
© 2018 Imperas Software Limited www.imperas.com/www.OVPWorld.org

Imperas ARM TrustZone Platform Modeling Application
Note

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 1.1
Filename: Imperas_ARM_TrustZone_Platform_Modeling_Application_Note.doc
Project: ARM TrustZone Platform Modeling Application Note
Last Saved: September 11, 2018
Keywords: OVP Cortex TrustZone

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 2 of 30
.

Copyright Notice
Copyright © 2018 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or copied
only in accordance with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas
Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the documentation for its
internal use only. Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United
States of America. Disclosure to nationals of other countries contrary to United States law is
prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply
with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 3 of 30
.

Table of Contents

1 Preface..4

1.1 Related Documents ..4
1.2 Trademarks...4

2 OVP and ARM TrustZone ...5
2.1 OVP ARM Processor Model..5
2.2 iGen - platform and model builder...5
2.3 Toolchains .. 5

3 Secure and Non-secure Accesses ... 6
3.1 Modeling of TrustZone in OVP Platforms...6
3.2 The TrustZone NS Bit ..6

4 Examples ..8
4.1 Ignoring the TrustZone NS Bit in a Platform...8

4.1.1 ignoreTrustZone Example Platform...9
4.1.2 Example application...10
4.1.3 Building and running the example ...13

4.2 Always Secure Peripherals... 14
4.2.1 alwaysSecure Example Platform..14
4.2.2 Example application...16
4.2.3 Building and running the example ...16

4.3 Always Non-secure Peripherals ...17
4.3.1 alwaysNonSecure Example Platform...17
4.3.2 Example application...18
4.3.3 Building and running the example ...18

4.4 Run-time switching between Secure and Non-secure..19
4.4.1 programControl Example Platform ...20

4.4.1.1 The DynamicBridge Peripheral ..21
4.4.1.2 The TZPC Peripheral ...22

4.4.2 Example application...22
4.4.3 Building and running the example ...24

5 The DynamicBridge Peripheral .. 25
5.1 The pse.tcl file..25
5.2 The user.c file...26

6 Summary .. 29
7 Further Imperas Tools to assist with TrustZone platforms and software...................30

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 4 of 30
.

1 Preface
This document describes suggested techniques for modeling ARM TrustZone peripherals in an
OVP platform.

1.1 Related Documents
The reader should be familiar with Open Virtual Platforms (OVP) platform and peripheral
modeling as described in the following OVP documentation:

• Writing Platforms and Modules in C User Guide
• OVP Peripheral Modeling Guide
• OVP BHM PPM Function Reference

In addition this document shows examples using the Imperas iGen tool described in:

• iGen Platform and Module Creation User Guide
• iGen Model Generator Introduction
• iGen Peripheral Generator User Guide

The following ARM documents describe the TrustZone architecture and relevant peripherals:

• ARM Security Technology (PRD29-GENC-009492C)
• ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition (DDI0406C)
• ARM TrustZone Protection Controller (BP147) Technical Overview (DTO0015)

1.2 Trademarks
ARM®, TrustZone®, AMBA®, Cortex™, MPCore™ and any other trademark found on the
ARM trademarks list that are referred to or displayed in this document are trademarks or
registered trademarks of ARM Ltd or its subsidiaries.

Imperas acknowledge trademarks or registered trademarks of other organizations for their
respective products and services.

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 5 of 30
.

2 OVP and ARM TrustZone
The ARM TrustZone technology adds a secure mode to the processor architecture and additional
security signals to the AMBA bus, which are used by TrustZone-aware peripherals to prevent
access to certain bus addresses when the processor (or other bus master) is not in secure mode.

As ARM TrustZone features are used for embedded systems, it becomes important to be able to
comprehensively test the software that makes use of the TrustZone features. Key to
comprehensive testing is the performance, controllability and visibility that virtual platforms
provide.

This document focuses on best known methods for modeling TrustZone-aware peripherals to
achieve optimal performance.

2.1 OVP ARM Processor Model
The OVP ARM Processor model implements all the programmer-visible TrustZone features in
the ARM architecture, including secure, non-secure and monitor modes, banked registers, secure
and non-secure TLBs, etc.

To model an entire TrustZone-aware system using OVP requires additional modeling at the
platform level to configure the bus and peripherals to implement the secure/non-secure access
restrictions.

This document provides an overview of techniques that may be used to efficiently model
TrustZone-aware peripherals in OVP platforms.

2.2 iGen - platform and model builder
The examples also require the use of the Imperas iGen platform building tool that converts tcl
descriptions into C/C++/SystemC/TLM2 platforms.

2.3 Toolchains
To use the Makefiles provided with the examples you will need to install the armv7 toolchain
package available from the download page of the OVPworld website at:

http://www.ovpworld.org/dlp/#arm.toolchains

http://www.ovpworld.org/dlp/#arm.toolchains

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 6 of 30
.

3 Secure and Non-secure Accesses
From a platform standpoint, all of the details of the TrustZone processor technology boil down to
the processor supplying a single bit of information indicating for each bus access whether it is a
secure or non-secure access. In AMBA3 bus terms this is the AxPROT[1] signal, where x is W for
write accesses and R for read accesses.

Secure accesses (AxPROT[1] = 0) can access any address, while non-secure accesses
(AxPROT[1]=1) can only access addresses configured as non-secure (or addresses where the
AxPROT[1] bit is ignored).

When modeling a platform implementing TrustZone security, this security information must be
taken into account when establishing whether an access will succeed.

3.1 Modeling of TrustZone in OVP Platforms
If the security information were simply implemented by adding AxPROT[1] as a net output from
the processor, each peripheral could monitor this signal and decide for each access whether it is
allowed. However this would result in a severe decrease in simulation performance.

The OVP ARM processor model instead takes advantage of the sophisticated address aliasing
capabilities built into OVP simulators to support high-speed modeling of virtual memory. The
AxPROT[1] signal is implemented as an additional address bit for the processor’s INSTRUCTION
and DATA ports. This bit is the MSB of the bus address so there are effectively two address
spaces, one secure (when the security address bit is 0) and one non-secure (when the security
address bit is 1).

