, .addrHi=0x0fffffff) 
            ) 
        ), 
        0 
    ); 
 
    // Memory ram2 
 
    opMemoryNew( 
        mi, 
        "ram2", 
        OP_PRIV_RWX, 
        (0xffffffff) - (0x20000000), 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "sp1", .slave=1, .addrLo=0x20000000, .addrHi=0xffffffff) 
            ) 
        ), 
        0 
    ); 
 
    // peripheral periph0 
 
    const char *periph0_path = opVLNVString( 
        0, // use the default VLNV path 
        "freescale.ovpworld.org", 
        "peripheral", 
        "KinetisUART", 
        "1.0", 
        OP_PERIPHERAL, 
        1   // report errors 
    ); 
 
    opPeripheralNew( 
        mi, 
        periph0_path, 
        "periph0", 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "bport1",  
  .slave=1, .addrLo=0x100003f8, .addrHi=0x100013f7) 
            ), 
            OP_NET_CONNECTIONS( 
                OP_NET_CONNECT(directWrite_n, "DirectWrite"), 
                OP_NET_CONNECT(directRead_n, "DirectRead") 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 19 of 27 

            ) 
        ), 
        OP_PARAMS( 
             OP_PARAM_STRING_SET("outfile", "uartTTY0.log") 
        ) 
    ); 
 
} 
 
int main(int argc, const char *argv[]) { 
    opSessionInit(OP_VERSION); 
    opCmdParseStd (argv[0], OP_AC_ALL, argc, argv); 
 
    optModuleP mi = opRootModuleNew(0, 0, 0); 
    constructPlatform (mi); 
     
    opRootModuleSimulate(mi); 
    opSessionTerminate(); 
    return 0; 
} 
 
To compile both the application and harness, and run the example, a script is provided: 
 
> ./example.sh 
 
Note that you can pass in any appropriate simulation command line arguments, for 
example: 
 
> ./example.sh --help 
... 
> ./example.sh --showbuses 
... 
> ./example.sh --showmodule 
... 
> harness/harness.Linux32.exe --program application/application.OR1K.elf  --trace 
... 
 
To see data written to the UART, use the --modeldiags command line argument: 
 
> harness/harness.Linux32.exe --program application/application.OR1K.elf --modeldiags 0x3 
... 
OVPsim started: Tue Feb  9 00:20:32 2016 
 
Info (UART_UIS) periph0: Uart initialized in serial channel mode 
Initializing KinetisUART 
Info (UART_BRC) periph0: Baud rate changed to 19921 
Info (UART_BRC) periph0: Baud rate changed to 19577 
Info (UART_TFT) periph0: Transmitter fifo threshold set to 1 
Info (UART_RFT) periph0: Receiver fifo threshold set to 1 
Info (UART_UW) periph0: Write to Data register: data=0x0d (' 
') 
Writing to uart - see log file 
 
Info (UART_UW) periph0: Write to Data register: data=0x48 ('H') 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 20 of 27 

Info (UART_UW) periph0: Write to Data register: data=0x65 ('e') 
Info (UART_UW) periph0: Write to Data register: data=0x6c ('l') 
Info (UART_UW) periph0: Write to Data register: data=0x6c ('l') 
Info (UART_UW) periph0: Write to Data register: data=0x6f ('o') 
Info (UART_UW) periph0: Write to Data register: data=0x20 (' ') 
... 
Info (UART_UW) periph0: Write to Data register: data=0x65 ('e') 
Info (UART_UW) periph0: Write to Data register: data=0x73 ('s') 
Info (UART_UW) periph0: Write to Data register: data=0x73 ('s') 
Info (UART_UW) periph0: Write to Data register: data=0x2e ('.') 
Info (UART_UW) periph0: Write to Data register: data=0x0a (' 
') 
Info (UART_UW) periph0: Write to Data register: data=0x0a (' 
') 
 
OVPsim finished: Tue Feb  9 00:20:32 2016 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 21 of 27 

6 C harness and separate platform (Module Approach) 
You can develop models of hierarchical systems where you have many different sub-
systems (modules), each written as a separate model and separately compiled as module 
shared objects. The harness instances the top level (root) module, which in turn instances 
the other (potentially hierarchical) modules. 
 
In this example, there are three separate sub-directories: 
 
> cp -r $IMPERAS_HOME/Examples/PlatformConstruction/simpleCpuMemoryUartUsingOP . 
> cd simpleCpuMemoryUartUsingOP 
> ls 
application/   harness/    module/    example.sh 
 
The application is very similar to the application in the previous example and is compiled 
using the provided Makefile: 
 
> make -C application 
# Compiling application.c 
# Linking application.OR1K.elf 
 
In this example, the harness and module are two separate compilation units. Basically 
they have very similar content to the previous combined example, they are just split into a 
harness and a module that is instanced in it. 

