
Architectural/Micro-architectural
Exploration on Virtual Platforms

Qi Zhu, Michael Kishinevsky,

Zhu Zhou, Atul Kwatra

Intel Corporation

22
Virtual Platform Workshop at DAC 2009

Outline

•Motivations

• Transaction-Level Modeling Methodology

• SOC Platform Exploration

• Summary and Future Directions

33
Virtual Platform Workshop at DAC 2009

Motivations

pen&paper spreadsheets
manual and abstract

(hard to explore
complex designs)

detailed perf.
models

(take time to build,
hard to extend)

Need a framework to
– explore multiple abstraction
levels in between
– standard interfaces and modular
designs for easier exploration and
reusability

44
Virtual Platform Workshop at DAC 2009

Transaction-Level Modeling Methodology

• A system-level modeling framework (virtual
platform) based on TLM
– Separation of communication and computation for modular
design and easier exploration.

– Multiple abstraction levels of modeling for trade-off
between complexity and accuracy.

– Integration with external IPs.

– Leverage of vendor tools for development, debugging and
analysis capabilities.

– Configurable domain-specific libraries with standard
interfaces for design efficiency.

• Use SystemC 2.2 and TLM 2.0 library from OSCI
– TLM 2.0 AT (approximately-timed) coding style is utilized.
Validate the timing accuracy of TLM models with in-house
detailed performance simulator.

55
Virtual Platform Workshop at DAC 2009

RT Level

M.H. M.C.

Request_Addres

Request_IRdy

Request_Cmd

Request_Length

Request_Status

DataHC

Request_TRdy

Data_IRdy

Data_TRdy

DataCH

1. Interface

2. Internal components

Cycle 0 1 2 3 4 5 6 7 8 9 10

clk

RequestXY_Irdy

RequestXY_Trdy

RequestXY_Address AddressA

RequestXY_Cmd SnoopedWrite(0x02)

RequestXY_Length Len64(0x03)

RequestXY_Source HostRequest(0x00)

RequestXY_RBE

RequestXY_Status Normal(0x02)

DataYX_Irdy

DataYX_Trdy

DataYX

DataXY_Irdy

DataXY_Trdy

DataXY_BE 0xffffffff

DataXY Data0 Data1

3. Execution semantics

always@(posedge clk)

if (Request_IRdy) {

……

}

M.H. – Memory Hub

M.C. – Memory Controller

- No encapsulation of the
communication signals.

- No abstraction of the
communication protocol.

- Hard to explore different
communication mechanisms.

- Hard to abstract the model
to another level.

66
Virtual Platform Workshop at DAC 2009

Signal Abstraction – toward higher level

M.H. M.C.
Ports with the

same type

(Address, Cmd,
Length, Data, Status)

1. Interface
2. Internal components and
3. Execution semantics are
similar to previous case.
- Internal computation components
actively checking “firing”
conditions every clock cycle.

Clock() {

if (!request_buffer.empty()) {

……

}

}

- Data signals are encapsulated.
Some separation of comm. and
comp.

- Still no abstraction of the
communication protocol. Hard to
explore different protocols.

- Hard to explore different
abstraction levels.

A port defines a set of services
(through interface functions)
provided by the component.

HANDLE_REQUEST (req)

SET_REQ_IRDY ()

……

RETURN_REQUEST (req)

SET_REQ_TRDY ()

……

77
Virtual Platform Workshop at DAC 2009

TLM Model

M.C.M.C.M.H.M.H. `

Sockets

Generic payload

Command
Address
Data
Byte enables
Response status

Extensions

Protocol phases

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

- higher level abstraction of ports
- implements a generic set of
services that works on specific
comm. payload and protocol

nb_transport_bw(payload, phase…)

invalidate_direct_mem_ptr(...)

b_transport (payload)

nb_transport_fw(payload, phase…)

get_direct_mem_ptr(…)

transport_dbg(…)

1. Interface

88
Virtual Platform Workshop at DAC 2009

TLM Model Contd.

In TLM, computation components are passively waiting to be triggered
by Transaction FSMs that handle transaction phase transitions
(including communication protocol phases and internal phases).

2. Internal components and 3. Execution Semantics

MH Trans. FSM

MH-comm. FSMMH Internal
FSM

B.REQ

E.RSP

B.RSP

H0

E.REQ

MC Trans. FSM

MC-comm. FSM MC Internal
FSM

E.REQ

C0

B.RSP
CK

B.REQ

E.RSP

MC Computation
Components

TLM Intf.

MH Computation
Components

Global FSM

99
Virtual Platform Workshop at DAC 2009

TLM Benefits Summary

• Communication is explicitly modeled by
transactions and separated from computation

– Two aspects of transactions: data and protocol.

– Data is encapsulated in generic payload and its extensions.

– Protocol can be described by FSMs whose states are phases
of transactions.

•Multiple abstraction levels of the design can be
explored easier

– Data: payload extensions.

– Communication protocol: protocol phases.

– Computation: transaction phases (including protocol
phases and internal phases).

