
1

Getting started with Virtual Platforms:
A Software Developer Prespective

Virtual Platform Workshop
DAC 09, San Francisco

Achim Nohl, CoWare Inc
Booth Number 3665 located in the North Hall

2

ObjectiveObjective

Objective: Provide illustrative examples on how

Virtual Platforms are used for debugging.

Non-Objective: Provide a complete feature- and

benefit-list of Virtual Platforms.

3

OutlineOutline

SW Developers‘s Views

Debugging on the boundary of HW and SW

Virtual Platform based Debugging

Platform Level Software Analysis

Virtual Platfrom Scripting

– Tracing

– Software Assertions

Summary

4

Embedded Software Design TasksEmbedded Software Design Tasks

Pre-/Post-
Silicon

Validation

Optimization

Porting/
Bring-Up/

Development

Embed.
Software
Design
Tasks

Debugging

Presentation
focus

5

PerspectivesPerspectives

User

O
S

 K
e
rn

e
l

A
p
p
lic

a
tr

io
n

M
Ii
d
d
le

w
a
re

D
ri
v
e
rs

M
e
m

o
ry

 M
a
p

Software

CPU(s)CPU(s)

System
Memory
Space

Data

Peripherals

System
Memory
Space

Data

Peripherals

CPUs

LCD/TSCLCD/TSC

DMADMA

TimerTimer

In
te

rr
u
p
t
C

o
n
tr

ro
lll

e
r

In
te

rr
u
p
t
C

o
n
tr

ro
lll

e
r

Key IFKey IF

UARTUART

USBUSB

Modem SSModem SS

Video SSVideo SS

Audio SSAudio SS

Peripherals

Gap

6

User‘s ViewUser‘s View

[DEMO: Android Phone UI with Android AMP skin]

7

Example:Device Key PressExample:Device Key Press

L
in

u
x
 O

S
 K

e
rn

e
l

A
n
d
ro

id
 P

h
o
n
e
 D

e
s
k
to

p

A
n
d
ro

id
 S

W
 P

la
tf
o
rm

D
ri
v
e
rs

M
e
m

o
ry

 M
a
p

CPU(s)CPU(s)

System
Memory
Space

Data

Peripherals

System
Memory
Space

Data

Peripherals

LCD/TSCLCD/TSC

DMADMA

TimerTimer

In
te

rr
u
p
t
C

o
n
tr

ro
lll

e
r

In
te

rr
u
p
t
C

o
n
tr

ro
lll

e
r

Key IFKey IF

UARTUART

USBUSB

Modem SSModem SS

Video SSVideo SS

Audio SSAudio SS

Key IFKey IF

L
in

u
x
 O

S
 K

e
rn

e
l

K
e
y
b
o
a
rd

 D
ri
v
e
r

In
p
u
t
H

a
n
d
le

r

H
a
n
d
le

 P
re

s
s
 B

a
c
k

8

SW Debug

Example:Device Key PressExample:Device Key Press

L
in

u
x
 O

S
 K

e
rn

e
l

A
n
d
ro

id
 P

h
o
n
e
 D

e
s
k
to

p

A
n
d
ro

id
 S

W
 P

la
tf
o
rm

D
ri
v
e
rs

M
e
m

o
ry

 M
a
p

CPU(s)CPU(s)

System
Memory
Space

Data

Peripherals

System
Memory
Space

Data

Peripherals

LCD/TSCLCD/TSC

DMADMA

TimerTimer

In
te

rr
u
p
t
C

o
n
tr

ro
lll

e
r

In
te

rr
u
p
t
C

o
n
tr

ro
lll

e
r

Key IFKey IF

UARTUART

USBUSB

Modem SSModem SS

Video SSVideo SS

Audio SSAudio SS

Key IFKey IF

What if something goes wrong ?

?

9

Debugging ProcessDebugging Process

Analyze symptom
What worked ?

What did not work?

Analyze cause

Why did it not work?

Potential

cause
identified ?

Run & validate
software

Adapt code
Modify & build software

Expected
Behavior ?

Prepare
debug iteration

(e.g. earlier breakpoints)

DoneStart

Yes

No

No

Yes

10

Virtual Platform PerspectiveVirtual Platform Perspective

O
S

 K
e
rn

e
l

A
p
p
lic

a
tr

io
n

M
Ii
d
d
le

w
a
re

D
ri
v
e
rs

M
e
m

o
ry

 M
a
p

CPU(s)CPU(s)

System
Memory
Space

Data

Peripherals

System
Memory
Space

Data

Peripherals

LCD/TSCLCD/TSC

DMADMA

TimerTimer

In
te

rr
u
p
t
C

o
n
tr

ro
lll

e
r

In
te

rr
u
p
t
C

o
n
tr

ro
lll

e
r

Key IFKey IF

UARTUART

USBUSB

Modem SSModem SS

Video SSVideo SS

Audio SSAudio SS

Virtual Platform Based Debug Perspective

Synchronous system control
Full and consistent system visibility

11

Time and Space During DebugTime and Space During Debug

Software initiatet system activity:

Example: Timer dies

What code should I look at and debug?

