
© 2021 Imperas Software Limited www.OVPworld.org Page 1 of 28

iGen Peripheral Generator User Guide

This document describes the use of the
Imperas Model Generator iGen to generate a peripheral model.

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 3.1
Filename: iGen_Peripheral_Generator_User_Guide.doc
Last Saved: Thursday, 11 February 2021
Keywords: iGen Peripheral Model Generator User Guide

mailto:docs@imperas.com

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 2 of 28

Copyright Notice
Copyright © 2021 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 3 of 28

Table of Contents

1 Preface 5

1.1 Notation.. 5
1.2 Related Documents .. 5

2 Introduction 6
3 Creating a peripheral model definition 7

3.1 Bus Master ... 8
3.2 Bus Slave ... 8

3.2.1 Bus Slave implementation ... 8
3.3 Net Port .. 9
3.4 Packetnet Port .. 9
3.5 Formal Parameter... 9
3.6 Address Block.. 10
3.7 Address Block Array.. 10

3.7.1 Array Names .. 11
3.8 Local memory .. 11
3.9 Memory mapped register ... 12
3.10 Register Array.. 13

3.10.1 Which register is accessed? ... 14
3.10.2 Array Names .. 14

3.11 Combination arrays.. 14
3.12 Register bit-field .. 14
3.13 Reset... 15
3.14 Documentation... 15

4 Example 1 : DMA 17
4.1 Introducing the model .. 17
4.2 Documentation... 17
4.3 Bus ports .. 18
4.4 Nets .. 18
4.5 Address Blocks and registers ... 18
4.6 Reset... 20

5 Example 2: Interrupt Controller 21
5.1 Introducing the model .. 21
5.2 TCL description ... 21
5.3 Generated code... 22

6 Running iGen 23
6.1 The user stubs file .. 24
6.2 The main file .. 24
6.3 The include file .. 24
6.4 The attributes file ... 24
6.5 The macros file .. 24
6.6 Adding a standard header... 24
6.7 Building with standard Makefile.pse ... 24

7 Examples 25

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 4 of 28

7.1 pse.tcl ... 25
7.2 pse.c.igen.stubs .. 25
7.3 dmac.user.c .. 25
7.4 pse.igen.c.. 25
7.5 pse.igen.h ... 25
7.6 pse.attrs.igen.c.. 25
7.7 pse.macros.igen.h... 25

8 The SystemC (TLM) Interface 26
8.1 Creating the peripheral model SystemC interface ... 26

8.1.1 Creating the interface from the model ... 27
8.1.2 Creating the interface from TCL.. 28

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 5 of 28

1 Preface
The Imperas simulators can use models described in C or C++. The models can be
exported to be used in simulators and platforms using C, C++, SystemC or SystemC
TLM2.0.

This document describes the use of Imperas Model Generator, iGen, to create a
C template for a peripheral simulation model.

1.1 Notation
Code code examples.
code code, commands, filename
keyword A word with special meaning.

1.2 Related Documents
Getting Started

• Imperas Installation and Getting Started Guide

Interface and API

• OVP Peripheral Modeling Guide
• Writing Platforms and Modules in C User Guide
• Simulation Control of Platforms and Modules User Guide

References to general iGen document

• iGen Model Generator Introduction

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 6 of 28

2 Introduction
This document describes the use of iGen for peripheral model template generation.
General information on iGen can be found in other referenced documents.

iGen is used as a batch program, reading a TCL input file and writing C output files. All
iGen command line arguments are in the unix style, requiring one hyphen, but accepting
two, with no distinction. Some command line arguments must be followed by a value.

As a learning aid, iGen can be used interactively; simply invoke iGen without arguments
and wait for the iGen prompt. The command ihelp lists the Imperas TCL extension
commands, each of which accepts the –help argument which prints its arguments and
usage. Alternatively, to print information about a specific command use:
igen –apropos <command>.

A peripheral model template will

 Construct a model instance
 Construct bus and net ports for connection to the platform
 Construct memory mapped registers and memory regions.
 Construct formal parameters which can be set when the peripheral is instanced in

a platform or module and overridden by the simulator to control features of the
peripheral model.

The peripheral template will include empty functions that can be filled in by the writer to
complete the model.

iGen can also generate a SystemC TLM2.0 interface for the model. See section 8.
Examples of SystemC TLM2.0 interfaces for OVP peripherals have been tested with all
major SystemC TLM2.0 simulators.

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 7 of 28

3 Creating a peripheral model definition
This chapter describes the TCL commands that create a peripheral model template.

