
OVP Guide to Using Processor Models

Model specific information for
RISC-V RV32GCN

Imperas Software Limited
Imperas Buildings, North Weston

Thame, Oxfordshire, OX9 2HA, U.K.
docs@imperas.com

Author Imperas Software Limited
Version 20200630.0
Filename OVP Model Specific Information riscv RV32GCN.pdf
Created 2 July 2020
Status OVP Standard Release

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

Copyright Notice
Copyright (c) 2020 Imperas Software Limited. All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or copied
only in accordance with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas
Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the documentation for its
internal use only. Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United
States of America. Disclosure to nationals of other countries contrary to United States law is
prohibited. It is the readers responsibility to determine the applicable regulations and to comply
with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Model Release Status
This model is released as part of OVP releases and is included in OVPworld packages. Please
visit OVPworld.org.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page ii of 32

Contents

1 Overview 1
1.1 Description . 1
1.2 Licensing . 1
1.3 Extensions . 1

1.3.1 Available (But Not Enabled) Extensions . 2
1.4 General Features . 2
1.5 Floating Point Features . 4
1.6 CLIC . 4

1.6.1 CLIC Common Parameters . 4
1.6.2 CLIC Internal-Implementation Parameters 5
1.6.3 CLIC External-Implementation Net Port Interface 5

1.7 Load-Reserved/Store-Conditional Locking . 6
1.8 Active Atomic Operation Indication . 6
1.9 Interrupts . 7
1.10 Debug Mode . 8

1.10.1 Debug State Entry . 8
1.10.2 Debug State Exit . 9
1.10.3 Debug Registers . 9
1.10.4 Debug Mode Execution . 9
1.10.5 Debug Single Step . 9
1.10.6 Debug Ports . 10

1.11 Debug Mask . 10
1.12 Integration Support . 10

1.12.1 CSR Register External Implementation . 10
1.12.2 LR/SC Active Address . 10

1.13 Limitations . 10
1.14 Verification . 11
1.15 References . 11

2 Configuration 13
2.1 Location . 13
2.2 GDB Path . 13
2.3 Semi-Host Library . 13
2.4 Processor Endian-ness . 13
2.5 QuantumLeap Support . 13
2.6 Processor ELF code . 13

i

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

3 All Variants in this model 14

4 Bus Master Ports 15

5 Bus Slave Ports 16

6 Net Ports 17

7 FIFO Ports 18

8 Formal Parameters 19
8.1 Parameters with enumerated types . 20

8.1.1 Parameter user version . 20
8.1.2 Parameter priv version . 20
8.1.3 Parameter mstatus fs mode . 21
8.1.4 Parameter debug mode . 21

9 Execution Modes 22

10 Exceptions 23

11 Hierarchy of the model 24
11.1 Level 1: Hart . 24

12 Model Commands 25
12.1 Level 1: Hart . 25

12.1.1 dumpTLB . 25
12.1.1.1 Argument description . 25

12.1.2 isync . 25
12.1.3 itrace . 25

13 Registers 26
13.1 Level 1: Hart . 26

13.1.1 Core . 26
13.1.2 Floating point . 27
13.1.3 User Control and Status . 27
13.1.4 Supervisor Control and Status . 29
13.1.5 Machine Control and Status . 29
13.1.6 Integration support . 32

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page ii of 32

Chapter 1

Overview

This document provides the details of an OVP Fast Processor Model variant.

OVP Fast Processor Models are written in C and provide a C API for use in C based platforms.
The models also provide a native interface for use in SystemC TLM2 platforms.

The models are written using the OVP VMI API that provides a Virtual Machine Interface that
defines the behavior of the processor. The VMI API makes a clear line between model and simulator
allowing very good optimization and world class high speed performance. Most models are provided
as a binary shared object and also as source. This allows the download and use of the model binary
or the use of the source to explore and modify the model.

The models are run through an extensive QA and regression testing process and most model
families are validated using technology provided by the processor IP owners. There is a companion
document (OVP Guide to Using Processor Models) which explains the general concepts of OVP
Fast Processor Models and their use. It is downloadable from the OVPworld website documentation
pages.

1.1 Description

RISC-V RV32GCN 32-bit processor model

1.2 Licensing

This Model is released under the Open Source Apache 2.0

1.3 Extensions

The model has the following architectural extensions enabled, and the following bits in the misa
CSR Extensions field will be set upon reset:

misa bit 0: extension A (atomic instructions)

1

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

misa bit 2: extension C (compressed instructions)

misa bit 3: extension D (double-precision floating point)

misa bit 5: extension F (single-precision floating point)

misa bit 8: RV32I/64I/128I base ISA

misa bit 12: extension M (integer multiply/divide instructions)

misa bit 13: extension N (user-level interrupts)

misa bit 18: extension S (Supervisor mode)

misa bit 20: extension U (User mode)

To specify features that can be dynamically enabled or disabled by writes to the misa register in
addition to those listed above, use parameter “add Extensions mask”. This is a string parameter
containing the feature letters to add; for example, value “DV” indicates that double-precision
floating point and the Vector Extension can be enabled or disabled by writes to the misa register.

Legacy parameter “misa Extensions mask” can also be used. This Uns32-valued parameter specifies
all writable bits in the misa Extensions field, replacing any value defined in the base variant.

Note that any features that are indicated as present in the misa mask but absent in the misa will
be ignored. See the next section.

1.3.1 Available (But Not Enabled) Extensions

The following extensions are supported by the model, but not enabled by default in this variant:

misa bit 1: extension B (bit manipulation extension) (NOT ENABLED)

misa bit 4: RV32E base ISA (NOT ENABLED)

misa bit 21: extension V (vector extension) (NOT ENABLED)

misa bit 23: extension X (non-standard extensions present) (NOT ENABLED)

To add features from this list to the base variant, use parameter “add Extensions”. This is a
string parameter containing the feature letters to add; for example, value “DV” indicates that
double-precision floating point and the Vector Extension should be enabled, if they are absent.

Legacy parameter “misa Extensions” can also be used. This Uns32-valued parameter specifies the
reset value for the misa CSR Extensions field, replacing any value defined in the base variant.

1.4 General Features

On this variant, the Machine trap-vector base-address register (mtvec) is writable. It can instead
be configured as read-only using parameter “mtvec is ro”.

Values written to “mtvec” are masked using the value 0xfffffffd. A different mask of writable bits
may be specified using parameter “mtvec mask” if required. In addition, when Vectored interrupt
mode is enabled, parameter “tvec align” may be used to specify additional hardware-enforced base

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 2 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

address alignment. In this variant, “tvec align” defaults to 0, implying no alignment constraint.

The initial value of “mtvec” is 0x0. A different value may be specified using parameter “mtvec” if
required.

Values written to “stvec” are masked using the value 0xfffffffd. A different mask of writable bits
may be specified using parameter “stvec mask” if required. parameter “tvec align” may be used to
specify additional hardware-enforced base address alignment in the same manner as for the “mtvec”
register, described above.

Values written to “utvec” are masked using the value 0xfffffffd. A different mask of writable bits
may be specified using parameter “ucdtvec mask” if required. parameter “tvec align” may be used
to specify additional hardware-enforced base address alignment in the same manner as for the
“mtvec” register, described above.

On reset, the model will restart at address 0x0. A different reset address may be specified using
parameter “reset address” if required.