Hardware initiated system activity:

Example: Device key press

What time should I stop to debug?

Software initiatet system activity:

Example: Timer dies

What code should I look at and debug?

Hardware initiated system activity:

Example: Device key press

What time should I stop to debug?

12

Watchpoints: Fast Track to the ProblemWatchpoints: Fast Track to the Problem

Getting to the code:

– Need to determine the code
that configures/ corrupts the
peripheral

– A: Software access
watchpoint

Getting to a point in time

– Need to closely investigate
the SW reaction on an event
generated by the HW

– B: Hardware access
watchpoint

– C: Signal watchpoint

Key IFKey IFMapped
Registers

Internal
Registers

Device

Keys

Interrupt

Controller

A

B C

13

WatchpointsWatchpoints

14

Platform Level Software DebuggingPlatform Level Software Debugging

Core #2
simulator

Core #2
simulator

Control & Inspection LayerControl & Inspection Layer

GPIO 2GPIO 2

TimerTimer

VIC 2VIC 2

Core #1
simulator

Core #1
simulator

GPIO 1GPIO 1

VIC 1VIC 1

VICVICMapped
Registers

Internal
Registers

Bus
Port

Signal

CoreCore

Core
Registers

Bus
Port

TimerTimer

TCL Scripting InterfaceTCL Scripting Interface

Virtual Platform AnalyzerVirtual Platform Analyzer

E.g.:

ARM926EJS_0 step_core

VIC_1/EnableMask get_value

Break-/Watch-point

Visible Register

Visible Signal

Visible Code

SW Debugger

15

Platform Level Software AnalysisPlatform Level Software Analysis

OS/Bootloader

Drivers

Middleware

Applications

Drivers

Middleware

Applications

FirmwareOS/Bootloader

(Multi-Core) Hardware Platform

Domain BDomain A Domain C

Debugging: Analyze a snaphot of the system state

Challenge: Understand/analyze system history

– Interaction between HW and SW entities over time

Requierement: System level tracing of HW/SW

16

Platform Level Software AnalysisPlatform Level Software Analysis

Control & Inspection InterfaceControl & Inspection Interface

Core #1
simulator

Core #1
simulator

TIMER 1TIMER 1

MEM 1MEM 1

Platform Level AnalysisPlatform Level Analysis

VIC 1VIC 1

Core #2
simulator

Core #2
simulator

TIMER 2TIMER 2

MEM 2MEM 2

VIC 2VIC 2

Shared MemoryShared Memory

boot

kthread

irq_timer

decompress

time

OS Context Tracing Core A

irq_enter

vic_mask_irq

handle_level_irq

asm_do_IRQ

time

Context’s Function Tracing

c002b62c: MOV R0, R4

c002b630: MOV R1, R5

c002b634: MOV R2, R6

c002b638: MOV R14, R15

c002b6ec: LDR R15,[R5,#0]

Instruction Tracing

t

i

m
e

VIC 1

Shared MEM

MEM 1

TIMER 1

time

Platform Memory Access Tracing

idle

h264_decode

soft_irq

boot

time

OS Context Tracing Core B

17

Platform Level Software AnalysisPlatform Level Software Analysis

18

Platform Level Software AnalysisPlatform Level Software Analysis

19

Virtual Platform ScriptingVirtual Platform Scripting

Core #2
simulator

Core #2
simulator

Control & Inspection LayerControl & Inspection Layer

GPIO 2GPIO 2

TimerTimer

VIC 2VIC 2

Core #1
simulator

Core #1
simulator

GPIO 1GPIO 1

VIC 1VIC 1

TimerTimer

TCL Scripting InterfaceTCL Scripting Interface

Virtual Platform AnalyzerVirtual Platform Analyzer

E.g.:

ARM926EJS_0 step_core

VIC_1/EnableMask get_value

Scripting Use Cases:

Determinstic repetition

of scenarios

Regressionizing

Analyzing

Debugging

20

Scripting For DebugScripting For Debug

Principle:

Notify and react on system events

– Register, memory, pin access and change

– Program control (e.g. Function call)

Inspect state

– Register, memory and pin values

Validate

– Assert correctness

Feedback assertion result

– Stop or carry state to next assertion

T
ra

c
in

g

A
s
s
e
rt

in
g

21

Typical Linux Boot ProblemTypical Linux Boot Problem

1: Create breakpoint at debug emit function

set bp [create_breakpoint "emit_log_char"]

2: Attach callback prodecure

$bp set_callback tcl_emit_log_char

3: Callback procdure: print character from

CPU register

proc tcl_emit_log_char {} {

set c [{i_ARM926EJS_0/R/R[0]} get_value]

puts -nonewline "[format "%c" $c]"

}

2) VP Debug Helper Script (TCL)

Core #1

simulator

Core #2

simulator

LCDUART

Ethernet

Timer

DMACore #3

simulator

Memory

Virtual Platform

IRQ

Accel

Memory Memory Memory

USB

Virtual Platform Simulation Control & Inspection Interface

1) Linux Boot UART Console

• Symptom: It does not boot!

