
© 2021 Imperas Software Limited www.OVPworld.org Page 1 of 47

eGui Eclipse™ User Guide

Author: Imperas Software Limited
Version: 3.0.1
Filename: eGui_Eclipse_User_Guide.doc
Project: Imperas Eclipse Project eGui
Last Saved: Tuesday, 23 March 2021
Keywords:

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 2 of 47
.

Copyright Notice
Copyright © 2021 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 3 of 47
.

Table of Contents

1 Preface... 4
1.1 Notation... 4
1.2 Related OVP Documents .. 4
1.3 Related Imperas Documents ... 4

2 Introduction... 5
2.1 eGui Modes... 5

3 Installing Imperas eGui... 6
3.1 Prerequisites .. 6
3.2 Installing the eGui_Eclipse package... 6

4 Starting a debug session.. 8
4.1 Launching eGui from the simulation command line .. 8
4.2 Specifying platform options.. 8
4.3 Starting a standalone debug session.. 9

4.3.1 The eGui port file.. 9
4.4 Starting a debug session from Eclipse .. 10

4.4.1 Starting the Imperas eGui Eclipse product ... 10
4.4.1.1 The Java Runtime Environment (JRE) ... 11
4.4.1.2 Selecting a workspace... 11

4.4.2 Importing a project.. 12
4.4.3 Eclipse launch configurations ... 15

4.5 Additional Features in eGui exclusively for Imperas MPD users 16
4.5.1 Simultaneous debug with MPD .. 17
4.5.2 Multiple processor support in breakpoints.. 17
4.5.3 Imperas Programmers View object display .. 20
4.5.4 MPD Debugger Console for issuing MPD and VAP commands 21

5 A Sample Debug Session Using MPD.. 23
5.1 Prerequisites .. 23
5.2 Starting the debug session... 24
5.3 The MPD Debug View ... 24
5.4 Setting a breakpoint from the console view.. 25
5.5 Running and stepping the simulation.. 26
5.6 Terminating the simulation ... 28
5.7 Viewing local variables in a function ... 28
5.8 Adding breakpoints from the source window... 29
5.9 Examining context across the platform... 31
5.10 Eventpoints on reads/writes of peripheral registers .. 33

6 A Sample Debug Session Using GDB.. 37
6.1 Prerequisites .. 37
6.2 Starting the debug session... 37
6.3 Example GDB Debug Session for Dhrystone Benchmark application 39

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 4 of 47
.

1 Preface
This document describes how to debug an application running on the OVP or Imperas
Professional simulator using the Imperas eGui (based on Eclipse™) Integrated
Development Environment.

The Imperas eGui is based upon Eclipse 2020.03 and provided as the installation package
eGui_Eclipse. This provides a standalone version of Eclipse.

This package must be installed and used in conjunction with a standard OVP or Imperas
product package installation.

The example in this document demonstrates debugging of ARM applications but the
same approach is valid for applications running on processor models for any architecture
supported by the OVP simulator except the OR1K, because the GDB provided with the
OR1K processor is obsolete and does not support the MI interface needed to be used with
Imperas eGui.

1.1 Notation
Code Code and command extracts

1.2 Related OVP Documents
The following documents are part of the OVP and Imperas installations and can be found
in the directory:
 $IMPERAS_HOME/doc/ovp

• Imperas Installation and Getting Started Guide
• OVPsim and CpuManager User Guide

1.3 Related Imperas Documents
The following documents for the Imperas Professional Tools are part of the Imperas
installation and can be found in the directory:
 $IMPERAS_HOME/doc/imperas

• Imperas Debugger User Guide

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 5 of 47
.

2 Introduction
This document describes how to install and use the Imperas eGui (based on Eclipse)
debugger for interactive debugging of OVP virtual platforms.