At the platform level, this allows control of access to the secure and non-secure address spaces
using OVP bus bridge elements. Bus bridges allow connecting an address range on one bus to an
address range on another bus; this may have a common or different base address for the bridging
(memory address mapping). Once created, these address mappings involve no overhead per
access and thus allow very high-performance simulation.

To model a TrustZone system, OVP bus bridges are used to create a mapping between the non-
secure address space and the secure address space only for those address regions where non-
secure accesses are to be permitted. If no bridge is created in the platform then no non-secure
accesses will succeed.

3.2 The TrustZone NS Bit
In OVP ARM Processor models with TrustZone implemented, bit 40 of an address is the NS bit,
corresponding to the AxPPROT[1] signal, indicating whether an access is secure or non-secure. A
value of 0 on the NS bit indicates a secure access, while a 1 indicates a non-secure access.

Note that bit 40 is used because bits 31:0 are the normal ARM 32 bit address bits while bits 39:32
are used when a processor supports Large Physical Address Extension (LPAE). In order to

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 7 of 30
.

simplify the interface, bit 40 is always used regardless of whether LPAE is present so that
platforms need not be modified depending on whether the selected processor variant supports
LPAE.

Thus the OVP ARM processor model supports connection to busses with up to 41 bits (bits 40:0)
of address. OVP uses sparse memory models which allocate resources only for memory actually
used so this does not require significant additional resources to implement.

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 8 of 30
.

4 Examples
An OVP platform can support TrustZone security in several different ways:

• Ignore the TrustZone NS bit completely
• Only allow secure accesses to an address region
• Always allow non-secure accesses to an address region
• Configurable during run time to allow/disallow non-secure accesses to an address region

The following examples show how to implement each of these scenarios in an OVP platform, and
run a simple application that accesses a peripheral in both secure and non-secure mode, with the
access failing when non-secure accesses to the peripheral are not enabled.

The examples may be found in the following directory in an Imperas or OVP installation:

 $IMPERAS_HOME/Examples/PlatformConstruction/ARM_specific/trustzone

4.1 Ignoring the TrustZone NS Bit in a Platform
If a platform does not have any TrustZone-aware memory or peripherals, the TrustZone bit is
easily ignored by connecting a bus of less than 41 address bits to the processor. In this case the
simulator ignores address bits outside the range of the connected bus, and no distinction is made
between secure and non-secure accesses.

The following example shows a platform that ignores the TrustZone bit and thus makes no
distinctions between secure and non-secure accesses to memory or peripherals.

Figure 1: Platform 'ignoreTrustZone' Block Diagram and Memory Mapping

Virtual Platform Address Mapping

Memory

ARM
Cortex-A9UP

ARM
Cortex-A9UP

UART

pBus (32 address bits)

Virtual Platform Block Diagram Virtual Platform Address Mapping

Memory

UART

pBus Physical
Connection

0x10000FFF

0x001FFFFF

0x00000000

0x10000000

0xFFFFFFFF

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 9 of 30
.

4.1.1 ignoreTrustZone Example Platform
This platform does not implement any TrustZone features. No distinction is made by the memory
or peripherals between secure and non-secure reads and writes. This example may be found in:
 /ARM_specific/trustzone/1.ignoreTrustZone

We will define a simple platform with a Cortex-A9UP processor, memory and an ARM PL011
UART.

The platform is defined as a tcl file, which is processed by the Imperas iGen program to generate
an OVP platform in C:

Bus - 32 bits of address (Secure bit ignored)

ihwaddbus -instancename pBus -addresswidth 32

Processor

ihwaddprocessor -instancename cpu -type arm -endian little -semihostname armNewlib
ihwconnect -instancename cpu -busmasterport INSTRUCTION -bus pBus
ihwconnect -instancename cpu -busmasterport DATA -bus pBus
ihwsetparameter -handle cpu -name variant -value Cortex-A9UP –type enum
ihwsetparameter -handle cpu -name compatibility -value nopSVC –type enum

Memory: 0x00000000 0x001fffff RAM

ihwaddmemory -instancename ram0 -type ram
ihwconnect -instancename ram0 -busslaveport sp1 -bus pBus \
 -loaddress 0x00000000 -hiaddress 0x001fffff

UART: 0x10000000 0x10000fff UartPL011

ihwaddperipheral -instancename uart0 -type UartPL011
ihwconnect -instancename uart0 -busslaveport bport1 -bus pBus \
 -loaddress 0x10000000 -hiaddress 0x10000fff
ihwsetparameter -handle uart0 -name outfile -value uart0.log –type string

...

A bus is defined with an address width of 32 bits. A processor is also defined and the bus
connected to its INSTRUCTION and DATA ports. Since the bus is defined to have only 32 bits of
address all the other address bits from the processor (including bit 40, the NS bit) are ignored in
this platform:

Bus - 32 bits of address (Secure bit ignored)

ihwaddbus -instancename pBus -addresswidth 32

Processor

ihwaddprocessor -instancename cpu -type arm -endian little -semihostname armNewlib

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 10 of 30
.

ihwconnect -instancename cpu -busmasterport INSTRUCTION -bus pBus
ihwconnect -instancename cpu -busmasterport DATA -bus pBus
ihwsetparameter -handle cpu -name variant -value Cortex-A9UP –type enum
ihwsetparameter -handle cpu -name compatibility -value nopSVC –type enum

Note that exceptions are NOT enabled on the processor, so any exception will cause the
simulation to terminate, which is sufficient for our purposes.

Note also the armNewlib semihost library is specified on the processor definition, allowing
newlib functions such as printf() to be used by applications running on the processor.