• What worked, what did not work?

• No helpful kernel debug messages?

• UART driver not yet working!

• Debug messages would be helpful!

3) Kernel Debug Messages via VP

Efficient debugging via non-intrusive control, visibility and scripted automation.
Increased debug productivity!

22

Scripting For DebugScripting For Debug

Principle:

Notify and react on system events

– Register, memory, pin access and change

– Program control (e.g. Function call)

Inspect state

– Register, memory and pin values

Validate

– Assert correctness

Feedback assertion result

– Stop or carry state to next assertion

T
ra

c
in

g

A
s
s
e
rt

in
g

23

Kernel Memory CorruptionKernel Memory Corruption

“My kernel shows sporadic kernel panic problems.

How can I assert a memory corruption in the

kernel?”

“My kernel shows sporadic kernel panic problems.

How can I assert a memory corruption in the

kernel?”

Read un-initialized memory Buffer overrunFaulty heap memory mgmt.

Kernel Memory Corruption Categories

Memory leaks
Kernel heap corruption

Delayed crash of kernel
activities (scheduler, threads...)

Most times immediate
unpredictable kernel behavior

Kernel Memory Corruption Symptoms

Memory corruption defects severely increase the system vulnerability

char * tmp = (char*) malloc(strlen(str));
strcpy(tmp, str);

Typical code prone to a buffer overrun

irq

khelper

kthread

time

History of a buffer overrun defect

24

Memory Address SpaceMemory Address Space

a
llo

c
a
te

d
 h

e
a
p
 a

re
a

slob_page_alloc(int size,int align,int addr)

- Probe parameters: address, size
- Set watchpoint at address + size

Virtual Platform Callback (Pseudo Code)

set watchpoint

Linux kernel function:

Kernel Memory CorruptionKernel Memory Corruption

25

Kernel Memory CorruptionKernel Memory Corruption

Demo: Linux SLOB (Simple List Of Blocks) Allocator – Virtual Platform Assertion

26

Multi-core Driver ExampleMulti-core Driver Example

OS AOS A

H.264 Decoder
Firmware

H.264 Decoder
Firmware

CPU 2CPU 2CPU 0CPU 0

IRQ/TimerIRQ/Timer

MemoryMemory

IRQ/TimerIRQ/Timer

MemoryMemory

Shared Address Space (used by driver and firmware)Shared Address Space (used by driver and firmware)

Shared Address SpaceShared Address Space

write

read

h.264
data

empty

start offset

size

write pos

read pos

H.264 Stream DriverH.264 Stream Driver

cat video.264 > /dev/h264cat video.264 > /dev/h264
H.264 Stream Device Example

Linux H.264 stream device
� Driver on CPU 0, provides data to

� H.264 decoder firmware on CPU 2

Control/Synchronization

� Interrupts

� Mutex/Semaphores

Data streaming
� Circular buffer in shared memory

27

Multi-core Driver ExampleMulti-core Driver Example

Shared Address Space – Circular BufferShared Address Space – Circular Buffer

start offset

size

write pos

read pos

empty
(to be written)

data
(to be read)

data
(to be read)

CPU 0

CPU 0

Implementation issues

• Buffer overrun

• Race condition/data corruption

• Starvation

Debugging challenges

• Become aware of a defect

• Sporadic decoding errors

(e.g. frames dropped)

System level software assertion

• Protected address regions,

• through VP region watch-points

• Dynamically adjusted,

• on every circular buffer update

CPU 2

28

Multi-core Driver ExampleMulti-core Driver Example

Shared Address SpaceShared Address Space

start offset

size

write pos

read pos

empty
(to be written)

data
(to be read)

data
(to be read)

update_watch_region_cpu_0

update_watch_region_cpu_1

Virtual Platform Callback Pseudo Code

CPU_0 set_range_watchpoint read

$start_offset $write_pos-1

CPU_1 set_range_watchpoint write

$write_pos $read_pos-1

System level software assertion

• Watch-points on circular buffer pointers

• trigger updates of the watch-regions.

• Platform execution is suspended,

• as soon as memory is accessed illegally.

29

Multi-core Driver ExampleMulti-core Driver Example

30

Multi-core Driver ExampleMulti-core Driver Example

31

SummarySummary

We have used Virtual Platforms...

– to identify, analyze and assert software defects.

– by means of real-world hardware and software

examples.

We have seen Virtual Platforms...

– provide non-intrusive and deterministic

• Control & Visibility

– enable novel debug solutions,

– with less guessing and more analysis,

– resulting in increased productivity,

– for embedded software development.

32

Thank You!Thank You!