The Imperas eGui debugger (hereafter referred to as eGui) is based on the Eclipse IDE,
version 202003 with the additions of:

1. The Imperas eGui feature, which enhances Eclipse to connect to an Imperas
simulation for debugging.

2. An enhanced version of the Eclipse C Development Tools (CDT) feature which
adds support for debugging multiple processors simultaneously when using the
Imperas Multi Processor Debugger (MPD).

eGui can be used as a standalone debugger for connecting to the Imperas simulator or it
can be used as a full Eclipse Integrated Development Environment (IDE), allowing you
to manage and build projects. The Eclipse IDE features in eGui are standard Eclipse
functionality so consult Eclipse documentation for info on using eGui as an IDE.

If you already use another IDE, (such as VS Code or a different version of Eclipse), and
wish to continue using your existing IDE, then eGui can still be used as a standalone
debugger, independent of your IDE.

Note that the Imperas simulator provides a standard RSP interface usable with standard
debuggers, such as gdb or lldb, and as such can be integrated into any debugging
environment that supports the RSP interface. When using the standard RSP interface the
Imperas-specific enhancements described above, such as MPD, are not available, and this
document does not cover debugging an Imperas simulation in any other environment than
eGui.

2.1 eGui Modes
The eGui feature supports connecting to Imperas simulations in either GDB or MPD
mode. GDB mode is supported by all Imperas simulation environments. MPD mode
requires an MPD license, which is part of the IMPERAS SDK product.

GDB Mode:

• Debug using the GNU debugger (GDB). For Imperas products that support
multiple GDB connections, each GDB connection is independent and all must be
put into a run state for simulation to proceed.

MPD Mode:
• Simultaneous debug of all processors and peripheral models. MPD handles the

details of starting and stopping all processors in the simulation while debugging.
• Programmers View of registers and other model elements provided by the

processor and peripheral models.
• VAP tools which provide additional powerful debugging capabilities.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 6 of 47
.

3 Installing Imperas eGui

3.1 Prerequisites
The following OVP and/or Imperas packages must be installed to use eGui:

One of:

• OVPsim
• Imperas_DEV
• Imperas_SDK
• or riscvOVPsimPlus1

Plus:

• eGui_Eclipse

The Imperas Installation and Getting Started Guide provides a step-by-step guide to
obtaining and installing the OVP and Imperas packages containing the simulator and
other tools. It is strongly recommended that you follow that guide until you are able to
build and simulate before attempting to debug using eGui.

In particular the Imperas environment must be setup as described in the Installation
guide.

3.2 Installing the eGui_Eclipse package
eGui can be added to your Imperas installation by installing the eGui_Eclipse package.
This package is provided in a self installing executable file available for download from
the ovpworld.org or imperas.com websites (registration required).

The installer is a file named:
 eGui_Eclipse.<version>.<arch>.exe
(Note, for consistency the executable file name includes the .exe suffix on both Linux and
Windows.)

For Linux it may be necessary to make the file executable with the command:
 chmod +x <fn>

To install, simply execute the installer and follow the directions. See the Imperas
Installation and Getting Started Guide for additional information.

This installs into directory $IMPERAS_HOME/lib/$IMPERAS_ARCH/eGui.202003 the
following:

1 The installation of riscvOVPsimPlus does not require an Imperas environment to run. Therefore, if using
this simulator, the Imperas environment must be setup separately to use eGui. Please use the setup scripts
provided with this eGui installation and consult the Installation and Getting Started Guide from the
OVPWorld website for more information.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 7 of 47
.

1. The Imperas eGui (based on Eclipse) standalone product.
2. A Java Runtime Executable (JRE).

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 8 of 47
.

4 Starting a debug session
There are several ways to start a debug session depending on whether you want to just
run a standalone debug session or are using Eclipse as your IDE to edit, build, run and
debug your projects, and also whether you have a license for the Imperas Multi-
Processor Debug (MPD) utility.

With Imperas MPD support all of the processors and peripherals in the platform may be
debugged simultaneously. Without Imperas MPD support, GDB is used directly and only
a single processor or peripheral may be debugged at a time.

4.1 Launching eGui from the simulation command line
This is the simplest way to start a debug session. The following simulator command line
arguments are available for starting an eGui debug session connected to the simulation:

--mpdegui

This will connect to eGui in MPD mode,. MPD mode supports simultaneous debug
of all processors and peripherals in the platform. This require an Imperas MPD
license.