Next, 2MB of memory starting at address 0 is defined:

Memory: 0x00000000 0x001fffff RAM

ihwaddmemory -instancename ram0 -type ram
ihwconnect -instancename ram0 -busslaveport sp1 -bus pBus \
 -loaddress 0x00000000 -hiaddress 0x001fffff

And finally a UART is defined at address 0x10000000:

UART: 0x10000000 0x10000fff UartPL011

ihwaddperipheral -instancename uart0 -type UartPL011
ihwconnect -instancename uart0 -busslaveport bport1 -bus pBus \
 -loaddress 0x10000000 -hiaddress 0x10000fff
ihwsetparameter -handle uart0 -name outfile -value uart0.log –type string

4.1.2 Example application
Next, let’s define a simple application which will run on the platform and write to the UART
from both secure and non-secure modes:

#include <stdio.h>

// UART Registers
#define UART_BASE 0x10000000
#define UART_TX ((volatile unsigned char *) (UART_BASE + 0x0))
#define UART_FR ((volatile unsigned char *) (UART_BASE + 0x18))

// virtual memory translation table
unsigned int translationTable[4096] __attribute__ ((aligned (16384)));

// CP15 register access
#define WR_CP15(_OP1, _CRN, _CRM, _OP2, _VAL) \
 asm volatile("mcr p15, "#_OP1", %0, "#_CRN", "#_CRM", "#_OP2::"r"(_VAL))

#define RD_CP15(_OP1, _CRN, _CRM, _OP2, _VAL) \
 asm volatile("mrc p15, "#_OP1", %0, "#_CRN", "#_CRM", "#_OP2:"=r"(_VAL))

#define WR_SCTLR(_VAL) WR_CP15(0, c1, c0, 0, _VAL)
#define RD_SCTLR(_VAL) RD_CP15(0, c1, c0, 0, _VAL)
#define WR_SCR(_VAL) WR_CP15(0, c1, c1, 0, _VAL)
#define RD_SCR(_VAL) RD_CP15(0, c1, c1, 0, _VAL)

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 11 of 30
.

#define WR_TTBR0(_VAL) WR_CP15(0, c2, c0, 0, _VAL)
#define WR_DACR(_VAL) WR_CP15(0, c3, c0, 0, _VAL)

// Add a section entry to the translation table mapping 1MB
// starting at VA to physical address PA
void addSection(unsigned int VA, unsigned int PA) {

 unsigned int index = (VA >> 20);
 unsigned int entry = (PA & 0xfff00000) | // Section base address
 0x3 << 10 | // AP = read/write
 0x2; // Section entry, PXN=0

 // Set the entry in the table to be a section
 translationTable[index] = entry;

}

// Setup translation table entries for first 2MB of memory and UART addresses
void setupTranslationTable() {
 addSection(0x00000000, 0x00000000);
 addSection(0x00100000, 0x00100000);
 addSection(UART_BASE, UART_BASE);
}

// Enable the TLB
void enableTLB() {

 // Write the translation table base register
 WR_TTBR0((unsigned int)translationTable);

 // Set DACR to 1 to enable client permissions for domain 0
 WR_DACR(1);

 // Set SCTLR.M (bit 0) to enable TLB
 unsigned int sctlr;
 RD_SCTLR(sctlr);
 WR_SCTLR(sctlr | 1);

}

// Enter non-secure mode by setting SCR.NS (bit 0)
void enterNonSecure() {
 unsigned int scr;
 RD_SCR(scr);
 WR_SCR(scr | 1);
}

// Write a string to the UART TX register
void putString(const char *s) {
 while (*s) {
 while ((*UART_FR & 0x80) == 0) {
 // Wait for Tx Holding Register Empty flag
 }
 *UART_TX = *s++;
 }
}

int main() {

 // Setup and enable the secure mode TLB
 // Note: Processor starts out in secure mode
 setupTranslationTable();
 enableTLB();

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 12 of 30
.

 printf ("\n*** Writing to uart from Secure Mode\n");
 putString("Hello from secure mode!\n");

 printf ("\n*** Entering Non-Secure Mode\n");
 enterNonSecure();

 // Enable the non-secure TLB (uses same translation table as secure mode)
 enableTLB();

 printf ("\n*** Writing to uart from Non-Secure Mode\n");
 putString("Hello from non-secure mode!\n");

}

The function main() first initializes a translation table and enables the TLB (note that we are in
secure mode here because the processor always starts out in secure mode, so we are in fact
enabling the secure mode TLB here):

int main() {

 // Setup and enable the secure mode TLB
 // Note: Processor starts out in secure mode
 setupTranslationTable();
 enableTLB();
...

The translation table is configured to describe virtual to physical mappings for the first 2 MB of
memory and for 1MB of memory where the UART device is located. Note that identity mappings
(where the VA equals the PA) are used:

// Setup translation table entries for first 2MB of memory and UART addresses
void setupTranslationTable() {
 addSection(0x00000000, 0x00000000);
 addSection(0x00100000, 0x00100000);
 addSection(UART_BASE, UART_BASE);
}

Once the TLB is setup, printf() is used to write a message to the simulator console and
putString() is used to put a string out to the UART, one byte at a time.

 printf ("\n*** Writing to uart from Secure Mode\n");
 putString("Hello from secure mode!\n");

Next we put the processor into non-secure mode and enable the TLB (this time we are enabling
the non-secure TLB):

 printf ("\n*** Entering Non-Secure Mode\n");
 enterNonSecure();

 // Enable the non-secure TLB (uses same translation table as secure mode)
 enableTLB();

Now we write to the UART again, this time from non-secure mode:

 printf ("\n*** Writing to uart from Non-Secure Mode\n");

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 13 of 30
.

 putString("Hello from non-secure mode!\n");

If the UART is inaccessible from non-secure mode then an exception will be signaled by the
processor, which will terminate the simulation, since simulation of exceptions on the processor
was not enabled in the platform. This platform has no TrustZone awareness so both secure and
non-secure accesses to the UART will succeed.

⇒ You may notice that this example is quite contrived - we have not entered non-secure
mode using an exception from monitor mode, as is the normal method for entering non-
secure mode. Also we have no way of returning from non-secure mode back to secure
mode since we haven’t created a handler for the SMC call. We also have not added barrier
instructions following CP15 register updates that would be needed when running on real
hardware.

By ignoring all these normal requirements we are able to keep the example application
quite simple, but still show the effects of secure vs. non-secure accesses.