On an NMI, the model will restart at address 0x0. A different NMI address may be specified using
parameter “nmi address” if required.

WFI will halt the processor until an interrupt occurs. It can instead be configured as a NOP using
parameter “wfi is nop”. WFI timeout wait is implemented with a time limit of 0 (i.e. WFI causes
an Illegal Instruction trap in Supervisor mode when mstatus.TW=1).

The “cycle” CSR is implemented in this variant. Set parameter “cycle undefined” to True to instead
specify that “cycle” is unimplemented and reads of it should trap to Machine mode.

The “time” CSR is implemented in this variant. Set parameter “time undefined” to True to instead
specify that “time” is unimplemented and reads of it should trap to Machine mode. Usually, the
value of the “time” CSR should be provided by the platform - see notes below about the artifact
“CSR” bus for information about how this is done.

The “instret” CSR is implemented in this variant. Set parameter “instret undefined” to True to
instead specify that “instret” is unimplemented and reads of it should trap to Machine mode.

A 9-bit ASID is implemented. Use parameter “ASID bits” to specify a different implemented ASID
size if required.

This variant supports address translation modes 0 and 1. Use parameter “Sv modes” to specify a
bit mask of different modes if required.

Unaligned memory accesses are not supported by this variant. Set parameter “unaligned” to “T”
to enable such accesses.

Unaligned memory accesses are not supported for AMO instructions by this variant. Set parameter
“unalignedAMO” to “T” to enable such accesses.

16 PMP entries are implemented by this variant. Use parameter “PMP registers” to specify a
different number of PMP entries; set the parameter to 0 to disable the PMP unit. The PMP grain
size (G) is 0, meaning that PMP regions as small as 4 bytes are implemented. Use parameter
“PMP grain” to specify a different grain size if required.

LR/SC instructions are implemented with a 1-byte reservation granule. A different granule size
may be specified using parameter “lr sc grain”.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 3 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

1.5 Floating Point Features

The D extension is enabled in this variant independently of the F extension. Set parameter
“d requires f”to “T” to specify that the D extension requires the F extension to be enabled.

By default, the processor starts with floating-point instructions disabled (mstatus.FS=0). Use
parameter “mstatus FS” to force mstatus.FS to a non-zero value for floating-point to be enabled
from the start.

The specification is imprecise regarding the conditions under which mstatus.FS is set to Dirty state
(3). Parameter “mstatus fs mode” can be used to specify the required behavior in this model, as
described below.

If “mstatus fs mode” is set to “always dirty” then the model implements a simplified floating point
status view in which mstatus.FS holds values 0 (Off) and 3 (Dirty) only; any write of values 1
(Initial) or 2 (Clean) from privileged code behave as if value 3 was written.

If “mstatus fs mode” is set to “write 1” then mstatus.FS will be set to 3 (Dirty) by any explicit
write to the fflags, frm or fcsr control registers, or by any executed instruction that writes an FPR,
or by any executed floating point compare or conversion to integer/unsigned that signals a floating
point exception. Floating point compare or conversion to integer/unsigned instructions that do not
signal an exception will not set mstatus.FS.

If “mstatus fs mode” is set to “write any” then mstatus.FS will be set to 3 (Dirty) by any explicit
write to the fflags, frm or fcsr control registers, or by any executed instruction that writes an FPR,
or by any executed floating point compare or conversion even if those instructions do not signal a
floating point exception.

In this variant, “mstatus fs mode” is set to “write 1”.

1.6 CLIC

The model can be configured to implement a Core Local Interrupt Controller (CLIC) using param-
eter “CLICLEVELS”; when non-zero, the CLIC is present with the specified number of interrupt
levels (2-256), as described in the RISC-V Core-Local Interrupt Controller specification (see ref-
erences). When “CLICLEVELS” is non-zero, further parameters are made available to configure
other aspects of the CLIC, as described below.

The model can configured either to use an internal CLIC model (if parameter “externalCLIC” is
False) or to present a net interface to allow the CLIC to be implemented externally in a platform
component (if parameter “externalCLIC” is True). When the CLIC is implemented internally,
net ports for standard interrupts and additional local interrupts are available. When the CLIC is
implemented externally, a net port interface allowing the highest-priority pending interrupt to be
delivered is instead present. This is described below.

1.6.1 CLIC Common Parameters

This section describes parameters applicable whether the CLIC is implemented internally or exter-
nally. These are:

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 4 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

“CLICANDBASIC”: this Boolean parameter indicates whether both CLIC and basic interrupt
controller are present (if True) or whether only the CLIC is present (if False).

“CLICXNXTI”: this Boolean parameter indicates whether xnxti CSRs are implemented (if True)
or unimplemented (if False).

“CLICXCSW”: this Boolean parameter indicates whether xscratchcsw and xscratchcswl CSRs reg-
isters are implemented (if True) or unimplemented (if False).

“mclicbase”: this parameter specifies the CLIC base address in physical memory.

“tvt undefined”: this Boolean parameter indicates whether xtvt CSRs registers are implemented
(if True) or unimplemented (if False). If the registers are unimplemented then the model will use
basic mode vectored interrupt semantics based on the xtvec CSRs instead of Selective Hardware
Vectoring semantics described in the specification.

“intthresh undefined”: this Boolean parameter indicates whether xintthresh CSRs registers are
implemented (if True) or unimplemented (if False).

“mclicbase undefined”: this Boolean parameter indicates whether the mclicbase CSR register is
implemented (if True) or unimplemented (if False).

1.6.2 CLIC Internal-Implementation Parameters

This section describes parameters applicable only when the CLIC is implemented internally. These
are:

“CLICCFGMBITS”: this Uns32 parameter indicates the number of bits implemented in clic-
cfg.nmbits, and also indirectly defines CLICPRIVMODES. For cores which implement only Machine
mode, or which implement Machine and User modes but not the N extension, the parameter is
absent (“CLICCFGMBITS” must be zero in these cases).

“CLICCFGLBITS”: this Uns32 parameter indicates the number of bits implemented in clic-
cfg.nlbits.

“CLICSELHVEC”: this Boolean parameter indicates whether Selective Hardware Vectoring is sup-
ported (if True) or unsupported (if False).

1.6.3 CLIC External-Implementation Net Port Interface

When the CLIC is externally implemented, net ports are present allowing the external CLIC model
to supply the highest-priority pending interrupt and to be notified when interrupts are handled.
These are:

“irq id i”: this input should be written with the id of the highest-priority pending interrupt.

“irq lev i”: this input should be written with the highest-priority interrupt level.

“irq sec i”: this 2-bit input should be written with the highest-priority interrupt security state
(00:User, 01:Supervisor, 11:Machine).

“irq shv i”: this input port should be written to indicate whether the highest-priority interrupt
should be direct (0) or vectored (1). If the “tvt undefined parameter” is False, vectored interrupts

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 5 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

will use selective hardware vectoring, as described in the CLIC specification. If “tvt undefined” is
True, vectored interrupts will behave like basic mode vectored interrupts.

“irq id i”: this input should be written with the id of the highest-priority pending interrupt.

“irq i”: this input should be written with 1 to indicate that the external CLIC is presenting an
interrupt, or 0 if no interrupt is being presented.

“irq ack o”: this output is written by the model on entry to the interrupt handler (i.e. when the
interrupt is taken). It will be written as an instantaneous pulse (i.e. written to 1, then immediately
0).

