
© 2021 Imperas Software Limited www.OVPworld.org Page 1 of 23

iGen Model Generator Introduction

This document introduces the use of the Imperas Model Generator iGen ;
A component of the Imperas Professional tools

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 2.5
Filename: iGen_Model_Generator_Introduction.doc
Project: iGen Model Generator Introduction
Last Saved: Tuesday, 20 April 2021
Keywords: iGen Model Generator Introduction

mailto:docs@imperas.com

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 2 of 23

Copyright Notice
Copyright © 2021 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 3 of 23

Table of Contents

1 Preface 4

1.1 Notation.. 4
1.2 Related Documentation.. 4
1.3 Glossary / Terminology ... 5

2 Introduction 6
2.1 Prerequisites ... 6

3 Overview 7
3.1 Obtaining & installing iGen... 7
3.2 Using iGen ... 7

3.2.1 Simplest usage of iGen is with a Makefile .. 8
3.2.2 Batch mode .. 8
3.2.3 iGen command line arguments .. 9
3.2.4 Listing all iGen API functions ... 9
3.2.5 Getting help on an iGen API function ... 9
3.2.6 Arguments to iGen scripts ... 9
3.2.7 Interactive mode... 10

3.3 Use of Libraries.. 10
3.4 VLNV .. 11

4 Creating Components 12
4.1 Creating a testbench / harness / platform / module.. 12
4.2 Creating a peripheral model template .. 12
4.3 Creating a processor model.. 12
4.4 Creating an extension library template .. 12

4.4.1 Beginning the extension library ... 12
4.4.2 Formal parameters ... 13
4.4.3 Commands ... 13
4.4.4 Writing the template .. 14
4.4.5 Adding a standard header... 15

4.5 Choice of names... 15
5 Using iGen to Create TLM2 Platforms 16

5.1 Example platform... 16
6 iGen Command Line Arguments 18
7 iGen TCL Commands 21

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 4 of 23

1 Preface
The Imperas simulators can use models described in C or C++ and the models can be
exported to be used in simulators and platforms using C, C++, SystemC or SystemC
TLM2.

This document describes the Model Generator, iGen, which executes scripts making calls
to the iGen Command API. The scripts use TCL (Tool Control Language) as input and
iGen creates C templates for simulation models and plugins, and creates interfaces for
SystemC TLM2 simulation and creates virtual platforms, testbenches and modules using
the OP C API and SystemC TLM2.

1.1 Notation
Code or code Text representing code, a command or output from iGen.
keyword A word with special meaning.

1.2 Related Documentation

There are several documents available as PDF:

Getting Started

• Imperas Installation and Getting Started Guide

Interface and API

• OVP Peripheral Modeling Guide
• OVPsim Using OVP Models in SystemC TLM2.0 Platforms

Also, in your installation there is also the online iGen Function API Command reference
documentation. This is correct-by-construction Doxygen-like API documentation
available at:

 IMPERAS_HOME/doc/api/igen/html/index.html

References to specific uses of iGen

• iGen Model Generator Introduction
• iGen Platform and Module Creation User Guide
• iGen Peripheral Generator User Guide

Usage of Modules and Peripherals created using iGen

• Simulation Control of Platforms and Modules User Guide
• Advanced Simulation Control of Platforms and Modules User Guide

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 5 of 23

1.3 Glossary / Terminology

OP API - OVP Platforms API - C API used for creating and controlling virtual
platforms. 2nd generation API, replaces ICM API.

iGen - Imperas productivity tool that has a powerful script-based function API that is
used to create C/C++/SystemC models and templates. Described in the iGen Model
Generator Introduction, and for platforms, in the iGen Platform and Module Generator
User Guide.

OVPsim - Simulator for Open Virtual Platforms that executes platforms and models
coded in the OVP APIs

CpuManager - Imperas commercial simulator

Platform / Module – (used interchangeably) - a collection of components connected
together into a level of hierarchy in a system to be simulated. This is a program in C/C++
making calls into OP API and normally compiled into a shared object/dynamically linked
library and loaded by the simulator at run time.