--gdbegui
This will connect to eGui in GDB mode. GDB mode supports debug of a single
processor only. In platforms with multiple processors the
--debugprocessor <platform>/<cpu> option will also be needed to specify the
processor to be debugged, where <platform> and <cpu> are the respective platform
and processor names.

eGui will be started if it is not already running. If eGui is already running then a new
debug session will be started in it. (You should normally terminate any running debug
session before starting a new one.)

4.2 Specifying platform options
Debugging is enabled when starting an OVP platform by specifying command line or
control file options, or can be built into the platform source.

When using iss.exe or platform.exe, or when running a custom platform that includes the
Imperas Command Line Parser (CLP), then command line options may be used to enable
debugging without the need to make any changes to the platform source. The examples in
this document assume the command line options are supported, which is true for all
examples and demos provided by Imperas.

If using a custom platform that does not support the standard Imperas command line
options see the Simulation Control of Platforms and Modules User Guide for information
on adding the CLP to a platform. An alternative to the CLP is to use a control file to
specify platform options at runtime. See the OVP Control File User Guide for

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 9 of 47
.

information on using control files. The platform source may also enable debugging using
OP API calls. See the OP API documentation for information, although the CLP makes
the use of these unnecessary in most cases.

4.3 Starting a standalone debug session
The following platform options are available for starting a standalone debug session:

--mpdegui

This will connect to eGui in MPD mode, starting eGui if it is not already running.
MPD mode supports simultaneous debug of all processors and peripherals in the
platform. This require an Imperas MPD license.

--gdbegui
This will connect to eGui in GDB mode, starting eGui if it is not already running.
GDB mode supports debug of a single processor only. In platforms with multiple
processors the --debugprocessor <platform>/<cpu> option will also be
needed to specify the processor to be debugged, where platform and cpu are the
respective platform and processor names.

4.3.1 The eGui port file
A standalone eGui debug session is initiated from the simulator. The simulator
determines whether eGui is already running by looking for the eGui port file. This file is
created when an Eclipse with the eGui feature starts up and it contains the TCP port
number that eGui listens to for connections.

The file name for the eGui port file is determined by:

1. The value of the IMPERAS_EGUI_PORT_FILE environment variable, if
specified.

2. If that environment variable is not set then the file name defaults to:
 $HOME/.egui.port on Linux
 %USERPROFILE%\.egui.port on Windows

If the eGui port file exists and a listener is found on the port, then a standalone debug
session is started in the running eGui Eclipse which connects to the newly started
platform.

If the eGui port file does not exist, or if no listener is found on the port, then eGui Eclipse
is launched which then connects to the newly started platform.

Note:

• If the eGui feature has been added to an existing Eclipse installation, then using
--mpdegui or --gdbegui will connect to it if it is already running, since the eGui
feature in that Eclipse will have created an eGui port file.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 10 of 47
.

• When no valid eGui port file exists the platform will only start the eGui product in
the Imperas installation - it will not start an Eclipse that has added the eGui
feature. Thus if you wish to use your own Eclipse installation with the eGui
feature for standalone debugging it must already be running when the platform is
started.

• If multiple instances of the eGui feature run simultaneously the eGui port file will
contain the port for the one started most recently. The
IMPERAS_EGUI_PORT_FILE environment variable may be used to control
connecting to different instances running simultaneously.

4.4 Starting a debug session from Eclipse
For users who use Eclipse as their IDE, starting a debug session from within Eclipse may
be more convenient, but requires setting up Eclipse launch configurations to both run the
platform and start the debug session.