“irq id o”: this output is written by the model with the id of the interrupt currently being handled.
It is valid during the instantaneous irq ack o pulse.

“sec lvl o”: this output signal indicates the current secure status of the processor, as a 2-bit value
(00=User, 01:Supervisor, 11=Machine).

1.7 Load-Reserved/Store-Conditional Locking

By default, LR/SC locking is implemented automatically by the model and simulator, with a
reservation granule defined by the “lr sc grain” parameter. It is also possible to implement lock-
ing externally to the model in a platform component, using the “LR address”, “SC address” and
“SC valid” net ports, as described below.

The “LR address” output net port is written by the model with the address used by a load-
reserved instruction as it executes. This port should be connected as an input to the external lock
management component, which should record the address, and also that an LR/SC transaction is
active.

The “SC address” output net port is written by the model with the address used by a store-
conditional instruction as it executes. This should be connected as an input to the external lock
management component, which should compare the address with the previously-recorded load-
reserved address, and determine from this (and other implementation-specific constraints) whether
the store should succeed. It should then immediately write the Boolean success/fail code to the
“SC valid” input net port of the model. Finally, it should update state to indicate that an LR/SC
transaction is no longer active.

It is also possible to write zero to the “SC valid” input net port at any time outside the context of
a store-conditional instruction, which will mark any active LR/SC transaction as invalid.

Irrespective of whether LR/SC locking is implemented internally or externally, taking any exception
or interrupt or executing exception-return instructions (e.g. MRET) will always mark any active
LR/SC transaction as invalid.

1.8 Active Atomic Operation Indication

The “AMO active” output net port is written by the model with a code indicating any current
atomic memory operation while the instruction is active. The written codes are:

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 6 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

0: no atomic instruction active

1: AMOMIN active

2: AMOMAX active

3: AMOMINU active

4: AMOMAXU active

5: AMOADD active

6: AMOXOR active

7: AMOOR active

8: AMOAND active

9: AMOSWAP active

10: LR active

11: SC active

1.9 Interrupts

The “reset” port is an active-high reset input. The processor is halted when “reset” goes high and
resumes execution from the reset address specified using the “reset address” parameter when the
signal goes low. The “mcause” register is cleared to zero.

The “nmi” port is an active-high NMI input. The processor resumes execution from the address
specified using the “nmi address” parameter when the NMI signal goes high. The “mcause” register
is cleared to zero.

All other interrupt ports are active high. For each implemented privileged execution level, there are
by default input ports for software interrupt, timer interrupt and external interrupt; for example,
for Machine mode, these are called “MSWInterrupt”, “MTimerInterrupt” and “MExternalInter-
rupt”, respectively. When the N extension is implemented, ports are also present for User mode.
Parameter “unimp int mask” allows the default behavior to be changed to exclude certain inter-
rupt ports. The parameter value is a mask in the same format as the “mip” CSR; any interrupt
corresponding to a non-zero bit in this mask will be removed from the processor and read as zero
in “mip”, “mie” and “mideleg” CSRs (and Supervisor and User mode equivalents if implemented).

Parameter “external int id” can be used to enable extra interrupt ID input ports on each hart. If
the parameter is True then when an external interrupt is applied the value on the ID port is sampled
and used to fill the Exception Code field in the “mcause” CSR (or the equivalent CSR for other
execution levels). For Machine mode, the extra interrupt ID port is called “MExternalInterruptID”.

The “deferint” port is an active-high artifact input that, when written to 1, prevents any pending-
and-enabled interrupt being taken (normally, such an interrupt would be taken on the next instruc-
tion after it becomes pending-and-enabled). The purpose of this signal is to enable alignment with
hardware models in step-and-compare usage.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 7 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

1.10 Debug Mode

The model can be configured to implement Debug mode using parameter “debug mode”. This
implements features described in Chapter 4 of the RISC-V External Debug Support specification
(see References). Some aspects of this mode are not defined in the specification because they are
implementation-specific; the model provides infrastructure to allow implementation of a Debug
Module using a custom harness. Features added are described below.

Parameter “debug mode” can be used to specify three different behaviors, as follows:

1. If set to value “vector”, then operations that would cause entry to Debug mode result in the
processor jumping to the address specified by the “debug address” parameter. It will execute
at this address, in Debug mode, until a “dret” instruction causes return to non-Debug mode.
Any exception generated during this execution will cause a jump to the address specified by the
“dexc address” parameter.

2. If set to value “interrupt”, then operations that would cause entry to Debug mode result
in the processor simulation call (e.g. opProcessorSimulate) returning, with a stop reason of
OP SR INTERRUPT. In this usage scenario, the Debug Module is implemented in the simula-
tion harness.

3. If set to value “halt”, then operations that would cause entry to Debug mode result in the
processor halting. Depending on the simulation environment, this might cause a return from the
simulation call with a stop reason of OP SR HALT, or debug mode might be implemented by
another platform component which then restarts the debugged processor again.

1.10.1 Debug State Entry

The specification does not define how Debug mode is implemented. In this model, Debug mode
is enabled by a Boolean pseudo-register, “DM”. When “DM” is True, the processor is in Debug
mode. When “DM” is False, mode is defined by “mstatus” in the usual way.

Entry to Debug mode can be performed in any of these ways:

1. By writing True to register “DM” (e.g. using opProcessorRegWrite) followed by simulation of
at least one cycle (e.g. using opProcessorSimulate);

2. By writing a 1 then 0 to net “haltreq” (using opNetWrite) followed by simulation of at least one
cycle (e.g. using opProcessorSimulate);

3. By writing a 1 to net “resethaltreq” (using opNetWrite) while the “reset” signal undergoes a
negedge transition, followed by simulation of at least one cycle (e.g. using opProcessorSimulate);

4. By executing an “ebreak” instruction when Debug mode entry for the current processor mode
is enabled by dcsr.ebreakm, dcsr.ebreaks or dcsr.ebreaku.

In all cases, the processor will save required state in “dpc” and “dcsr” and then perform actions
described above, depending in the value of the “debug mode” parameter.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 8 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

1.10.2 Debug State Exit

Exit from Debug mode can be performed in any of these ways:

1. By writing False to register “DM” (e.g. using opProcessorRegWrite) followed by simulation of
at least one cycle (e.g. using opProcessorSimulate);

2. By executing an “dret” instruction when Debug mode.

In both cases, the processor will perform the steps described in section 4.6 (Resume) of the Debug
specification.

1.10.3 Debug Registers

When Debug mode is enabled, registers “dcsr”, “dpc”, “dscratch0” and “dscratch1” are imple-
mented as described in the specification. These may be manipulated externally by a Debug Module
using opProcessorRegRead or opProcessorRegWrite; for example, the Debug Module could write
“dcsr” to enable “ebreak” instruction behavior as described above, or read and write “dpc” to
emulate stepping over an “ebreak” instruction prior to resumption from Debug mode.

1.10.4 Debug Mode Execution

The specification allows execution of code fragments in Debug mode. A Debug Module implemen-
tation can cause execution in Debug mode by the following steps:

1. Write the address of a Program Buffer to the program counter using opProcessorPCSet;

2. If “debug mode” is set to “halt”, write 0 to pseudo-register “DMStall” (to leave halted state);

3. If entry to Debug mode was handled by exiting the simulation callback, call opProcessorSimulate
or opRootModuleSimulate to resume simulation.

