

OVP Guide to Using Processor Models

Model specific information for Renesas_V850ES

Imperas Software Limited Imperas Buildings, North Weston Thame, Oxfordshire, OX9 2HA, U.K. docs@imperas.com

Author	Imperas Software Limited
Version	20220722.0
Filename	OVP_Model_Specific_Information_v850_V850ES.pdf
Created	27 July 2022
Status	OVP Standard Release

Copyright Notice

Copyright (c) 2022 Imperas Software Limited. All rights reserved. This software and documentation contain information that is the property of Imperas Software Limited. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Imperas permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the readers responsibility to determine the applicable regulations and to comply with them.

Disclaimer

IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Model Release Status

This model is released as part of OVP releases and is included in OVPworld packages. Please visit OVPworld.org.

Contents

1	Overview	1
	.1 Description	1
	.2 Licensing	1
	.3 Limitations	1
	.4 Verification	2
	.5 Features	2
2	Configuration	3
	.1 Location	3
	.2 GDB Path	3
	.3 Semi-Host Library	3
	.4 Processor Endian-ness	3
	.5 QuantumLeap Support	3
	.6 Processor ELF code	3
3	All Variants in this model	4
4	Bus Master Ports	5
5	Bus Slave Ports	6
6	Net Ports	7
7	FIFO Ports	8
8	Formal Parameters	ç
0	.1 Parameter values	6
9	Execution Modes	10
10	Exceptions	11
11	Hierarchy of the model	12
	1.1 Level 1	12
12	Model Commands	13
	2.1 Level 1	
	12.1.1 isync	13
	19.1.9 itmass	1.9

Imperas OVP Fast Processor Model Documentation for Renesas_V850ES

13 Registers	14
13.1 Level 1	. 14
13.1.1 User	. 14
13.1.2 System	. 15
13 1.3 Integration support	15

Overview

This document provides the details of an OVP Fast Processor Model variant.

OVP Fast Processor Models are written in C and provide a C API for use in C based platforms. The models also provide a native interface for use in SystemC TLM2 platforms.

The models are written using the OVP VMI API that provides a Virtual Machine Interface that defines the behavior of the processor. The VMI API makes a clear line between model and simulator allowing very good optimization and world class high speed performance. Most models are provided as a binary shared object and also as source. This allows the download and use of the model binary or the use of the source to explore and modify the model.

The models are run through an extensive QA and regression testing process and most model families are validated using technology provided by the processor IP owners. There is a companion document (OVP Guide to Using Processor Models) which explains the general concepts of OVP Fast Processor Models and their use. It is downloadable from the OVPworld website documentation pages.

1.1 Description

V850 Family Processor Model.

1.2 Licensing

Open Source Apache 2.0

1.3 Limitations

The following Debug Registers are non-functional DIR, DBPC, DBPSW

1.4 Verification

Models have been extensively tested by Imperas, In addition Verification suites have been supplied by Renesas for Feature Set validation

1.5 Features

All v850es Instructions are supported.

Configuration

2.1 Location

This model's VLNV is renesas.ovpworld.org/processor/v850/1.0.

The model source is usually at:

\$IMPERAS_HOME/ImperasLib/source/renesas.ovpworld.org/processor/v850/1.0

The model binary is usually at:

\$IMPERAS_HOME/lib/\$IMPERAS_ARCH/ImperasLib/renesas.ovpworld.org/processor/v850/1.0

2.2 GDB Path

The default GDB for this model is: \$IMPERAS_HOME/lib/\$IMPERAS_ARCH/gdb/v850-elf-gdb.

2.3 Semi-Host Library

The default semi-host library file is renesas.ovpworld.org/semihosting/v850Newlib/1.0

2.4 Processor Endian-ness

This is a LITTLE endian model.

2.5 QuantumLeap Support

This processor is qualified to run in a QuantumLeap enabled simulator.