4.4.1 Starting the Imperas eGui Eclipse product
The eGui_Eclipse package includes a fully functional Eclipse, referred to here as eGui.
Users may wish to use this as their IDE in addition to using it as a standalone debugger as
described in section 4.3. This section contains information on running the eGui Eclipse
installation provided by Imperas as an IDE.

eGui Eclipse may be started by executing the command egui.exe from any Linux or MSys
shell or a Windows Command Prompt that has been setup with the Imperas environment.
egui.exe is a wrapper program that verifies the environment and launches the eGui
product found in:

$IMPERAS_HOME/lib/$IMPERAS_ARCH/eGui.202003/eguieclipse{.exe}

egui.exe arguments include:

--help

Print a help message listing all arguments
--version

 Print the version and exit
--verbose

 Print additional information that may be useful for troubleshooting
--open <fn>

 Open the indicated file in Eclipse, using the default viewer for the file type. This
is primarily intended to be used for viewing the VAP Tools functionprofile
(*.iprof) and linecoverage (*.icov) results but can be used for any file type
supported by eGui.

--eguioptions <string>
 Specifies Eclipse command line options to be added to the eguieclipse command
line. Consult the Eclipse documentation Running Eclipse section for the valid

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 11 of 47
.

options. Multiple --eguioptions may be specified and they will be combined.
Option strings containing spaces may be specified by enclosing in quotes.

 --eguicommands <string>
 Specifies Eclipse commands to be sent to eguieclipse at startup. Command
strings containing spaces may be specified by enclosing in quotes.

(There are several additional arguments intended for internal use by the simulator when
launching standalone debugging sessions that are not documented here.)

⇒ Note that Eclipse only supports options that start with '-' and will silently ignore
options that start with '--'.

4.4.1.1 The Java Runtime Environment (JRE)
The eGui_Eclipse package includes a Java Runtime Environment (JRE) whose root is in
the same directory as the eguieclipse executable and will be used by Eclipse by default.
The Eclipse -vm command line option may be used to override this default JRE. See the
Eclipse documentation for additional details.

4.4.1.2 Selecting a workspace
When eGui is started a workspace prompt will appear (unless the Eclipse -data option
specifying the workspace directory is specified):

The workspace is where Eclipse stores settings for the session. Settings from a previous
session may be reused by using the same workspace.

For standalone debugging you may want to just use a temporary workspace, perhaps in
your working directory.

If you are using Eclipse as your IDE you probably want to use a permanent workspace
that will save projects and other information that you configure, so select an appropriate

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 12 of 47
.

location for the workspace, perhaps in your home directory. Note that the workspace
cannot be under a directory that will be imported as a project.

See the Eclipse documentation for additional information about workspaces.

4.4.2 Importing a project
To use eGui as your IDE you need to create a project. We will walk through the process
of importing an Imperas Demo directory as a project. First select from The Eclipse menu
File->Import->C/C++->Existing Code as Makefile Project and select Next. In the dialog
box that comes up select Browse and browse to the
$IMPERAS_HOME\demo\Processors\ARM directory, for example, and then select
Finish:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 13 of 47
.

In order to see the project we must open the C/C++ perspective by selecting the Open
Perspective button in the top right corner and then choosing C/C++ from the list of
perspectives and selecting Open (alternatively, the Eclipse menu selection Window-
>Perspective->Open Perspective->C/C++ may be used):

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 14 of 47
.

The imported project ARM will now be visible in the Project Explorer view of the C/C++
perspective:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 15 of 47
.

4.4.3 Eclipse launch configurations
To start a debug session from within Eclipse you use launch configurations. eGui adds an
Imperas-specific launch configuration specifically to launch Imperas debug sessions.

To create an Imperas Debug Launch Configuration select Run->Debug Configurations...
Then select Imperas - Connect and then the New launch configuration (the rectangle with
a + in the top left corner):

The fields are as follows:

Name

This is the name assigned to the debug configuration, similar to standard Eclipse
configurations.

Port

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 16 of 47
.

This is the port that the platform is listening to, waiting for a connection. It should
match the value specified when the platform was launched, or if a port of 0 was
specified for the platform it should match the port number reported by the
platform.

Console and MI Communication options
These are useful for debugging problems and should be left in the default state
that is shown unless instructed to change them by Imperas support.

Set working directory to simulator working directory

When this is checked the debug session will run with the current directory set to
the same working directory as the simulation that it connects to. This should
normally be checked.

Working Directory
If the working directory is not obtained from the simulator it may be specified
here.

The rest of the tabs function the same way as any other Eclipse debug configuration
dialog and the Eclipse documentation should be consulted for information on them.

