
OVP Guide to Using Processor Models

Model specific information for
ARM ARM966E

Imperas Software Limited
Imperas Buildings, North Weston

Thame, Oxfordshire, OX9 2HA, U.K.
docs@imperas.com

Author Imperas Software Limited
Version 20200630.0
Filename OVP Model Specific Information arm ARM966E.pdf
Created 2 July 2020
Status OVP Standard Release

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

Copyright Notice
Copyright (c) 2020 Imperas Software Limited. All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or copied
only in accordance with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas
Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the documentation for its
internal use only. Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United
States of America. Disclosure to nationals of other countries contrary to United States law is
prohibited. It is the readers responsibility to determine the applicable regulations and to comply
with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Model Release Status
This model is released as part of OVP releases and is included in OVPworld packages. Please
visit OVPworld.org.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page ii of 24

Contents

1 Overview 1
1.1 Description . 1
1.2 Licensing . 1
1.3 Limitations . 2
1.4 Verification . 2
1.5 Features . 3

1.5.1 Core Features . 3
1.5.2 Memory System . 3

1.6 Debug Mask . 3
1.7 AArch32 Unpredictable Behavior . 3

1.7.1 Equal Target Registers . 3
1.7.2 Floating Point Load/Store Multiple Lists . 3
1.7.3 Floating Point VLD[2-4]/VST[2-4] Range Overflow 4
1.7.4 If-Then (IT) Block Constraints . 4
1.7.5 Use of R13 . 4
1.7.6 Use of R15 . 4
1.7.7 Unpredictable Instructions in Some Modes 4

1.8 Integration Support . 5
1.8.1 Halt Reason Introspection . 5
1.8.2 System Register Access Monitor . 5
1.8.3 System Register Implementation . 5

2 Configuration 7
2.1 Location . 7
2.2 GDB Path . 7
2.3 Semi-Host Library . 7
2.4 Processor Endian-ness . 7
2.5 QuantumLeap Support . 7
2.6 Processor ELF code . 7

3 All Variants in this model 8

4 Bus Master Ports 11

5 Bus Slave Ports 12

6 Net Ports 13

i

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

7 FIFO Ports 14

8 Formal Parameters 15

9 Execution Modes 17

10 Exceptions 18

11 Hierarchy of the model 19
11.1 Level 1: CPU . 19

12 Model Commands 20
12.1 Level 1: CPU . 20

12.1.1 debugflags . 20
12.1.2 isync . 20
12.1.3 itrace . 20

13 Registers 22
13.1 Level 1: CPU . 22

13.1.1 Core . 22
13.1.2 Control . 22
13.1.3 User . 22
13.1.4 FIQ . 23
13.1.5 IRQ . 23
13.1.6 Supervisor . 23
13.1.7 Undefined . 23
13.1.8 Abort . 24
13.1.9 Coprocessor 32 bit . 24
13.1.10 Integration support . 24

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page ii of 24

Chapter 1

Overview

This document provides the details of an OVP Fast Processor Model variant.

OVP Fast Processor Models are written in C and provide a C API for use in C based platforms.
The models also provide a native interface for use in SystemC TLM2 platforms.

The models are written using the OVP VMI API that provides a Virtual Machine Interface that
defines the behavior of the processor. The VMI API makes a clear line between model and simulator
allowing very good optimization and world class high speed performance. Most models are provided
as a binary shared object and also as source. This allows the download and use of the model binary
or the use of the source to explore and modify the model.

The models are run through an extensive QA and regression testing process and most model
families are validated using technology provided by the processor IP owners. There is a companion
document (OVP Guide to Using Processor Models) which explains the general concepts of OVP
Fast Processor Models and their use. It is downloadable from the OVPworld website documentation
pages.

1.1 Description

ARM Processor Model

1.2 Licensing

Usage of binary model under license governing simulator usage.