Testbench / Harness - program in C/C++ making calls into OP API to connect and
control OVP components. Normally linked to the simulator to provide a .exe binary that
can be executed. Used to instantiate one or more platforms/modules and control their
execution. The main difference, from a platform/module, is that a testbench or harness
includes a call to the function main() and may include the command line parser.

Root Module - used to describe the initial platform/module that instantiates one or more
platforms/modules and controls their execution. Used in the testbench / harness.

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 6 of 23

2 Introduction
Imperas simulation technology enables high performance simulation, debug and analysis
of platforms containing multiple processors and peripheral models. The technology is
designed to be extensible: you can create your own platforms, new models of processors,
and other platform components using interfaces and libraries supplied by Imperas.
Platform models developed using this technology can be used both with Imperas
simulation products and the freely-available OVPsim platform simulator.

iGen is an Imperas productivity tool that has a powerful script based function API that is
used to create C/C++/SystemC models and templates.

2.1 Prerequisites
Since models and platforms for use with Imperas and OVP tools are written in C, an
important prerequisite is that you must be proficient in the C language.

iGen uses the TCL scripting language, so you must have some basic understanding of
TCL to at least be able to write scripts that call functions.

In this document examples are shown using a shell. This can be either Linux or
Windows/MSYS and so you must be familiar with these shells.

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 7 of 23

3 Overview
iGen can produce a C template for a

 hardware design (module, platform, and harness/testbench)
 processor model
 peripheral model
 extension/interception library
 Memory Model Component (MMC)

The C code of a hardware module generated by iGen can often be used as is without
modification as in most cases it is purely structural and iGen creates all the necessary C
code.

In most cases iGen is not used for generating simulation harnesses and testbenches. These
are written directly in C (though iGen can create an initial template).

A peripheral model C template will

 create the basic model files
 create bus ports, net ports and packetnet ports to connect the peripheral to the

platform
 construct memory mapped registers

The peripheral template will have no behavior but can provide empty callback functions
that can be filled in by the user.

An extension library template will

 construct the basic model files
 install user commands
 parse the arguments of user commands when they are called

The extension library template will have no behavior but will provide empty functions
that can be filled in by the user.

The SystemC TLM2.0 platforms create instances of OVP CPUs and peripherals and other
components and have been tested with all major SystemC TLM2.0 simulators.

The SystemC TLM2.0 interfaces for OVP CPUs and peripherals have been tested with all
major SystemC TLM2.0 simulators.

3.1 Obtaining & installing iGen
iGen is available as part of the Imperas DEV and SDK packages. It is assumed you have
downloaded and installed one of these.

3.2 Using iGen
iGen is used mostly in a batch mode using a Makefile. It can also be used directly with a
command line or also interactively, but most often it is used with the make system.

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 8 of 23

3.2.1 Simplest usage of iGen is with a Makefile
In an Imperas installation Makefiles are provided to control the usage of iGen. The best
place to start using them is to find an example of what you are working on, and copy how
it is built.

For example, to build a hardware module:

> cp -r Examples/PlatformConstruction/simpleCpuMemory .
> cd module
> ls
Makefile
module.op.tcl

Look at the files - the Makefile includes one of the Makefile provided in the installation,
in this case the library Makefile.module, and the iGen script file: module.op.tcl which
calls the iGen API functions that define the module.

Create and compile the module by typing:

> make
iGen Create OP MODULE module
Host Compiling Module obj/Windows64/module.o
Host Linking Platform object model.dll

This uses iGen to generate the C and compiles it to a shared object that will be used in
other modules or the testbench / harness.

Note that the Makefiles are keyed to control their operation based on the filenames
provided to them. It is recommended that you use the make system and the filenames
specified.