Examples of the use of this debug configuration may be found below.

⇒ To use the Imperas - Connect debug configuration you must have a license for the
Imperas MPD.

4.5 Additional Features in eGui exclusively for Imperas MPD
users

eGui provides the following additional features beyond those offered by the standard
Eclipse CDT:

• Support for the launch of eGui under control of the simulator and automatically
connecting in one of the following modes:

o Debug with GDB of a single processor or Peripheral
o Debug with independent GDB sessions of multiple processors and

peripherals (Imperas DEV required)
o Simultaneous debug of multiple processor and peripheral models (Imperas

MPD required)
• Simultaneous debug of multiple processors (MPD required)
• Imperas Programmers View object display (MPD required)
• MPD Debugger Console including command history/editing for issuing MPD and

VAP commands (MPD required)

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 17 of 47
.

A brief description of each of these features follows. More detailed information can be
found through out the rest of this document.

4.5.1 Simultaneous debug with MPD
When using MPD the Eclipse Debug View in eGui has been enhanced to show all the
processor and peripheral models that are available for debugging. A typical eGui Debug
View is shown here:

Under the Imperas Platform (mpd) [Imperas - Connect to running simulator] entry all the
simulated processors and peripherals are listed (here, they include
ArmCortexMFreeRTOS/cpu1, ArmCortexMFreeRTOS/UART0, ...). The current call stack
of any model may be viewed by opening the drop down list for the model.

When simulation returns control to the debugger (e.g. due to a breakpoint being hit or the
debugger requesting an interrupt) all the simulated processors and peripherals are stopped
and any of them may be debugged by selecting them in the Debug View.

By selecting different lines in the Debug View (in the above figure the Reset() function
entry in the call stack for ArmCortexMFreeRTOS/cpu0 is selected) the focus of the
debugger is changed to that processor and all other views in the debugger will be updated
to reflect the current selection.

4.5.2 Multiple processor support in breakpoints
The Breakpoints view has been enhanced to support defining processor-specific
breakpoints.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 18 of 47
.

When setting a breakpoint in eGui it is set on only the current active processor by default.
As an example, go to the ARM Cortex-A15UP multi_core demo and run it with the --
mpdegui option:

> cd $IMPERAS_HOME/Demo/Processors/ARM/Cortex/Cortex-A15UP/multi_core
> ./Run_MultiCore2.sh --mpdegui

After starting eGui select iss/cpu1 and enter the commands b main and continue in the
Debugger Console window:

We can see in the Breakpoint view that the newly created breakpoint has a context of
iss/cpu1:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 19 of 47
.

If we subsequently select iss/cpu0 in the Debug view, then enter the command break
main in the Debugger Console again and look at the breakpoint we will see iss/cpu0
added to it:

The breakpoint properties menu may also be used to change a breakpoint's context after
the breakpoint has been added by right-clicking the breakpoint and selecting Breakpoint
Properties... from the context menu, and modifying the Context Filter setting:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 20 of 47
.

NOTE: Opening the breakpoint properties with ALT-Enter rather than right clicking and
selecting from the context menu opens a properties menu for gdb that is not supported by
MPD. Do not use this method to edit the breakpoint properties when using MPD!

4.5.3 Imperas Programmers View object display
eGui adds a new view that shows the Imperas Programmers View values for the selected
processor. The Programmers View is a set of values selected by the model developer to
be visible through the Programmers View interface. The values displayed vary depending
on the specific model. The Programmers View is by default one of the tabs in the top
right panel.

For example, below is the Programmers View for an ARM Cortex processor model (hint:
double-clicking on the tab of a view will make it expand to fill the workspace. Double-
clicking again will revert back):

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 21 of 47
.

Here we see there is various information about the processor including the name, type,
variant, instruction count, mode and most recent exception type, as well as the current
value of each register (including general purpose, banked and system registers).

4.5.4 MPD Debugger Console for issuing MPD and VAP commands
eGui opens a Debugger Console window that allows commands to be given directly to
the Imperas Multi-Processor Debugger (MPD):

Note: If the Debugger Console tab is not displayed you can add the view to your Debug
Perspective by selecting Window->Show View->Debugger Console from the main
Eclipse menus.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 22 of 47
.

