
© 2017 Imperas Software LtdPage 1 DAC 2017

Virtual Platform Based Linux
Bring Up Methodology
DAC Tutorial
19 June 2017

Simon Davidmann, Imperas

© 2017 Imperas Software LtdPage 2 DAC 2017

Agenda
§ New challenges posed by heterogeneous architectures

§ Comparison of hardware-based and Virtual Platform-
based methodologies

§ Continuous Integration and Virtual Platforms

§ Case study: Linux bring up and testing on Altera Cyclone
V SoC FPGA

§ Demonstration

© 2017 Imperas Software LtdPage 3 DAC 2017

Observations On Embedded
Software
1) As software complexity is increasing exponentially,

companies need to adopt better ways to address
problems, as eventually the existing methods will no
longer be sufficient

2) One serious failure changes everything

3) There is a lesson to be learned from SoC design and
verification: a structured methodology provides
predictable execution and measurable reduction of
risk

Þ Embedded software development domain needs to
adopt a more formalized approach

© 2017 Imperas Software LtdPage 4 DAC 2017

Agenda
§ New challenges posed by heterogeneous architectures

§ Comparison of hardware-based and Virtual Platform-
based methodologies

§ Continuous Integration and Virtual Platforms

§ Case study: Linux bring up and testing on Altera Cyclone
V SoC FPGA

§ Demonstration

Heterogeneous SoC
Architectures
§ Heterogeneous can have various meanings for SoCs

§ Multiple different processors
§ Multiple computing elements, such as CPU plus GPU

§ Why heterogeneous architectures?
§ Optimize the resources on the SoC for different tasks, e.g. application

processor plus “minion” processors for power management,
communication management, etc.

© 2017 Imperas Software LtdPage 5 DAC 2017

Mobileye EyeQ4 has
quad core (8 threads) MIPS interAptiv
plus MIPS M5150

SoC System Architecture
§ Historically there was not a common operating system across the

processors
§ Recently processor IP companies have developed processor

configurations that are similar enough to allow a common Linux OS to
run
§ Originally this was ARM big.LITTLE, with quad core Cortex-A15 plus

quad core Cortex-A7, for power optimization of the application processor
§ The different processors did not run simultaneously; the operating system

switched automatically between the quad core processors depending on
application load

© 2017 Imperas Software LtdPage 6 DAC 2017

Diagram by Nvidia (https://en.wikipedia.org/wiki/ARM_big.LITTLE)

ARM big.LITTLE Operating
Modes

© 2017 Imperas Software LtdPage 7 DAC 2017

Source: ARM

MIPS I6500 and ARM DynamIQ
Extend Heterogeneous
Compute Paradigm
§ Fully configurable architectures now enabled

§ Multiple heterogeneous cores per cluster
§ Multiple heterogeneous clusters per SoC
§ Linux and architecture now supporting > 1000

computing elements

© 2017 Imperas Software LtdPage 8 DAC 2017
Source: IMG

Linux Complexity Increases
With Full Heterogeneity
§ During boot, Linux needs to probe each core to determine

characteristics so that correct hardware routines are
installed

§ Some Linux modules need to be updated
§ Cache initialization/handling: previously assumed homogeneous

cache size, now needs to accommodate potentially different
cache sizes for different cores/clusters

§ …
§ With increased complexity comes increased porting and

bring up issues

© 2017 Imperas Software LtdPage 9 DAC 2017

© 2017 Imperas Software LtdPage 10 DAC 2017

Agenda
§ New challenges posed by heterogeneous architectures

§ Comparison of hardware-based and Virtual Platform-
based methodologies

§ Continuous Integration and Virtual Platforms

§ Case study: Linux bring up and testing on Altera Cyclone
V SoC FPGA

§ Demonstration

© 2017 Imperas Software LtdPage 11 DAC 2017

Hardware-Based
Software Development
§ Has timing/cycle accuracy
§ JTAG-based debug, trace
§ Traditional breadboard / emulation based testing

§ Limited physical system availability
§ Limited external test access (controllability)
§ Limited internal visibility

§ To get around these limitations, software is modified
§ printf
§ Debug versions of OS kernels
§ Instrumentation for specific analytical tools, e.g.

code coverage, profiling
§ Modified software may not have the same

behavior as clean source code

© 2017 Imperas Software LtdPage 12 DAC 2017

Virtual Platform Based
Software Development
§ Instruction accurate simulation

§ Runs actual hardware executables
§ e.g. MIPS code on x86 PC

§ Models require only functionality that is
needed for software

§ Fast, enables quick turnaround and
comprehensive testing

§ Simulation-based development provides
visibility, controllability not available from
hardware

§ Same or better debugger access than
hardware

§ Access for the entire team Host
Development

Machine

SW virtual
platform
(w/ OS, etc)
running on
host

SW
Development

running on
virtual platform

© 2017 Imperas Software LtdPage 13 DAC 2017

Advantages of Virtual Platform
Based Software Development

Test
Set 1

Test
Set n

§ Earlier system availability
§ Full controllability of platform both from external ports and internal nodes

§ Can corner cases be tested?
§ Can an error be made to happen?