Note that for models of ARM CPUs the license includes the following terms:

Licensee is granted a non-exclusive, worldwide, non-transferable, revocable licence to:

If no source is being provided to the Licensee: use and copy only (no modifications rights are
granted) the model for the sole purpose of designing, developing, analyzing, debugging, testing,
verifying, validating and optimizing software which: (a) (i) is for ARM based systems; and (ii) does
not incorporate the ARM Models or any part thereof; and (b) such ARM Models may not be used

1

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

to emulate an ARM based system to run application software in a production or live environment.

If source code is being provided to the Licensee: use, copy and modify the model for the sole
purpose of designing, developing, analyzing, debugging, testing, verifying, validating and optimizing
software which: (a) (i) is for ARM based systems; and (ii) does not incorporate the ARM Models
or any part thereof; and (b) such ARM Models may not be used to emulate an ARM based system
to run application software in a production or live environment.

In the case of any Licensee who is either or both an academic or educational institution the purposes
shall be limited to internal use.

Except to the extent that such activity is permitted by applicable law, Licensee shall not reverse
engineer, decompile, or disassemble this model. If this model was provided to Licensee in Europe,
Licensee shall not reverse engineer, decompile or disassemble the Model for the purposes of error
correction.

The License agreement does not entitle Licensee to manufacture in silicon any product based on
this model.

The License agreement does not entitle Licensee to use this model for evaluating the validity of any
ARM patent.

Source of model available under separate Imperas Software License Agreement.

1.3 Limitations

Instruction pipelines are not modeled in any way. All instructions are assumed to complete imme-
diately. This means that instruction barrier instructions (e.g. ISB, CP15ISB) are treated as NOPs,
with the exception of any undefined instruction behavior, which is modeled. The model does not
implement speculative fetch behavior. The branch cache is not modeled.

Caches and write buffers are not modeled in any way. All loads, fetches and stores complete
immediately and in order, and are fully synchronous (as if the memory was of Strongly Ordered
or Device-nGnRnE type). Data barrier instructions (e.g. DSB, CP15DSB) are treated as NOPs,
with the exception of any undefined instruction behavior, which is modeled. Cache manipulation
instructions are implemented as NOPs, with the exception of any undefined instruction behavior,
which is modeled.

Real-world timing effects are not modeled: all instructions are assumed to complete in a single
cycle.

1.4 Verification

Models have been extensively tested by Imperas. ARM9 models have been successfully used by
customers to simulate Linux and Nucleus on ArmIntegrator virtual platforms.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 2 of 24

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

1.5 Features

1.5.1 Core Features

Thumb instructions are supported.

1.5.2 Memory System

1.6 Debug Mask

It is possible to enable model debug features in various categories. This can be done statically using
the “override debugMask” parameter, or dynamically using the “debugflags” command. Enabled
debug features are specified using a bitmask value, as follows:

Value 0x080: enable debugging of all system register accesses.

Value 0x100: enable debugging of all traps of system register accesses.

Value 0x200: enable verbose debugging of other miscellaneous behavior (for example, the reason
why a particular instruction is undefined).

All other bits in the debug bitmask are reserved and must not be set to non-zero values.

1.7 AArch32 Unpredictable Behavior

Many AArch32 instruction behaviors are described in the ARM ARM as CONSTRAINED UN-
PREDICTABLE. This section describes how such situations are handled by this model.

1.7.1 Equal Target Registers

Some instructions allow the specification of two target registers (for example, double-width SMULL,
or some VMOV variants), and such instructions are CONSTRAINED UNPREDICTABLE if the
same target register is specified in both positions. In this model, such instructions are treated as
UNDEFINED.

1.7.2 Floating Point Load/Store Multiple Lists

Instructions that load or store a list of floating point registers (e.g. VSTM, VLDM, VPUSH,
VPOP) are CONSTRAINED UNPREDICTABLE if either the uppermost register in the specified
range is greater than 32 or (for 64-bit registers) if more than 16 registers are specified. In this
model, such instructions are treated as UNDEFINED.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 3 of 24

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

1.7.3 Floating Point VLD[2-4]/VST[2-4] Range Overflow

Instructions that load or store a fixed number of floating point registers (e.g. VST2, VLD2) are
CONSTRAINED UNPREDICTABLE if the upper register bound exceeds the number of imple-
mented floating point registers. In this model, these instructions load and store using modulo 32
indexing (consistent with AArch64 instructions with similar behavior).