4.1.3 Building and running the example
The application and platform are in the directory:

Examples/PlatformConstruction/ARM_specific/trustzone/1.ignoreTrustZone
Take a copy of that directory and cd to it:

cp -r
$IMPERAS_HOME/Examples/PlatformConstruction/ARM_specific/trustzone/1.ignoreTrustZone .
cd 1.ignoreTrustZone

To compile, build and run the platform, use the following command (see section 2.3 for info on
setting up the toolchain needed by the Makefile):

make run

The application will run on the platform and you will see the following output:

*** Writing to uart from Secure Mode

*** Entering Non-Secure Mode

*** Writing to uart from Non-Secure Mode

And a file uart0.log will be created with the following contents:

Hello from secure mode!
Hello from non-secure mode!

indicating that the processor was able to access the UART from both secure and non-secure
modes.

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 14 of 30
.

4.2 Always Secure Peripherals
Now we will modify the platform, changing the bus to use all 41 address bits coming from the
processor. Now there will be effectively 2 address spaces - a secure space when address bit 40 is
0 and a non-secure space when address bit 40 is 1 (which occurs when the processor is in non-
secure mode.) . This example may be found in:
 $IMPERAS_HOME/Examples/PlatformConstruction/ARM_specific/trustzone/2.alwaysSecure

In this example we will show that by not creating a bridge from the non-secure space to the
secure space for the UART it will be inaccessible from non-secure mode.

Figure 2: Platform 'alwaysSecure' Block Diagram and Memory Mapping

4.2.1 alwaysSecure Example Platform
We need to make two modifications to the previous platform:

1. Increase the address width defined for the bus to 41 bits
2. Add a bridge to map the ram to the secure space so the program will still run after we

switch to non-secure mode

The changes from the previous platform are highlighted in bold:

...

tzBus - 41 bits of address - implements secure and non-secure address spaces

ihwaddbus -instancename tzBus -addresswidth 41

Memory

Memory

Virtual Platform Address Mapping

UART

0x10000000000

0x100FFFFFFFF

N
on

-S
ec

ur
e

M
ap

pi
ng

 S
pa

ce
Se

cu
re

 M
ap

pi
ng

 S
pa

ce

tzBus Mapped
Space

Memory

UART

pBus Physical
Connection

Memory

ARM
Cortex-A9UP

ARM
Cortex-A9UP

UART

Virtual Platform Block Diagram

pBus (32 address bits)

tzBus (41 addr bits)

Indicate Memory Mapping
using a Bus bridge

0x10000FFF

0x001FFFFF

0x00000000

0x10000000

0xFFFFFFFF

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 15 of 30
.

pBus - 32 bits of address - physical bus connected to devices and memory

ihwaddbus -instancename pBus -addresswidth 32

Bridge - Secure space of tzBus always mapped to pBus

ihwaddbridge -instancename secure
ihwconnect -instancename secure -busslaveport sp -bus tzBus \
 -loaddress 0x00000000 -hiaddress 0xffffffff
ihwconnect -instancename secure -busmasterport mp -bus pBus \
 -loaddress 0x00000000 -hiaddress 0xffffffff

Processor

ihwaddprocessor -instancename cpu -type arm -endian little -semihostname armNewlib
ihwconnect -instancename cpu -busmasterport INSTRUCTION -bus tzBus
ihwconnect -instancename cpu -busmasterport DATA -bus tzBus
ihwsetparameter -handle cpu -name variant -value Cortex-A9UP –type enum
ihwsetparameter -handle cpu -name compatibility -value nopSVC –type enum

Memory: 0x00000000 0x001fffff RAM

ihwaddmemory -instancename ram0 -type ram
ihwconnect -instancename ram0 -busslaveport sp1 -bus pBus \
 -loaddress 0x00000000 -hiaddress 0x001fffff

Bridge - Memory always accessible from non-secure mode

ihwaddbridge -instancename ram0NS
ihwconnect -instancename ram0NS -busslaveport sp -bus tzBus \
 -loaddress 0x10000000000 -hiaddress 0x100001fffff
ihwconnect -instancename ram0NS -busmasterport mp -bus pBus \
 -loaddress 0x00000000 -hiaddress 0x001fffff

UART: 0x10000000 0x10000fff UartPL011

ihwaddperipheral -instancename uart0 -type UartPL011
ihwconnect -instancename uart0 -busslaveport bport1 -bus pBus \
 -loaddress 0x10000000 -hiaddress 0x10000fff
ihwsetparameter -handle uart0 -name outfile -value uart0.log -type string

...

Now, in addition to the bus pBus with 32 address bits we have an additional bus, tzBus with 41
address bits:

tzBus - 41 bits of address - implements secure and non-secure address spaces

ihwaddbus -instancename tzBus -addresswidth 41

A bridge is added to map the entire secure address space (0x000_0000_0000:0x000_ffff_ffff) of
tzBus to pBus:

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 16 of 30
.

Bridge - Secure space of tzBus always mapped to pBus

ihwaddbridge -instancename secure
ihwconnect -instancename secure -busslaveport sp -bus tzBus \
 -loaddress 0x00000000 -hiaddress 0xffffffff
ihwconnect -instancename secure -busmasterport mp -bus pBus \
 -loaddress 0x00000000 -hiaddress 0xffffffff

Thus any address may be accessed from secure mode.

A bridge is also added to make the memory accessible from non-secure mode - without this the
program would take an exception immediately after the switch to secure mode:

Bridge - Memory always accessible from non-secure mode

ihwaddbridge -instancename ram0NS
ihwconnect -instancename ram0NS -busslaveport sp -bus tzBus \
 -loaddress 0x10000000000 -hiaddress 0x100001fffff
ihwconnect -instancename ram0NS -busmasterport mp -bus pBus \
 -loaddress 0x00000000 -hiaddress 0x001fffff

4.2.2 Example application
We will use the same application as in the previous example

4.2.3 Building and running the example
The application and platform are in the directory:
 Examples/PlatformConstruction/ARM_specific/trustzone/2.alwaysSecure
Take a copy of that directory and cd to it:

cp -r $IMPERAS_HOME/Examples/PlatformConstruction/ARM_specific/trustzone/2.alwaysSecure
.
cd 2.alwaysSecure

To compile, build and run the platform, use the following command (see section 2.3 for info on
setting up the toolchain needed by the Makefile):

make run

The application will run on the platform and you will see the following output:

*** Writing to uart from Secure Mode

*** Entering Non-Secure Mode

*** Writing to uart from Non-Secure Mode
Processor Exception (PC_PRX) Processor 'alwaysSecure/cpu' 0x823c: e5d33000 ldrb r3,[r3]
Processor Exception (PC_RPX) No read access at 0x10000018

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 17 of 30
.