Built in file names and the appropriate Makefiles:

File Name Makefile to use
module.op.tcl Makefile.module
pse.tcl Makefile.pse
platform.tlm.tcl Makefile.TLM.igen / Makefile.TLM.platform
platform.op.tcl / platform.tcl Makefile.platform
platform.icm.tcl Makefile.platform (deprecated)

Note there is also Makefile.harness which compiles C files, e.g. harness.c to an
executable.
3.2.2 Batch mode
iGen can be used directly in batch mode, executing scripts provided on its command line:

shell > igen.exe --batch model.tcl --writec model.c

 IMPERAS IGEN (32-bit) version 20150315.0
 Copyright (c) 2005-2015 by Imperas Limited.
 ALL RIGHTS RESERVED

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 9 of 23

This program is proprietary and confidential information of
Imperas Limited and may be used and disclosed only as authorized
in a license agreement controlling such use and disclosure.
...
shell >

Specifying an input file (--batch) and an output file (--writec) puts iGen into its batch
mode. The input script should include commands to create just one platform / module /
library / model.

3.2.3 iGen command line arguments

To see all the iGen command line arguments:

> igen.exe --help

For convenience, these are listed at the end of this document.

3.2.4 Listing all iGen API functions

To see all the iGen API functions:

> igen.exe --showcommands

Also, in your installation there is also the online iGen Function API Command reference
documentation. This is correct-by-construction Doxygen-like API documentation
available at:

 IMPERAS_HOME/doc/api/igen/html/index.html

3.2.5 Getting help on an iGen API function

To get help on an iGen API function, use the igen --apropos command line argument
with the command or word of interest:

> igen.exe --apropos ihwnew
> igen.exe --apropos connect

This will show you the built in help for the command.

3.2.6 Arguments to iGen scripts
If required, arguments can be passed to the TCL script using the argument --batchargv.
This flag can be repeated, each occurrence adding another argument. The TCL script can
fetch the argument using the TCL variables $argc and $argv. e.g.:

myscript.tcl

if { $argc != 3 } {
 puts "Expected three arguments"

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 10 of 23

 return
} else {
 set one [lindex $argv 0]
 set two [lindex $argv 1]
 set three [lindex $argv 2]
 puts "1:$one 2:$two 3:$three"
}

shell > igen --batch myscript.tcl --batchargv v1 --batchargv v2 --batchargv v3

 IMPERAS IGEN version 99999999
 Copyright (c) 2005-2015 by Imperas Limited.
 ALL RIGHTS RESERVED

This program is proprietary and confidential information of
Imperas Limited and may be used and disclosed only as authorized
in a license agreement controlling such use and disclosure.

...
1:v1 2:v2 3:v3
...
shell >

3.2.7 Interactive mode
iGen can also be used interactively when learning the commands and their arguments, but
not as a method of building models in a development environment.

Here ihelp is used to list the Imperas tcl commands:

shell > iGen.exe
...
iGen > ihelp
...
...
ihwnew - Create a hardware design
...
...

All Imperas tcl commands begin with i and will accept the -help argument:

iGen > ihwnew -help
NAME:
 ihwnew - Begin creating a new hardware design
...
ARGUMENTS:
 -help
...
 -name <string> (mandatory)
 The VLNV name of the hardware design
...

3.3 Use of Libraries

In most situations, iGen does not need to refer to component libraries. However, when
writing a TLM platform, information is required from the component specifications, so
iGen must locate and load the components before writing the output file(s). Note that to

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 11 of 23

do this, a simulator license will be used for a brief period. When searching for
components, iGen uses the same rules as the Imperas simulator; looking in the library in
the installation (referred to by the IMPERAS_VLNV environment variable) then using
any other libraries specified by –vlnvroot. Note that it is an error to have a model with
the same VLNV in more than one library.

3.4 VLNV
The SPIRIT consortium (a group of vendors and users of EDA tools that defined
standards for exchange of design information), now part of Accellera
(www.accellera.org) stipulates that a model should be identified by Vendor, Library,
Name and Version tags. They are to be used as follows.

Vendor The URL of the organization supplying the model (NB. not the component

being modeled). Using this should guarantee unique specification of
models. Large organization might consider using sub-domains, e.g.
performance.imperas.com, services.imperas.com.

Library Classification of the component e.g. processor, microcontroller,

peripheral.