A peripheral model definition must define:

 the VLNV of the model
 bus master and bus slave ports
 net and packetnet inputs and outputs
 parameters to configure the model

These iGen commands are used to create a peripheral model:

Command name Action
imodelnewperipheral Start a new peripheral model
imodeladdbusmasterport Add a bus master port
imodeladdbusslaveport Add a bus slave port
imodeladdaddressblock Add a region for memory mapped registers to a bus slave port
imodeladdlocalmemory Add a region of local memory to a bus slave port
imodeladdmemmregister Add a memory mapped register to an Address block
imodeladdfield Add a bit field to a register
imodeladdreset Add a reset function to a register
imodeladdnetport Add an in input or output (wire) port
imodeladdpacketnetport Add a packetnet port
imodeladdformal Add a formal parameter
iadddocumentation Add a description to a model feature

imodelnewperipheral begins the construction of the model. Other commands must
follow until the model is complete. iGen reads the TCL script then writes the model C
files when the script ends.

imodelnewperipheral Start a new peripheral model
-name <name> VLNV name of the new peripheral
-vendor <vendor> VLNV vendor of new peripheral
-library <library> VLNV library of new peripheral
-version <version> VLNV version of new peripheral
-extensionfile <file> Optionally specify an intercept library for this model
-constructor <function> A function to be called at construction time
-destructor <function> A function to be called at destruction time
-saverestore Generate stub functions to save and restore the model state
-nbyteregisters All registers and local memories use a new API supporting

registers and memories more than 32 bits wide. This is the
preferred option for new models

-formalvalues Create a global variable of the same name for each model
parameter, with code that sets the variable to the parameter value

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 8 of 28

If the peripheral model requires an intercept library, use –extensionfile to specify its
whereabouts relative to the PSE model. The extension library file extension need not be
specified.

3.1 Bus Master
A bus master port can initiate a bus transaction to read or write data to other bus devices.

imodeladdbusmasterport Add a bus master port to the model
-name <name> Name of the port
-addresswidth <integer> Number of address bits driven by the bus master
-mustbeconnected If specified, the simulator will fail to run if the port is left

unconnected
-errorinterrupt <name> Specify the interrupt output net port to be asserted if a bus

error occurs.

3.2 Bus Slave
A bus slave port receives bus read or write transactions.

imodeladdbusslaveport Add a bus slave port
-name <name> Name of the port
-addresswidth <integer> Number of address bits that can be decoded
-size <integer> Range of addresses this port can generate (in bytes)
-mustbeconnected If specified, the simulator will fail to run if the port is

unconnected
-remappable The port’s address will be determined at run-time
-defaultfunctions Write code to report accesses that do not address a register or

local memory

If a slave port has no size specified (or has a size of 0) then it is left to the user defined
code to implement the port; this is a dynamic port that will be set up during the peripheral
model execution.

A slave port can contain one or more address blocks. Address blocks can contain memory
mapped registers and/or local memory.

3.2.1 Bus Slave implementation
A bus slave port is connected to a bus by the platform. It maps the specified range of
addresses to memory in the PSE’s address space. This memory can have memory mapped
registers or local memory callbacks mapped onto it using imodeladdaddressblock,
imodeladdmmregister and imodeladdlocalmemory

Gaps in the slave port region that have no memory mapped registers or local memory
remain mapped to the PSE’s memory space. Reads and writes from the connected bus to
these regions will silently access this space. If you need to know if accesses are reaching

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 9 of 28

the gaps then specify the –defaultfunctions. This installs callbacks on the whole
region which use bhmMessage() to report the size of offset of each access.

3.3 Net Port
A net carries a 32 bit value which usually using zero to represent logic 0 and non-zero to
represent logic 1.

imodeladdnetport Add a net port to the model
-name <name> Name of the net port
-mustbeconnected If specified, the simulator will fail to run if the port is

unconnected
-type <type> Type must be input, output or inout
-updatefunction <function> A function to be called when the net is written.
-updatefunctionargument <value> A value to pass to the update function

3.4 Packetnet Port
A packetnet is used to model packet based communication such as Ethernet, CAN bus or
GSM. A packetnet is created in a platform, then connected to packetnet ports on model
instances. A packetnet can have many connections, each able to send or receive packets.
iGen creates a handle which is used when writing (sending) a packet to the packetnet. It
also creates the stub of a function that is called each time the packetnet is written.

imodeladdpacketnetport Add a packetnet port to the model
-name <name> Name of the packetnet port
-mustbeconnected If specified, the simulator will fail to run if the port is

unconnected
-maxbytes <integer> Maximum size of a packet, checked at run-time
-updatefunction <function> Function to be called when the packetnet is written.
-updatefunctionargument <value> Specify a value to pass to the update function

If the --updatefunction argument is specified, a stub function will be created in the user
file, and that function will be called when the net is written.

3.5 Formal Parameter

imodeladdformal Add a formal to the model
-name <name> Name of the formal attribute
-type <type> The formal type (see below)
-min <number> Optional minimum value for an integer parameter
-max <number> Optional maximum value for an integer parameter
-defaultvalue <number> Optional default value for the parameter

A formal defines a parameter that the model will accept. If the flag –formalvalues was
supplied to imodelnewperipheral then code will be generated to fetch the parameter’s

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 10 of 28

value from the platform. If not then it is expected that the functions
bhmInt32ParamValue(), bhmStringParamValue()etc. will be used in the model to
fetch the value. If the formal has a numeric type, default and legal minimum and
maximum values can be specified.