1.7.4 If-Then (IT) Block Constraints

Where the behavior of an instruction in an if-then (IT) block is described as CONSTRAINED
UNPREDICTABLE, this model treats that instruction as UNDEFINED.

1.7.5 Use of R13

In architecture variants before ARMv8, use of R13 was described as CONSTRAINED UNPRE-
DICTABLE in many circumstances. From ARMv8, most of these situations are no longer consid-
ered unpredictable. This model allows R13 to be used like any other GPR, consistent with the
ARMv8 specification.

1.7.6 Use of R15

Use of R15 is described as CONSTRAINED UNPREDICTABLE in many circumstances. This
model allows such use to be configured using the parameter “unpredictableR15” as follows:

Value “undefined”: any reference to R15 in such a situation is treated as UNDEFINED;

Value “nop”: any reference to R15 in such a situation causes the instruction to be treated as a
NOP;

Value “raz wi”: any reference to R15 in such a situation causes the instruction to be treated as a
RAZ/WI (that is, R15 is read as zero and write-ignored);

Value “execute”: any reference to R15 in such a situation is executed using the current value of
R15 on read, and writes to R15 are allowed (but are not interworking).

Value “assert”: any reference to R15 in such a situation causes the simulation to halt with an
assertion message (allowing any such unpredictable uses to be easily identified).

In this variant, the default value of “unpredictableR15” is “execute”.

1.7.7 Unpredictable Instructions in Some Modes

Some instructions are described as CONSTRAINED UNPREDICTABLE in some modes only
(for example, MSR accessing SPSR is CONSTRAINED UNPREDICTABLE in User and System
modes). This model allows such use to be configured using the parameter “unpredictableModal”,
which can have values “undefined” or “nop”. See the previous section for more information about
the meaning of these values.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 4 of 24

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

In this variant, the default value of “unpredictableModal” is “nop”.

1.8 Integration Support

This model implements a number of non-architectural pseudo-registers and other features to facil-
itate integration.

1.8.1 Halt Reason Introspection

An artifact register HaltReason can be read to determine the reason or reasons that a processor
is halted. This register is a bitfield, with the following encoding: bit 0 indicates the processor
has executed a wait-for-event (WFE) instruction; bit 1 indicates the processor has executed a
wait-for-interrupt (WFI) instruction; and bit 2 indicates the processor is held in reset.

1.8.2 System Register Access Monitor

If parameter “enableSystemMonitorBus” is True, an artifact 32-bit bus “SystemMonitor” is en-
abled for each PE. Every system register read or write by that PE is then visible as a read or
write on this artifact bus, and can therefore be monitored using callbacks installed in the client
environment (use opBusReadMonitorAdd/opBusWriteMonitorAdd or icmAddBusReadCallback-
/icmAddBusWriteCallback, depending on the client API). The format of the address on the bus is
as follows:

bits 31:26 - zero

bit 25 - 1 if AArch64 access, 0 if AArch32 access

bit 24 - 1 if non-secure access, 0 if secure access

bits 23:20 - CRm value

bits 19:16 - CRn value

bits 15:12 - op2 value

bits 11:8 - op1 value

bits 7:4 - op0 value (AArch64) or coprocessor number (AArch32)

bits 3:0 - zero

As an example, to view non-secure writes to writes to CNTFRQ EL0 in AArch64 state, install a
write monitor on address range 0x020e0330:0x020e0333.