When we attempt to read from the UART from non-secure mode there is an exception on the
ldrb instruction because the UART’s flag register address of 0x1000_0018 is not accessible from
non-secure mode.

The file uart0.log will be created with the following contents:

Hello from secure mode!

indicating that the processor was able to access the UART from secure mode, but not from non-
secure mode.

4.3 Always Non-secure Peripherals
Next we will modify the platform to make the UART always available in non-secure mode by
adding a bus bridge from the non-secure address space for the UART’s address region.

Figure 3: Platform 'alwaysNonSecure' Block Diagram and Memory Mapping

4.3.1 alwaysNonSecure Example Platform
We will modify the previous platform and add a non-secure bridge for the UART region. This
example may be found in:
 $IMPERAS_HOME/Examples/PlatformConstruction/ARM_specific/trustzone/3.alwaysNonSecure

The changes from the previous platform are highlighted in bold (most of the unchanged code has
been omitted for brevity):

Memory

Memory

UART

Virtual Platform Address Mapping

UART

0x10000000000

0x100FFFFFFFF

N
on

-S
ec

ur
e

M
ap

pi
ng

 S
pa

ce
Se

cu
re

 M
ap

pi
ng

 S
pa

ce

tzBus Mapped
Space

Memory

UART

pBus Physical
Connection

Memory

ARM
Cortex-A9UP

ARM
Cortex-A9UP

UART

Virtual Platform Block Diagram

tzBus (41 addr bits)

pBus (32 address bits)

Indicate Memory Mapping
using a Bus bridge

0x10000FFF

0x001FFFFF

0x00000000

0x10000000

0xFFFFFFFF

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 18 of 30
.

...

ihwnew -name alwaysSecure

...

UART: 0x10000000 0x10000fff UartPL011

ihwaddperipheral -instancename uart0 -type UartPL011
ihwconnect -instancename uart0 -busslaveport bport1 -bus pBus \
 -loaddress 0x10000000 -hiaddress 0x10000fff
ihwsetparameter -handle uart0 -name outfile -value uart0.log -type string

Bridge - UART always accessible from non-secure mode

ihwaddbridge -instancename uart0NS
ihwconnect -instancename uart0NS -busslaveport sp -bus tzBus \
 -loaddress 0x10010000000 -hiaddress 0x10010000fff
ihwconnect -instancename uart0NS -busmasterport mp -bus pBus \
 -loaddress 0x10000000 -hiaddress 0x10000fff
...

The uart0NS bridge has been added to make the UART always accessible from non-secure
mode.

4.3.2 Example application
We will use the same application as in the previous examples

4.3.3 Building and running the example
The application and platform are in the directory:

Examples/PlatformConstruction/ARM_specific/trustzone/3.alwaysNonSecure.
Take a copy of that directory and cd to it:

cp -r
$IMPERAS_HOME/Examples/PlatformConstruction/ARM_specific/trustzone/3.alwaysNonSecure .
cd 3.alwaysNonSecure

To compile, build and run the platform, use the following command (see section 2.3 for info on
setting up the toolchain needed by the Makefile):

make run

The application will run on the platform and you will see the following output:

*** Writing to uart from Secure Mode

*** Entering Non-Secure Mode

*** Writing to uart from Non-Secure Mode

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 19 of 30
.

And a file uart0.log will be created with the following contents:

Hello from secure mode!
Hello from non-secure mode!

indicating that the processor was able to access the UART from both secure and non-secure
modes.

4.4 Run-time switching between Secure and Non-secure
So far we have seen how to ignore the TrustZone secure bit entirely, and how to create
peripherals that are always secure or always non-secure. However it is more common that a
peripheral can have its security state modified while running, either at boot time or by a secure
monitor program.

This example shows how to define a peripheral with dynamically configurable security. It uses an
OVP model of the ARM BP147 TrustZone Protection Controller (TZPC) which implements up
to 24 output signals that are used to enable or disable non-secure accesses to specific peripherals.
By writing to the registers in the TZPC a program can change the values on these signals and thus
modify the security state of a peripheral.

A dummy peripheral called a DynamicBridge is implemented using the OVP modeling
technology. This can dynamically enable or disable a bridge for a specified address range. By
configuring a DynamicBridge peripheral to bridge a specific non-secure region to the
corresponding secure region and connecting it to an output from the TZPC, the platform can
support programmatic control of non-secure accesses to any component or memory region in the
specific memory region.

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 20 of 30
.

Figure 4: Platform 'programControl' Block Diagram and Memory Mapping

4.4.1 programControl Example Platform
We now modify the platform by:

1. Adding a BP147 TrustZone Controller peripheral
2. Adding a DynamicBridge peripheral for the UART address region
3. Connecting the enable input of the DynamicBridge to the TZDECPROT0_0 output of the

TZPC

This example may be found in:
 $IMPERAS_HOME/Examples/PlatformConstruction/ARM_specific/trustzone/4.programControl

The changes from the previous platform are highlighted in bold (most of the unchanged code has
been omitted for brevity):

...

ihwnew -name programControl

...