2.6 Processor ELF code

ELF codes supported by this model are:0x57, 0x24, 0x70f1, 0x70ff and 0x747b.

All Variants in this model

This model has these variants

Variant	Description
V850	
V850E1	
V850E1F	
V850ES	(described in this document)
V850E2	
V850E2M	
V850E2R	

Table 3.1: All Variants in this model

Bus Master Ports

This model has these bus master ports.

Name	min	max	Connect?	Description
INSTRUCTION	28	32	mandatory	
DATA	28	32	optional	

Table 4.1: Bus Master Ports

Bus Slave Ports

This model has no bus slave ports.

Net Ports

This model has these net ports.

Name	Type	Connect?	Description
intp	input	optional	Interrupt Port
nmi0	input	optional	Non-Maskable Interrupt Port
nmi1	input	optional	Non-Maskable Interrupt Port
nmi2	input	optional	Non-Maskable Interrupt Port
reset	input	optional	Reset Port
mireti	output	optional	Return from Interrupt Port
intack	output	optional	Interrupt Acknowledge Port

Table 6.1: Net Ports

FIFO Ports

This model has no FIFO ports.

Formal Parameters

Name	Type	Description	
variant	Enumeration	Selects variant (either a generic ISA or a specific model)	
verbose	Boolean	Specify verbose output messages	
GDBSIMMODE	Boolean	GDB Simulator Compatibility Mode	
nofpu	Boolean	Disable Processor Internal FPU	
RBASE	Uns32	RBASE register Reset vector Address	
ucbank	Boolean	Enable the User Compatible Bank Registers (eg, VFOREST)	
PEID	Uns32	Processor element number	
SPID	Uns32	System Protection Number	

Table 8.1: Parameters

8.1 Parameter values

These are the current parameter values.

Name	Value
(Others)	
variant	V850ES
verbose	Τ
GDBSIMMODE	F
nofpu	F
RBASE	0
ucbank	F
PEID	1
SPID	0

Table 8.2: Parameter values

Execution Modes

This model does not have different execution modes.

Exceptions

Exception	Code	Description	
reset	0	Reset Signal Exception	
nmi0	16	Non Maskable Interrupt(0) Exception	
nmi1	32	Non Maskable Interrupt(1) Exception	
nmi2	48	Non Maskable Interrupt(2) Exception	
intp	128	Maskable Interrupt Exception - Vector value =	
		(0x0000ffff AND intp)	
fetrap	48	FETRAP Exception	
trap0	64	TRAP0 Exception	
trap1	80	TRAP1 Exception	
ilgop	96	Illegal OPCODE Exception	
rie	48	Reserved Instruction Exception	

Table 10.1: Exceptions implemented by this processor

Hierarchy of the model

A CPU core may be configured to instance many processors of a Symmetrical Multi Processor (SMP). A CPU core may also have sub elements within a processor, for example hardware threading blocks.

OVP processor models can be written to include SMP blocks and to have many levels of hierarchy. Some OVP CPU models may have a fixed hierarchy, and some may be configured by settings in a configuration register. Please see the register definitions of this model.

This model documentation shows the settings and hierarchy of the default settings for this model variant.

11.1 Level 1

This level in the model hierarchy has 2 commands.

This level in the model hierarchy has 3 register groups:

Group name	Registers
User	32
System	14
Integration_support	8

Table 11.1: Register groups

This level in the model hierarchy has no children.

Model Commands

A Processor model can implement one or more **Model Commands** available to be invoked from the simulator command line, from the OP API or from the Imperas Multiprocessor Debugger.