Debug mode will be re-entered in these cases:

1. By execution of an “ebreak” instruction; or:

2. By execution of an instruction that causes an exception.

In both cases, the processor will either jump to the debug exception address, or return control
immediately to the harness, with stopReason of OP SR INTERRUPT, or perform a halt, depending
on the value of the “debug mode” parameter.

1.10.5 Debug Single Step

When in Debug mode, the processor or harness can cause a single instruction to be executed
on return from that mode by setting dcsr.step. After one non-Debug-mode instruction has been
executed, control will be returned to the harness. The processor will remain in single-step mode
until dcsr.step is cleared.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 9 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

1.10.6 Debug Ports

Port “DM” is an output signal that indicates whether the processor is in Debug mode

Port “haltreq” is a rising-edge-triggered signal that triggers entry to Debug mode (see above).

Port “resethaltreq” is a level-sensitive signal that triggers entry to Debug mode after reset (see
above).

1.11 Debug Mask

It is possible to enable model debug messages in various categories. This can be done statically using
the “override debugMask” parameter, or dynamically using the “debugflags” command. Enabled
messages are specified using a bitmask value, as follows:

Value 0x002: enable debugging of PMP and virtual memory state;

Value 0x004: enable debugging of interrupt state.

All other bits in the debug bitmask are reserved and must not be set to non-zero values.

1.12 Integration Support

This model implements a number of non-architectural pseudo-registers and other features to facil-
itate integration.

1.12.1 CSR Register External Implementation

If parameter “enable CSR bus” is True, an artifact 16-bit bus “CSR” is enabled. Slave callbacks
installed on this bus can be used to implement modified CSR behavior (use opBusSlaveNew or
icmMapExternalMemory, depending on the client API). A CSR with index 0xABC is mapped on
the bus at address 0xABC0; as a concrete example, implementing CSR “time” (number 0xC01)
externally requires installation of callbacks at address 0xC010 on the CSR bus.

1.12.2 LR/SC Active Address

Artifact register “LRSCAddress” shows the active LR/SC lock address. The register holds all-ones
if there is no LR/SC operation active or if LR/SC locking is implemented externally as described
above.

1.13 Limitations

Instruction pipelines are not modeled in any way. All instructions are assumed to complete imme-
diately. This means that instruction barrier instructions (e.g. fence.i) are treated as NOPs, with
the exception of any Illegal Instruction behavior, which is modeled.

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 10 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

Caches and write buffers are not modeled in any way. All loads, fetches and stores complete
immediately and in order, and are fully synchronous. Data barrier instructions (e.g. fence) are
treated as NOPs, with the exception of any Illegal Instruction behavior, which is modeled.

Real-world timing effects are not modeled: all instructions are assumed to complete in a single
cycle.

The processor fully supports the architecturally-specified floating-point instructions.

Hardware Performance Monitor and Debug registers are not implemented and hardwired to zero.

The TLB is architecturally-accurate but not device accurate. This means that all TLB maintenance
and address translation operations are fully implemented but the cache is larger than in the real
device.

1.14 Verification

All instructions have been extensively tested by Imperas, using tests generated specifically for this
model and also reference tests from https://github.com/riscv/riscv-tests.

Also reference tests have been used from various sources including:

https://github.com/riscv/riscv-tests

https://github.com/ucb-bar/riscv-torture

The Imperas OVPsim RISC-V models are used in the RISC-V Foundations Compliance Framework
as a functional Golden Reference:

https://github.com/riscv/riscv-compliance

where the simulated model is used to provide the reference signatures for compliance testing.
The Imperas OVPsim RISC-V models are used as reference in both open source and commercial
instruction stream test generators for hardware design verification, for example:

http://valtrix.in/sting/ from Valtrix

https://github.com/google/riscv-dv from Google

The Imperas OVPsim RISC-V models are also used by commercial and open source RISC-V Core
RTL developers as a reference to ensure correct functionality of their IP.

1.15 References

The Model details are based upon the following specifications:

RISC-V Instruction Set Manual, Volume I: User-Level ISA (User Architecture Version 20190305-
Base-Ratification)

RISC-V Instruction Set Manual, Volume II: Privileged Architecture (Privileged Architecture Ver-
sion 20190405-Priv-MSU-Ratification)

RISC-V Core-Local Interrupt Controller (CLIC) Version 0.9-draft-20191208

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 11 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

RISC-V External Debug Support Version 0.14.0-DRAFT

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 12 of 32

Chapter 2

Configuration

2.1 Location

This model’s VLNV is riscv.ovpworld.org/processor/riscv/1.0.
The model source is usually at:
$IMPERAS HOME/ImperasLib/source/riscv.ovpworld.org/processor/riscv/1.0
The model binary is usually at:
$IMPERAS HOME/lib/$IMPERAS ARCH/ImperasLib/riscv.ovpworld.org/processor/riscv/1.0

2.2 GDB Path

The default GDB for this model is: $IMPERAS HOME/lib/$IMPERAS ARCH/gdb/riscv-none-
embed-gdb.

2.3 Semi-Host Library

The default semi-host library file is riscv.ovpworld.org/semihosting/pk/1.0

2.4 Processor Endian-ness

This is a LITTLE endian model.

2.5 QuantumLeap Support

This processor is qualified to run in a QuantumLeap enabled simulator.

2.6 Processor ELF code

The ELF code supported by this model is: 0xf3.

13

Chapter 3

All Variants in this model

This model has these variants

Variant Description
RV32I
RV32IM
RV32IMC
RV32IMAC
RV32G
RV32GC
RV32GCB
RV32GCN (described in this document)
RV32GCV
RV32E
RV32EC
RV64I
RV64IM
RV64IMC
RV64IMAC
RV64G
RV64GC
RV64GCB
RV64GCN
RV64GCV
RVB32I
RVB32E
RVB64I

Table 3.1: All Variants in this model

14

Chapter 4

Bus Master Ports

This model has these bus master ports.

Name min max Connect? Description
INSTRUCTION 32 34 mandatory Instruction bus
DATA 32 34 optional Data bus

Table 4.1: Bus Master Ports

15

Chapter 5

Bus Slave Ports

This model has no bus slave ports.

16

Chapter 6

Net Ports

This model has these net ports.

Name Type Connect? Description
reset input optional Reset
nmi input optional NMI
USWInterrupt input optional User software interrupt
SSWInterrupt input optional Supervisor software interrupt
MSWInterrupt input optional Machine software interrupt
UTimerInterrupt input optional User timer interrupt
STimerInterrupt input optional Supervisor timer interrupt
MTimerInterrupt input optional Machine timer interrupt
UExternalInterrupt input optional User external interrupt
SExternalInterrupt input optional Supervisor external interrupt
MExternalInterrupt input optional Machine external interrupt
irq ack o output optional interrupt acknowledge (pulse)
irq id o output optional acknowledged interrupt id (valid during

irq ack o pulse)
sec lvl o output optional current privilege level
LR address output optional Port written with effective address for LR

instruction
SC address output optional Port written with effective address for SC

instruction
SC valid input optional SC address valid input signal
AMO active output optional Port written with code indicating active

AMO
deferint input optional Artifact signal causing interrupts to be

held off when high
Table 6.1: Net Ports

17

Chapter 7

FIFO Ports

This model has no FIFO ports.