1.8.3 System Register Implementation

If parameter “enableSystemBus” is True, an artifact 32-bit bus “System” is enabled for each PE.
Slave callbacks installed on this bus can be used to implement modified system register behavior

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 5 of 24

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

(use opBusSlaveNew or icmMapExternalMemory, depending on the client API). The format of the
address on the bus is the same as for the system monitor bus, described above.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 6 of 24

Chapter 2

Configuration

2.1 Location

This model’s VLNV is arm.ovpworld.org/processor/arm/1.0.
The model source is usually at:
$IMPERAS HOME/ImperasLib/source/arm.ovpworld.org/processor/arm/1.0
The model binary is usually at:
$IMPERAS HOME/lib/$IMPERAS ARCH/ImperasLib/arm.ovpworld.org/processor/arm/1.0

2.2 GDB Path

The default GDB for this model is: $IMPERAS HOME/lib/$IMPERAS ARCH/gdb/arm-none-
eabi-gdb.

2.3 Semi-Host Library

The default semi-host library file is arm.ovpworld.org/semihosting/armNewlib/1.0

2.4 Processor Endian-ness

This model can be set to either endian-ness (normally by a pin, or the ELF code).

2.5 QuantumLeap Support

This processor is qualified to run in a QuantumLeap enabled simulator.

2.6 Processor ELF code

The ELF code supported by this model is: 0x28.

7

Chapter 3

All Variants in this model

This model has these variants

Variant Description
ARMv4T
ARMv4xM
ARMv4
ARMv4TxM
ARMv5xM
ARMv5
ARMv5TxM
ARMv5T
ARMv5TExP
ARMv5TE
ARMv5TEJ
ARMv6
ARMv6K
ARMv6T2
ARMv6KZ
ARMv7
ARM7TDMI
ARM7EJ-S
ARM720T
ARM920T
ARM922T
ARM926EJ-S
ARM940T
ARM946E
ARM966E (described in this document)
ARM968E-S
ARM1020E
ARM1022E
ARM1026EJ-S
ARM1136J-S
ARM1156T2-S

8

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

ARM1176JZ-S
Cortex-R4
Cortex-R4F
Cortex-A5UP
Cortex-A5MPx1
Cortex-A5MPx2
Cortex-A5MPx3
Cortex-A5MPx4
Cortex-A8
Cortex-A9UP
Cortex-A9MPx1
Cortex-A9MPx2
Cortex-A9MPx3
Cortex-A9MPx4
Cortex-A7UP
Cortex-A7MPx1
Cortex-A7MPx2
Cortex-A7MPx3
Cortex-A7MPx4
Cortex-A15UP
Cortex-A15MPx1
Cortex-A15MPx2
Cortex-A15MPx3
Cortex-A15MPx4
Cortex-A17MPx1
Cortex-A17MPx2
Cortex-A17MPx3
Cortex-A17MPx4
AArch32
AArch64
Cortex-A32MPx1
Cortex-A32MPx2
Cortex-A32MPx3
Cortex-A32MPx4
Cortex-A35MPx1
Cortex-A35MPx2
Cortex-A35MPx3
Cortex-A35MPx4
Cortex-A53MPx1
Cortex-A53MPx2
Cortex-A53MPx3
Cortex-A53MPx4
Cortex-A55MPx1
Cortex-A55MPx2
Cortex-A55MPx3

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 9 of 24

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

Cortex-A55MPx4
Cortex-A57MPx1
Cortex-A57MPx2
Cortex-A57MPx3
Cortex-A57MPx4
Cortex-A72MPx1
Cortex-A72MPx2
Cortex-A72MPx3
Cortex-A72MPx4
Cortex-A73MPx1
Cortex-A73MPx2
Cortex-A73MPx3
Cortex-A73MPx4
Cortex-A75MPx1
Cortex-A75MPx2
Cortex-A75MPx3
Cortex-A75MPx4
MultiCluster

Table 3.1: All Variants in this model

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 10 of 24

Chapter 4

Bus Master Ports

This model has these bus master ports.

Name min max Connect? Description
INSTRUCTION 32 32 mandatory
DATA 32 32 optional

Table 4.1: Bus Master Ports

11

Chapter 5

Bus Slave Ports

This model has no bus slave ports.

