Content for OVP Fast Processor Model Variant: lowRISC / Ibex_RV32IMC

APPLICATION NOTES
(more docs)
DOWNLOAD REFERENCE/DEMO PLATFORMS

here.

OVP Fast Processor Model is written in C.
Provides a C API for use in C based platforms.
Provides a native C++ interface for use in SystemC TLM2 platforms.

The model is written using the OVP VMI API that provides a Virtual Machine Interface that defines the behavior of the processor.
The VMI API makes a clear line between model and simulator allowing very good optimization and world class high speed performance.

The model is provided as a binary shared object and is also available as source (different models have different licensing conditions).
This allows the download and use of the model binary or the use of the source to explore and modify the model.

The model has been run through an extensive QA and regression testing process.

Parallel Simulation using Imperas QuantumLeap


Traditionally, processor models and simulators make use of one thread on the host PC.
Imperas have developed a technology, called QuantumLeap, that makes use of the many host cores found in modern PC/workstations to achieve industry leading simulation performance.
To find out about the Imperas parallel simulation lookup Imperas QuantumLeap.
There are videos of QuantumLeap on ARM here,
and MIPS here.
For press information related to QuantumLeap for ARM click here
or for MIPS click here.
Many of the OVP Fast Processor Models have been qualified to work with QuantumLeap - this is indicated for this model below.

Embedded Software Development tools


This model executes instructions of the target architecture and provides an interface for debug access.
An interface to GDB is provided and this allows the connection of many industry standard debuggers that use the GDB/RSP interface.
For more information watch the OVP video here.

The model also works with the Imperas Multicore Debugger and advanced Verification, Analysis and Profiling tools.

Instruction Set Simulator (ISS) for lowRISC Ibex_RV32IMC


An ISS is a software development tool that takes in instructions for a target processor and executes them.
The heart of an ISS is the model of the processor.
Imperas has developed a range of ISS products for use in embedded software development that utilize this fast Fast Processor Model.
The Imperas lowRISC Ibex_RV32IMC ISS runs on Windows/Linux x86 systems and takes a cross compiled elf file of your program and allows very fast execution.
The lowRISC Ibex_RV32IMC ISS also provides access to standard GDB/RSP debuggers and connects to the Eclipse IDE and
Imperas debuggers.