18

Chapter 8

Formal Parameters

Name Type Description

variant Enumeration Selects variant (either a generic UISA or a specific model)

user version Enumeration Specify required User Architecture version (2.2, 2.3 or 20190305)

priv version Enumeration Specify required Privileged Architecture version (1.10, 1.11, 20190405 or
master)

mstatus fs mode Enumeration Specify conditions causing update of mstatus.FS to dirty (write 1, write any
or always dirty)

debug mode Enumeration Specify how Debug mode is implemented (none, vector, interrupt or halt)

debug address Uns64 Specify address to which to jump to enter debug in vectored mode

dexc address Uns64 Specify address to which to jump on debug exception in vectored mode

verbose Boolean Specify verbose output messages

numHarts Uns32 Specify the number of hart contexts in a multiprocessor

updatePTEA Boolean Specify whether hardware update of PTE A bit is supported

updatePTED Boolean Specify whether hardware update of PTE D bit is supported

unaligned Boolean Specify whether the processor supports unaligned memory accesses

unalignedAMO Boolean Specify whether the processor supports unaligned memory accesses for AMO
instructions

wfi is nop Boolean Specify whether WFI should be treated as a NOP (if not, halt while waiting
for interrupts)

mtvec is ro Boolean Specify whether mtvec CSR is read-only

tvec align Uns32 Specify hardware-enforced alignment of mtvec/stvec/utvec when Vectored
interrupt mode enabled

counteren mask Uns32 Specify hardware-enforced mask of writable bits in mcounteren/scounteren
registers

mtvec mask Uns64 Specify hardware-enforced mask of writable bits in mtvec register

stvec mask Uns64 Specify hardware-enforced mask of writable bits in stvec register

utvec mask Uns64 Specify hardware-enforced mask of writable bits in utvec register

ecode mask Uns64 Specify hardware-enforced mask of writable bits in xcause.ExceptionCode

ecode nmi Uns64 Specify xcause.ExceptionCode for NMI

tval zero Boolean Specify whether mtval/stval/utval are hard wired to zero

tval ii code Boolean Specify whether mtval/stval contain faulting instruction bits on illegal in-
struction exception

cycle undefined Boolean Specify that the cycle CSR is undefined (reads to it are emulated by a
Machine mode trap)

time undefined Boolean Specify that the time CSR is undefined (reads to it are emulated by a Ma-
chine mode trap)

instret undefined Boolean Specify that the instret CSR is undefined (reads to it are emulated by a
Machine mode trap)

enable CSR bus Boolean Add artifact CSR bus port, allowing CSR registers to be externally imple-
mented

19

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

d requires f Boolean If D and F extensions are separately enabled in the misa CSR, whether D
is enabled only if F is enabled

xret preserves lr Boolean Whether an xRET instruction preserves the value of LR

ASID bits Uns32 Specify the number of implemented ASID bits

lr sc grain Uns32 Specify byte granularity of ll/sc lock region (constrained to a power of two)

reset address Uns64 Override reset vector address

nmi address Uns64 Override NMI vector address

PMP grain Uns32 Specify PMP region granularity, G (0 =>4 bytes, 1 =>8 bytes, etc)

PMP registers Uns32 Specify the number of implemented PMP address registers

Sv modes Uns32 Specify bit mask of implemented Sv modes (e.g. 1<<8 is Sv39)

local int num Uns32 Specify number of supplemental local interrupts

unimp int mask Uns64 Specify mask of unimplemented interrupts (e.g. 1<<9 indicates Supervisor
external interrupt unimplemented)

force mideleg Uns64 Specify mask of interrupts always delegated to lower-priority execution level
from Machine execution level

force sideleg Uns64 Specify mask of interrupts always delegated to User execution level from
Supervisor execution level

no ideleg Uns64 Specify mask of interrupts that cannot be delegated to lower-priority execu-
tion levels

no edeleg Uns64 Specify mask of exceptions that cannot be delegated to lower-priority exe-
cution levels

external int id Boolean Whether to add nets allowing External Interrupt ID codes to be forced

endian Endian Model endian

misa MXL Uns32 Override default value of misa.MXL

misa MXL mask Uns32 Override mask of writable bits in misa.MXL

misa Extensions Uns32 Override default value of misa.Extensions

add Extensions String Add extensions specified by letters to misa.Extensions (for example, specify
“VD” to add V and D features)

misa Extensions mask Uns32 Override mask of writable bits in misa.Extensions

add Extensions mask String Add extensions specified by letters to mask of writable bits in
misa.Extensions (for example, specify “VD” to add V and D features)

mvendorid Uns64 Override mvendorid register

marchid Uns64 Override marchid register

mimpid Uns64 Override mimpid register

mhartid Uns64 Override mhartid register (or first mhartid of an incrementing sequence if
this is an SMP variant)

mtvec Uns64 Override mtvec register

mstatus FS Uns32 Override default value of mstatus.FS (initial state of floating point unit)

CLICLEVELS Uns32 Specify number of interrupt levels implemented by CLIC, or 0 if CLIC absent

Table 8.1: Parameters that can be set in: Hart

8.1 Parameters with enumerated types

8.1.1 Parameter user version

Set to this value Description

2.2 User Architecture Version 2.2

2.3 Deprecated and equivalent to 20190305

20190305 User Architecture Version 20190305-Base-Ratification

Table 8.2: Values for Parameter user version

8.1.2 Parameter priv version

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 20 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

Set to this value Description

1.10 Privileged Architecture Version 1.10

1.11 Deprecated and equivalent to 20190405

20190405 Privileged Architecture Version 20190405-Priv-MSU-Ratification

master Privileged Architecture Master Branch (1.12 draft)

Table 8.3: Values for Parameter priv version

8.1.3 Parameter mstatus fs mode

Set to this value Description

write 1 Any non-zero flag result sets mstatus.fs dirty

write any Any write of flags sets mstatus.fs dirty

always dirty mstatus.fs is either off or dirty

Table 8.4: Values for Parameter mstatus fs mode

8.1.4 Parameter debug mode

Set to this value Description

none Debug mode not implemented

vector Debug mode implemented by execution at vector

interrupt Debug mode implemented by interrupt

halt Debug mode implemented by halt

Table 8.5: Values for Parameter debug mode

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 21 of 32

Chapter 9

Execution Modes

Mode Code Description
User 0 User mode
Supervisor 1 Supervisor mode
Machine 3 Machine mode

Table 9.1: Modes implemented in: Hart

22

Chapter 10

Exceptions

Exception Code Description
InstructionAddressMisaligned 0 Fetch from unaligned address
InstructionAccessFault 1 No access permission for fetch
IllegalInstruction 2 Undecoded, unimplemented or disabled instruc-

tion
Breakpoint 3 EBREAK instruction executed
LoadAddressMisaligned 4 Load from unaligned address
LoadAccessFault 5 No access permission for load
StoreAMOAddressMisaligned 6 Store/atomic memory operation at unaligned

address
StoreAMOAccessFault 7 No access permission for store/atomic memory

operation
EnvironmentCallFromUMode 8 ECALL instruction executed in User mode
EnvironmentCallFromSMode 9 ECALL instruction executed in Supervisor

mode
EnvironmentCallFromMMode 11 ECALL instruction executed in Machine mode
InstructionPageFault 12 Page fault at fetch address
LoadPageFault 13 Page fault at load address
StoreAMOPageFault 15 Page fault at store/atomic memory operation

address
USWInterrupt 64 User software interrupt
SSWInterrupt 65 Supervisor software interrupt
MSWInterrupt 67 Machine software interrupt
UTimerInterrupt 68 User timer interrupt
STimerInterrupt 69 Supervisor timer interrupt
MTimerInterrupt 71 Machine timer interrupt
UExternalInterrupt 72 User external interrupt
SExternalInterrupt 73 Supervisor external interrupt
MExternalInterrupt 75 Machine external interrupt

Table 10.1: Exceptions implemented in: Hart

23

Chapter 11

Hierarchy of the model

A CPU core may be configured to instance many processors of a Symmetrical Multi Processor
(SMP). A CPU core may also have sub elements within a processor, for example hardware threading
blocks.
OVP processor models can be written to include SMP blocks and to have many levels of hierarchy.
Some OVP CPU models may have a fixed hierarchy, and some may be configured by settings in a
configuration register. Please see the register definitions of this model.
This model documentation shows the settings and hierarchy of the default settings for this model
variant.