Name The component identifier, often combining a functional and numeric

identifier e.g. UART16550. Note that OVP models often package many
variants as one model, using configuration parameters to select the variant
at load-time. As a guideline, a model can conveniently include a variant if
its external interface is similar (i.e. has a subset of identical bus and net
ports).

Version The revision (not the variant).

Imperas models are specified using VLNV; all models are shipped in a directory structure
exactly matching the VLNV. e.g.
<processor vendor="ovpworld.org" library="processor" name="or1k" version="1.0" />

is located in a directory called <root>/ovpworld.org/processor/or1k/1.0

NOTE: Since a Windows file-system is case-insensitive, it is important when creating
models that case is not used to distinguish VLNVs

The conformance of VLNV and directory names allows Imperas and OVP tools to access
the same model hierarchy as the Imperas Simulator.

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 12 of 23

4 Creating Components

4.1 Creating a testbench / harness / platform / module
This is covered in the document:

• iGen Platform and Module Creation User Guide

4.2 Creating a peripheral model template
This is covered in the documents:

• iGen Peripheral Generator User Guide
• OVP Peripheral Modeling Guide

4.3 Creating a processor model
This is covered in the documents:

• OVP Processor Modeling Guide
• Imperas CPUGenerator Guide

4.4 Creating an extension library template
An extension library specification is a machine (and human) readable specification of the
interface to an extension library (to create an extension library, refer to the Imperas
binary Intercept Technology User Guide). The specification must define:

 VLNV of the extension.
 Name of the shared object (.dll/.so) which implements it
 Symbol of the model's attributes table
 Configuration parameters specific to this model

The following iGen commands are used to create an extension library template:

Command name Action
imodelnewsemihostlibrary Start a new semihost library
imodeladdformal Add a formal parameter
iadddocumentation Add a plain text field
imodeladdsupportedprocessor Document that the library supports this processor
imodeladdcommand Add a command specification.
imodeladdformalargument Add a formal argument to a command.
imodeladdenumeration Add an enumeration to a formal argument

4.4.1 Beginning the extension library

imodelnewsemihostlibrary Start a new extension library specification
-name name of the new extension library
-vendor VLNV vendor of new extension library
-library VLNV library of new extension library
-version VLNV version of new extension library

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 13 of 23

imodelnewsemihostlibrary Start a new extension library specification
-header Optional path to Copyright header to be included in each C file.

This command begins the specification and describes its location on the library. The
optional –header argument allows the user to specify a text file to be included at the start
of the output file.

4.4.2 Formal parameters
Formal parameters are used to configure an extension library. They can be set by the
simulator or the platform that loads the library. They are referenced in the platform by
hierarchical name.

imodeladdformal Add a formal parameter to the extension library.
-defaultvalue The default value of a numeric type.
-help
-max Maximum allowed numeric value
-min Minimum allowed numeric value
-name Name of this formal parameter
-type Data type of this parameter (address, bool, double, endian, enum, flag,

float, int32, int64, list, pointer, string, stringlist, uns32, uns64)

4.4.3 Commands
Extension library commands can be invoked by the simulator before simulation, or, in an
interactive session, whenever the simulator is stopped. A command has a name and can
be followed by optional or mandatory arguments.

imodeladdcommand Add a command specification.
-name name of the command
-help When specified, the command is not executed, but help is supplied.
-class Used by the graphical interface to determine how to present the command.

Must be query, status or mode.

Their formal arguments are specified as follows:

imodeladdformalargument Add a formal argument to a command.
-name name of the argument
-type Data type of this parameter (address, bool, double, endian, enum,

flag, float, int32, int64, list, pointer, string, stringlist, uns32, uns64)
-mustbespecified This is not an optional argument

If the type of a formal argument is specified as enumeration, enumeration names are
added as follows:

imodeladdenumeration Add an enumeration to a formal
-name name of the enumeration
-formal name of the formal with this enumerated type