Overview of lowRISC Ibex_RV32IMC Fast Processor Model


Model Variant name: Ibex_RV32IMC
Description:
    RISC-V Ibex_RV32IMC 32-bit processor model
Licensing:
    This Model is released under the Open Source Apache 2.0
Extensions Enabled by Default:
    The model has the following architectural extensions enabled, and the corresponding bits in the misa CSR Extensions field will be set upon reset:
    misa bit 2: extension C (compressed instructions)
    misa bit 8: RV32I/RV64I/RV128I base integer instruction set
    misa bit 12: extension M (integer multiply/divide instructions)
    To specify features that can be dynamically enabled or disabled by writes to the misa register in addition to those listed above, use parameter "add_Extensions_mask". This is a string parameter containing the feature letters to add; for example, value "DV" indicates that double-precision floating point and the Vector Extension can be enabled or disabled by writes to the misa register, if supported on this variant. Parameter "sub_Extensions_mask" can be used to disable dynamic update of features in the same way.
    Legacy parameter "misa_Extensions_mask" can also be used. This Uns32-valued parameter specifies all writable bits in the misa Extensions field, replacing any permitted bits defined in the base variant.
    Note that any features that are indicated as present in the misa mask but absent in the misa will be ignored. See the next section.
Enabling Other Extensions:
    The following extensions are supported by the model, but not enabled by default in this variant:
    misa bit 0: extension A (atomic instructions)
    misa bit 1: extension B (bit manipulation extension)
    misa bit 3: extension D (double-precision floating point)
    misa bit 4: RV32E base integer instruction set (embedded)
    misa bit 5: extension F (single-precision floating point)
    misa bit 7: extension H (hypervisor)
    misa bit 10: extension K (cryptographic)
    misa bit 13: extension N (user-level interrupts)
    misa bit 15: extension P (DSP instructions)
    misa bit 18: extension S (Supervisor mode)
    misa bit 20: extension U (User mode)
    misa bit 21: extension V (vector extension)
    misa bit 23: extension X (non-standard extensions present)
    To add features from this list to the visible set in the misa register, use parameter "add_Extensions". This is a string containing identification letters of features to enable; for example, value "DV" indicates that double-precision floating point and the Vector Extension should be enabled, if they are currently absent and are available on this variant.
    Legacy parameter "misa_Extensions" can also be used. This Uns32-valued parameter specifies the reset value for the misa CSR Extensions field, replacing any permitted bits defined in the base variant.
    To add features from this list to the implicitly-enabled set (not visible in the misa register), use parameter "add_implicit_Extensions". This is a string parameter in the same format as the "add_Extensions" parameter described above.
Disabling Extensions:
    The following extensions are enabled by default in the model and can be disabled:
    misa bit 2: extension C (compressed instructions)
    misa bit 12: extension M (integer multiply/divide instructions)
    To disable features that are enabled by default, use parameter "sub_Extensions". This is a string containing identification letters of features to disable; for example, value "DF" indicates that double-precision and single-precision floating point extensions should be disabled, if they are enabled by default on this variant.
    To remove features from this list from the implicitly-enabled set (not visible in the misa register), use parameter "sub_implicit_Extensions". This is a string parameter in the same format as the "sub_Extensions" parameter described above.
mtvec CSR:
    On this variant, the Machine trap-vector base-address register (mtvec) is writable. It can instead be configured as read-only using parameter "mtvec_is_ro".
    Values written to "mtvec" are masked using the value 0xfffffffc. A different mask of writable bits may be specified using parameter "mtvec_mask" if required. In addition, when Vectored interrupt mode is enabled, parameter "tvec_align" may be used to specify additional hardware-enforced base address alignment. In this variant, "tvec_align" defaults to 256.
    If parameter "mtvec_sext" is True, values written to "mtvec" are sign-extended from the most-significant writable bit. In this variant, "mtvec_sext" is False, indicating that "mtvec" is not sign-extended.
    The initial value of "mtvec" is 0x1. A different value may be specified using parameter "mtvec" if required.
Reset:
    On reset, the model will restart at address 0x0. A different reset address may be specified using parameter "reset_address" or applied using optional input port "reset_addr" if required.
NMI:
    On an NMI, the model will restart at address 0x0; a different NMI address may be specified using parameter "nmi_address" or applied using optional input port "nmi_addr" if required. The cause reported on an NMI is 0x0 by default; a different cause may be specified using parameter "ecode_nmi" or applied using optional input port "nmi_cause" if required.
    If parameter "rnmi_version" is not "none", resumable NMIs are supported, managed by additional CSRs "mnscratch", "mnepc", "mncause" and "mnstatus", following the indicated version of the Resumable NMI extension proposal. In this variant, "rnmi_version" is "none".
    The NMI input is level-sensitive. To instead specify that the NMI input is latched on the rising edge of the NMI signal, set parameter "nmi_is_latched" to True.
WFI:
    WFI will halt the processor until an interrupt occurs. It can instead be configured as a NOP using parameter "wfi_is_nop". WFI timeout wait is implemented with a time limit of 0 (i.e. WFI causes an Illegal Instruction trap in Supervisor mode when mstatus.TW=1).
time CSR:
    The "time" CSR is not implemented in this variant and reads of it will cause Illegal Instruction traps. Set parameter "time_undefined" to False to instead specify that "time" is implemented.
mcycle CSR:
    The "mcycle" CSR is implemented in this variant. Set parameter "mcycle_undefined" to True to instead specify that "mcycle" is unimplemented and accesses should cause Illegal Instruction traps.
minstret CSR:
    The "minstret" CSR is implemented in this variant. Set parameter "minstret_undefined" to True to instead specify that "minstret" is unimplemented and accesses should cause Illegal Instruction traps.
mhpmcounter CSR:
    The "mhpmcounter" CSRs are implemented in this variant. Set parameter "mhpmcounter_undefined" to True to instead specify that "mhpmcounter" CSRs are unimplemented and accesses should cause Illegal Instruction traps.
Unaligned Accesses:
    Unaligned memory accesses are supported by this variant. Set parameter "unaligned" to "F" to disable such accesses.
    Address misaligned exceptions are higher priority than page fault or access fault exceptions on this variant. Set parameter "unaligned_low_pri" to "T" to specify that they are lower priority instead.
PMP:
    A PMP unit is not implemented by this variant. Set parameter "PMP_registers" to indicate that the unit should be implemented with that number of PMP entries.
    Accesses to unimplemented PMP registers are write-ignored and read as zero on this variant. Set parameter "PMP_undefined" to True to indicate that such accesses should cause Illegal Instruction exceptions instead.
Compressed Extension:
    Standard compressed instructions are present in this variant. Legacy compressed extension features may also be configured using parameters described below. Use parameter "commpress_version" to enable more recent compressed extension features if required.
    Parameter Zcea_version is used to specify the version of Zcea instructions present. By default, Zcea_version is set to "none" in this variant. Updates to this parameter require a commercial product license.
    Parameter Zceb_version is used to specify the version of Zceb instructions present. By default, Zceb_version is set to "none" in this variant. Updates to this parameter require a commercial product license.
    Parameter Zcee_version is used to specify the version of Zcee instructions present. By default, Zcee_version is set to "none" in this variant. Updates to this parameter require a commercial product license.
Privileged Architecture:
    This variant implements the Privileged Architecture with version specified in the References section of this document. Note that parameter "priv_version" can be used to select the required architecture version; see the following sections for detailed information about differences between each supported version.
Legacy Version 1.10:
    1.10 version of May 7 2017.
Version 20190608:
    Stable 1.11 version of June 8 2019, with these changes compared to version 1.10:
    - mcountinhibit CSR defined;
    - pages are never executable in Supervisor mode if page table entry U bit is 1;
    - mstatus.TW is writable if any lower-level privilege mode is implemented (previously, it was just if Supervisor mode was implemented);
Version 20211203:
    1.12 draft version of December 3 2021, with these changes compared to version 20190608:
    - mstatush, mseccfg, mseccfgh, menvcfg, menvcfgh, senvcfg, henvcfg, henvcfgh and mconfigptr CSRs defined;
    - xret instructions clear mstatus.MPRV when leaving Machine mode if new mode is less privileged than M-mode;
    - maximum number of PMP registers increased to 64;
    - data endian is now configurable.
Version 1.12:
    Official 1.12 version, identical to 20211203.
Version master:
    Unstable master version, currently identical to 1.12.
Unprivileged Architecture:
    This variant implements the Unprivileged Architecture with version specified in the References section of this document. Note that parameter "user_version" can be used to select the required architecture version; see the following sections for detailed information about differences between each supported version.
Legacy Version 2.2:
    2.2 version of May 7 2017.
Version 20191213:
    Stable 20191213-Base-Ratified version of December 13 2019, with these changes compared to version 2.2:
    - floating point fmin/fmax instruction behavior modified to comply with IEEE 754-201x.
    - numerous other optional behaviors can be separately enabled using Z-prefixed parameters.
Other Extensions:
    Other extensions that can be configured are described in this section.
Zmmul:
    Parameter "Zmmul" is 0 on this variant, meaning that all multiply and divide instructions are implemented. if "Zmmul" is set to 1 then multiply instructions are implemented but divide and remainder instructions are not implemented.
Zicsr:
    Parameter "Zicsr" is 1 on this variant, meaning that standard CSRs and CSR access instructions are implemented. if "Zicsr" is set to 0 then standard CSRs and CSR access instructions are not implemented and an alternative scheme must be provided as a processor extension.
Zifencei:
    Parameter "Zifencei" is 1 on this variant, meaning that the fence.i instruction is implemented (but treated as a NOP by the model). if "Zifencei" is set to 0 then the fence.i instruction is not implemented.
Zicbom:
    Parameter "Zicbom" is 0 on this variant, meaning that code block management instructions are undefined. if "Zicbom" is set to 1 then code block management instructions cbo.clean, cbo.flush and cbo.inval are defined.
    If Zicbom is present, the cache block size is given by parameter "cmomp_bytes". The instructions may cause traps if used illegally but otherwise are NOPs in this model.
Zicbop:
    Parameter "Zicbop" is 0 on this variant, meaning that prefetch instructions are undefined. if "Zicbop" is set to 1 then prefetch instructions prefetch.i, prefetch.r and prefetch.w are defined (but behave as NOPs in this model).
Zicboz:
    Parameter "Zicboz" is 0 on this variant, meaning that the cbo.zero instruction is undefined. if "Zicboz" is set to 1 then the cbo.zero instruction is defined.
    If Zicboz is present, the cache block size is given by parameter "cmoz_bytes".
Smstateen:
    Parameter "Smstateen" is 0 on this variant, meaning that state enable CSRs are undefined. if "Smstateen" is set to 1 then state enable CSRs are defined.
    Within the state enable CSRs, only bit 1 (for Zfinx), bit 57 (for xcontext CSR access), bit 62 (for xenvcfg CSR access) and bit 63 (for lower-level state enable CSR access) are currently implemented.
CLIC:
    The model can be configured to implement a Core Local Interrupt Controller (CLIC) using parameter "CLICLEVELS"; when non-zero, the CLIC is present with the specified number of interrupt levels (2-256), as described in the RISC-V Core-Local Interrupt Controller specification, and further parameters are made available to configure other aspects of the CLIC. "CLICLEVELS" is zero in this variant, indicating that a CLIC is not implemented.
Interrupts:
    The "reset" port is an active-high reset input. The processor is halted when "reset" goes high and resumes execution from the reset address specified using the "reset_address" parameter or "reset_addr" port when the signal goes low. The "mcause" register is cleared to zero.
    The "nmi" port is an active-high NMI input. The processor resumes execution from the address specified using the "nmi_address" parameter or "nmi_addr" port when the NMI signal goes high. The "mcause" register is cleared to zero.
    All other interrupt ports are active high. For each implemented privileged execution level, there are by default input ports for software interrupt, timer interrupt and external interrupt; for example, for Machine mode, these are called "MSWInterrupt", "MTimerInterrupt" and "MExternalInterrupt", respectively. When the N extension is implemented, ports are also present for User mode. Parameter "unimp_int_mask" allows the default behavior to be changed to exclude certain interrupt ports. The parameter value is a mask in the same format as the "mip" CSR; any interrupt corresponding to a non-zero bit in this mask will be removed from the processor and read as zero in "mip", "mie" and "mideleg" CSRs (and Supervisor and User mode equivalents if implemented).
    Parameter "external_int_id" can be used to enable extra interrupt ID input ports on each hart. If the parameter is True then when an external interrupt is applied the value on the ID port is sampled and used to fill the Exception Code field in the "mcause" CSR (or the equivalent CSR for other execution levels). For Machine mode, the extra interrupt ID port is called "MExternalInterruptID".
    The "deferint" port is an active-high artifact input that, when written to 1, prevents any pending-and-enabled interrupt being taken (normally, such an interrupt would be taken on the next instruction after it becomes pending-and-enabled). The purpose of this signal is to enable alignment with hardware models in step-and-compare usage.
Debug Mode:
    The model can be configured to implement Debug mode using parameter "debug_mode". This implements features described in Chapter 4 of the RISC-V External Debug Support specification with version specified by parameter "debug_version" (see References). Some aspects of this mode are not defined in the specification because they are implementation-specific; the model provides infrastructure to allow implementation of a Debug Module using a custom harness. Features added are described below.
    Parameter "debug_mode" can be used to specify three different behaviors, as follows:
    1. If set to value "vector", then operations that would cause entry to Debug mode result in the processor jumping to the address specified by the "debug_address" parameter. It will execute at this address, in Debug mode, until a "dret" instruction causes return to non-Debug mode. Any exception generated during this execution will cause a jump to the address specified by the "dexc_address" parameter.
    2. If set to value "interrupt", then operations that would cause entry to Debug mode result in the processor simulation call (e.g. opProcessorSimulate) returning, with a stop reason of OP_SR_INTERRUPT. In this usage scenario, the Debug Module is implemented in the simulation harness.
    3. If set to value "halt", then operations that would cause entry to Debug mode result in the processor halting. Depending on the simulation environment, this might cause a return from the simulation call with a stop reason of OP_SR_HALT, or debug mode might be implemented by another platform component which then restarts the debugged processor again.
Debug State Entry:
    The specification does not define how Debug mode is implemented. In this model, Debug mode is enabled by a Boolean pseudo-register, "DM". When "DM" is True, the processor is in Debug mode. When "DM" is False, mode is defined by "mstatus" in the usual way.
    Entry to Debug mode can be performed in any of these ways:
    1. By writing True to register "DM" (e.g. using opProcessorRegWrite) followed by simulation of at least one cycle (e.g. using opProcessorSimulate), dcsr cause will be reported as trigger;
    2. By writing a 1 then 0 to net "haltreq" (using opNetWrite) followed by simulation of at least one cycle (e.g. using opProcessorSimulate);
    3. By writing a 1 to net "resethaltreq" (using opNetWrite) while the "reset" signal undergoes a negedge transition, followed by simulation of at least one cycle (e.g. using opProcessorSimulate);
    4. By executing an "ebreak" instruction when Debug mode entry for the current processor mode is enabled by dcsr.ebreakm, dcsr.ebreaks or dcsr.ebreaku.
    In all cases, the processor will save required state in "dpc" and "dcsr" and then perform actions described above, depending in the value of the "debug_mode" parameter.
Debug State Exit:
    Exit from Debug mode can be performed in any of these ways:
    1. By writing False to register "DM" (e.g. using opProcessorRegWrite) followed by simulation of at least one cycle (e.g. using opProcessorSimulate);
    2. By executing an "dret" instruction when Debug mode.
    In both cases, the processor will perform the steps described in section 4.6 (Resume) of the Debug specification.
Debug Registers:
    When Debug mode is enabled, registers "dcsr", "dpc", "dscratch0" and "dscratch1" are implemented as described in the specification. These may be manipulated externally by a Debug Module using opProcessorRegRead or opProcessorRegWrite; for example, the Debug Module could write "dcsr" to enable "ebreak" instruction behavior as described above, or read and write "dpc" to emulate stepping over an "ebreak" instruction prior to resumption from Debug mode.
Debug Mode Execution:
    The specification allows execution of code fragments in Debug mode. A Debug Module implementation can cause execution in Debug mode by the following steps:
    1. Write the address of a Program Buffer to the program counter using opProcessorPCSet;
    2. If "debug_mode" is set to "halt", write 0 to pseudo-register "DMStall" (to leave halted state);
    3. If entry to Debug mode was handled by exiting the simulation callback, call opProcessorSimulate or opRootModuleSimulate to resume simulation.
    Debug mode will be re-entered in these cases:
    1. By execution of an "ebreak" instruction; or:
    2. By execution of an instruction that causes an exception.
    In both cases, the processor will either jump to the debug exception address, or return control immediately to the harness, with stopReason of OP_SR_INTERRUPT, or perform a halt, depending on the value of the "debug_mode" parameter.
Debug Single Step:
    When in Debug mode, the processor or harness can cause a single instruction to be executed on return from that mode by setting dcsr.step. After one non-Debug-mode instruction has been executed, control will be returned to the harness. The processor will remain in single-step mode until dcsr.step is cleared.
Debug Event Priorities:
    The model supports two different models for determining which debug exception occurs when multiple debug events are pending:
    1: original mode (when parameter "debug_priority"="original");
    2: modified mode, as described in Debug Specification pull request 693 (when parameter "debug_priority"="PR693"). This mode resolves some anomalous behavior of the original specification.
Debug Ports:
    Port "DM" is an output signal that indicates whether the processor is in Debug mode
    Port "haltreq" is a rising-edge-triggered signal that triggers entry to Debug mode (see above).
    Port "resethaltreq" is a level-sensitive signal that triggers entry to Debug mode after reset (see above).
Debug Mask:
    It is possible to enable model debug messages in various categories. This can be done statically using the "debugflags" parameter, or dynamically using the "debugflags" command. Enabled messages are specified using a bitmask value, as follows:
    Value 0x002: enable debugging of PMP and virtual memory state;
    Value 0x004: enable debugging of interrupt state.
    All other bits in the debug bitmask are reserved and must not be set to non-zero values.
Integration Support:
    This model implements a number of non-architectural pseudo-registers and other features to facilitate integration.
CSR Register External Implementation:
    If parameter "enable_CSR_bus" is True, an artifact 16-bit bus "CSR" is enabled. Slave callbacks installed on this bus can be used to implement modified CSR behavior (use opBusSlaveNew or icmMapExternalMemory, depending on the client API). A CSR with index 0xABC is mapped on the bus at address 0xABC0; as a concrete example, implementing CSR "time" (number 0xC01) externally requires installation of callbacks at address 0xC010 on the CSR bus.
Limitations:
    Instruction pipelines are not modeled in any way. All instructions are assumed to complete immediately. This means that instruction barrier instructions (e.g. fence.i) are treated as NOPs, with the exception of any Illegal Instruction behavior, which is modeled.
    Caches and write buffers are not modeled in any way. All loads, fetches and stores complete immediately and in order, and are fully synchronous. Data barrier instructions (e.g. fence) are treated as NOPs, with the exception of any Illegal Instruction behavior, which is modeled.
    Real-world timing effects are not modeled: all instructions are assumed to complete in a single cycle.
    Hardware Performance Monitor registers are not implemented and hardwired to zero.
Verification:
    All instructions have been extensively tested by Imperas, using tests generated specifically for this model and also reference tests from https://github.com/riscv/riscv-tests.
    Also reference tests have been used from various sources including:
    https://github.com/riscv/riscv-tests
    https://github.com/ucb-bar/riscv-torture
    The Imperas OVPsim RISC-V models are used in the RISC-V Foundation Compliance Framework as a functional Golden Reference:
    https://github.com/riscv/riscv-compliance
    where the simulated model is used to provide the reference signatures for compliance testing. The Imperas OVPsim RISC-V models are used as reference in both open source and commercial instruction stream test generators for hardware design verification, for example:
    http://valtrix.in/sting from Valtrix
    https://github.com/google/riscv-dv from Google
    The Imperas OVPsim RISC-V models are also used by commercial and open source RISC-V Core RTL developers as a reference to ensure correct functionality of their IP.
References:
    The Model details are based upon the following specifications:
    RISC-V Instruction Set Manual, Volume I: User-Level ISA (User Architecture Version 20191213)
    RISC-V Instruction Set Manual, Volume II: Privileged Architecture (Privileged Architecture Version Ratified-IMFDQC-and-Priv-v1.11)
    ---- lowRISC https://ibex-core.readthedocs.io/en/latest

