
29-July-09 1

System/Software
Verification Using
Specman ISX and

Open Virtual Platforms

Henry Von Bank,
Posedge Software

29 July 2009

29-July-09 2

Software Verification
• Software complexity is increasing

exponentially

• Particularly an issue in embedded
applications (cell phones, GPS, MP3
players,...)

• Solution?
– Borrow methodology and tools from

HW world, along with virtual platforms

– Specman+ISX+OVP

29-July-09 3

Software Verification Using
Specman ISX and Imperas M*SIM
• Using Cadence's Specman Elite and Incisive

Software Extensions (ISX) along with Open
Virtual Platform (OVP) models and Imperas
M*SIM tools

• This demo focuses on a System-Level
verification task, but similar approach could
be used for purely software verification

• Verify software with as few modifications as
possible to the target

29-July-09 4

Why Use Specman for
Software Verification?

 Constrained Random Generation
 Reusable components
 Testing interactions with HW
 Many of the same reasons as using

Specman for HW verification!

29-July-09 5

Why Use a Virtual Platform
(in particular OVP)?

 Adds FAST software execution to verification
environment, instead of slow RTL models

 Run complete OS and SW stack during system-
level verification

 Verifying of SW in a controlled environment
 Interception features of OVP allow introspection

of running processor/processes with minimal
performance impact

29-July-09 6

Malta Demo
 MIPS Malta OVP models
 M*SIM Built as shared library loaded into

Specman
 Uses Specman C interface for communicating

with M*SIM
 Generic Software Adapter (GSA) Mailbox

resides in simulated processor's memory
 Shows testing of Linux kernel driver for a

“fake” alphanumeric display (16x2 chars)

29-July-09 7

Malta Platform

 Evaluation board from MIPS
 Contains VGA, IDE, Keyboard, Ethernet,

and other peripherals
 Supports Linux 2.4 and 2.6
 Full system emulation of Malta

supported by a variety of tools including
OVP, M* tool suite

29-July-09 8

Alpha-numeric
Display Example

29-July-09 9

Basic System-Level
VE

29-July-09 10

Host/Target Software

29-July-09 11

GSA Interfacing

29-July-09 12

Linux Kernel
Intercepts

29-July-09 13

example_test.e

do load_module keeping { .filename == "/alphaExample/alpha_drv.ko" };
do open_device keeping { .deviceName == "/tdev/alpha" };
fh = open_device.return_val;

// Send enable command
gen current_packet keeping {.kind == COMMAND;.command == ENABLE;.value == 1};
send(fh,current_packet);

for i from 1 to 10 do {
 //Send random command
 gen current_packet;
 send(fh,current_packet);
 // Send command to set cursor position to random location
 gen current_packet keeping {.kind == COMMAND;.command == ADDRESS};
 send(fh,current_packet);
};

do wait keeping {.delay == 500000};

do close_device keeping { .fh == fh };
do unload_module keeping { .path == "/alphaExample/alpha_drv.ko" };

29-July-09 14

Observations
 Specman and the e language provide a

robust platform for verification
 ISX works very well for driving stimulus, but

not as ideal for monitoring/coverage of SW
 Using M*SIM allows for running/monitoring

SW more transparently and with fewer
modifications

 SW verification could benefit from having this
precise control over the entire platform

29-July-09 15

Future Work
 Integrating SW coverage info into Specman
 Using multiple GSA adapters, or ISX interface

to peripheral models
 Use M*SIM SystemC TLM2.0 interface
 Verifying user-space applications, especially

multi-threaded or in a multi-processor system

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