The Debugger Console is where MPD commands (including VAP Tool commands) can
be directly typed. For a full description of the commands available in this window see the
Imperas Debugger User Guide.

Note that there are two shell modes described in this document: Debug mode and Tcl
mode. Use the command tcl to enter Tcl mode from Debug mode, and the command
idebug to enter Debug mode from Tcl mode. The current mode is shown as part of the
command prompt.

In Debug mode use the command help to see online help messages for the debug mode.
In Tcl mode use the command ihelp to see online help messages for that mode.

When in Debug mode a single Tcl command may be executed by prefixing it with '::'. See
the figure above for an example of executing the Tcl ::ihelp command in Debug mode.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 23 of 47
.

5 A Sample Debug Session Using MPD
The following is a quick walk through of a debug session using MPD to simultaneously
debug a processor and peripheral models.

This example requires the Imperas SDK product. Users of OVPsim or the Imperas DEV
product should see the example using GDB instead.

The platform being debugged has a processor, memory, a UART and a LED registers
peripheral and is running the FreeRTOS operating system:

5.1 Prerequisites
To follow this example you will need the following Imperas and OVP packages installed:

• Imperas_SDK
• eGui_Eclipse
• Demo_FreeRTOS_arm

The Imperas environment must be set up according to the directions in Imperas
Installation and Getting Started Guide.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 24 of 47
.

An Imperas MPD license is required. Users without an MPD license should skip this
section and see section 6 which uses GDB rather than MPD.

5.2 Starting the debug session
After all the prerequisite packages have been installed and the Imperas environment
configured, to start the session enter the following commands from a Linux shell or a
Windows MSys shell:

> cp -r $IMPERAS_HOME/Demo/Platforms/FreeRTOS_arm .
> cd FreeRTOS_arm/harness
> ./RUN_FreeRTOS.sh --mpdegui

When prompted Do you want to connect browser for user visualization just answer No.
eGui will then prompt you to select a workspace. For standalone debugging just use a
temporary workspace by selecting "workspace" which will create the directory
workspace in the current directory:

5.3 The MPD Debug View
The Debug view shows all the debuggable processors in the simulation:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 25 of 47
.

Here we see in the Debug view the following debuggable models listed:

• ArmCortexMFreeRTOS/cpu1
• ArmCortexMFreeRTOS/UART0
• ArmCortexMFreeRTOS/LEDRegister

With MPD we can simultaneously debug all of these processors - when a breakpoint is hit
they all will stop and when a resume command is issued they will all start.

5.4 Setting a breakpoint from the console view
Once the eGui window is open, start the debug session by adding a breakpoint on the
symbol main in the ARM processor.

First select ArmCortexMFreeRTOS/cpu1 in the Debug view and then type the gdb
command b main in the Debugger Console view:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 26 of 47
.

If we select the Breakpoints view we can see the new breakpoint listed:

5.5 Running and stepping the simulation

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 27 of 47
.

We can now tell the simulation to start running by selecting the Resume icon (a yellow
bar next to a green triangle) and it will run up to the breakpoint we have set in the
function main, and display the source of the main function:

At this point we can use the step into, step over and step return buttons to step through
the program (Note: f5, f6 and f7 respectively may be used in place of each button):

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 28 of 47
.

5.6 Terminating the simulation
If at any point we find we need to restart the simulation then simply select the Terminate
icon (a red square) or press Ctrl-F2:

At this point we can re-run the simulation command without first shutting down eGui:

> ./RUN_FreeRTOS.sh --mpdegui

and a new debug session will be started without the overhead of restarting eGui. In
addition any breakpoints we had are set again in the new simulation.

5.7 Viewing local variables in a function
Press step over (or f6) once and then step into (or f5) to step into the
vStartFlashCoRoutines function.

Then select the Variables view to see the values of the local variables defined in the
function:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 29 of 47
.