Formal type Description min/max?
address An address y
bool, boolean,
flag

Boolean value n

double, float C double-precision floating point y
endian Predefined enumerated type taking values big or

little and set to a member of bhmEndian
n

enum, enumeration Select one from a set names n
int32, integer 32 bit signed integer y
int64 64 bit signed integer y
string Null-terminated C string (null if not specified) n
uns32 32 bit unsigned integer y
uns64 64 bit unsigned integer y

If a formal type is enumeration then legal values are added using
imodeladdenumeration;

imodeladdenumeration Add an enumeration to a formal
-name <name> Name of the enumeration
-formal <path> Name of the formal. Defaults to the last created formal.
-value <integer> Optional integer value. Defaults to the previous value plus one.

3.6 Address Block
An Address block must be nested inside a slave port. An address block defines a memory
region wholly within the address region decided by a slave port. A slave port can contain
more than one address block. Address blocks cannot overlap their addresses. An Address
block can contain memory mapped registers and/or local memories.

imodeladdaddressblock Add an Address block to a slave port
-name <name> Name of the address block
-port <name> Name of an existing bus slave port
-offset <integer> Lowest address relative to the base of the slave port
-size <integer> Number of bytes in the block’s address range
-width <integer> Word width in bits
-loarray <integer> Lower bounds of array of address blocks
-hiarray <integer> Upper bounds of array of address blocks

3.7 Address Block Array
A peripheral device might contain replicated components, each with identical groups of
registers. Although TCL loops can be used to replicate registers, address blocks or ports,

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 11 of 28

this leads to large and cumbersome generated code. Register arrays and address block
arrays provide a better alternative.

Address block arrays are constructed using –loarray and –hiarray arguments:

imodeladdaddressblock –loarray <integer> –hiarray <integer>.

The –loarray and –hiarray arguments set the numerical lower and upper inclusive
bounds of the array.

Address blocks are generated with _<integer> in the name, corresponding to the
requested numbers. The C structures defined to store the contents of registers in the
address block are not replicated, but declared as an array.

Note that C arrays always have indices from 0 to <n-1> so must be accessed this way.

The macros header file contains a definition of the base address of the address block,
which takes an index parameter to select an array member.
The index must take values from 0 to <n-1> and not the range specified by –loarray
and –hiarray.

If callbacks are specified (using –readfunction, -writefunction and -viewfunction)
Then the generated code contains a calculation of the address block index for use in the
function.

3.7.1 Array Names
The address block name is derived from the parameters

-name <name>
-loarray <lo>
-hiarray <hi>

 The C name is <name>[<hi> - <lo>]
Characters illegal in C are replaced with ‘_’.
If <name> is a C keyword, it has ‘_’ prepended.
%u or %d is removed.

The user-visible names are in the range
<name>_<hi> to <name>_<lo>

unless <name> contains %u or %d in which case the %u or %d is replaced by the number.

3.8 Local memory
A local memory is used to model memory inside the peripheral, accessible from outside,
through a port. It must be nested inside an address block. The –size (in bytes) and
–offset (from the base of the address block) must be specified.

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 12 of 28

 -readfunction, -writefunction and –changefunction specify functions to be
called when the local memory is accessed. Stub functions matching their prototypes will
be created in the user file.

If no function is supplied the region will be implemented as memory in the PSE address
space than can be read or written by code in the model. Local memory cannot overlap
other memories or memory mapped registers.

imodeladdlocalmemory Add a local memory to an address block
-access <access> <access> can be r,w, rw (read, write or read/write)
-name <name> Name of the memory
-addressblock <name> Name of an existing address block
-offset <integer> Lowest address relative to the base of the address block
-size <integer> Number of bytes in the memory
-readfunction <function> A function called when a memory is read
-writefunction <function> A function called when a memory is written
-changefunction <function> A function called when a memory is written with a new value
-userdata <value> A value passed to each of the above functions
-nonvolatile Writing the memory does not cause a callback if the value is

unchanged.
-nbyte Uses a more efficient interface and supports widths greater than

32 bits

3.9 Memory mapped register
A memory mapped register is used to model the registers typically used in a peripheral
device. imodeladdmmregister generates code to create the register and, if requested,
generates empty callback functions. Memory mapped registers created this way will
appear in the model’s documentation and be visible to the Imperas Debugger.

Register widths are specified in bits but the implementation rounds the size of storage up
to the nearest byte.

A memory mapped register must be the same width or narrower than its containing
address block.

 A memory mapped register must not overlap other memories or memory mapped
registers in the address block.

imodeladdmmregister Add a memory mapped register
-name <name> Name of the register
-access <access> <access> can be r,w,rw (read, write or read-write)
-addressblock <name> Name of an existing address block
-offset <integer> Offset relative to the base of the address block
-width <integer> Number of bits in the register (multiple of 8)
-readfunction <function> function called when read

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 13 of 28

-writefunction <function> function called when written
-viewfunction <function> function called when read by a debugger or tool
-userdata <value> value passed to callbacks
-nbyte Use the new (preferred) API
-writemask <value> Write only these bits (see imodeladdbitfield)
-nonvolatile Writing the register does not cause a callback if the written

value is unchanged.
-loarray <integer> Lower bound of the array of registers
-hiarray <integer> Upper bound of the array of registers

Setting the –nbyte argument generates code that uses ppmCreateNByteRegister().
instead of the deprecated ppmCreateRegister().