11.1 Level 1: Hart

This level in the model hierarchy has 3 commands.
This level in the model hierarchy has 6 register groups:

Group name Registers
Core 33
Floating point 32
User Control and Status 75
Supervisor Control and Status 12
Machine Control and Status 132
Integration support 2

Table 11.1: Register groups

This level in the model hierarchy has no children.

24

Chapter 12

Model Commands

A Processor model can implement one or more Model Commands available to be invoked from
the simulator command line, from the OP API or from the Imperas Multiprocessor Debugger.

12.1 Level 1: Hart

12.1.1 dumpTLB

12.1.1.1 Argument description

show TLB contents

12.1.2 isync

specify instruction address range for synchronous execution

Argument Type Description
-addresshi Uns64 end address of synchronous execution range
-addresslo Uns64 start address of synchronous execution range

Table 12.1: isync command arguments

12.1.3 itrace

enable or disable instruction tracing

Argument Type Description
-after Uns64 apply after this many instructions
-enable Boolean enable instruction tracing
-instructioncount Boolean include the instruction number in each trace
-off Boolean disable instruction tracing
-on Boolean enable instruction tracing
-registerchange Boolean show registers changed by this instruction
-registers Boolean show registers after each trace

Table 12.2: itrace command arguments

25

Chapter 13

Registers

13.1 Level 1: Hart

13.1.1 Core

Registers at level:1, type:Hart group:Core

Name Bits Initial-Hex RW Description

zero 32 0 r-

ra 32 0 rw

sp 32 0 rw stack pointer

gp 32 0 rw

tp 32 0 rw

t0 32 0 rw

t1 32 0 rw

t2 32 0 rw

s0 32 0 rw

s1 32 0 rw

a0 32 0 rw

a1 32 0 rw

a2 32 0 rw

a3 32 0 rw

a4 32 0 rw

a5 32 0 rw

a6 32 0 rw

a7 32 0 rw

s2 32 0 rw

s3 32 0 rw

s4 32 0 rw

s5 32 0 rw

s6 32 0 rw

s7 32 0 rw

s8 32 0 rw

s9 32 0 rw

s10 32 0 rw

s11 32 0 rw

t3 32 0 rw

t4 32 0 rw

t5 32 0 rw

t6 32 0 rw

pc 32 0 rw program counter

26

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

Table 13.1: Registers at level 1, type:Hart group:Core

13.1.2 Floating point

Registers at level:1, type:Hart group:Floating point

Name Bits Initial-Hex RW Description

ft0 64 0 rw

ft1 64 0 rw

ft2 64 0 rw

ft3 64 0 rw

ft4 64 0 rw

ft5 64 0 rw

ft6 64 0 rw

ft7 64 0 rw

fs0 64 0 rw

fs1 64 0 rw

fa0 64 0 rw

fa1 64 0 rw

fa2 64 0 rw

fa3 64 0 rw

fa4 64 0 rw

fa5 64 0 rw

fa6 64 0 rw

fa7 64 0 rw

fs2 64 0 rw

fs3 64 0 rw

fs4 64 0 rw

fs5 64 0 rw

fs6 64 0 rw

fs7 64 0 rw

fs8 64 0 rw

fs9 64 0 rw

fs10 64 0 rw

fs11 64 0 rw

ft8 64 0 rw

ft9 64 0 rw

ft10 64 0 rw

ft11 64 0 rw

Table 13.2: Registers at level 1, type:Hart group:Floating point

13.1.3 User Control and Status

Registers at level:1, type:Hart group:User Control and Status

Name Bits Initial-Hex RW Description

ustatus 32 0 rw User Status

fflags 32 0 rw Floating-Point Flags

frm 32 0 rw Floating-Point Rounding Mode

fcsr 32 0 rw Floating-Point Control and Status

uie 32 0 rw User Interrupt Enable

utvec 32 0 rw User Trap-Vector Base-Address

uscratch 32 0 rw User Scratch

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 27 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

uepc 32 0 rw User Exception Program Counter

ucause 32 0 rw User Cause

utval 32 0 rw User Trap Value

uip 32 0 rw User Interrupt Pending

cycle 32 0 r- Cycle Counter

time 32 0 r- Timer

instret 32 0 r- Instructions Retired

hpmcounter3 32 0 r- Performance Monitor Counter 3

hpmcounter4 32 0 r- Performance Monitor Counter 4

hpmcounter5 32 0 r- Performance Monitor Counter 5

hpmcounter6 32 0 r- Performance Monitor Counter 6

hpmcounter7 32 0 r- Performance Monitor Counter 7

hpmcounter8 32 0 r- Performance Monitor Counter 8

hpmcounter9 32 0 r- Performance Monitor Counter 9

hpmcounter10 32 0 r- Performance Monitor Counter 10

hpmcounter11 32 0 r- Performance Monitor Counter 11

hpmcounter12 32 0 r- Performance Monitor Counter 12

hpmcounter13 32 0 r- Performance Monitor Counter 13

hpmcounter14 32 0 r- Performance Monitor Counter 14

hpmcounter15 32 0 r- Performance Monitor Counter 15

hpmcounter16 32 0 r- Performance Monitor Counter 16

hpmcounter17 32 0 r- Performance Monitor Counter 17

hpmcounter18 32 0 r- Performance Monitor Counter 18

hpmcounter19 32 0 r- Performance Monitor Counter 19

hpmcounter20 32 0 r- Performance Monitor Counter 20

hpmcounter21 32 0 r- Performance Monitor Counter 21

hpmcounter22 32 0 r- Performance Monitor Counter 22

hpmcounter23 32 0 r- Performance Monitor Counter 23

hpmcounter24 32 0 r- Performance Monitor Counter 24

hpmcounter25 32 0 r- Performance Monitor Counter 25

hpmcounter26 32 0 r- Performance Monitor Counter 26

hpmcounter27 32 0 r- Performance Monitor Counter 27

hpmcounter28 32 0 r- Performance Monitor Counter 28

hpmcounter29 32 0 r- Performance Monitor Counter 29

hpmcounter30 32 0 r- Performance Monitor Counter 30

hpmcounter31 32 0 r- Performance Monitor Counter 31

cycleh 32 0 r- Cycle Counter High

timeh 32 0 r- Timer High

instreth 32 0 r- Instructions Retired High

hpmcounterh3 32 0 r- Performance Monitor High 3

hpmcounterh4 32 0 r- Performance Monitor High 4

hpmcounterh5 32 0 r- Performance Monitor High 5

hpmcounterh6 32 0 r- Performance Monitor High 6

hpmcounterh7 32 0 r- Performance Monitor High 7

hpmcounterh8 32 0 r- Performance Monitor High 8

hpmcounterh9 32 0 r- Performance Monitor High 9

hpmcounterh10 32 0 r- Performance Monitor High 10

hpmcounterh11 32 0 r- Performance Monitor High 11

hpmcounterh12 32 0 r- Performance Monitor High 12

hpmcounterh13 32 0 r- Performance Monitor High 13

hpmcounterh14 32 0 r- Performance Monitor High 14

hpmcounterh15 32 0 r- Performance Monitor High 15

hpmcounterh16 32 0 r- Performance Monitor High 16

hpmcounterh17 32 0 r- Performance Monitor High 17

hpmcounterh18 32 0 r- Performance Monitor High 18

hpmcounterh19 32 0 r- Performance Monitor High 19

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 28 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

