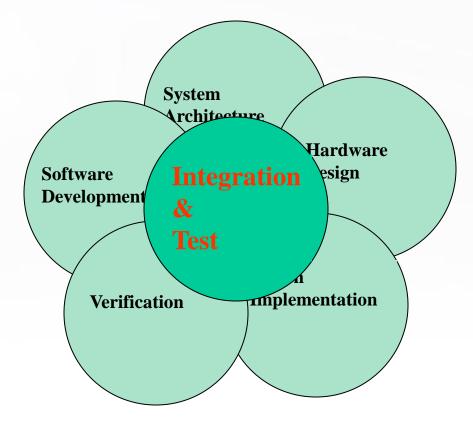
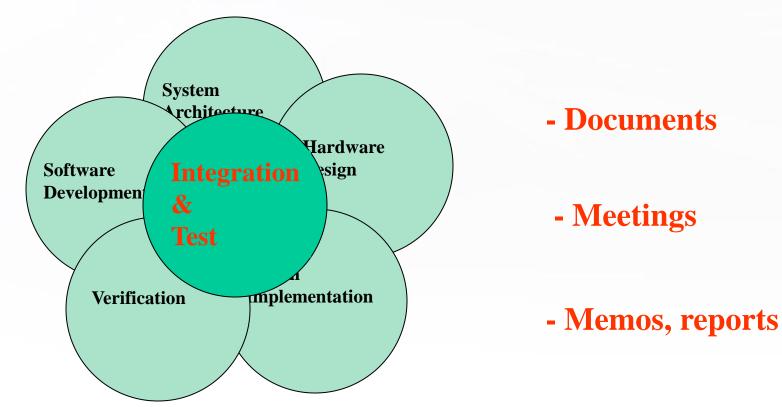


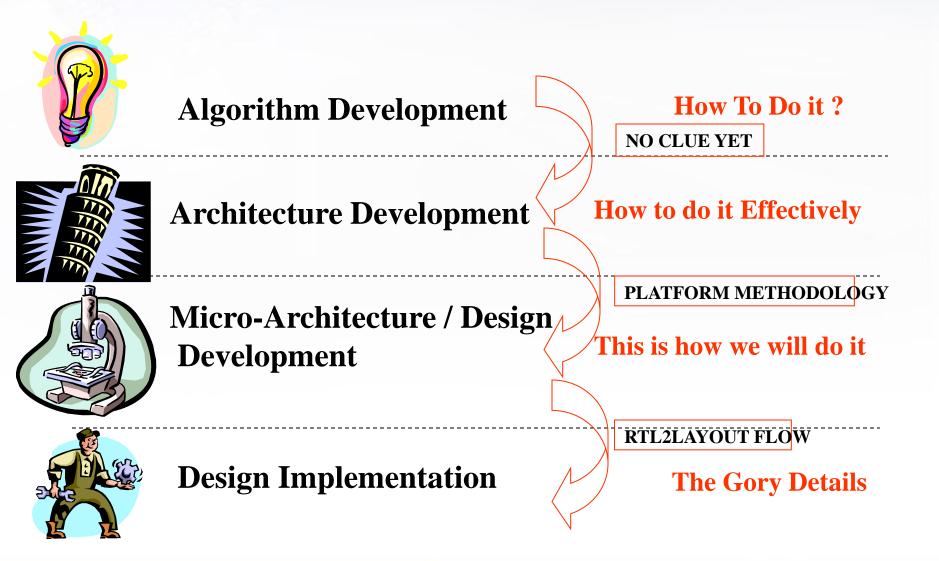
Virtual Platforms : Challenges and Opportunities

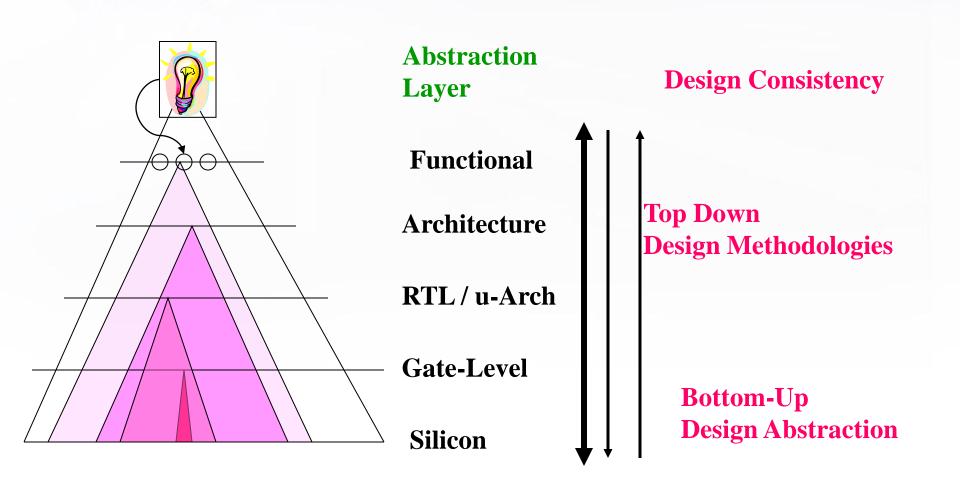

Ramesh Chandra

- Scope
- Structure
- Opportunities
- Challenges
- Summary


SoC Design Framework

SoC Design Communication




=> Need to use executable specification models

The Design World : Transitions

Hw / Sw Co-design

Traditional Model

- HW => SW Development
- SW Development used HW Prototyping
- Little to None Pre-silicon Integrated validation