The –access argument controls how the register reacts to reads and writes.
If –nbyte is specified, the –access argument controls the readable and writable
arguments to ppmCreateNByteRegister(). Setting –access w calls
ppmCreateNByteRegister() with readable=0 which causes a bus error is the register
is read. Setting –access r calls ppmCreateNByteRegister() with writable=0
which causes a bus error is the register is written.

Arguments -readfunction, -writefunction and –viewfunction specify functions
to be called when the MMR is accessed. Stub functions matching their prototype will be
created in the user file. The view function should not change the state of the peripheral.

Defining a memory mapped register will define storage for the register’s value in a global
structure the model. The value will be a union of the integer value with the bit-fields, if
defined.

3.10 Register Array
A peripheral device might contain replicated components, each with identical registers or
groups of registers. Although TCL loops can be used to replicate registers, address blocks
or ports, this leads to large and cumbersome generated code. Register arrays and address
block arrays provide a better alternative.

Arrays are constructed using –loarray and –hiarray arguments which arguments set
the numerical lower and upper (inclusive) bounds of the array:

imodeladdmmregister –loarray <integer> –hiarray <integer>

Registers are generated with _<integer> in the name, corresponding to the requested
numbers, unless the sequence %u is included somewhere in the name in which case the %u
is replaced with the number. The C structures defined to store the contents of the registers
are not replicated, but declared as an array.

Note that C arrays always have indices from 0 to <n-1> so must be accessed this way.

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 14 of 28

The macros header file contains a definition of the address of the register, which takes an
index parameter to select an array member.
The index must take values from 0 to <n-1> and not the range specified by –loarray
and –hiarray.

3.10.1 Which register is accessed?
If callbacks are specified (using –readfunction, -writefunction and -viewfunction)
the generated code contains a calculation of the register index for use in the function.

Alternatively, if the register is created with –userdata _index (assuming there is no
other requirement for userdata), then the userdata field is supplied with the index.

3.10.2 Array Names
The register name is derived from the parameters

-name <name>
-loarray <lo>
-hiarray <hi>

 The C name is <name>[<hi> - <lo>]
Characters illegal in a C identifier are replaced with ‘_’.
If <name> is a C keyword, it has ‘_’ prepended.
%u or %d is removed.

The user-visible names are in the range
<name>_<hi> to <name>_<lo>

unless <name> contains %u or %d in which case it is substituted for the number.

3.11 Combination arrays
Note that an array of address blocks can contain an array of registers. The structures
generated to store the register contents require two indices.

3.12 Register bit-field
A memory mapped register can be divided into bit-fields. The fields must be the same
width or narrower than the register. Fields can be supplied in any order but must not
overlap. Parts of the register without fields will be padded. The specified access cannot
be higher that the containing register (e.g. a read-only register cannot contain a writeable
bit field).

imodeladdfield Add a field to a memory mapped register
-name <name> Name of the field
-access <access> Access= r,w,rw meaning read, write or read-write

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 15 of 28

-mmregister <name> Name of an existing memory mapped register
-bitoffset <integer> Offset relative to the LSB of the register.
-width <integer> Number of bits in the field
-reset <value> Reset value

imodeladdfield generates C bit field entries in the structure that stores the register’s
value. The reset value will be applied to the field during model initialization or when a
designated reset input is activated.

The –access option appears in the documentation for the field and if the register read
and write functions are not supplied, will be honored by the simulator. However, if read
and write functions are supplied, the simulator cannot prevent them accessing the bit-
field.

3.13 Reset
An input net port can be named as a reset input and associated with one or more memory
mapped registers.

imodeladdreset Designate a reset capability to a net port
-name <name> Name of an existing input port
-mmregister Name of an existing memory mapped register
-mask <value> Specify which bits of the register will be reset (others are

unchanged)
-value <value> Specify the reset value

This will generate code to set the register contents during initialization and when the reset
input is written to a non-zero value. Thus, the reset is edge-triggered and active high.

If an MMR has bit fields it is preferable to specify the reset value by omitting the –mask
and –value flags and instead using

imodeladdfield –reset <value>

which limits each field to 64 bits maximum size rather than

imodeladdreset -mask <value> –value <value>

which limits the complete register reset mask and value each to 64 bits.

3.14 Documentation
Documentation fields can be added to most objects mentioned in this chapter. Their text
is embedded in the model, can be accessed through an API and will appear in
documentation produced by other Imperas tools.

iadddocumentation Add a documentation entry to a model or object

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 16 of 28

-name <name> name of the entry
-text <text> Content
-handle <path> Optional object to be documented. Defaults to the most recently created

object.

Imperas uses the names Description, Limitations and Licensing although any
names are accepted. Documentation entries can be added to

• The model
• Net ports
• Formal arguments
• Bus ports
• Address Blocks
• Memory mapped registers
• Register bit fields.

Without -handle, the field is added to the most recently created object. If specified, the
handle should match the full name of the object (which is the string returned by the
imodeladd commands).

Documentation entries also have handles. Adding documentation to an existing document
handle produces a sub-section.