§ Full visibility into platform: if an error occurs, will it be observed by the
test environment?

§ Easy to replicate platform and test environment to support regression
testing on compute farms

© 2017 Imperas Software LtdPage 14 DAC 2017

Virtual Platforms Complement
Hardware-Based Software
Development

§ Current test methodology employs testing on hardware
§ Proven methodology
§ Has limitations
§ We are at the breaking point

§ Virtual platform based methodology promises
controllability, visibility, repeatability

§ Virtual platforms – software simulation – provide a
complementary technology to the current methodology

© 2017 Imperas Software LtdPage 15 DAC 2017

Building the Virtual Platform
§ The virtual platform is a set of models that reflects the hardware on

which the software will execute
§ Could be 1 SoC, multiple SoCs, board, system; no physical limitations
§ Functionally accurate, such that the software does not know that it is not

running on the hardware, i.e. runs the target binaries - unmodified
§ Models are typically written in C or SystemC
§ Models for individual components – interrupt controller, UART,

ethernet, … – are connected just like in the hardware
§ Peripheral components can be connected to the real world by using

the host workstation resources: keyboard, mouse, screen, ethernet,
USB, …

MIPS
interAptiv UART

USB

Memory
(RAM)

IDE VGAethernet

MIPS Malta Extendable
Platform Kit (Linux)

Run

© 2017 Imperas Software LtdPage 16 DAC 2017

Agenda
§ New challenges posed by heterogeneous architectures

§ Comparison of hardware-based and Virtual Platform-
based methodologies

§ Continuous Integration and Virtual Platforms

§ Case study: Linux bring up and testing on Altera Cyclone
V SoC FPGA

§ Demonstration

© 2017 Imperas Software LtdPage 17 DAC 2017

repository

Developer

Code &
Tests

CONTINUOUS
INTEGRATION

&
TEST

commit

Compile
Build
Test

fail pass

Tester

Packaging
Stress Test
Full Application
QA Test

errors

Release / Deploy

Modern Development
Methodology: Agile, Not
V-Shaped

© 2017 Imperas Software LtdPage 18 DAC 2017

Adopting Continuous Integration
& Continuous Test for Embedded
requires Simulation
§ Imagine a software build system without access to ‘make’

or ‘ant’
§ they enable effective build automation

§ Simulation enables the effective automation of testing
embedded systems as part of a Continuous Integration /
Continuous Test (CI/CT) environment

§ Simulation enables full automation
§ with no manual intervention

§ Use of hardware is just too hard

=> Virtual Platforms (simulation) enable CI / CT for
embedded

© 2017 Imperas Software LtdPage 19 DAC 2017

Virtual Platform Simulation

repository

Developer

Code &
Tests

CONTINUOUS INTEGRATION
& CONTINUOUS TEST

commit

fail pass

Tester

Packaging
Stress Test
Full Application
QA Test

errors

Release / Deploy

Simulation is a key component of
embedded CI / CT environment

Compile
Build
Test

© 2017 Imperas Software LtdPage 20 DAC 2017

Motivation for Change: Benefits
of Continuous Integration
§ Better code structure and quality

§ Frequent code check-in pushes developers to create modular, less complex code
§ Enforces discipline of frequent automated testing
§ Software metrics generated from automated testing and CI (such as metrics

for code coverage, code complexity, and feature completeness) focus developers
on developing functional, quality code, and help develop momentum in a team

§ Easier debug
§ When unit tests fail or a bug emerges, if developers need to revert the codebase

to a bug-free state only a small number of changes are lost

§ Fewer major integration bugs
§ Immediate feedback on system-wide impact of local changes
§ Integration bugs are detected early and are easy to track down due to small

change sets. This saves both time and money over the lifespan of a project.
§ Avoids last-minute chaos at release dates, when everyone tries to check in their

slightly incompatible versions

§ Constant availability of a "current" build for testing, demo, or release
purposes