6.1 Module written in C using OP 
A module is a separately compilation unit of the design hierarchy. It provides an interface  
to the caller using a modelAttrs table. In this example, at the bottom of the 
module/module.c file, we use the bare minimum modelAttrs table:  
 
> cat module/module.c 
... 
optModuleAttr modelAttrs = { 
    .versionString        = OP_VERSION, 
    .type                       = OP_MODULE, 
    .name                     = MODULE_NAME, 
    .releaseStatus         = OP_UNSET, 
    .purpose                 = OP_PP_BAREMETAL, 
    .visibility                = OP_VISIBLE, 
    .constructCB          = moduleConstructor, 
};  
 
Where the interesting line is the declaration of our module constructor function: 
    .constructCB          = moduleConstructor, 
 
Please refer to the Simulation Control documents introduced at the beginning of this 
document for more information on the modelAttrs table. 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 22 of 27 

It is the module constructor function that instances the components that make up our 
module. It is the same as that in the example in the previous chapter apart from now we 
declare it with a macro OP_CONSTRUCT_FN (and instead of calling it in a main 
function, we define it as an entry point in our modelAttrs table). The complete 
module/module.c looks like: 
 
> cat module/module.c 
... 
#include "op/op.h" 
 
#define MODULE_NAME "simpleCpuMemoryUart" 
 
static OP_CONSTRUCT_FN(moduleConstructor) { 
 
    // Bus mainBus 
 
    optBusP mainBus_b = opBusNew(mi, "mainBus", 32, 0, 0); 
  
    // nets 
 
    optNetP directWrite_n = opNetNew(mi, "directWrite", 0, 0); 
    optNetP directRead_n = opNetNew(mi, "directRead", 0, 0); 
 
    // Processor cpu1 
 
    const char *cpu1_path = opVLNVString( 
        0, // use the default VLNV path 
        "ovpworld.org", 
        "processor", 
        "or1k", 
        "1.0", 
        OP_PROCESSOR, 
        1   // report errors 
    ); 
 
    optProcessorP cpu1_c = opProcessorNew( 
        mi, 
        cpu1_path, 
        "cpu1", 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "INSTRUCTION"), 
                OP_BUS_CONNECT(mainBus_b, "DATA") 
            ) 
        ), 
        OP_PARAMS( 
             OP_PARAM_STRING_SET("variant", "generic") 
        ) 
    ); 
 
    // processor semihosting library 
 
    const char *or1kNewlib_0_expath = opVLNVString( 
        0, // use the default VLNV path 
        0, 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 23 of 27 

        0, 
        "or1kNewlib", 
        0, 
        OP_EXTENSION, 
        1   // report errors 
    ); 
 
    opProcessorExtensionNew( 
        cpu1_c, 
        or1kNewlib_0_expath, 
        "or1kNewlib_0", 
 
        0 
    ); 
 
    // Memory ram1 
 
    opMemoryNew( 
        mi, 
        "ram1", 
        OP_PRIV_RWX, 
        (0x0fffffff) - (0x0), 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "sp1", .slave=1, .addrLo=0x0, .addrHi=0x0fffffff) 
            ) 
        ), 
        0 
    ); 
 
    // Memory ram2 
 
    opMemoryNew( 
        mi, 
        "ram2", 
        OP_PRIV_RWX, 
        (0xffffffff) - (0x20000000), 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "sp1", .slave=1, .addrLo=0x20000000, .addrHi=0xffffffff) 
            ) 
        ), 
        0 
    ); 
 
    // peripheral periph0 
 
    const char *periph0_path = opVLNVString( 
        0, // use the default VLNV path 
        "freescale.ovpworld.org", 
        "peripheral", 
        "KinetisUART", 
        "1.0", 
        OP_PERIPHERAL, 
        1   // report errors 
    ); 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 24 of 27 

 
    opPeripheralNew( 
        mi, 
        periph0_path, 
        "periph0", 
        OP_CONNECTIONS( 
            OP_BUS_CONNECTIONS( 
                OP_BUS_CONNECT(mainBus_b, "bport1",  
  .slave=1, .addrLo=0x100003f8, .addrHi=0x100013f7) 
            ), 
            OP_NET_CONNECTIONS( 
                OP_NET_CONNECT(directWrite_n, "DirectWrite"), 
                OP_NET_CONNECT(directRead_n, "DirectRead") 
            ) 
        ), 
        OP_PARAMS( 
             OP_PARAM_STRING_SET("outfile", "uartTTY0.log") 
        ) 
    ); 
 
} 
 
optModuleAttr modelAttrs = { 
    .versionString        = OP_VERSION, 
    .type                       = OP_MODULE, 
    .name                     = MODULE_NAME, 
    .releaseStatus         = OP_UNSET, 
    .purpose                 = OP_PP_BAREMETAL, 
    .visibility                = OP_VISIBLE, 
    .constructCB          = moduleConstructor, 
};  
 
A Makefile is provided that will take as input the hand written module.c and will create 
the model.so/.dll shared objects. 
 