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 14 of 23

iadddocumentation Adds a documentation field to any object
-handle hierarchical name of the object to be documented
-name name of the documentation category (e.g. Description or Limitations)
-text name of the formal with this enumerated type

iadddocumentation adds a text field to a model. Imperas uses the names Description,
Limitations and Licensing although any names are accepted. These text fields can be
introspected from the binaries of the models so that tools can probe a model and get
information about it. Imperas has tools that build documentation from introspecting
models. Documentation fields can also be added to ports and formals. Without -handle,
the field is added to the root of the model. If specified, the handle should match the string
returned by one of the imodeladdxxx commands.

createSHL.tcl

imodelnewsemihostlibrary \
 -name or1kNewlib \
 -vendor ovpworld.com \
 -library semihosting \
 -version 1.0 \
 -imagefile model \
 -attributetable modelAttrs

iadddocumentation -name Description -text "Test model"
iadddocumentation -name Limitations -text "Do not use."

4.4.4 Writing the template
TCL commands are added to a TCL file which when supplied to iGen, which supplied to
iGen puts it into batch mode, writing the requested template output. The template
contains C code which can be compiled to create the beginnings of an extension library.
The user is then expected to write more code to provide the functionality of the library.

Please refer to Imperas_Binary_Intercept_Technonology_User_Guide.pdf for a
description of how to write an extension library.

Argument File
--batch <TCL input file> File of TCL commands to construct the extension library.
--writec <output file> File containing the body of the model, stem of other file names
--userheader <input file> Prepend this text file to each C file (it must be legal C). Can be

overridden from the TCL.
-newargparser Use the vmi command parser API (the old method is

deprecated)

In this example the name ‘model’ is used, producing the files listed below:

shell> iGen.exe \
 --batch extension.tcl \
 --writec model.c \
 --userheader companyheader.h \

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 15 of 23

 --newargparser

Output files are specified by –writec model.c

File Contains
model.c Stub functions to be filled by the user
model.igen.c The command parser and other code that does not need to be

edited.
model.igen.h Prototypes of generated functions.
model.macros.igen.h Offsets of each command argument in the parsed array.

If no file extension is provided, igen adds the extension .igen.stubs

shell> igen.exe \
 --batch extension.tcl \
 --writec model \
 --userheader companyheader.h \
 --newargparser

File Contains
model.igen.stubs Stub functions to be filled by the developer
model.igen.c The command parser.
model.igen.h Prototypes of generated functions.
model.macros.igen.h Offsets of each command argument in the parsed array.

Note that since the stubs file can be modified by the user, igen will not overwrite an
existing file unless the –overwrite flag is supplied.

4.4.5 Adding a standard header
Some organizations require each source file to include a standard header. Header text can
be prepended to a generated file using the --userheader command line option.

4.5 Choice of names
Component instance names are converted directly to C++ where possible and modified
where not. If you want your names to remain unchanged you should therefore avoid:

 C and C++ keywords.
 Names with illegal C identifier characters, e.g. '.' (period).

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 16 of 23

5 Using iGen to Create TLM2 Platforms
A SystemC platform generated by iGen uses standard files that interface between
SystemC TLM2 functions and the Imperas OP API. The standard interface files are in:
 ImpPublic/source/host/tlm
 ImpPublic/include/host/tlm

Code that initializes the virtual platform is in
 tlmModule.cpp

Components interfaces are in
 tlmMMC.cpp
 tlmPeripheral.cpp
 tlmProcessor.cpp

Port interfaces are in
 tlmBusDynamicSlavePort.cpp
 tlmBusSlavePort.cpp
 tlmBusMasterPort.cpp
 tlmDMIsLave.cpp
 tlmNetInputPort.cpp

The Imperas bus model (a simple address decoder) is in
 tlmDecoder.cpp

Two types of memory are in
 tlmMemory.cpp
 tlmDenseMemory.cpp

5.1 Example platform
Consider the example platform (generated by iGen) in
Examples/PlatformConstruction/SystemC_TLM2.0/platform_cpp

The input file, read by iGen is
platform.tlm.tcl

Output files, created by iGen are in
platform.*.igen.h

The platform is a class, inheriting sc_core::sc_module. It constructs SystemC
instances of each component in the platform and also an instance of the tlmPlatform
class, used to initialize the simulator. Buses are modeled using a bus decoder
tlmDecoder. Memories use tlmRam. Note that memories are sparse by default so
allocate native storage only as required.