© 2017 Imperas Software LtdPage 21 DAC 2017

Agenda
§ New challenges posed by heterogeneous architectures

§ Comparison of hardware-based and Virtual Platform-
based methodologies

§ Continuous Integration and Virtual Platforms

§ Case study: Linux bring up and testing on Altera Cyclone
V SoC FPGA

§ Demonstration

© 2017 Imperas Software LtdPage 22 DAC 2017

Altera Cyclone V SoC FPGA with
ARM Cortex-A9MPx2

§ Green background peripheral models
fully functional

§ Green diagonal pattern background
have only the functionality necessary to
boot the operating systems

§ Blue background peripheral models just
stubs

ARMÒ
Cortex™-A9MPx2

UART0

Timer0

SRAM

System
Manager

L2 Cache Controller

UART1 Ethernet

DMA

Timer1

Timer2

Timer3

Reset Controller

Imperas SmartLoader

© 2017 Imperas Software LtdPage 23 DAC 2017

Linux Bring Up and Testing on
Altera Cyclone V SoC FPGA

1) Linux boot on single core ARM Cortex-A9 (minimal
peripheral models)

2) SMP Linux boot on dual core ARM Cortex-A9 (minimal
peripheral models)

3) Add in peripheral models for Cyclone V SoC FPGA

§ Need to set up test infrastructure such that Continuous
Integration (CI) testing can be performed

© 2017 Imperas Software LtdPage 24 DAC 2017

Cyclone V SoC FPGA Virtual
Platform
§ Top level virtual platform built using Open Virtual Platforms (OVP,

www.OVPworld.org) platform API
§ ARM Cortex-A9MPx2 processor core model from the OVP Library
§ Peripheral models

§ Some models available in the OVP Library
§ Remaining models of peripheral components developed using OVP APIs

§ OVP APIs written for C language
§ Simulation engine: Imperas M*SDK

§ All OVP processor and peripheral models include both native OVP
and native SystemC/TLM2 interfaces, so all the following results
could have been achieved using the OSCI SystemC simulator plus
Imperas M*SDK product
§ Peripheral models could have been written in SystemC
§ M*SDK tools require OVP processor core models to enable tools

© 2017 Imperas Software LtdPage 25 DAC 2017

1a) Linux Boot on Single Core
ARM Cortex-A9
§ Use Linux from Altera: Altera-3.4
§ Use default configurations
§ Use default device trees

§ Comment out a few peripherals not yet modeled
§ Bug found in Linux kernel preemptive scheduling

§ Running multiple applications under Linux part of standard
Imperas bring up testing

§ Linux boots and runs, but does not switch tasks properly

§ Approximately 2 weeks engineering effort to build virtual
platform able to boot Linux

§ Virtual platform boots Linux in under 5 sec on standard
PC, Windows or Linux

© 2017 Imperas Software LtdPage 26 DAC 2017

1b) OS-Aware Tools Used to Find
the Bug
§ Use OS tracing [task, execve, schedule, context, …] to trace at the OS level,

not instruction level
§ OS-aware tools debug in hours, once the bug was observed
§ Simulation overhead due to OS-aware tools < 10%

© 2017 Imperas Software LtdPage 27 DAC 2017

OS-Aware Software Analysis
Example: OS Task Tracing

1) OS-aware tools enable in-depth monitoring and analysis, even before
console is available

2) Provides tracing at appropriate levels of abstraction, granularity
§ ~ 1,000,000,000 instructions to boot SMP Linux: instruction tracing to find

OS problem would be painfully slow and complicated
§ ~ 700 tasks to boot Linux: task tracing provides better starting point for

debugging OS problems during bring up

Introspection (Linux OS)

do_execve: pid=19
filename=/sbin/hotplug
argv virt=0x804613f0 phys=0x004613f0 "/sbin/hotplug"
argv virt=0x8045bc34 phys=0x0045bc34 "module"
envp virt=0x80413500 phys=0x00413500 "HOME=/"
envp virt=0x804170b4 phys=0x004170b4 "PATH=/sbin:/bin:
envp virt=0x81150000 phys=0x01150000 "ACTION=add"
envp virt=0x8115000b phys=0x0115000b "DEVPATH=/mod
envp virt=0x81150024 phys=0x01150024 "SUBSYSTEM=m
envp virt=0x81150035 phys=0x01150035 "SEQNUM=13"

do_execve: pid=20
filename=/sbin/hotplug
argv virt=0x804613f0 phys=0x004613f0 "/sbin/hotplug"
argv virt=0x8045bc34 phys=0x0045bc34 "module"
envp virt=0x80413500 phys=0x00413500 "HOME=/"
envp virt=0x804170b4 phys=0x004170b4 "PATH=/sbin:/bin:/
envp virt=0x81150000 phys=0x01150000 "ACTION=add"
envp virt=0x8115000b phys=0x0115000b "DEVPATH=/modu
…….