UART: 0x10000000 0x10000fff UartPL011

ihwaddperipheral -instancename uart0 -type UartPL011
ihwconnect -instancename uart0 -busslaveport bport1 -bus pBus \
 -loaddress 0x10000000 -hiaddress 0x10000fff

BP147

Memory

ARM
Cortex-A9UP

ARM
Cortex-A9UP

UART

Memory

Virtual Platform Address Mapping

0x10000FFF

0x10000000000

0x100FFFFFFFF

N
on

-S
ec

ur
e

M
ap

pi
ng

 S
pa

ce
Se

cu
re

 M
ap

pi
ng

 S
pa

ce

tzBus Mapped
Space

Memory

UART

pBus Physical
Connection

Dynamic
bridge BP147

BP147
0x10001FFF

UART

BP147

Virtual Platform Block Diagram

Memory

tzBus (41 addr bits)

pBus (32 address bits)

UART

Indicate Memory Mapping
using a Bus bridge

0x001FFFFF

0x00000000

0x10001000

0x10000000

0xFFFFFFFF

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 21 of 30
.

ihwsetparameter -handle uart0 -name outfile -value uart0.log -type string

Dynamic Bridge: Mapping from non-secure space for uart0 under program control

ihwaddperipheral -instancename uart0NS -type DynamicBridge
ihwconnect -instancename uart0NS -busslaveport sp -bus tzBus
ihwconnect -instancename uart0NS -busmasterport mp -bus pBus
ihwconnect -instancename uart0NS -netport enable -net tzpcdecprot0_0
ihwsetparameter -handle uart0NS -name mpLoAddress -value 0x10000000 –type uns64
ihwsetparameter -handle uart0NS -name spLoAddress -value 0x10010000000 –type uns64
ihwsetparameter -handle uart0NS -name portSize -value 0x1000 –type uns64

TZPC: 0x10001000 0x10001fff BP147 TrustZone Protection Controller

ihwaddperipheral -instancename tzpc -type TzpcBP147
ihwconnect -instancename tzpc -busslaveport bport1 -bus pBus \
 -loaddress 0x10001000 -hiaddress 0x10001fff
ihwconnect -instancename tzpc -netport TZPCDECPROT0_0 -net tzpcdecprot0_0

Bridge - TZPC always accessible from non-secure mode

ihwaddbridge -instancename tzpcNS
ihwconnect -instancename tzpcNS -busslaveport sp -bus tzBus \
 -loaddress 0x10010001000 -hiaddress 0x10010001fff
ihwconnect -instancename tzpcNS -busmasterport mp -bus pBus \
 -loaddress 0x10001000 -hiaddress 0x10001fff
...

Each new device is described in the following.

4.4.1.1 The DynamicBridge Peripheral
The DynamicBridge peripheral has a slave port input and a master port output. When enabled it
creates a mapping from the slave port at the address specified by the attribute spLoAddress to the
master port at the address specified by the attribute mpLoAddress for the extent specified by the
attribute portSize.

The slave port is connected to the tzBus and the master port connected to the pBus:

Dynamic Bridge: Mapping from non-secure space for uart0 under program control

ihwaddperipheral -instancename uart0NS -type DynamicBridge
ihwconnect -instancename uart0NS -busslaveport sp -bus tzBus
ihwconnect -instancename uart0NS -busmasterport mp -bus pBus

Note that the slave port can only be connected to an unused region of a bus, while the master port
may be connected to a region that is already used, thus creating an alias to that region.

The enable input of the DynamicBridge is connected to an output net from the TZPC, and will
control whether the bridge is enabled or not at a given time:

ihwconnect -instancename uart0NS -netport enable -net tzpcdecprot0_0

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 22 of 30
.

The DynamicBridge must be configured to indicate the address ranges to bridge. This is done by
specifying attributes defining the low address for both the master and slave port regions and the
size of the port:

ihwsetparameter -handle uart0NS -name mpLoAddress -value 0x10000000 –type uns64
ihwsetparameter -handle uart0NS -name spLoAddress -value 0x10010000000 –type uns64
ihwsetparameter -handle uart0NS -name portSize -value 0x1000 –type uns64

4.4.1.2 The TZPC Peripheral
The TZPC peripheral provides configuration to drive 24 output nets that can be used in
conjunction with the DynamicBridge peripheral to enable mapping of non-secure accesses for
memory regions, under program control.

The TZPC is defined and given its own separate address space on the bus:

TZPC: 0x10001000 0x10001fff BP147 TrustZone Protection Controller

ihwaddperipheral -instancename tzpc -type TzpcBP147
ihwconnect -instancename tzpc -busslaveport bport1 -bus pBus \
 -loaddress 0x10001000 -hiaddress 0x10001fff

We are only using one of the output ports from the TZPC, TZDECPROT0_0, which we connect to
the same net we connected to the DynamicBridge enable port:

ihwconnect -instancename tzpc -netport TZPCDECPROT0_0 -net tzpcdecprot0_0

Finally, in order to be able to access the TZPC from non-secure mode we add a bridge for its
address region:

Bridge - TZPC always accessible from non-secure mode

ihwaddbridge -instancename tzpcNS
ihwconnect -instancename tzpcNS -busslaveport sp \
 -bus smbus -loaddress 0x10010001000 -hiaddress 0x10010001fff
ihwconnect -instancename tzpcNS -busmasterport mp \
 -bus smbus -loaddress 0x10001000 -hiaddress 0x10001fff

⇒ Note that making the TZPC accessible from non-secure mode would make a real system

insecure, since only a secure program should be able to program the TZPC, but is
necessary for our simplified example which has no secure monitor program.

4.4.2 Example application
We must modify the application to change the TZDECPROT0_0 setting in the TZPC in order to test
the platform.

The changes from the previous application are highlighted in bold (most of the unchanged code
has been omitted for brevity):

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 23 of 30
.

...

// TrustZone Protection Controller Registers
#define TZPC_BASE 0x10001000
#define TZPC_DECPROT0_SET ((volatile unsigned char *) (TZPC_BASE + 0x804))
#define TZPC_DECPROT0_CLR ((volatile unsigned char *) (TZPC_BASE + 0x808))
...

// Turn on TrustZone protection for UART
void protectUart() {
 *TZPC_DECPROT0_CLR = 1;
}

// Turn off TrustZone protection for UART
void unprotectUart() {
 *TZPC_DECPROT0_SET = 1;
}

...

int main() {

 // Setup and enable the secure mode TLB
 // Note: Processor starts out in secure mode
 setupTranslationTable();
 enableTLB();

 printf ("\n*** Writing to uart from Secure Mode\n");
 putString("Hello from secure mode!\n");

 printf ("\n*** Entering Non-Secure Mode\n");
 enterNonSecure();

 // Enable the non-secure TLB (uses same translation table as secure mode)
 enableTLB();

 printf ("\n*** Unprotect Uart\n");
 unprotectUart();

 printf ("\n*** Writing to unprotected uart from Non-Secure Mode\n");
 putString("Hello from non-secure mode (unprotected)!\n");

 printf ("\n*** Protect Uart\n");
 protectUart();

 printf ("\n*** Writing to protected uart from Non-Secure Mode\n");
 putString("Hello from non-secure mode (protected)!\n");

}

The application program has been changed to first unprotect and then protect the UART before
accessing it in non-secure mode by clearing and then setting bit 0 of the TZPCDECPROT0 register
in the TZPC.

