TLM Platforms Re-Define Hardware Virtualization

Jon McDonald

Why Build Transaction Level Platform?

- The higher you go toward system-level abstraction, the greater the leverage
 - Optimize system architecture for area, performance and power
 - Enable early **software validation/debug** against fast abstracted model
 - Reduce verification time
 - By quickly building and validating a transaction level model
 - By reusing the model for validating the implementation

Source: 3rd party ESL survey, Jan 2009

System Architecture Optimization

- Optimizing those system architecture attributes impacting area, timing and power
 - 10X power variation resulted from system architecture tradeoffs in the following example

Source: Chip Design Magazine ESL Synthesis + Power Analysis By Holly Stump and George Harper

Only Transaction Level Platform Allows Users to Quickly Modify and Evaluate Various System Architectures

Hardware/Software Optimization

- Addressing hardware/software architecture tradeoffs
 - 2X power variation resulted from hardware/software tradeoffs in the following example

Architecture		Average Power		Power 1	CPU time	
	HW/SW co- estimation (mW)	Trace based profiling (mW)	Relative error (%)	Avg. absolute error (mW)	Avg. relative absolute error (%)	Trace Based Profiling (sec)
All HW, Single bus	380.7	380.8	0.03	1.8	0.4	0.21
All HW, Two busses	2	414.9	0.80	4.1	2.2	0.36
ICV in SW, Single bus	: 4.2	543.0	0.18	24.0	4.1	0.26
ICV in SW. Two bus.	6 2	592.9	0.55	13.0	3.4	0.42
WEP in ! One bu	~X2	614.0	0.16	45.0	7.3	0.25
WEP in ! Two bus		625.5	0.45	41.8	6.2	0.37
FCS in SW, Single bus	: 7.2	512.2	0.97	19.0	3.2	0.22
FCS in SW, Two busses	: <mark>0</mark> .7	587.4	0.22	4.6	2.2	0.37
FCS, ICV in SW, Single bus	.2	672.2	0.00	26.3	3.5	0.26
FCS, ICV in SW, Two busses	766.8	763.5	0.43	23.3	4.3	0.42

Source: Fast System Level Power Profiling for Battery Efficient System Design Kanishka Lahiri Dept. of ECE UC San Diego , Anand Raghunathan C&C Research Labs NEC USA

Only Transaction Level Platform Allows Users to Quickly Modify and Evaluate Various Hardware/Software Configurations

Mentor Graphics Company Confidential

Slide 4

Software Compiler Dependent Power

- Image Recognition Package running on an ARM
 - O0 No Optimizations
 - O3 Rename registers, inline functions
- Different compiler options may result in different profiles (cache access)

Figure 4.12: Influence of compiler optimizations: total energy per access a) susan_00; b) susan_03 Source: POWER ESTIMATION AND POWER OPTIMIZATION POLICIES FOR PROCESSOR-BASED SYSTEMS José L. Ayala Rodrigo Universidad Politécnica de Madrid

Slide 5

Example Architecture

Graphics

Copyright ©2009, Mentor Graphics

Example Architecture: Latency

Example Architecture: Power

Example Architecture: Cache, DDR

Vista[™] Main Capabilities

Vista Scalable TLM Models

- Based on SystemC and the OSCI TLM 2.0 standard
- Scalability is accomplished by
 - Modeling the core Function
 - Providing the Communication Layer
 - Adding a separate
 Timing/Power model