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 17 of 28

4 Example 1 : DMA
The example Examples/Models/Peripherals/creatingDMAC/5.nativeBehaviour shows a
peripheral model using the TCL specification
Examples/Models/Peripherals/creatingDMAC/5.nativeBehaviour/peripheral/pse/pse.tcl

4.1 Introducing the model
imodelnewperipheral starts creating the peripheral:

imodelnewperipheral \
 -name dmac \
 -vendor ovpworld.org \
 -library peripheral \
 -version 1.0 \
 -constructor constructor \
 -destructor destructor \
 -nbyteregisters \
 -endianparam endian \
 -formalvalues \
 -extensionfile ../model

Arguments -constructor constructor and –destructor destructor create stub
constructor and destructor functions (stub functions are written in the file
pse.c.igen.stubs):

PPM_CONSTRUCTOR_CB(constructor) {
 // YOUR CODE HERE (pre constructor)
 periphConstructor();
 // YOUR CODE HERE (post constructor)
}

PPM_DESTRUCTOR_CB(destructor) {
 // YOUR CODE HERE (destructor)
}

Argument -nbyteregisters makes iGen use ppmCreateNByteRegister() for all
registers.

Argument -endianparam endian creates a formal parameter called endian which is
passed to ppmCreateNByteRegister() so that all registers greater than 8 bits will read
and write registers with the requested byte order.

Argument –formalvalues creates a global variable with the name and type of each
formal parameter and generates code to initialize the variable to the parameter value.

Argument –extensionfile ../model tells the model to load the model’s intercept library
from the given directory.

4.2 Documentation
The line
iadddocumentation -name Description -text "DMAC peripheral model"

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 18 of 28

Creates a documentation node. This will produce an entry in the automatically generated
document.
iadddocumentation is used throughout the example to add documentation to ports,
parameters, registers and fields.

4.3 Bus ports
These lines create bus master ports:

imodeladdbusmasterport -name MREAD -addresswidth 32 -mustbeconnected
imodeladdbusmasterport -name MWRITE -addresswidth 32 -mustbeconnected

-mustbeconnected makes the simulator check that the ports are connected and raises an
error if not.

This line creates the bus slave port used to read and write the programming registers. The
port will occupy 0x140 bytes of space on the connected bus (there are gaps without
registers in this space).

imodeladdbusslaveport -name DMACSP -size 0x140 –mustbeconnected

4.4 Nets
The model has one input port for resetting the device and one output port for interrupting
a processor when a DMA operation is complete.

imodeladdnetport -name RESET -type input
imodeladdnetport -name INTR -type output

4.5 Address Blocks and registers
The first address block contains 8-bit registers addressed on 32-bit boundaries. Its base is
at the base of the region decoded by the slave port.

imodeladdaddressblock -port DMACSP -name ab8 -width 8 -offset 0 -size 0x40

imodeladdmmregister -addressblock DMACSP/ab8 -name intStatus -offset 0x00 -access r
imodeladdmmregister -addressblock DMACSP/ab8 -name intTCstatus -offset 0x04 -access rw \
 -writefunction TCclearWr
imodeladdmmregister -addressblock DMACSP/ab8 -name rawTCstatus -offset 0x14 -access r
imodeladdmmregister -addressblock DMACSP/ab8 -name enbldChns -offset 0x1C -access r

This register contains a bit field:
imodeladdmmregister -addressblock DMACSP/ab8 -name config -offset 0x30 \
 -access rw -writefunction configWr

imodeladdfield -mmregister DMACSP/ab8/config -name burstSize \
 -bitoffset 0 -width 2 -reset 0

An array of two address blocks 32 bits wide has offsets from the base of the slave port of
0x100 and 0x120.

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 19 of 28

The config register callback configChWr needs to know the channel (address block) that
is being written; the –userdata _index argument to imodeladdregister causes the
address block index (value 0 or 1) to be passed to its userData parameter.

Array of 2 sets of 32 bit registers, one per DMA channel

set adrBlk32 "ab32"

imodeladdaddressblock -name ${adrBlk32} \
 -width 32 \
 -offset 0x100 \
 -size 0x20 \
 -loarray 0 \
 -hiarray 1

imodeladdmmregister -addressblock ${slvPrt}/${adrBlk32} -name srcAddr -offset 0x0 -access rw
imodeladdmmregister -addressblock ${slvPrt}/${adrBlk32} -name dstAddr -offset 0x4 -access rw

imodeladdmmregister -addressblock ${slvPrt}/${adrBlk32} -name control -offset 0xC -access rw
imodeladdfield -mmregister ${slvPrt}/${adrBlk32}/control \
 -name transferSize \
 -bitoffset 0 \
 -width 12

imodeladdmmregister -addressblock ${slvPrt}/${adrBlk32} \
 -name config \
 -offset 0x10 \
 -access rw \
 -writefunction configChWr \
 -userdata _index

imodeladdfield -mmregister ${slvPrt}/${adrBlk32}/config -name enable -bitoffset 0 -width 1
imodeladdfield -mmregister ${slvPrt}/${adrBlk32}/config -name inten -bitoffset 15 -width 1
imodeladdfield -mmregister ${slvPrt}/${adrBlk32}/config -name halt -bitoffset 18 -width 1

iadddocumentation -name Description -text "source address" -handle ${slvPrt}/${adrBlk32}/srcAddr
iadddocumentation -name Description -text "dest address" -handle ${slvPrt}/${adrBlk32}/dstAddr
iadddocumentation -name Description -text "control" -handle ${slvPrt}/${adrBlk32}/control
iadddocumentation -name Description -text "configuration" -handle ${slvPrt}/${adrBlk32}/config

Note that imodeladdaddressblock need not specify a bus slave port; the most recently
created port is used.