i

ü Non-intrusive: no instrumentation or modification of source code
ü Multicore capable

© 2017 Imperas Software LtdPage 28 DAC 2017

OS-Aware Software Analysis
Example: OS Scheduler Tracing

§ Process creation
§ Process deletion
§ Context switching
§ Non-intrusive
§ Multicore capable

© 2017 Imperas Software LtdPage 29 DAC 2017

2a) SMP Linux Boot on Dual Core
ARM Cortex-A9

§ Use Linux from Altera: Altera-3.6
§ Use default configurations
§ Use default device trees

§ Comment out the peripherals not yet modeled

§ Bug found in Linux accesses of GIC registers
§ Virtual platform debug took 2 days versus 2 weeks on

hardware platform (5x improvement)

§ Also need to ensure that operating systems do not access
forbidden memory segments

© 2017 Imperas Software LtdPage 30 DAC 2017

Callbacks on events

§ Non-intrusive trace/callback of
§ Selected changes/events in the hardware of system
§ Selected events in OS/software

§ Add C code to monitor and check what has happened –
add protocols, rules, assertions

Runtime
Analysis/checkers

Reports

O
S-

A
w

ar
e

La
ye

r
C

PU
-A

w
ar

e
La

ye
r

ARM
Cortex-A9MPx2

© 2017 Imperas Software LtdPage 31 DAC 2017

2b) Custom Memory Access
Monitor Accelerates Platform
Debug

Warning (AMPCHK_MWV) LINUX_CPU: AMP write access violation in uart1 area. PA: 0xffc03008 VA: 0xffc03008
Warning (AMPCHK_MWV) LINUX_CPU: AMP write access violation in uart1 area. PA: 0xffc0300c VA: 0xffc0300c
Warning (AMPCHK_MWV) LINUX_CPU: AMP write access violation in uart1 area. PA: 0xffc03010 VA: 0xffc03010

//
// Define watch areas for memory and peripherals defined in the platform
//
memWatchT amcWatch[] = {
// name watchLow watchHigh allowedCPUs

{ "Linux memory", 0, 0x2fffffff, LINUX_CPU },
{ "gmac0", 0xff700000, 0xff700fff, LINUX_CPU },
{ "emac0_dma", 0xff701000, 0xff701fff, LINUX_CPU },
{ "gmac1", 0xff702000, 0xff702fff, LINUX_CPU },
{ "emac1_dma", 0xff703000, 0xff703fff, LINUX_CPU },
{ "uart0", 0xffc02000, 0xffc02fff, LINUX_CPU },
{ "CLKMGR", 0xffd04000, 0xffd04fff, LINUX_CPU },
{ "RSTMGR", 0xffd05000, 0xffd05fff, LINUX_CPU },
{ "SYSMGR", 0xffd08000, 0xffd08fff, LINUX_CPU },
{ "GIC", 0xfffec000, 0xfffedfff, LINUX_CPU },
{ "L2", 0xfffef000, 0xfffeffff, LINUX_CPU },
{ 0 } /* Marks end of list */

};

§ Memory access monitor is just C code, less than 350 lines, loaded into simulation environment
§ When simulation is run, monitor produces warning if memory access rules are violated

© 2017 Imperas Software LtdPage 32 DAC 2017

2b-2) Custom Memory Access
Monitor Accelerates Platform
Debug (2nd CPU)

Warning (AMPCHK_MWV) LINUX_CPU: AMP write access violation in uart1 area. PA: 0xffc03008 VA: 0xffc03008
Warning (AMPCHK_MWV) LINUX_CPU: AMP write access violation in uart1 area. PA: 0xffc0300c VA: 0xffc0300c
Warning (AMPCHK_MWV) LINUX_CPU: AMP write access violation in uart1 area. PA: 0xffc03010 VA: 0xffc03010
Warning (AMPCHK_MRV) CPU2_CPU: AMP read access violation in Linux memory area. PA: 0x00000020 VA: 0x00000020

//
// Define watch areas for memory and peripherals defined in the platform
//
memWatchT amcWatch[] = {
// name watchLow watchHigh allowedCPUs