> make -C module  
# Host Depending obj/Linux32/module.d 
# Host Compiling Module obj/Linux32/module.o 
# Host Linking Module object model.so 
 

6.2 Harness in C using OP instancing a separate module 
In this example, which is very similar to the harness part of the combined example in the 
previous chapter, we don't instance the individual components in our harness, we 
'instance' the previously defined/compiled module as a sub component. 
 
We define an empty root module: 
 
    optModuleP mi = opRootModuleNew(0, 0, 0); 
 
We then add an instance of a module (from the directory 'module'): 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 25 of 27 

    opModuleNew(mi, "module", "u1", 0, 0); 
 
The complete harness looks like: 
 
> cat harness/harness.c 
... 
#include <stdlib.h> 
 
#include "op/op.h" 
 
int main(int argc, const char *argv[]) { 
    opSessionInit(OP_VERSION); 
 
    opCmdParseStd (argv[0], OP_AC_ALL, argc, argv); 
 
    optModuleP mi = opRootModuleNew(0, 0, 0); 
    opModuleNew(mi, "module", "u1", 0, 0); 
 
    opRootModuleSimulate(mi); 
 
    opSessionTerminate(); 
    return 0; 
} 
 
Which we compile with the provided Makefile: 
 
> make -C harness 
# Host Depending obj/Linux32/harness.d 
# Host Compiling Harness obj/Linux32/harness.o 
# Host Linking Harness harness.Linux32.exe 
 
Then it is run, giving the application as the program command line argument: 
 
> harness/harness.Linux32.exe --program application/application.OR1K.elf  
... 
OVPsim started: Tue Feb  9 06:12:29 2016 
 
Initializing KinetisUART 
Writing to uart - see log file 
 
OVPsim finished: Tue Feb  9 06:12:29 2016 
 
Look at the UART log to see what was written to the UART: 
 
> cat uartTTY0.log 
Hello UART0 world with separate harness and module in C using OP API. 
 
We have provided a script with the above compile and run commands: 
 
> ./example.sh 
... 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 26 of 27 

For convenience this can be used with command line arguments. 
 



Writing Platforms and Modules in C User Guide 
 

© 2020 Imperas Software Limited.www.OVPworld.org Page 27 of 27 

7 Using harness.exe to simulate modules 
In the first example in this document we introduced a combined harness and design as a 
single C program. 
 
In the second example we split the harness and design into a harness program and a 
separately compiled module. 
 
In this example we will use just the design/module and use the harness.exe program that 
is included with Imperas / OVP installations to control the simulation of the design. There 
is often no need to create a bespoke testbench. 
 
> cp -r  $IMPERAS_HOME/Examples/PlatformConstruction/simpleCpuMemoryUartUsingOPandHarnessExe . 
> cd simpleCpuMemoryUartUsingOPandHarnessExe 
> ls 
application/   module/    example.sh 
 
If you look at the module/module.c it is exactly the same as in the 
simpleCpuMemoryUartUsingOP example. The application writes out slightly different 
text to the UART. 
 
Again a script is provided to compile and run the example, and display the UART log 
file: 
 
> ./example.sh 
# Compiling application.c 
# Linking application.OR1K.elf 
... 
# Host Depending obj/Linux32/module.d 
# Host Compiling Module obj/Linux32/module.o 
# Host Linking Module object model.so 
... 
OVPsim started: Tue Feb  9 06:34:09 2016 
 
Initializing KinetisUART 
Writing to uart - see log file 
 
OVPsim finished: Tue Feb  9 06:34:09 2016 
 
Hello UART0 world with module in C using OP API and harness.exe. 
 
To see the command line arguments that you can use with the harness.exe, use the --help 
command: 
 
> harness.exe --help 
... 


	1 Preface
	1.1 Related Documentation
	1.2 Notation
	1.3 Glossary / Terminology

	2 Introduction
	2.1 Platform construction & simulation approaches
	2.2 Prerequisites
	2.3 Obtaining & Installing the OP API
	2.4 Compiling Examples described in this Document
	2.5 Shared Objects and Executables

	3 Imperas Simulation Overview
	3.1 Simulation Environments
	3.2 What are OVPsim and CpuManager?
	3.3 Use of OP with Imperas tools
	3.4 C API and iGen

	4 Documentation on the OP API
	5 C harness and platform in one file (Combined Approach)
	6 C harness and separate platform (Module Approach)
	6.1 Module written in C using OP
	6.2 Harness in C using OP instancing a separate module

	7 Using harness.exe to simulate modules