12

Chapter 6

Net Ports

This model has these net ports.

Name Type Connect? Description
reset input optional Processor reset, active high
fiq input optional FIQ interrupt, active high (negation of

nFIQ)
irq input optional IRQ interrupt, active high (negation of

nIRQ)
sei input optional System error interrupt, active on rising

edge (negation of nSEI)
Table 6.1: Net Ports

13

Chapter 7

FIFO Ports

This model has no FIFO ports.

14

Chapter 8

Formal Parameters

Name Type Description

variant Enumeration Selects variant (either a generic ISA or a specific model)

verbose Boolean Specify verbosity of output

suppressCPSWarnings Boolean Suppress duplicate warnings generated using
ARM CP CPSI or ARM CP CPSD message identi-
fiers

showHiddenRegs Boolean Show hidden registers during register tracing

UAL Boolean Disassemble using UAL syntax

enableSystemBus Boolean Add 32-bit artifact System bus port, allowing system reg-
isters to be externally implemented

enableSystemMonitorBus Boolean Add 32-bit artifact SystemMonitor bus port, allowing sys-
tem register accesses to be externally monitored

compatibility Enumeration Specify compatibility mode (ISA, gdb or nopSVC)

unpredictableR15 Enumeration Specify behavior for UNPREDICTABLE uses of AArch32
R15 register (undefined, nop, raz wi, execute or assert)

unpredictableModal Enumeration Specify behavior for UNPREDICTABLE instructions in
certain AArch32 modes (for example, MRS using SPSR
in System mode) (undefined, nop or assert)

maxSIMDUnroll Uns32 If SIMD operations are supported, specify the maximum
number of parallel SIMD operations to unroll (unrolled
operations can be faster, but produce more verbose JIT
code)

override debugMask Uns32 Specifies debug mask, enabling debug output for model
components

endian Endian Model endian

override fcsePresent Boolean Specifies that FCSE is present (if true)

override SCTLR V Boolean Override SCTLR.V with the passed value (enables high
vectors; also configurable using VINITHI pin)

override SCTLR IE Boolean Override SCTLR.IE with the passed value (configures in-
struction endianness; also configurable using CFGIE pin)

override SCTLR EE Boolean Override SCTLR.EE with the passed value (configures ex-
ception data endianness; also configurable using CFGEE
pin)

override SCTLR TE Boolean Override SCTLR.TE with the passed value (configures
Thumb state for exception handling; also configurable us-
ing TEINIT pin)

override SCTLR NMFI Boolean Override SCTLR.NMFI with the passed value (configures
NMFI state for exception handling; also configurable us-
ing CFGNMFI pin)

override SCTLR CP15BEN Present Boolean Enable ARMv7 SCTLR.CP15BEN bit (CP15 barrier en-
able)

15

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

override MIDR Uns32 Override MIDR/MIDR EL1 register

override CTR Uns32 Override CTR/CTR EL0 register

override CLIDR Uns32 Override CLIDR/CLIDR EL1 register

override AIDR Uns32 Override AIDR/AIDR EL1 register

override ERG Uns32 Specifies exclusive reservation granule

override STRoffsetPC12 Boolean Specifies that STR/STR of PC should do so with 12:byte
offset from the current instruction (if true), otherwise an
8:byte offset is used

override ignoreBadCp15 Boolean Specifies whether invalid coprocessor 15 access should be
ignored (if true) or cause Invalid Instruction exceptions
(if false)

override SGIDisable Boolean Override whether GIC SGIs may be disabled (if true) or
are permanently enabled (if false)

override condUndefined Boolean Force undefined instructions to take Undefined Instruc-
tion exception even if they are conditional

override deviceStrongAligned Boolean Force accesses to Device and Strongly Ordered regions to
be aligned

override Control V Boolean Override SCTLR.V with the passed value (deprecated,
use override SCTLR V)

override MainId Uns32 Override MIDR register (deprecated, use override MIDR)

override CacheType Uns32 Override CTR register (deprecated, use override CTR)