Model downloadable (needs registration and to be logged in) in package lowrisc_riscv.model for Windows32 and for Linux32
OVP simulator downloadable (needs registration and to be logged in) in package OVPsim for Windows32 and for Linux32
OVP Download page here.
OVP documentation that provides overview information on processor models is available OVP_Guide_To_Using_Processor_Models.pdf.

Full model specific documentation on the variant Ibex_RV32IMC is available OVP_Model_Specific_Information_lowRISC_Ibex_riscv_RV32IMC.pdf.

Configuration


Location: The Fast Processor Model source and object file is found in the installation VLNV tree: lowrisc.ovpworld.org/processor/riscv/1.0
Processor Endian-ness: This model can be set to either endian-ness (normally by a pin, or the ELF code).
Processor ELF Code: The ELF code for this model is: 0xf3
QuantumLeap Support: The processor model is qualified to run in a QuantumLeap enabled simulator.

TLM Initiator Ports (Bus Ports)


Port Type Name Width (bits) Description
master INSTRUCTION 32
master DATA 32

SystemC Signal Ports (Net Ports)


Port Type Name Description
reset input
reset_addr input
nmi input
nmi_cause input
nmi_addr input
MSWInterrupt input
MTimerInterrupt input
MExternalInterrupt input
LocalInterrupt0 input
LocalInterrupt1 input
LocalInterrupt2 input
LocalInterrupt3 input
LocalInterrupt4 input
LocalInterrupt5 input
LocalInterrupt6 input
LocalInterrupt7 input
LocalInterrupt8 input
LocalInterrupt9 input
LocalInterrupt10 input
LocalInterrupt11 input
LocalInterrupt12 input
LocalInterrupt13 input
LocalInterrupt14 input
LocalInterrupt15 input
irq_ack_o output
irq_id_o output
sec_lvl_o output
deferint input

No FIFO Ports in Ibex_RV32IMC.


Exceptions


Name Code Description
InstructionAddressMisaligned 0
InstructionAccessFault 1
IllegalInstruction 2
Breakpoint 3
LoadAddressMisaligned 4
LoadAccessFault 5
StoreAMOAddressMisaligned 6
StoreAMOAccessFault 7
EnvironmentCallFromMMode 11
InstructionPageFault 12
LoadPageFault 13
StoreAMOPageFault 15
MSWInterrupt 67
MTimerInterrupt 71
MExternalInterrupt 75
LocalInterrupt0 80
LocalInterrupt1 81
LocalInterrupt2 82
LocalInterrupt3 83
LocalInterrupt4 84
LocalInterrupt5 85
LocalInterrupt6 86
LocalInterrupt7 87
LocalInterrupt8 88
LocalInterrupt9 89
LocalInterrupt10 90
LocalInterrupt11 91
LocalInterrupt12 92
LocalInterrupt13 93
LocalInterrupt14 94
LocalInterrupt15 95
GenericNMI -1

Execution Modes


Mode Code Description
Machine 3

More Detailed Information

The Ibex_RV32IMC OVP Fast Processor Model also has parameters, model commands, and many registers.
The model may also have hierarchy or be multicore and have other attributes and capabilities.
To see this information, please have a look at the model variant specific documents.
Click here to see the detailed document OVP_Model_Specific_Information_lowRISC_Ibex_riscv_RV32IMC.pdf.

Other Sites/Pages with similar information

Information on the Ibex_RV32IMC OVP Fast Processor Model can also be found on other web sites::
www.imperas.com has more information on the model library.