Note that the uxIndex value has a random value in it, as it has not been set yet in the
function - press step over (or f6) several times until we see uxIndex initialized to 0 (when
a variable changes it is highlighted in yellow in the Variables view):

The Variables view shows the local variables of the stack entry currently selected in the
Debug view. If we select a different stack element in the debug view the Variables view
will be updated. For example if we select the main() function in the stack for cpu1 the
Variables view gets updated (and in fact is empty, as there are no local variables defined
in main():

5.8 Adding breakpoints from the source window
Breakpoints may be added by double clicking on the left edge of the source line where
the breakpoint is to be set.

Here we will set a breakpoint in the main function on cpu1. First we change the focus to
the main.c source file by selecting the appropriate line in the Debug view and then double
click in the main.c source view to the left of line 169 to create the breakpoint:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 30 of 47
.

If we now select the Breakpoints view we can see the new breakpoint listed, along with
the breakpoint on function main that we set from the Debugger Console view:

Now we press resume (or F8) to run the simulator to the breakpoint we just set and we
will stop just before executing the line:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 31 of 47
.

5.9 Examining context across the platform
With MPD we can simultaneously debug all processor and peripheral models at the same
time. To illustrate this we will set a breakpoint in the led peripheral, by selecting the led
in the Debug view to change the focus and adding a breakpoint in function showLEDs
using the Debugger Console command line interface:

Now if we resume execution we will hit the breakpoint when the program updates the
LED registers:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 32 of 47
.

At this point we can also examine the call stack in the application processor at the time
the write to the peripheral register was made by opening the drop down list for
ArmCortexMFreeRTOS/cpu1 in the debug view:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 33 of 47
.

This allows us to identify the point in the application code where the peripheral register
was accessed. This can be very useful when debugging complicated operating systems to
determine when peripherals are being accessed.

5.10 Eventpoints on reads/writes of peripheral registers
The Programmers View may be used to easily insert Eventpoints (these are like
breakpoints but for Programmers View events). The read and/or write boxes on each
register may be used to add or remove an eventpoint on the read or write of a register.

If we first select the Programmers View and then select the
ArmCortexMFreeRTOS/UART0 peripheral in the Debug View:

Next we want to expand the Programmers View to full size by double clicking on its tab
and then expand the Registers drop down list, and also expand the drop down list for the
ab_dr register:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 34 of 47
.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 35 of 47
.

If we click on the write box for the ab_dr register we will create an eventpoint on writes
to the ab_dr register of UART0. (Note: you can double-click the Programmers View tab
again to shrink it down from full size.) We can see this by selecting the Breakpoint View
again:

Now we can select Resume (or f8) until the Debugger Console window shows that the
eventpoint is hit:

(You may hit the led.user.c breakpoint a few times before the eventpoint is hit - disabling
the breakpoint by unchecking its box in the Breakpoints view can avoid this.)

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 36 of 47
.

Now if we look at the call stack for ArmCortexMFreeRTOS/cpu1 again we can again see
where the write to that register has occurred:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 37 of 47
.

6 A Sample Debug Session Using GDB

6.1 Prerequisites
To follow this example you will need the following Imperas and OVP packages installed:

• OVPsim Imperas_DEV
• eGui_Eclipse

The Imperas environment must be set up according to the directions in Imperas
Installation and Getting Started Guide.

The installation includes a number of demos of processors running simple applications.
These demos may be easily run in standalone debugging sessions by running with
additional debug options specified.

6.2 Starting the debug session
First we must change to the demo directory and start the demo in GDB mode. From a
Linux shell or a Windows MSys shell:

cp -r $IMPERAS_HOME/Demo/Processors/ARM .
cd ARM/Cortex/Cortex-A15UP/single_core
./Run_Dhrystone.sh --gdbegui

The shell from which the script was invoked will show the connection messages:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 38 of 47
.

Eclipse will prompt you for a workspace. Since we are just running a standalone
debugging session we can create a new workspace in the current directory:

Once started Eclipse will be in the debug perspective stopped at main in the Dhrystone
application waiting for debug commands:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 39 of 47
.

Now we can debug the program normally using the standard Eclipse features as described
in the following section.