This is done by writing a 1 to bit 0 of the registers TZPCDECPROT0Set or TZPCDECPROT0Clr (at
offset 0x804 and 0x808 respectively from the TZPC base address, which is defined in the
platform to be 0x1001_0000):

#define TZPC_BASE ((volatile unsigned char *) 0x10001000)
#define TZPC_DECPROT0_SET ((volatile unsigned char *) (TZPC_BASE + 0x804))

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 24 of 30
.

#define TZPC_DECPROT0_CLR ((volatile unsigned char *) (TZPC_BASE + 0x808))

...

void protectUart() {
 *TZPC_DECPROT0_CLR = 1;
}

void unprotectUart() {
 *TZPC_DECPROT0_SET = 1;
}

See the document ARM TrustZone Protection Controller (BP147) Technical Overview
(DTO0015) for details of the TZPC.

4.4.3 Building and running the example
The application and platform are in the directory:

Examples/PlatformConstruction/ARM_specific/trustzone/4.programControl
Take a copy of that directory and cd to it:

cp -r
$IMPERAS_HOME/Examples/PlatformConstruction/ARM_specific/trustzone/4.programControl .
cd 4.programControl

To compile, build and run the platform, use the command (see section 2.3 for info on setting up
the toolchain needed by the Makefile):

make run

The application will run on the platform and you will see the following output:

*** Writing to uart from Secure Mode

*** Entering Non-Secure Mode

*** Unprotect Uart

*** Writing to unprotected uart from Non-Secure Mode

*** Protect Uart

*** Writing to protected uart from Non-Secure Mode
Processor Exception (PC_PRX) Processor 'programControl/cpu' 0x8284: e5d33000 ldrb r3,[r3]
Processor Exception (PC_RPX) No read access at 0x10000018

Here we see that the attempt to read from the UART from non-secure mode when the protection
has been enabled results in an exception.

The file uart0.log shows that the UART could be written from secure mode and from non-
secure mode when unprotected, but not when protected:

Hello from secure mode!
Hello from non-secure mode (unprotected)!

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 25 of 30
.

5 The DynamicBridge Peripheral
This section explains the implementation of the DynamicBridge peripheral which dynamically
creates or destroys a bus bridge under control of an input net.

The source for the peripheral may be found under:
 $IMPERAS_HOME/ImperasLib/source/ovpworld.org/peripheral/DynamicBridge

5.1 The pse.tcl file
The ports and attributes are defined in the pse.tcl file:

...

imodelnewperipheral \
 -imagefile pse.pse \
 -name DynamicBridge \
 -vendor ovpworld.org \
 -library peripheral \
 -version 1.0 \
 -constructor constructor

Output bus size is 32 bits
set outputBusWidth 32

iadddocumentation -name Description -text $desc
iadddocumentation -name Licensing -text "Open Source Apache 2.0"
iadddocumentation -name Limitations -text $limitations

Define bus slave input port
imodeladdbusslaveport -name sp -remappable -mustbeconnected

Define bus master output port
imodeladdbusmasterport -name mp -addresswidth $outputBusWidth -mustbeconnected

Define enable net input port
imodeladdnetport -name enable -type input -updatefunction updateEnable

Define formals for specifying the output master and slave bus port location and size
imodeladdformal -name mpLoAddress -type integer
imodeladdformal -name spLoAddress -type integer
imodeladdformal -name portSize -type integer

An input slave port named sp is defined. It is remappable, meaning that its address is defined by
the peripheral source code, and it must be connected:

Define bus slave input port
imodeladdbusslaveport -name sp -remappable -mustbeconnected

An output master port named mp is defined. It supports connections to a bus with 32 address bits
and must be connected:

Define bus master output port
imodeladdbusmasterport -name mp -addresswidth $outputBusWidth -mustbeconnected

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 26 of 30
.

If different numbers of address bits are needed a separate peripheral would need to be created.

An input net port named enable is defined. The function updateEnable is specified to be called
when the net connected to it changes. It may be left unconnected:

Define enable net input port
imodeladdnetport -name enable -type input -updatefunction updateEnable

Finally, 3 formal attributes are defined for specifying the base addresses for the slave port and
master port and the port size to be mapped:

imodeladdformal -name mpLoAddress -type integer
imodeladdformal -name spLoAddress -type integer
imodeladdformal -name portSize -type integer

The iGen program is used to convert the tcl file into OVP peripheral template source. See the
Imperas Peripheral Generator Guide for details.

5.2 The user.c file
iGen will create several *.igen.c files and *.igen.h files which implement the structure
defined in the pse.tcl file. It will also create a stubs file to be modified to implement the desired
functionality for the peripheral. This is called the user.c file by convention.

The DynamicBridge user.c file, modified to implement the model’s behavior is:

#include "pse.igen.h"

#define PREFIX "DynamicBridge"

#define DIAG_1 (diagnosticLevel >= 1)
#define DIAG_2 (diagnosticLevel >= 2)
#define DIAG_3 (diagnosticLevel >= 3)

SimAddr mpLoAddress;
SimAddr spLoAddress;
Uns64 portSize;
Bool bridgeEnabled = False;

//////////////////////////////// Callback stubs ////////////////////////////////

PPM_NET_CB(updateEnable) {

 Bool enable = value && !bridgeEnabled;
 Bool disable = !value && bridgeEnabled;

 if (disable) {

 // Disable dynamic bridge
 ppmDeleteDynamicBridge("sp", spLoAddress, portSize);
 bridgeEnabled = False;

 }

 if (enable) {

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 27 of 30
.