1010
Virtual Platform Workshop at DAC 2009

Timing Modeling in TLM

Timing accuracy is decided by the choice of transacti on phases

Untimed
(no time annotation)

Loosely-timed
(single phase w/
time annotation)

Approximately-timed
(multiple phases w/ time

annotation)

Cycle-count
accurate

(w.r.t. the care
set of behavior)

More
accurate
timing

Functional Model

Architecture Model

Micro-Architecture Model

1111
Virtual Platform Workshop at DAC 2009

Outline

•Motivations

• Transaction-Level Modeling Methodology

• SOC Platform Exploration

• Summary Future Directions

1212
Virtual Platform Workshop at DAC 2009

Arch/uArch Exploration on SOC Platform

• SOC characteristics

– Communication is the focus – important to explicitly model
communication.

– Time-to-market is crucial (while resources are usually
limited)

– System-level modeling for early exploration.

– Multiple abstraction levels for various design purposes.

– Standard interfaces for IP integration.

– Many derivatives from a base platform

– Build a library of configurable component models.

– Mixed-level modeling to support exploration on part of the
platform.

1313
Virtual Platform Workshop at DAC 2009

Intel Future-Generation SOCs

(from Intel.com)

Memory
Controller Hub

Memory
Controller Focus is on communication

between various agents and
memory.

A Virtual SOC Platform with
approximate-timing is being
built for arch/uarch
exploration.

1414
Virtual Platform Workshop at DAC 2009

Exploration Example: DDR Memory
Controller

• Configurable memory controller model (DDR, DDR2, DDR3,
LP-DDR, etc.)
– Number of incoming ports
– Arbitration policy (RR, priority-based)
– Scheduling

– In-order vs. out-of-order scheduling of requests
– Out-of-order request queue size
– In-order request queue size
– Out-of-order scheduling policy
– SDRAM command level scheduling

– Auto refresh (refresh burst)
– SDRAM configuration

– # of ranks, banks, row bits, column bits
– Timing specification

– Address mapping
– Data width
– Burst length

1515
Virtual Platform Workshop at DAC 2009

Exploration of Memory Controller

• Impact of priority-based scheduling between two request
agents A1 and A2

13.516.8A2 always over A1

15.514.350% A1 over A2

1713.1A1 always over A2

Avg. A2 latencyAvg. A1 latency

• Impact of hitting an open page (with all request from A1)

6.2Always hits open page

9.3Never hits open page

9.110% hits open page

850% hits open page

Avg. A1 latency

1616
Virtual Platform Workshop at DAC 2009

Simulation Complexity

• Denotation:

– P: # of processes (components)

– C: simulation length in cycles

– E: average # of events per process during simulation

– to: overhead of switching processes

– tp: average runtime for one invocation of a process

• Discrete-event simulation in our TLM model

E * P * (to + tp)

• Clock-driven simulation in reference performance model

C * P * (to + tp)

• Simulation speed is decided by E, which relates to the
modeling abstraction level.

• Our current model can simulate >100K transactions per
second, with accuracy within 5% of RTL.

1717
Virtual Platform Workshop at DAC 2009

Model Development

• 4 man-month for memory controller and memory
controller hub model, including

– Study the architecture documents and reference models.

– Develop the TLM models.

– Validate the timing accuracy of TLM with reference models.

– Study and use external and internal tools for development
and analysis.

• Time could be much shorter if

– There are library components available.

– Modeling methodology is well defined.

– Developers are more familiar with the architecture and
reference models.

– Abstraction level is higher.

1818
Virtual Platform Workshop at DAC 2009

Outline

•Motivations

• Transaction-Level Modeling Methodology

• SOC Platform Exploration

• Summary and Future Directions

1919
Virtual Platform Workshop at DAC 2009

What we learned

• TLM is the right way to build Virtual Platforms for
architecture exploration

– Separation of communication and computation.

– Support multiple abstraction levels and mixed-level
modeling. Approximately-timed TLM model can provide
relatively accurate timing with fast simulation speed.

– Interoperability through standard modeling methodology
and communication interfaces.

– Enable modular and configurable designs.

2020
Virtual Platform Workshop at DAC 2009

What we need for Exploration

• Models:
– Library of configurable components with well-defined interface at
various abstraction levels.

• Methodology
– Methodology for exploring abstraction levels (through transaction
phases). Trade-off analysis between complexity and accuracy.

– Modeling accuracy estimation. Validation with reference models.

– Mixed-level modeling of components at multiple abstraction levels.
Dynamic switching between abstraction levels.

– Methodology for guided simulation to search design space. Combine
simulation-based exploration with analytical methods.

– Transaction-level power modeling for trade-off analysis between
performance and power.

• Tools
– How to leverage vendor tools - analysis, debug, etc.

2121
Virtual Platform Workshop at DAC 2009

Unified System-Level Framework based on TLM

Function Model

(untimed)

Arch Model

(LT - AT)

Library

Same component described at
different abstraction levels

(this is a conceptual description,
multiple-level implementations
can be put into the same module)

Abstraction
levels

(at each
level there
is a set of
primitives)

uArch Model

(AT - CA)

Mixed-level

Model

Primitives
(abstraction

levels)

Semantics

Model

Early design space
exploration (arch,
uarch, mapping)

Dynamic
validation

(arch/uarch)

Formal
VerificationSW Dev. and

validation
SynthesisReference

model