HW-SW Co-design

- HW || SW Development
- HW Virtual Model for SW Development
- Enables Integrated Validation

HW-SW Integrated Design

- HW && SW Development
- Co-operative Design
- Architectural Analysis
- Platform Design

Virtual Platform Objectives

- Time To Market
 - Faster design Implementation
 - Early HW-SW Integration
- Product Quality
 - Better co-ordination among Design Teams
 - Improved Verification Coverage
 - Pre-silicon System Validation
 - Pre-silicon / Post silicon co-relation
- Architecture / Design Reuse
 - Arch To Implementation
 - HW-SW Arch Trade-offs
 - Product Requirement to Arch Mapping
 - Test Re-use

- Scope
- Structure
- Opportunities
- Challenges
- Summary

Real v/s Virtual

10

- Real HW Platform
 - Starts with RTL Design
 - RTL Simulation
 - Prototyping HW Platform
- Real SW
 - Real Drivers
 - Real OS
 - Full Application
- Virtual HW Platform
 - Pre-RTL Design
 - Abstract Design
 - C Modeling
- Virtual SW
 - Functional APIs
 - Integration Validation

Virtual Platform Components

Processor Models

- ISS Models
- Limited Cycle Accuracy
- High Performance
- SW Debug
- Interconnect /Memory Models
 - Abstract Models
 - Successive Refinement
 - Protocol Dependency
 - Traffic Analysis
- IP Core Models
 - Functional Models
 - Performance Models
 - Cycle Accuracy
 - Interface Modeling
 - Interoperability using TLM

Algorithm / Mathematical Models

Functional Models

Timed Functional Models

Cycle Accurate Behavioral Models

RTL Models

Research

Architecture

Design

12

TLM Modeling

- Abstraction of Communication
- Separation of computation from communication
- Better Simulation performance
- Standard interfaces for interoperability of models
- Useful for all abstraction levels leading up to RTL
- SystemC TLM2.0 Standard Model Interface

- Scope
- Structure
- Opportunities
- Challenges
- Summary

Opportunities : Productivity

SW Development

- Early HW Virtual Platforms
 - Phased Definitions of Virtual Platforms
- Unambiguous HW-SW Interface

Architecture Definition

- Feature Concept Review and Validation
- Performance Validation
- HW Feature Finalization
- SW Interface Validation

HW Development

- Unambiguous HW Specifications
- Reference Model for Development
- Models for Standard IPs & Debug Tools
- VP for RTL Verification
- Early Customer Access
 - Platform for Customer Application development
 - Product Feature and Performance validation

Opportunities : Quality

HW Validation

- Early Test development
 - Validate Tests before design is available
- Reference Verification Model for complex IPs
- HW-SW Integrated Validation
 - SW Driver Validation
 - OS and Application Bring-up

Improve Coverage

- HW Validation using SW use cases
- Full Validation of SW APIs accessing
- SW Interface Functional Coverage
- Performance Simulations and Analysis
- Concurrency and Application Based Verification

- Scope
- Structure
- Opportunities
- Challenges
- Summary

Challenges : Productivity

Tool / Language Selection

- Models Development Faster than RTL
 - Needs to be well before Design to make an impact
- Design at Higher abstraction
 - Complex communication & synchronization concepts
 - Lack of education and expertise
- Too complex modeling Lang/Tool
 - Designed to solve universal problem?
 - Is it good or fast enough for me
 - Am I good enough to develop Models with it?

Model Development

.

- Planning and resources
 - Design is planned and staffed, models are required but not always planned
- Internal development v/s outsourcing
 - Standard IPs can be outsourced but core IP need to be developed
- Specification and Expertise Needed
 - Architecture /IP designer best suited to develop IP models
 - Tool/Language Training
- Legacy IP Models
 - Invest time in Models for Legacy IP?
 - Platform dependence on Legacy cores.

Challenges : Quality

Model Specification

- Model specification and Scope
 - Models developed for one scenarios and expected to work everywhere
- Design Specifications Keep changing
- Models stop tracking design changes
- Model validation
 - Models are developed and used
 - Used as reference models for design verification
 - Coverage based Model verification
 - Model verification compromised for Platform delivery schedules

Platform Integration

- Different flavors of models
- Adaptors and wrappers for Platform Integration
- Functional v/s cycle accuracy
- Platform Validation

- Scope
- Structure
- Opportunities
- Challenges
- Summary

Summary

- Virtual Platforms Have Great Potential to Make an Impact
 - It takes some effort and planning to realize though
- Tools/Vendors focus on Productivity
 - Standard IP Models
 - Debug tools
 - Monitor/Checkers
 - Analysis and Profiling

Virtual Platform Development

- Plan and prioritize Model/Platform development
- Platform requirements and Tool /Language selection
- Scope and spec Models
 - Long Term re-use
 - Multiple platform re-use
- Its real so start owning and benefitting from it