 // Enable dynamic bridge
 ppmCreateDynamicBridge("sp", spLoAddress, portSize, "mp", mpLoAddress);
 bridgeEnabled = True;

 }

 if (DIAG_1) {
 if (enable || disable) {
 bhmMessage(
 "I", PREFIX,
 "%s dynamic mapping for port of size %d at 0x%08llx",
 enable ? "Enable" : "Disable",
 (Uns32) portSize, mpLoAddress
);
 }
 }
}

PPM_CONSTRUCTOR_CB(constructor) {

 periphConstructor();

 // Note this peripheral is a nop if no net connected to enable
 if (handles.enable) {

 if (!bhmUns64Attribute("mpLoAddress", &mpLoAddress) ||
 !bhmUns64Attribute("spLoAddress", &spLoAddress) ||
 !bhmUns64Attribute("portSize" , &portSize)) {
 bhmMessage("F", PREFIX, "mpLoAddress, spLoAddress and portSize parameters
must all be defined");
 }
 }
}

See the OVP Peripheral Modeling Guide and OVP BHM and PPM Function Reference for
details on peripheral modeling. The highlights of this model are described in the following.

If no net is connected then the model implements no behavior:

 // Note this peripheral is a nop if no net connected to enable
 if (handles.enable) {

 ...

 }

If a net has been connected to the enable input the attributes are checked to make sure that all of
the mpLoAddress, spLoAddress and portSize have been specified on the model instance. It is a
fatal error for these to be missing.

 if (!bhmUns64Attribute("mpLoAddress", &mpLoAddress) ||
 !bhmUns64Attribute("spLoAddress", &spLoAddress) ||
 !bhmUns64Attribute("portSize" , &portSize)) {
 bhmMessage("F", PREFIX, "mpLoAddress, spLoAddress and portSize parameters
must all be defined");
 }

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 28 of 30
.

The updateEnable() function will be called whenever the net connected to the enable port
changes value. It first determines whether the bridge is to be enabled or disabled based on the
current state of the bridge and the new net value:

 Bool enable = value && !bridgeEnabled;
 Bool disable = !value && bridgeEnabled;

If the bridge is to be disabled, the ppmDeleteDynamicBridge() function is called to delete the
bridge:

 if (disable) {

 // Disable dynamic bridge
 ppmDeleteDynamicBridge("sp", spLoAddress, portSize);
 bridgeEnabled = False;

 }

If it is to be enabled the ppmCreateDynamicBridge() function is called to create the bridge:

 if (enable) {

 // Enable dynamic bridge
 ppmCreateDynamicBridge("sp", spLoAddress, portSize, "mp", mpLoAddress);
 bridgeEnabled = True;

 }

When creating a bridge it is a fatal error if the slave port overlaps with any other port currently on
the bus. The simulator will make this check when the bridge is created. The master port address
may overlap, creating an alias.

Once the bridge is created, accesses to the slave port address are mapped to the master port with
no additional overhead, allowing high performance simulation even in complex dynamic
mapping schemes.

Creating and deleting the bridge does involve significant overhead so these functions should be
used as efficiently as possible.

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 29 of 30
.

6 Summary
We have shown methods for both ignoring and implementing ARM TrustZone security in an
OVP platform.

When implementing TrustZone security we have shown how to model peripherals that are always
accessible in non-secure mode, never accessible in non-secure mode or where the accessibility of
a peripheral is controlled by the program running on the processor.

We have also shown how to implement an OVP peripheral that uses dynamic bridges to
efficiently model TrustZone at the platform level. These same techniques can be used in custom
models of TrustZone-aware peripherals.

Imperas ARM TrustZone Platform Modeling Application Note

© 2013 Imperas Software Limited www.imperas.com/www.OVPworld.org Page 30 of 30
.

7 Further Imperas Tools to assist with TrustZone platforms
and software

While this document has focused on optimal implementation of TrustZone-aware peripheral
models for high simulation performance, additional benefits can be derived from other Imperas
tools. Other test and analysis techniques that might be used to more comprehensively understand
the behavior of a TrustZone platform or application include using fault injection to confirm that
no unintended behavior is observed, using memory access monitoring to understand when and
why accesses of secure memory regions are made and tracing of TrustZone behavior.

These tools are available as part of the Imperas M*SDK product. M*SDK includes the
SlipStreamer™ API, which provides the basis for non-intrusive, low overhead tools. Using
SlipStreamer, Imperas has developed a set of Verification, Analysis and Profiling (VAP™) tools,
which have both CPU- and OS-aware capabilities. In addition, users can create custom tools by
using SlipStreamer.

For more information on M*SDK, SlipStreamer and the VAP tools, please go to the Imperas
website, www.Imperas.com, or email us at info@imperas.com.

http://www.imperas.com/
mailto:info@imperas.com

	1 Preface
	1.1 Related Documents
	1.2 Trademarks

	2 OVP and ARM TrustZone
	2.1 OVP ARM Processor Model
	2.2 iGen - platform and model builder
	2.3 Toolchains

	3 Secure and Non-secure Accesses
	3.1 Modeling of TrustZone in OVP Platforms
	3.2 The TrustZone NS Bit

	4 Examples
	4.1 Ignoring the TrustZone NS Bit in a Platform
	4.1.1 ignoreTrustZone Example Platform
	4.1.2 Example application
	4.1.3 Building and running the example

	4.2 Always Secure Peripherals
	4.2.1 alwaysSecure Example Platform
	4.2.2 Example application
	4.2.3 Building and running the example

	4.3 Always Non-secure Peripherals
	4.3.1 alwaysNonSecure Example Platform
	4.3.2 Example application
	4.3.3 Building and running the example

	4.4 Run-time switching between Secure and Non-secure
	4.4.1 programControl Example Platform
	4.4.1.1 The DynamicBridge Peripheral
	4.4.1.2 The TZPC Peripheral

	4.4.2 Example application
	4.4.3 Building and running the example

	5 The DynamicBridge Peripheral
	5.1 The pse.tcl file
	5.2 The user.c file

	6 Summary
	7 Further Imperas Tools to assist with TrustZone platforms and software

