

www.embedded-world.eu

 Compliance Methodology and Initial Results for

RISC-V ISA Implementations
Lee Moore, Simon Davidmann and Larry Lapides

Imperas Software Ltd.
Oxford, United Kingdom

moore@imperas.com

Abstract— For most instruction set architectures (ISAs),
compliance to the ISA specification is a given. Since all the SoC
designers license the RTL from a single source, of course the RTL
complies with the ISA specification. Similarly, the processor IP
vendors produce a tool chain to support their ISAs, so those will
certainly comply with the ISA specification. Single source does at
least provide for consistency, and compliance is not an issue, so
software ecosystems flourish.

With the new, open standard RISC-V ISA, the compliance
situation is different. There is no single IP vendor, and
complicating the issue is that many implementations will exploit
the capability with the open ISA to add custom instructions or
other optimizations.

Compliance testing therefore has become mission-critical for
the RISC-V ecosystem. For other ISAs compliance testing has been
done by the processor IP vendor, and as a result methodologies
and tools for compliance testing have been kept internal, and are
not readily available to the industry. This paper introduces the
methodology being developed for compliance testing of RISC-V
products.

The technical issues of determining compliance with the RISC-
V ISA are introduced and discussed. These issues include
providing a framework for development of additional tests, the
development of the tests themselves and reference models. Further
issues include how to enable users to target the tests at the
particular combination of the RISC-V specification subsets that is
being used. The questions of completeness and specification
coverage are discussed. Use cases are examined, including testing
compliance on various proprietary RTL designs, open source RTL
designs, FPGAs, SoCs, ISS models and software tools, with issues
experienced being explained.

Keywords—RISC-V, processor, compliance, ISS, testing,
simulation

I. INTRODUCTION
The new RISC-V Instruction Set Architecture (ISA) [1] has

a lot of momentum behind it, with a growing community now at
over 150 members of the RISC-V Foundation. However,
momentum is not success. To be successful, RISC-V processors
need to be implemented and utilized in SoCs, and those SoCs
need to be used in systems. One of the keys to ISA success, as

shown by all other ISAs, is a strong ecosystem around the ISA,
meaning a robust group of companies providing software tools,
software IP, operating systems, etc.

For adoption in systems, and for the ecosystem to develop,
devices need to comply with the ISA specification. Without
compliance, there is fragmentation. Without compliance, the
ecosystem cannot leverage its investment in RISC-V. Without
compliance, systems companies have minimal choices in the
hardware they use, and have to develop ecosystem products
themselves, which is not an area of expertise typically for these
companies.

Compliance to the specification is critical to ISA success,
and yet compliance testing is a thankless task. It is exciting to
add custom instructions to the processor. However, it is not
nearly as exciting to tell the processor designers that they made
a major mistake and are not compliant to the specification. Also,
there are no best known methods for compliance in the industry,
since previously all compliance testing was done internally by
the processor IP vendor that owned the ISA.

Another issue comes from the open nature of the RISC-V
community. In the community, the mode of operation is to have
member companies contribute to the various working groups,
including the compliance working group. However, the
companies in the best position to contribute – the processor IP
companies – do not want to or, from a practical perspective,
cannot contribute to the compliance testing. This is because
their compliance test suites are likely intertwined with their
verification test suites. The verification test suites include
information on how to test their processor implementations, so
exposing those tests would expose proprietary information and
differentiating features of their products.

In this paper, compliance is first discussed: what it is, and
what it is not. This is followed by a review of the publicly
available RISC-V compliance tests and framework, including
discussions of how those tests have been developed, the quality
and completeness of those tests and descriptions of key elements
of the compliance framework. Results of using the compliance
tests on RTL and on various silicon implementations and
abstract models is presented.

II. WHAT IS COMPLIANCE TESTING
Compliance means that the device is working within the

envelope of the specification. Put another way, compliance
testing is a testing technique for validating whether or not the
system being developed meets the prescribed standards.

Compliance testing is not design verification. Compliance
testing is looking for missing registers, modes, instructions; not
for bugs in RTL implementations.

Compliance tests have to be written in such a way that
compliance (or non-compliance) is observable in a test
signature. The signatures are published so that the user does not
have to run a reference model and can compare the results of
their target runs to the reference signature.

III. RISC-V COMPLIANCE STATUS

A. Compliance Overview
The RISC-V Foundation initiated a Compliance working

group in June 2017. The first contributions, for testing a RV32I
processor configuration, were donated in January 2018. There
has been progress, however, as compliance is a thankless task, it
always seems that there could be more progress. The
compliance test suite is therefore a “work in progress”.

There are two primary components to the compliance
technology: the test suites themselves, and the framework for
writing and using those test suites.

Each test suite focuses on a feature set of the RISC-V
envelope. The initial focus has been on instructions and the user
mode specification, i.e. RV32I, RV32IM, RV32IMC, RV64I,
etc. Since the RISC-V platform specifications have not yet
stabilized, there has been no publicly available work on
compliance tests for the privilege specifications.

The framework includes make, bash and other scripts used
to encapsulate compiler tools, linkers, simulators and targets as
the Devices Under Test (DUTs). The framework also includes
a simulator, essentially an Instruction Set Simulator (ISS), which
serves as an example target and also generates reference
signatures. The framework enables a user to run each test, have
the target produce signatures and compare those signatures to
saved golden reference signatures.

The current status of the test suites and the framework are
freely available on a GitHub repository [2].

B. Test Suite Status
Currently there are twelve test suites checked into the

GitHub repository. The status of some of the test suites is shown
in Table 1.