12.1 Level 1

12.1.1 isync

specify instruction address range for synchronous execution

Argument	Type	Description
-addresshi	Uns64	end address of synchronous execution range
-addresslo	Uns64	start address of synchronous execution range

Table 12.1: isync command arguments

12.1.2 itrace

enable or disable instruction tracing

Argument	Type	Description
-after Uns64		apply after this many instructions
-enable	Boolean	enable instruction tracing
-instructioncount	Boolean	include the instruction number in each trace
-memory	String	show memory accesses by this instruction. Ar-
		gument can be any combination of X (execute),
		A (load or store access) and S (system)
-mode	Boolean	show processor mode changes
-off	Boolean	disable instruction tracing
-on	Boolean	enable instruction tracing
-processorname	Boolean	Include processor name in all trace lines
-registerchange	Boolean	show registers changed by this instruction
-registers	Boolean	show registers after each trace

Table 12.2: itrace command arguments

Registers

13.1 Level 1

13.1.1 User

Registers at level:1, group:User

Name	Bits	Initial-Hex	RW	Description
R0	32	0	r-	Zero Register
R1	32	0	rw	Assembler-reserved register
R2	32	0	rw	Address/data variable register (when the real-time OS to be used is not using
				r2)
R3	32	0	rw	Stack pointer (SP)
R4	32	0	rw	Global pointer (GP)
R5	32	0	rw	Test pointer (TP)
R6	32	0	rw	Address/data variable registers
R7	32	0	rw	Address/data variable registers
R8	32	0	rw	Address/data variable registers
R9	32	0	rw	Address/data variable registers
R10	32	0	rw	Address/data variable registers
R11	32	0	rw	Address/data variable registers
R12	32	0	rw	Address/data variable registers
R13	32	0	rw	Address/data variable registers
R14	32	0	rw	Address/data variable registers
R15	32	0	rw	Address/data variable registers
R16	32	0	rw	Address/data variable registers
R17	32	0	rw	Address/data variable registers
R18	32	0	rw	Address/data variable registers
R19	32	0	rw	Address/data variable registers
R20	32	0	rw	Address/data variable registers
R21	32	0	rw	Address/data variable registers
R22	32	0	rw	Address/data variable registers
R23	32	0	rw	Address/data variable registers
R24	32	0	rw	Address/data variable registers
R25	32	0	rw	Address/data variable registers
R26	32	0	rw	Address/data variable registers
R27	32	0	rw	Address/data variable registers
R28	32	0	rw	Address/data variable registers
R29	32	0	rw	Address/data variable registers
R30	32	0	rw	Element pointer (EP)
R31	32	0	rw	Link pointer (LP)

Table 13.1: Registers at level 1, group:User

13.1.2 System

Registers at level:1, group:System

Name	Bits	Initial-Hex	RW	Description
EIPC	32	0	rw	Interrupt status-saving register PC
EIPSW	32	0	rw	Interrupt status-saving register PSW
FEPC	32	0	rw	NMI status-saving register PC
FEPSW	32	0	rw	NMI status-saving register PSW
ECR	32	0	rw	Exception cause register
PSW	32	20	rw	Program status word
CTPC	32	0	rw	CALLT status-saving register PC
CTPSW	32	0	rw	CALLT status-saving register PSW
DBPC	32	0	rw	Exception/Debug trap status-saving register PC
DBPSW	32	0	rw	Exception/Debug trap status-saving register PSW
CTBP	32	0	rw	CALLT base pointer
DIR	32	0	rw	Debug Interface register
PC	32	0	rw	Program Counter
FP	32	0	r-	

Table 13.2: Registers at level 1, group:System

13.1.3 Integration_support

Registers at level:1, group:Integration_support

Name	Bits	Initial-Hex	RW	Description
stop	32	0	rw	Support Register for Stopping Processor
ResultHi	32	0	rw	External ResultHi Register
ResultLo	32	0	rw	External ResultLo Register
ResultSz	8	0	rw	External ResultSz Register
ResultId	8	0	rw	External ResultId Register
ResultFlg	32	0	rw	External ResultFlg Register
ResultCC	32	0	rw	External ResultCC Register
FLG_LL	8	0	rw	Load/Store Exclusive FLG_LL

Table 13.3: Registers at level 1, group:Integration_support