In most situations the -nonvolatile option can be omitted. If a register is written many
times by the application, the execution of the callback could dominate the simulation
time. The -nonvolatile option allows the simulator to optimize this by calling the write
function only when the written value changes.

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 20 of 28

4.6 Reset
These lines designate the input net port RESET as a reset input and bind it to the given
registers:

imodeladdnetport -name RESET -type input

imodeladdreset -name RESET -mmregister ${slvPrt}/${adrBlk8}/intStatus -value 0
imodeladdreset -name RESET -mmregister ${slvPrt}/${adrBlk8}/intTCstatus -value 0
imodeladdreset -name RESET -mmregister ${slvPrt}/${adrBlk8}/rawTCstatus -value 0
imodeladdreset -name RESET -mmregister ${slvPrt}/${adrBlk8}/enbldChns -value 0

imodeladdreset -name RESET -mmregister ${slvPrt}/${adrBlk8}/config

Note that the first 4 registers have no bit fields; the flag –value specifies their reset value.
Register config has a bit field which specifies its own reset value for each bit field:

imodeladdfield -mmregister DMACSP/ab8/config -name burstSize \
 -bitoffset 0 -width 2 -reset 0

When defining the reset value of a field in the register the register itself must still be
bound to the reset signal i.e. you cannot specify a reset value using
imodeladdfield -reset without also having included imodeladdreset for the register

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 21 of 28

5 Example 2: Interrupt Controller
The example Examples/Models/Peripherals/registerArrays shows a peripheral model using
the TCL specification Examples/Models/Peripherals/registerArrays/intc/pse/pse.tcl

The model is for illustration of programming techniques and does not represent a real
component.

5.1 Introducing the model
The model intc is a dual channel, 32 input, single output interrupt controller. Each
channel can be enabled separately as can each input. Each input can be assigned a priority
from 1 to 15, though the example allows only one interrupt to be active at a time.

For convenience and compactness, the model uses arrays of address blocks and output
nets to model the dual channels and arrays of registers and input nets to model the
functions common to each input.

5.2 TCL description
The TCL is in Examples/Models/Peripherals/registerArrays/intc/pse/pse.tcl

The command imodelnewperipheral starts construction of the model, sets the VLNV, names
constructor and destructor functions and requests use of the (newer) n-byte register
interface.

The next few commands iadddocumentation add to the documentation that can be generated
by the model.

The commands imodeladdnetport create the systemReset input, the interrupt inputs intin0 to
intin63 and the interrupt outputs intout1 and intout2. Note that the arguments –loarray and
–hiarray set the (inclusive) bounds of the names of members of arrays of net ports.
Handles to the net ports are declared as C arrays which allows computed access to the
nets.

The command imodeladdbusslaveport creates a bus port which is used to read and write the
memory mapped registers.

The command imodeladdaddressblock –name ch%u –loarray 0 –hiarray 1 creates an array of
address blocks corresponding to the identical channels. The names of the address blocks
(as visible to the user) has the %u substituted with the array indices; 0 and 1 in this case.
the –size argument sets the size of the address block in bytes and the address interval
between members. If required the size could be increased to create unoccupied address
space between members.

The command
 imodeladdmmregister -addressblock sp1/ch%u -name pinControl%u -loarray 0 -hiarray 31

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 22 of 28

creates an array of registers in the given address block. Note that ch%u must match the
address block name. The –offset argument set the offset of the first member of the array.
Following members have addresses that increment by the size of the register rounded to
the nearest byte.

The –writefunction <function name> argument causes a function of that name to be
generated in the file pse.c.igen.stubs.

The command imodeladdfield -mmregister sp1/ch%u/pinControl%u -name enable creates a bit
field in the register. Note that ch%u and pinControl%u must match the names of the address
block and register parents.

5.3 Generated code
Having run the example, refer to pse.igen.h and look for Register data declaration. The
structure sp1_ch_dataT declares storage for registers in the sp1 slave port region. Note that
structure sp1_ch_data[] is an array corresponding to the address block array and that
pinControl[] is an array corresponding to the array of registers. Now look for Port handles.
The structure definition handlesT contain the net port handles systemReset and the net port
handle arrays intin[] and intout[].

The file pse.c.igen.stubs contains the write callback functions writeChannelControl and
writePinControl. The functions contain code to calculate the address block and register
indices, and to use them to update the register values. As in the other examples, this file
can be copied to user.c to form the basis of the behavioural code of the model.

Now refer to user.c. The function raiseInterrupt() uses the address block array index ch
and the register index input to compute the register to update, and uses ch to write to the
output net port using the array of handles handles.intout[].

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 23 of 28

6 Running iGen
iGen has many command line options. These used to write a peripheral model template:

The output file names are derived from the argument passed to –writec. If the argument
includes a directory (delimited by ‘/’), then all files are written to this directory. If the
argument has an extension, then the stubs file takes this name. iGen removes the
extension and adds different extensions for the other output files. If the argument has no
extension, then one is added.