Vista Scalable TLM Timing Model

Modeling Policies

			Mo	del Builder					
Model	l Builder								
Mod	iel name: dm	ac				TLM Lik	rary: lib1		•
F	Ports	PV	T Archit	ecture					
	iming Pow	rer							
	iming Pow Policy	er Port/Transaction	Cause	Wait states	Latency	Data delay	Block size	kind	
	Pow Policy Delay	Port/Transaction	Cause	Wait states 3	Latency	Data delay	Block size	kind	
	Policy Policy Delay Delay	Port/Transaction slave1.READ slave1.WRITE	Cause	Wait states 3 5	Latency	Data delay	Block size	kind	
	ming Pow Policy Delay Delay Sequential	Port/Transaction slave1.READ slave1.WRITE master1.READ	Cause	Wait states 3 5	Latency 5	Data delay	Block size	kind	
	Policy Delay Delay Sequential Sequential	Port/Transaction slave1.READ slave1.WRITE master1.READ master1.WRITE	Cause slave1.READ slave1.WRITE	Wait states 3 5	Latency 5 7	Data delay	Block size	kind	
	Policy Delay Delay Sequential Sequential Split	Port/Transaction slave1.READ slave1.WRITE master1.READ master1.READ master1.READ	Cause slave1.READ slave1.WRITE	Wait states 3 5	Latency 5 7	Data delay	Block size	kind	
	ming Pow Policy Delay Delay Sequential Sequential Split Pipeline	Port/Transaction slave1.READ slave1.WRITE master1.READ master1.READ master1.READ master1.READ	Cause slave1.READ slave1.WRITE slave2.READ	Wait states 3 5	Latency 5 7 5	Data delay	Block size	kind AHB	

- Single transaction level timing model supporting
 - LT (loosely time)
 - AT (approximated time)
- GUI based timing definition policies
- Policy types:
 - Delay, Sequential, Split,
 Pipeline
- Timing values:
 - Wait states, Latency, Data Delay

Copyright ©2009, Mentor Graphics

Vista Scalable TLM Power Model

Power Policies

Dynamic Power					
Transaction	Power	Time Interval			
USB.READ	0.16mw	200			
USB.WRITE	0.44mw	20			
Clock Tree Power					
0.5mw					
Static (Leakage) Power					
0.2mw					

- Static (leakage) power
- Clock tree power
- Dynamic power (per transaction)
- Dynamic power is assigned to each transaction type
- Vista TLM power model is
 - Reactive to incoming traffic and inner states
 - Supports voltage and frequency scaling

Architectural Power Optimization Flow

- Model TLM Timing and Power via policies
 - Assemble the transaction level reference platform
 - Analyze Timing/Power in a system context
- Modify Timing/Power policies or the platform architecture
- Quickly iterate optimizing for timing and power

Quick Optimization of Power and Performance before RTL S15

Copyright ©2009, Mentor Graphics

S15 Lisa,

Please highlight the message at the bottom Shabtay, 7/22/2009

Vista Wide Range of Analysis Toolsets

rt Time: 4869.05 End Time: 5004.09 Interval Size:	527492 ns (minimal interval Transaction Count) Min	Max	Aver
inst.sys_dma_inst.T.traced_bus_initiator.READ	162	0.000000	7.000000	0.62

- **Functional Analysis**
 - Data ID and Tracing
- **Timing/Performance Analysis**
 - Throughput
 - Latencies
 - Bus Utilization
 - State Distribution
- Power Analysis
 - Dynamic, Static and Clock Power
 - Instance Power
 - Mean and Peak values
 - System and software power profiles
 - Hot Spot analysis
 - Voltage and frequency scaling (DVFS)
 - Power domain management

Vista - Optimization Philosophy

- Use policies to model power/timing of new IP
- Use accurate power/timing models for legacy IP
- Analyze power/timing profiles
 - ✓ typical system scenarios
 - running software application
- Explore various power/timing domain management strategies and voltage/frequency scaling techniques

Vista enables HW/SW Co-Development

- Vista produces SystemC virtual reference platform
 - Available for early software development and validation
 - Accurate enough for tuning SW for power and performance

Vista: Power Design and Optimization at the ESL

- Architectural analysis, exploration and optimization for power/timing
 - Unique power/timing modeling capabilities
 - Wide range of analysis toolsets
- Improved model accuracy enables
 - Analysis of system architecture changes
 - HW/SW trade-off
 - Tuning the application software
 - Correlating performance with system workload