hpmcounterh20 32 0 r- Performance Monitor High 20

hpmcounterh21 32 0 r- Performance Monitor High 21

hpmcounterh22 32 0 r- Performance Monitor High 22

hpmcounterh23 32 0 r- Performance Monitor High 23

hpmcounterh24 32 0 r- Performance Monitor High 24

hpmcounterh25 32 0 r- Performance Monitor High 25

hpmcounterh26 32 0 r- Performance Monitor High 26

hpmcounterh27 32 0 r- Performance Monitor High 27

hpmcounterh28 32 0 r- Performance Monitor High 28

hpmcounterh29 32 0 r- Performance Monitor High 29

hpmcounterh30 32 0 r- Performance Monitor High 30

hpmcounterh31 32 0 r- Performance Monitor High 31

Table 13.3: Registers at level 1, type:Hart group:User Control and Status

13.1.4 Supervisor Control and Status

Registers at level:1, type:Hart group:Supervisor Control and Status

Name Bits Initial-Hex RW Description

sstatus 32 0 rw Supervisor Status

sedeleg 32 0 rw Supervisor Exception Delegation

sideleg 32 0 rw Supervisor Interrupt Delegation

sie 32 0 rw Supervisor Interrupt Enable

stvec 32 0 rw Supervisor Trap-Vector Base-Address

scounteren 32 0 rw Supervisor Counter Enable

sscratch 32 0 rw Supervisor Scratch

sepc 32 0 rw Supervisor Exception Program Counter

scause 32 0 rw Supervisor Cause

stval 32 0 rw Supervisor Trap Value

sip 32 0 rw Supervisor Interrupt Pending

satp 32 0 rw Supervisor Address Translation and Protection

Table 13.4: Registers at level 1, type:Hart group:Supervisor Control and Status

13.1.5 Machine Control and Status

Registers at level:1, type:Hart group:Machine Control and Status

Name Bits Initial-Hex RW Description

mstatus 32 0 rw Machine Status

misa 32 4014312d rw ISA and Extensions

medeleg 32 0 rw Machine Exception Delegation

mideleg 32 0 rw Machine Interrupt Delegation

mie 32 0 rw Machine Interrupt Enable

mtvec 32 0 rw Machine Trap-Vector Base-Address

mcounteren 32 0 rw Machine Counter Enable

mcountinhibit 32 0 rw Machine Counter Inhibit

mhpmevent3 32 0 rw Machine Performance Monitor Event Select 3

mhpmevent4 32 0 rw Machine Performance Monitor Event Select 4

mhpmevent5 32 0 rw Machine Performance Monitor Event Select 5

mhpmevent6 32 0 rw Machine Performance Monitor Event Select 6

mhpmevent7 32 0 rw Machine Performance Monitor Event Select 7

mhpmevent8 32 0 rw Machine Performance Monitor Event Select 8

mhpmevent9 32 0 rw Machine Performance Monitor Event Select 9

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 29 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

mhpmevent10 32 0 rw Machine Performance Monitor Event Select 10

mhpmevent11 32 0 rw Machine Performance Monitor Event Select 11

mhpmevent12 32 0 rw Machine Performance Monitor Event Select 12

mhpmevent13 32 0 rw Machine Performance Monitor Event Select 13

mhpmevent14 32 0 rw Machine Performance Monitor Event Select 14

mhpmevent15 32 0 rw Machine Performance Monitor Event Select 15

mhpmevent16 32 0 rw Machine Performance Monitor Event Select 16

mhpmevent17 32 0 rw Machine Performance Monitor Event Select 17

mhpmevent18 32 0 rw Machine Performance Monitor Event Select 18

mhpmevent19 32 0 rw Machine Performance Monitor Event Select 19

mhpmevent20 32 0 rw Machine Performance Monitor Event Select 20

mhpmevent21 32 0 rw Machine Performance Monitor Event Select 21

mhpmevent22 32 0 rw Machine Performance Monitor Event Select 22

mhpmevent23 32 0 rw Machine Performance Monitor Event Select 23

mhpmevent24 32 0 rw Machine Performance Monitor Event Select 24

mhpmevent25 32 0 rw Machine Performance Monitor Event Select 25

mhpmevent26 32 0 rw Machine Performance Monitor Event Select 26

mhpmevent27 32 0 rw Machine Performance Monitor Event Select 27

mhpmevent28 32 0 rw Machine Performance Monitor Event Select 28

mhpmevent29 32 0 rw Machine Performance Monitor Event Select 29

mhpmevent30 32 0 rw Machine Performance Monitor Event Select 30

mhpmevent31 32 0 rw Machine Performance Monitor Event Select 31

mscratch 32 0 rw Machine Scratch

mepc 32 0 rw Machine Exception Program Counter

mcause 32 0 rw Machine Cause

mtval 32 0 rw Machine Trap Value

mip 32 0 rw Machine Interrupt Pending

pmpcfg0 32 0 rw Physical Memory Protection Configuration 0

pmpcfg1 32 0 rw Physical Memory Protection Configuration 1

pmpcfg2 32 0 rw Physical Memory Protection Configuration 2

pmpcfg3 32 0 rw Physical Memory Protection Configuration 3

pmpaddr0 32 0 rw Physical Memory Protection Address 0

pmpaddr1 32 0 rw Physical Memory Protection Address 1

pmpaddr2 32 0 rw Physical Memory Protection Address 2

pmpaddr3 32 0 rw Physical Memory Protection Address 3

pmpaddr4 32 0 rw Physical Memory Protection Address 4

pmpaddr5 32 0 rw Physical Memory Protection Address 5

pmpaddr6 32 0 rw Physical Memory Protection Address 6

pmpaddr7 32 0 rw Physical Memory Protection Address 7

pmpaddr8 32 0 rw Physical Memory Protection Address 8

pmpaddr9 32 0 rw Physical Memory Protection Address 9

pmpaddr10 32 0 rw Physical Memory Protection Address 10

pmpaddr11 32 0 rw Physical Memory Protection Address 11

pmpaddr12 32 0 rw Physical Memory Protection Address 12

pmpaddr13 32 0 rw Physical Memory Protection Address 13

pmpaddr14 32 0 rw Physical Memory Protection Address 14

pmpaddr15 32 0 rw Physical Memory Protection Address 15

tselect 32 - rw Debug/Trace Trigger Register Select (not implemented)