Note that the stubs file is intended to be modified by the developer, so this file will not be
overwritten in subsequent runs if it exists. Use the –overwrite argument to change this
behavior. Other files are always overwritten.

Example without extension:

shell> igen.exe --batch dmac.tcl --writec dmac

File Contents
dmac.igen.c main(), constructors
dmac.igen.h Function prototypes, storage for registers
dmac.igen.stubs Stub functions to be expanded by the user
dmac.macros.igen.h Register offsets for application programs
dmac.attrs.igen.c modelAttrs structure and associated data.

Example with extension:

shell> igen.exe --batch dmac.tcl --writec dmac.c

File Contents
dmac.igen.c main(), construction.
dmac.igen.h Function prototypes, storage for registers
dmac.c Stub functions to be expanded by the user
dmac.macros.igen.h Register offsets for application programs
dmac.attrs.igen.c modelAttrs structure and associated data.

iGen Argument File
-batch <input file> File of tcl commands to construct the peripheral.
-writec <output name> The name of the output stubs file, and the stem used to generate the

other output file names.
-userheader <file> Prepend this text input file to each generated file (it must be legal C

or C comments).
-overwrite Overwrite the output stubs file if it already exists (this is otherwise

an error)

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 24 of 28

6.1 The user stubs file
The user stubs file dmac.igen.stubs contains stub functions. iGen creates this file to be
completed by the user. Stub functions are created for each callback specified when
creating registers, local memories and input ports and also for the model constructor and
destructor functions.

6.2 The main file
The output file dmac.igen.c contains the model constructor which connects to bus and
net ports, creates registers and initializes register values. Documentation fields created
using the iadddocumentation command are added to the beginning of the file. This file
does not normally require editing, so will be overwritten each time iGen runs.

6.3 The include file
The output file dmac.igen.h contains function prototypes, macros structures and other
code required by the C files. This file does not normally require editing, so will be
overwritten each time iGen runs.

6.4 The attributes file
The output file dmac.attrs.igen.c contains the modelattrs structure that will be
interrogated by the simulator when the model is loaded. This file does not normally
require editing, so will be overwritten each time iGen runs.

6.5 The macros file
The output file dmac.igen.macros.h contains C macros defining register offsets and bit
fields. This is not required by the model but can be included in the user's peripheral driver
code. This file does not normally require editing, so will be overwritten each time iGen
runs.

6.6 Adding a standard header
Some organizations require each source file to begin with a Copyright message. Text can
be prepended to all generated files using --userheader.

shell> igen.exe \
 --batch dmac.tcl \
 --writec dmac \
 --userheader company.header.h

6.7 Building with standard Makefile.pse
The file Makefile.pse is provided as part of the Imperas environment.

This will:

1) Generate the peripheral template from an iGen TCL file called pse.tcl
2) Compile and link the peripheral model, creating the executable pse.pse

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 25 of 28

7 Examples
Writing behavioral C code for a peripheral model is discussed in
The Imperas Peripheral Modeling Guide.

A set of examples that use iGen are available in
 $IMPERAS_HOME/Examples/Models/Peripherals/creatingDMAC
and
$IMPERAS_HOME/Examples/Models/Peripherals/registerArrays

The directory 4.interrupt contains the complete model. Files names containing .igen.
are created by iGen.

7.1 pse.tcl
The TCL script that generates the model. The model name dmac is used to create other
file names.

7.2 pse.c.igen.stubs
The user (stubs) file, generated by iGen in the example, but replaced by the completed
file dmac.user.c

7.3 dmac.user.c
This file contains the behavior of the peripheral model. The programmer started with
pse.c.igen.stubs and modified it to produce this file, adding actions to the existing empty
functions and adding new functions where required.

7.4 pse.igen.c
The file generated by iGen which constructs the model.

7.5 pse.igen.h
This file, generated by iGen, is used in the other C files. It includes the API definition,
defines structures to store registers values and port handles. It defines prototypes for
exported functions.

7.6 pse.attrs.igen.c
The interface specification file, generated by iGen, which contains the attributes table to
be interrogated by the simulator when it loads the model.

7.7 pse.macros.igen.h
This file, generated by iGen, contains macros which define the relative addresses of
registers and bit positions in the registers. It is not used by the model but can be useful
when writing applications that use this device.

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 26 of 28

8 The SystemC (TLM) Interface
OVP models can be used in a SystemC TLM environment (see
OVPsim_Using_OVP_Models_in_SystemC_TLM2.0_Platforms).

An interface is required to connect each peripheral model to SystemC TLM2.0.

iGen can generate this interface; TLM interfaces shipped with the Imperas products are
generated by iGen.

As an example, refer to the file:
ImperasLib/source/national.ovpworld.org/peripheral/16450/1.0/tlm/pse.igen.hpp

The interface is a specialization of the classes defined in:
ImpPublic/include/host/tlm/tlmPeripheral.hpp

It is implemented in a class with the same name as the peripheral model, Uart16450 in
this example. This class inherits tlmPeripheral which uses the OVP OP API to create
and connect the peripheral model instance.