Table 8.1: Parameters that can be set in: CPU

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 16 of 24

Chapter 9

Execution Modes

Mode Code
User 16
FIQ 17
IRQ 18
Supervisor 19
Abort 23
Undefined 27
System 31

Table 9.1: Modes implemented in: CPU

17

Chapter 10

Exceptions

Exception Code
Reset 0
Undefined 1
SupervisorCall 2
PrefetchAbort 5
DataAbort 6
IRQ 8
FIQ 9

Table 10.1: Exceptions implemented in: CPU

18

Chapter 11

Hierarchy of the model

A CPU core may be configured to instance many processors of a Symmetrical Multi Processor
(SMP). A CPU core may also have sub elements within a processor, for example hardware threading
blocks.
OVP processor models can be written to include SMP blocks and to have many levels of hierarchy.
Some OVP CPU models may have a fixed hierarchy, and some may be configured by settings in a
configuration register. Please see the register definitions of this model.
This model documentation shows the settings and hierarchy of the default settings for this model
variant.

11.1 Level 1: CPU

This level in the model hierarchy has 3 commands.
This level in the model hierarchy has 10 register groups:

Group name Registers
Core 16
Control 3
User 7
FIQ 8
IRQ 3
Supervisor 3
Undefined 3
Abort 3
Coprocessor 32 bit 6
Integration support 3

Table 11.1: Register groups

This level in the model hierarchy has no children.

19

Chapter 12

Model Commands

A Processor model can implement one or more Model Commands available to be invoked from
the simulator command line, from the OP API or from the Imperas Multiprocessor Debugger.

12.1 Level 1: CPU

12.1.1 debugflags

show or modify the processor debug flags

Argument Type Description
-get Boolean print current processor flags value
-mask Boolean print valid debug flag bits
-set Int32 new processor flags (only flags 0x000003e4 can

be modified)
Table 12.1: debugflags command arguments

12.1.2 isync

specify instruction address range for synchronous execution

Argument Type Description
-addresshi Uns64 end address of synchronous execution range
-addresslo Uns64 start address of synchronous execution range

Table 12.2: isync command arguments

12.1.3 itrace

enable or disable instruction tracing

Argument Type Description
-after Uns64 apply after this many instructions
-enable Boolean enable instruction tracing
-instructioncount Boolean include the instruction number in each trace
-off Boolean disable instruction tracing

20

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

-on Boolean enable instruction tracing
-registerchange Boolean show registers changed by this instruction
-registers Boolean show registers after each trace

Table 12.3: itrace command arguments

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 21 of 24

Chapter 13

Registers

13.1 Level 1: CPU

13.1.1 Core

Registers at level:1, type:CPU group:Core

Name Bits Initial-Hex RW Description

r0 32 0 rw

r1 32 0 rw

r2 32 0 rw

r3 32 0 rw

r4 32 0 rw

r5 32 0 rw

r6 32 0 rw

r7 32 0 rw

r8 32 0 rw

r9 32 0 rw

r10 32 0 rw

r11 32 0 rw frame pointer

r12 32 0 rw

sp 32 0 rw stack pointer

lr 32 0 rw

pc 32 0 rw program counter

Table 13.1: Registers at level 1, type:CPU group:Core

13.1.2 Control

Registers at level:1, type:CPU group:Control

Name Bits Initial-Hex RW Description

fps 32 0 rw archaic FPSCR view (for gdb)