tdata1 32 - rw Debug/Trace Trigger Data 1 (not implemented)

tdata2 32 - rw Debug/Trace Trigger Data 2 (not implemented)

tdata3 32 - rw Debug/Trace Trigger Data 3 (not implemented)

mcycle 32 0 rw Machine Cycle Counter

minstret 32 0 rw Machine Instructions Retired

mhpmcounter3 32 0 rw Machine Performance Monitor Counter 3

mhpmcounter4 32 0 rw Machine Performance Monitor Counter 4

mhpmcounter5 32 0 rw Machine Performance Monitor Counter 5

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 30 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

mhpmcounter6 32 0 rw Machine Performance Monitor Counter 6

mhpmcounter7 32 0 rw Machine Performance Monitor Counter 7

mhpmcounter8 32 0 rw Machine Performance Monitor Counter 8

mhpmcounter9 32 0 rw Machine Performance Monitor Counter 9

mhpmcounter10 32 0 rw Machine Performance Monitor Counter 10

mhpmcounter11 32 0 rw Machine Performance Monitor Counter 11

mhpmcounter12 32 0 rw Machine Performance Monitor Counter 12

mhpmcounter13 32 0 rw Machine Performance Monitor Counter 13

mhpmcounter14 32 0 rw Machine Performance Monitor Counter 14

mhpmcounter15 32 0 rw Machine Performance Monitor Counter 15

mhpmcounter16 32 0 rw Machine Performance Monitor Counter 16

mhpmcounter17 32 0 rw Machine Performance Monitor Counter 17

mhpmcounter18 32 0 rw Machine Performance Monitor Counter 18

mhpmcounter19 32 0 rw Machine Performance Monitor Counter 19

mhpmcounter20 32 0 rw Machine Performance Monitor Counter 20

mhpmcounter21 32 0 rw Machine Performance Monitor Counter 21

mhpmcounter22 32 0 rw Machine Performance Monitor Counter 22

mhpmcounter23 32 0 rw Machine Performance Monitor Counter 23

mhpmcounter24 32 0 rw Machine Performance Monitor Counter 24

mhpmcounter25 32 0 rw Machine Performance Monitor Counter 25

mhpmcounter26 32 0 rw Machine Performance Monitor Counter 26

mhpmcounter27 32 0 rw Machine Performance Monitor Counter 27

mhpmcounter28 32 0 rw Machine Performance Monitor Counter 28

mhpmcounter29 32 0 rw Machine Performance Monitor Counter 29

mhpmcounter30 32 0 rw Machine Performance Monitor Counter 30

mhpmcounter31 32 0 rw Machine Performance Monitor Counter 31

mcycleh 32 0 rw Machine Cycle Counter High

minstreth 32 0 rw Machine Instructions Retired High

mhpmcounterh3 32 0 rw Machine Performance Monitor Counter High 3

mhpmcounterh4 32 0 rw Machine Performance Monitor Counter High 4

mhpmcounterh5 32 0 rw Machine Performance Monitor Counter High 5

mhpmcounterh6 32 0 rw Machine Performance Monitor Counter High 6

mhpmcounterh7 32 0 rw Machine Performance Monitor Counter High 7

mhpmcounterh8 32 0 rw Machine Performance Monitor Counter High 8

mhpmcounterh9 32 0 rw Machine Performance Monitor Counter High 9

mhpmcounterh10 32 0 rw Machine Performance Monitor Counter High 10

mhpmcounterh11 32 0 rw Machine Performance Monitor Counter High 11

mhpmcounterh12 32 0 rw Machine Performance Monitor Counter High 12

mhpmcounterh13 32 0 rw Machine Performance Monitor Counter High 13

mhpmcounterh14 32 0 rw Machine Performance Monitor Counter High 14

mhpmcounterh15 32 0 rw Machine Performance Monitor Counter High 15

mhpmcounterh16 32 0 rw Machine Performance Monitor Counter High 16

mhpmcounterh17 32 0 rw Machine Performance Monitor Counter High 17

mhpmcounterh18 32 0 rw Machine Performance Monitor Counter High 18

mhpmcounterh19 32 0 rw Machine Performance Monitor Counter High 19

mhpmcounterh20 32 0 rw Machine Performance Monitor Counter High 20

mhpmcounterh21 32 0 rw Machine Performance Monitor Counter High 21

mhpmcounterh22 32 0 rw Machine Performance Monitor Counter High 22

mhpmcounterh23 32 0 rw Machine Performance Monitor Counter High 23

mhpmcounterh24 32 0 rw Machine Performance Monitor Counter High 24

mhpmcounterh25 32 0 rw Machine Performance Monitor Counter High 25

mhpmcounterh26 32 0 rw Machine Performance Monitor Counter High 26

mhpmcounterh27 32 0 rw Machine Performance Monitor Counter High 27

mhpmcounterh28 32 0 rw Machine Performance Monitor Counter High 28

mhpmcounterh29 32 0 rw Machine Performance Monitor Counter High 29

mhpmcounterh30 32 0 rw Machine Performance Monitor Counter High 30

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 31 of 32

Imperas OVP Fast Processor Model Documentation for RISC-V RV32GCN

mhpmcounterh31 32 0 rw Machine Performance Monitor Counter High 31

mvendorid 32 0 r- Vendor ID

marchid 32 0 r- Architecture ID

mimpid 32 0 r- Implementation ID

mhartid 32 0 r- Hardware Thread ID

Table 13.5: Registers at level 1, type:Hart group:Machine Control and Status

13.1.6 Integration support

Registers at level:1, type:Hart group:Integration support

Name Bits Initial-Hex RW Description

LRSCAddress 32 ffffffff rw LR/SC active lock address

commercial 8 0 r- Commercial feature in use

Table 13.6: Registers at level 1, type:Hart group:Integration support

Copyright (c) 2020 Imperas Software Limited
OVP License. Release 20200630.0

www.ovpworld.org
Page 32 of 32

	Overview
	Description
	Licensing
	Extensions
	Available (But Not Enabled) Extensions

	General Features
	Floating Point Features
	CLIC
	CLIC Common Parameters
	CLIC Internal-Implementation Parameters
	CLIC External-Implementation Net Port Interface

	Load-Reserved/Store-Conditional Locking
	Active Atomic Operation Indication
	Interrupts
	Debug Mode
	Debug State Entry
	Debug State Exit
	Debug Registers
	Debug Mode Execution
	Debug Single Step
	Debug Ports

	Debug Mask
	Integration Support
	CSR Register External Implementation
	LR/SC Active Address

	Limitations
	Verification
	References

	Configuration
	Location
	GDB Path
	Semi-Host Library
	Processor Endian-ness
	QuantumLeap Support
	Processor ELF code

	All Variants in this model
	Bus Master Ports
	Bus Slave Ports
	Net Ports
	FIFO Ports
	Formal Parameters
	Parameters with enumerated types
	Parameter user_version
	Parameter priv_version
	Parameter mstatus_fs_mode
	Parameter debug_mode

	Execution Modes
	Exceptions
	Hierarchy of the model
	Level 1: Hart

	Model Commands
	Level 1: Hart
	dumpTLB
	Argument description

	isync
	itrace

	Registers
	Level 1: Hart
	Core
	Floating_point
	User_Control_and_Status
	Supervisor_Control_and_Status
	Machine_Control_and_Status
	Integration_support