Each component from the Imperas VLNV is implemented as a class. Its definition is in
the VLNV source tree (not binary) next to the model. The SystemC platform creates an

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 17 of 23

instance of a model class to create an instance of the OVP model. A function is created
for each instance to set OVP parameters when required.

The tlmDecoder decoder template class is parameterized according to the number of bus
master and slave connections.

The tlmPlatform constructor puts the simulator is a mode which is usually suitable for
SystemC simulation (the user might wish to change it) then calls each model constructor.
Standard SystemC code binds initiator to acceptor sockets. iGen uses the SystemC
TLM2 tlm_analysis_port to connect single-bit ports that model nets.

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 18 of 23

6 iGen Command Line Arguments

Group Flag Argumen

t
Description

Diagnostics
 --apropos command Show igen commands

similar to the given
argument

 --help -h Print list of flags
 --showcommands Show all igen commands
 --showdomains [root] List the (initial) state of each

memory domain
 --showenvvars List all environment

variables read by Imperas
products

 --showmodeloverrides [root] List overrides requested by
models in the platform

 --showoverrides [root] List all possible platform
overrides

 --showsystemoverrides [root] List overrides in the
platform provided by the
simulator

Input
 --batch -b filename Execute this tcl file
 --batchargv argument Argument to --batch file
 --checkmodels Load and check models

when writing a platform
 --exec -e string Execute this tcl string
 --modellibrary string Processor VLNV library
 --modelname string Processor VLNV name
 --modelvendor string Processor VLNV vendor
 --modelversion string Processor VLNV version

Library
 --showlibraryextensions List semihost and intercept

libraries in the paths set by
$IMPERAS_VLNV

 --showlibrary List models and platforms in
the paths set by
$IMPERAS_VLNV

 --showlibrarymmcs List MMCs in the paths set
by $IMPERAS_VLNV

 --showlibrarymodules List modules in the paths set

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 19 of 23

Group Flag Argumen
t

Description

by $IMPERAS_VLNV
 --showlibraryperipherals List peripherals in the paths

set by $IMPERAS_VLNV
 --showlibraryplatforms List platform executables in

the paths set by
$IMPERAS_VLNV

 --showlibraryprocessors List processors in the paths
set by $IMPERAS_VLNV

 --vlnvroot path Add to the search path for
models

Log
 --excludem -x string Exclude message category
 --logfile Filename Output log file
 --nobanner Suppress product banner
 --nowarnings -w Suppress warnings
 --output -o Filename Output log file
 --quiet -q Suppress information

messages
 --verbose -v Produce verbose output
 --version Print version information
 --werror -

W
 Treat warnings as errors

Output
 --html Command help written in

HTML
 --icm Write C using deprecated

ICM API, rather than OP
 --newargparser Intercept library using the

new argument parser
 --op Write C using OP API

(this is the default)
 --overwrite Overwrite any existing file
 --single Write a single file
 --userheader filename Put this file at the top of

generated C files
 --writec filename Write C model or platform
 --writetlm filename Write TLM interface
 --writexml filename Write XML from tcl
 --wrappers Boolean Write a TLM platform using

(deprecated) wrappers
Parameters

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 20 of 23

Group Flag Argumen
t

Description

--setparameter string Set a processor parameter
(param=value)

 --showvariants Show list of variants

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 21 of 23

7 iGen TCL Commands

iGen Command Description

iadddocumentation Add a documentation entry to a model, design or item.

ihwaddbridge Add a bridge instance to a hardware design.

ihwaddbus Add a bus instance to a hardware design.

ihwaddbusport Add an external bus port to a hardware design.

ihwaddclp Add a command line parser to a platform executable.

ihwaddclparg Add an argument to the command line parser.

ihwaddenumeration Add an enumeration value to a formal parameter

ihwaddextensionlibrary
Add an extension library to a peripheral or processor
instance

ihwaddfifo Add a FIFO instance to a hardware design.