{ "Linux memory", 0, 0x2fffffff, LINUX_CPU },
{ “CPU2 memory", 0x30000000, 0x31ffffff, CPU2_CPU },
{ "gmac0", 0xff700000, 0xff700fff, LINUX_CPU },
{ "emac0_dma", 0xff701000, 0xff701fff, LINUX_CPU },
{ "gmac1", 0xff702000, 0xff702fff, LINUX_CPU },
{ "emac1_dma", 0xff703000, 0xff703fff, LINUX_CPU },
{ "uart0", 0xffc02000, 0xffc02fff, LINUX_CPU },
{ "uart1", 0xffc03000, 0xffc03fff, CPU2_CPU },
{ "CLKMGR", 0xffd04000, 0xffd04fff, LINUX_CPU },
{ "RSTMGR", 0xffd05000, 0xffd05fff, LINUX_CPU },
{ "SYSMGR", 0xffd08000, 0xffd08fff, LINUX_CPU },
{ "GIC", 0xfffec000, 0xfffedfff, LINUX_CPU },
{ "L2", 0xfffef000, 0xfffeffff, LINUX_CPU },
{ 0 } /* Marks end of list */

};

§ Memory access monitor is just C code, less than 350 lines, loaded into simulation environment
§ When simulation is run, monitor produces warning if memory access rules are violated

© 2017 Imperas Software LtdPage 33 DAC 2017

Agenda
§ New challenges posed by heterogeneous architectures

§ Comparison of hardware-based and Virtual Platform-
based methodologies

§ Continuous Integration and Virtual Platforms

§ Case study: Linux bring up and testing on Altera Cyclone
V SoC FPGA

§ Demonstration

© 2017 Imperas Software LtdPage 34 DAC 2017

Demonstrations
§ Linux boot on single ARM Cortex-A9

§ Linux boot on Altera Cyclone V

§ Linux boot on multicore MIPS I6400

§ SMP Linux boot on single core ARM Cortex-A9
§ OS-aware tools

§ Memory Monitoring

© 2017 Imperas Software LtdPage 35 DAC 2017

Linux boot on single ARM
Cortex-A9

Run

© 2017 Imperas Software LtdPage 36 DAC 2017

Linux boot on Altera Cyclone V

Run

MIPS I6400
Virtual Platform / Linux

MIPS I6400 UART (TTY2)
(16450)

UART (TTY1)
(SuperIO)

UART (TTY0)
(SuperIO)

Memory
(RAM)

Malta
FPGA VGAKbControl

(SuperIO)

PIIX4
(Base)

USB
(PIIX4)

PM
(PIIX4)

IntControl
(PIIX4)IDE

PCI BUS

PCI IACK

SysControl
(GT64120)

LOCAL BUS

RTC
(PIIX4)

Timer
(PIIX4)

PCI Config

D
yn

am
ic

 B
us

 C
on

ne
ct

io
n

run

© 2017 Imperas Software LtdPage 38 DAC 2017

Linux OS-Aware tools

Run
PrintKernel
TraceTasks

© 2017 Imperas Software LtdPage 39 DAC 2017

Memory Monitor
§ Non-intrusive trace/callback of

§ Selected changes/events in the hardware of system
§ Selected events in OS/software

Runtime
Analysis/checker

Report

C
PU

-A
w

ar
e

La
ye

r

ARM CPU

Run

© 2017 Imperas Software LtdPage 40 DAC 2017

Virtual Platform Adoption*
§ As systems become more complex, organizations are

turning to modeling and simulation tools to improve their
software development environments

§ Virtual platform solutions are being adopted as a
mechanism to improve system quality and to accelerate
software development and testing

§ Engineering teams whose projects align with Agile and
Continuous Integration (CI) product development
methodologies are more likely to use virtual platform
solutions

Þ If you need to build complex products with high quality in
shorter schedules you need to adopt virtual platform
based solutions

* Trends from VDCresearch reports 2014

© 2017 Imperas Software LtdPage 41 DAC 2017

Summary
§ Virtual platforms – software simulation – provide a

complementary technology to hardware-based testing of
software

§ Linux bring up on virtual platforms should be done
incrementally
§ Minimizing platform degrees of freedom adds productivity

§ OS-aware tools provide additional productivity, efficiency

§ Custom tools provide more robust software test
environment

© 2017 Imperas Software LtdPage 42 DAC 2017

Thank you

www.imperas.com
www.OVPworld.org