cpsr 32 d3 rw

spsr 32 0 rw

Table 13.2: Registers at level 1, type:CPU group:Control

13.1.3 User

Registers at level:1, type:CPU group:User

22

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

Name Bits Initial-Hex RW Description

r8 usr 32 0 rw

r9 usr 32 0 rw

r10 usr 32 0 rw

r11 usr 32 0 rw

r12 usr 32 0 rw

sp usr 32 0 rw

lr usr 32 0 rw

Table 13.3: Registers at level 1, type:CPU group:User

13.1.4 FIQ

Registers at level:1, type:CPU group:FIQ

Name Bits Initial-Hex RW Description

r8 fiq 32 0 rw

r9 fiq 32 0 rw

r10 fiq 32 0 rw

r11 fiq 32 0 rw

r12 fiq 32 0 rw

sp fiq 32 0 rw

lr fiq 32 0 rw

spsr fiq 32 0 rw

Table 13.4: Registers at level 1, type:CPU group:FIQ

13.1.5 IRQ

Registers at level:1, type:CPU group:IRQ

Name Bits Initial-Hex RW Description

sp irq 32 0 rw

lr irq 32 0 rw

spsr irq 32 0 rw

Table 13.5: Registers at level 1, type:CPU group:IRQ

13.1.6 Supervisor

Registers at level:1, type:CPU group:Supervisor

Name Bits Initial-Hex RW Description

sp svc 32 0 rw

lr svc 32 0 rw

spsr svc 32 0 rw

Table 13.6: Registers at level 1, type:CPU group:Supervisor

13.1.7 Undefined

Registers at level:1, type:CPU group:Undefined

Name Bits Initial-Hex RW Description

sp undef 32 0 rw

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 23 of 24

Imperas OVP Fast Processor Model Documentation for ARM ARM966E

lr undef 32 0 rw

spsr undef 32 0 rw

Table 13.7: Registers at level 1, type:CPU group:Undefined

13.1.8 Abort

Registers at level:1, type:CPU group:Abort

Name Bits Initial-Hex RW Description

sp abt 32 0 rw

lr abt 32 0 rw

spsr abt 32 0 rw

Table 13.8: Registers at level 1, type:CPU group:Abort

13.1.9 Coprocessor 32 bit

Registers at level:1, type:CPU group:Coprocessor 32 bit

Name Bits Initial-Hex RW Description

DataSynchBarrier 32 - -w Data Synchronization Barrier

MIDR 32 41259661 r- Main ID

SCTLR 32 f70 rw System Control

TRACEIDR 32 0 rw Trace ID

WaitForInterrupt 32 - -w Wait For Interrupt

WaitForInterrupt2 32 - -w Wait For Interrupt

Table 13.9: Registers at level 1, type:CPU group:Coprocessor 32 bit

13.1.10 Integration support

Registers at level:1, type:CPU group:Integration support

Name Bits Initial-Hex RW Description

transactPL 32 1 r- privilege level of current memory transaction

transactAT 32 0 r- current memory transaction type: PA=1, VA=0

HaltReason 8 0 r- bit field indicating halt reason

Table 13.10: Registers at level 1, type:CPU group:Integration support

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 24 of 24

	Overview
	Description
	Licensing
	Limitations
	Verification
	Features
	Core Features
	Memory System

	Debug Mask
	AArch32 Unpredictable Behavior
	Equal Target Registers
	Floating Point Load/Store Multiple Lists
	Floating Point VLD[2-4]/VST[2-4] Range Overflow
	If-Then (IT) Block Constraints
	Use of R13
	Use of R15
	Unpredictable Instructions in Some Modes

	Integration Support
	Halt Reason Introspection
	System Register Access Monitor
	System Register Implementation

	Configuration
	Location
	GDB Path
	Semi-Host Library
	Processor Endian-ness
	QuantumLeap Support
	Processor ELF code

	All Variants in this model
	Bus Master Ports
	Bus Slave Ports
	Net Ports
	FIFO Ports
	Formal Parameters
	Execution Modes
	Exceptions
	Hierarchy of the model
	Level 1: CPU

	Model Commands
	Level 1: CPU
	debugflags
	isync
	itrace

	Registers
	Level 1: CPU
	Core
	Control
	User
	FIQ
	IRQ
	Supervisor
	Undefined
	Abort
	Coprocessor_32_bit
	Integration_support