ihwaddfifoport Add an external FIFO port to a hardware design.

ihwaddformalmacro Include a file (defined in a header file).

ihwaddformalparameter Create a formal for a parameter to the current module.

ihwaddimagefile
Add a new image file to be loaded onto a bus or
processor instance.

ihwaddmemory Add a memory instance to a hardware design.

ihwaddmmc
Add a Memory Model Component instance to a
hardware design.

ihwaddmodule Add an instance of a module to this hardware design.

ihwaddnet Add a net to a hardware design.

ihwaddnetport Add an external net port to a hardware design.

ihwaddpacketnet Add a packetnet instance to a hardware design.

ihwaddpacketnetport Add an external packetnet port to a hardware design.

ihwaddperipheral Add a peripheral instance to a hardware design.

ihwaddprocessor Add a processor instance to a hardware design.

ihwaddprotection Add a protected region to a bus.

ihwaddsymbolfile Load the symbols from this image file onto a bus or

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 22 of 23

processor instance.

ihwconnect Create connections between component ports.

ihwnew Create a new hardware design.

ihwsetparameter Set a parameter on a model instance

imodeladdaddressblock Add an address block to a slave port.

imodeladdbusmasterport Add a new bus master port to a model.

imodeladdbusslaveport Add a new bus slave port to a model.

imodeladdcommand Add a command to an extension library

imodeladdelf Add an extra elf code supported by this processor

imodeladdenumeration
Add an enumeration value to a formal attribute or
argument

imodeladdextensionlibrary
Add an extension library to a peripheral or processor
model

imodeladdfield
Add a bit field definition to a memory mapped
register.

imodeladdfifoport Add a new FIFO port to a model.

imodeladdformal Add a new formal parameter to a model.

imodeladdformalargument Add a formal argument to a command.

imodeladdformalmacro Include a macro (defined in the PPM header file).

imodeladdlocalmemory Add a local memory to an address block.

imodeladdmmregister Add a memory mapped register to an address block.

imodeladdnetport Add a new net port to a model.

imodeladdpackage Put the model in the specified package.

imodeladdpacketnetport Create a packetnet port.

imodeladdregister Add a register to a model.

imodeladdreset Add a reset value to a memory mapped register.

imodeladdsupportedprocessor
Add a supported processor to the list on an intercept
library (for documentation only).

imodelnewmemory Create a new memory model.

imodelnewmmc Create a new memory mapped component model.

imodelnewperipheral Create a new peripheral model.

iGen Model Generator Introduction

© 2021 Imperas Software Limited. www.OVPworld.org Page 23 of 23

imodelnewprocessor Create a new processor model.

imodelnewsemihostlibrary Create a new semihosting library.

imodulenew Create a new hardware module.

isetattribute deprecated function - use ihwsetparameter

quit Finish the session

	1 Preface
	1.1 Notation
	1.2 Related Documentation
	1.3 Glossary / Terminology

	2 Introduction
	2.1 Prerequisites

	3 Overview
	3.1 Obtaining & installing iGen
	3.2 Using iGen
	3.2.1 Simplest usage of iGen is with a Makefile
	3.2.2 Batch mode
	3.2.3 iGen command line arguments
	3.2.4 Listing all iGen API functions
	3.2.5 Getting help on an iGen API function
	3.2.6 Arguments to iGen scripts
	3.2.7 Interactive mode

	3.3 Use of Libraries
	3.4 VLNV

	4 Creating Components
	4.1 Creating a testbench / harness / platform / module
	4.2 Creating a peripheral model template
	4.3 Creating a processor model
	4.4 Creating an extension library template
	4.4.1 Beginning the extension library
	4.4.2 Formal parameters
	4.4.3 Commands
	4.4.4 Writing the template
	4.4.5 Adding a standard header

	4.5 Choice of names

	5 Using iGen to Create TLM2 Platforms
	5.1 Example platform

	6 iGen Command Line Arguments
	7 iGen TCL Commands