6.3 Example GDB Debug Session for Dhrystone Benchmark
application

1. In the Debugger Console view (bottom middle) enter the gdb command break

main and continue to advance to the entry of function main().
2. Scroll down in the source code window to the line containing the call to

'Proc_5();' and set a breakpoint on that line by double clicking beside it:

Once set the breakpoint appears in the Breakpoints window:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 40 of 47
.

3. Continue the simulation by selecting either of the green 'Resume (F8)' (one in the
main toolbar and one in the Debug View icons)

4. After the simulation hits the breakpoint, step the application forward by selecting
either of the 'Step Into' icons:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 41 of 47
.

5. Select the register view; maximize the Registers window by double clicking on
the Registers tab; expand the 'General Registers' drop down list; select registers r0
through r12; Right click on the selected registers and set the format to
hexadecimal

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 42 of 47
.

6. Minimize the Registers window by double clicking on the Registers tab; step the
application forward using the 'Step Into' button a few times. This will show you
the colored highlighting of the registers that change

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 43 of 47
.

7. Open the Variables view; showing the current local variables. Note some
variables are shown as '<optimized out>'. This is because we are debugging an
executable with compiler optimizations enabled. Compiling with optimizations
turned off, e.g. with the gcc option -O0, will allow all the variable values to be
visible.

8. Select 'Instruction Stepping Mode' using the button.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 44 of 47
.

9. Step the application forward using the 'Step Into' button. This will open the

disassembly view and highlight the instructions as they are stepped.

10. In the 'Memory' window, select 'Add Memory Monitor' (The plus symbol) and
enter $sp+32 to select the value of the stack memory to display in the memory
window:

11. Move the application forward using the 'Step Into' button. Memory locations that
are modified will be highlighted.

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 45 of 47
.

12. Remove all breakpoints by selecting the double gray X icon in the Breakpoints
view and selecting Remove to confirm:

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 46 of 47
.

13. To finish the simulation you may either:

a. Use either of the 'Resume' icons (the green play arrows) to continue to
next breakpoint or the end of simulation.

b. Use either of the 'Terminate' icons (the red square icon) to terminate the
simulation without continuing

After either of these the debug perspective can be cleaned with the 'Remove All
terminated Launches' button (the two gray x's in the debug view)

eGui Eclipse™ User Guide

© 2021 Imperas Software Limited www.OVPworld.org Page 47 of 47
.

	1 Preface
	1.1 Notation
	1.2 Related OVP Documents
	1.3 Related Imperas Documents

	2 Introduction
	2.1 eGui Modes

	3 Installing Imperas eGui
	3.1 Prerequisites
	3.2 Installing the eGui_Eclipse package

	4 Starting a debug session
	4.1 Launching eGui from the simulation command line
	4.2 Specifying platform options
	4.3 Starting a standalone debug session
	4.3.1 The eGui port file

	4.4 Starting a debug session from Eclipse
	4.4.1 Starting the Imperas eGui Eclipse product
	4.4.1.1 The Java Runtime Environment (JRE)
	4.4.1.2 Selecting a workspace

	4.4.2 Importing a project
	4.4.3 Eclipse launch configurations

	4.5 Additional Features in eGui exclusively for Imperas MPD users
	4.5.1 Simultaneous debug with MPD
	4.5.2 Multiple processor support in breakpoints
	4.5.3 Imperas Programmers View object display
	4.5.4 MPD Debugger Console for issuing MPD and VAP commands

	5 A Sample Debug Session Using MPD
	5.1 Prerequisites
	5.2 Starting the debug session
	5.3 The MPD Debug View
	5.4 Setting a breakpoint from the console view
	5.5 Running and stepping the simulation
	5.6 Terminating the simulation
	5.7 Viewing local variables in a function
	5.8 Adding breakpoints from the source window
	5.9 Examining context across the platform
	5.10 Eventpoints on reads/writes of peripheral registers

	6 A Sample Debug Session Using GDB
	6.1 Prerequisites
	6.2 Starting the debug session
	6.3 Example GDB Debug Session for Dhrystone Benchmark application