Here are the main classes used in the TLM interface:

OVP Object OVP Class TLM class
peripheral tlmPeripheral sc_module

bus slave port tlmBusSlavePort simple_acceptor_socket

bus master port tlmBusMasterPort simple_initiator_socket

input net port tlmNetInputPort tlm_analysis_port

output net port tlmNetOutputPort tlm_analysis_port

The tlm_analysis_port is used is preference to sc_signal because changes are
propagated immediately rather than by the SystemC scheduler. To connect to sc_signal
an interface class (not supplied) will be required.

8.1 Creating the peripheral model SystemC interface

There are two methods of creating an interface; from the compiled model executable or
from a TCL specification. The former is preferred for two reasons;

• The C code of the model might not conform to the original TCL specification –
the code can be edited.

• The C code of the model can be written to change the interface according to
model parameters set by the platform in the model instance. For example, a
parameter inputs could be used to control the number of input nets in the
instance. The TLM interface must match the interface presented by the specific
instance of the model.

If the user’s design flow does not have these issues then either method can be used.

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 27 of 28

8.1.1 Creating the interface from the model
This example uses a pre-compiled peripheral model. iGen loads the model, interrogates
its interface then writes the C++ file (In this example it first prepends the company
copyright notice).
This method must be used if the model is to be configured using parameters that can
change the physical connections that appear on the model, for example change the
number of interrupt ports.

If the model is stored in the VLNV library, it can be specified by VLNV. In this example
the model parameter uart16550 is set true. In this case the parameter changes the model
behavior but does not change the interface. Note that the parameter value is included in
the generated interface to ensure the model is used in the same way as when the wrapper
was generated

shell> igen.exe \
 --modelname 16450 \
 --modelvendor national.ovpworld.org \
 --modellibrary peripheral \
 --modelversion 1.0 \
 --setparameter uart16550=1 \
 --writetlm pse.hpp

Alternatively, if the model is not in a VLNV library or you just want to use a specific
pse.pse file directly

shell> igen.exe \
 --modelfile /home/user/bin/library/peripheral/pse.pse \
 --writetlm pse.hpp \
 -–userheader company.header

Here is some of the output:

The model requires the peripheral base class and because it uses both net and bus
interfaces, the tlmNetPort and tlmBusPort headers are required:

#include "tlm/tlmPeripheral.hpp"
#include "tlm/tlmBusPort.hpp"
#include "tlm/tlmNetPort.hpp"

The body of the output is the specific peripheral class with the same name class of the
model, limited by C++ rules. The class includes an instance of the wrapped model, bus
and net port instances matching the ports in the model. The constructor set the name and
VLNV of the model instance then initializes the ports. The instance name will be passed
from the platform that instances this wrapped model.

class _16450 : public tlmPeripheral
{
 private:
 params paramsForPeripheral(params p){
 p.set("uart16550", (Bool)1);

iGen Peripheral Generator User Guide

© 2021 Imperas Software Limited. www.OVPworld.org Page 28 of 28

 return p;
 }

 params paramsForPeripheral(){
 params p;
 p.set("uart16550", (Bool)1);
 return p;
 }
 const char *getModel() {
 return opVLNVString (NULL, "national.ovpworld.org", "peripheral",
"16450", "1.0", OP_PERIPHERAL, 1);
 }

 public:
 tlmBusSlavePort bport1;
 tlmNetOutputPort intOut;

 _16450(tlmModule &parent, sc_module_name name)
 : tlmPeripheral(parent, getModel(), name, paramsForPeripheral())
 , bport1(parent, this, "bport1", 0x8) // static
 , intOut(parent, this, "intOut")
 {
 }

 _16450(tlmModule &parent, sc_module_name name, params p)
 : tlmPeripheral(parent, getModel(), name, paramsForPeripheral(p))
 , bport1(parent, this, "bport1", 0x8) // static
 , intOut(parent, this, "intOut")
 {
 }

}; /* class _16450 */

8.1.2 Creating the interface from TCL
This example uses TCL to create the interface. Obviously the same TCL must be used to
create the model template, then the interface in the C code must not be changed.

shell> igen.exe \
 --batch pse.tcl \
 --writetlm pse.hpp \

	1 Preface
	1.1 Notation
	1.2 Related Documents

	2 Introduction
	3 Creating a peripheral model definition
	3.1 Bus Master
	3.2 Bus Slave
	3.2.1 Bus Slave implementation

	3.3 Net Port
	3.4 Packetnet Port
	3.5 Formal Parameter
	3.6 Address Block
	3.7 Address Block Array
	3.7.1 Array Names

	3.8 Local memory
	3.9 Memory mapped register
	3.10 Register Array
	3.10.1 Which register is accessed?
	3.10.2 Array Names

	3.11 Combination arrays
	3.12 Register bit-field
	3.13 Reset
	3.14 Documentation

	4 Example 1 : DMA
	4.1 Introducing the model
	4.2 Documentation

	5 Example 2: Interrupt Controller
	6 Running iGen
	7 Examples
	8 The SystemC (TLM) Interface
	8.1.1 Creating the interface from the model
	8.1.2 Creating the interface from TCL