A good question to ask is how to measure test suite quality.
Some type of code coverage would seem a good starting point.
However, code coverage as usually conceived for RTL or
software verification is not applicable, as it is most often
connected to the microarchitectural implementation. Imperas
provides a code coverage tool as part of its commercial products
that provide model coverage [3], however, this does not show
how much of the specification is covered.

A fault simulation coverage tool developed by Imperas does
provide instruction decode coverage analysis. This tool explores
the decodes of the instructions and mutates the legal bits and
detects that there is a test that stimulates and observes each bit.
This tool is an add-on the ISS target simulator, and so runs quite
fast, and provides other analysis including data coverage. In
addition, this tool can be used to measure coverage of custom
instructions.

To show how this can be used, the RV32I test suite can be
analyzed. This test suite has 54 hand-coded tests, each of which
averages 150 instructions. Decode coverage ranges from 0% on
some instructions, such as fence instructions, to 100% for the
majority of the instructions. Generating the decode coverage
data went quickly, as the Fault Simulation Coverage Tool ran
478,390 simulations in 308 seconds.

C. ISS for Compliance Framework
Writing the tests is a significant task. The test developer

needs to have detailed knowledge of the operation of the
instructions, and needs to have tools for analyzing and
debugging the tests. An instruction accurate simulator with
appropriate tools has been used by Imperas for writing tests.
Any simulator used for this purpose needs to fully implement
the specification, needs full configurability to all options of the
specification, needs tracing capabilities to observe all resources
affected by all instructions, needs access to comprehensive
debug, and needs to be able to be encapsulated and controlled in
an external environment.

A block diagram of the use model for the Imperas
riscvOVPsim simulator used for test development is shown in
Fig. 1. This simulator and associated RISC-V processor model
is available free, with no license keys or license management,
from the RISC-V compliance suite GitHub repository[2]. The
configurable RISC-V model, which supports the 2.2, 2.3, 1.10
and 1.11 versions of the RISC-V Foundation specification, is
built using the Open Virtual Platforms (OVP) [4] VMI APIs for
processor model development. This model is available both as
binary and as source code, distributed under the Apache 2.0 open
source license.

Fig. 1. riscvOVPsim simulator for compliance test development.

www.embedded-world.eu

The riscvOVPsim simulator is an instruction accurate
simulator using a Just-In-Time (JIT) simulation engine.
Simulation performance is over 1,000 million instructions per
second. The simulator connects to a GDB debugger, has the
required trace capabilities, can generate the required compliance
signatures and can be encapsulated by the Imperas Fault
Simulation Coverage Tool for test analysis.

IV. COMPLIANCE RESULTS
The compliance test suites have been used to test compliance

of proprietary RTL, open source RTL, FPGAs, SoCs and other
simulators. The process is to load the test .elf file, run the
simulation, write the signature and compare the signature to the
golden reference signature. Some work had to be done to enable
RTL simulators and actual hardware to be used as the DUT.

With every DUT there were areas of non-compliance.
Typical issues included missing registers, missing instructions,
floating point mode change issues and PMP implementation
issues. The floating-point mode change issue is more a
specification issue, as it is likely the specification will be
changed to allow multiple implementation options. Obviously,
the missing registers and instructions are a problem. PMP issues
are also critical, since incorrect implementation of PMP could
result in a security hole for the device.

V. RECOMMENDATIONS FOR USAGE
The compliance tests are available for anyone to use, for

checking RTL, silicon or simulators. Here are the basic steps for
usage:

1. Clone or fork the compliance tools from the RISC-
V compliance GitHub repository

2. Encapsulate the DUT target in the cloned version
of the test suite

3. Get the initial RV32I test suite running and
generating signatures

4. Compare those signatures to the golden references

5. Add other test suites as available and appropriate
for the target DUT

6. Run compliance checking whenever the DUT is
modified (should be added to automated regression
tests)

7. Update the clone/fork when there are changes to the
RISC-V compliance GitHub repository

VI. SUMMARY
Compliance is critical for RISC-V success, however, it is

still a work in progress. There has been significant progress in
the last year, and now there are test suites available for
compliance checking, as well as a framework to enable RISC-V
users to run the test suites, compare to golden reference
signatures and develop additional test suites.

While there is ongoing work on adding compliance test
suites to support the A, F and D user mode instructions, work
needs to start on compliance test suites for privilege modes and
platforms. Also, new RISC-V ISA subsets, such as vector
instructions, bit manipulation and DSP should not be ratified as
part of the specification until their compliance suites are being
developed.

ACKNOWLEDGMENT
Thanks to all the voluntary members of the RISC-V

Foundations’ Compliance working group for their efforts.

REFERENCES

[1] The RISC-V ISA specification is available here:
https://riscv.org/specifications/.

[2] https://github.com/riscv/riscv-compliance/
[3] Imperas product web page: http://www.imperas.com/products
[4] Open Virtual Platforms (OVP) Library:

http://www.ovpworld.org/library/wikka.php?wakka=Library

TABLE I. TEST SUITE STATUS.

Test Suite Development History Number of

Tests
Status

RV32I Originally developed by Codasip; updated by Imperas to
improve coverage

54 Tests use correct style/macros; excellent coverage of most
instructions
(no coverage of fence, scall, sbreak, pseudo and csr
instructions)

RV32IM Developed by Imperas 7 Tests use correct style/macros; excellent coverage of most
instructions

RV32IMC Developed by Imperas 24 Tests use correct style/macros
RV64I Developed by Imperas 8 Tests use correct style/macros

RV64IM Developed by Imperas 3 Tests use correct style/macros
RV32UI From /github/riscv-tests (academic origin; ported by Imperas) ? Poor coverage

