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Abstract — The increasing numbers of cores in the individual 
SoCs, the move to multiple SoCs in Electronic Control Units 
(ECUs) and the increase in complexity of software for automotive 
electronics has led to the need for many-core support for real 
time operating systems (RTOSs).  In addition, security 
requirements on the systems are directly flowed down to security 
requirements on the RTOS.  With this increasing complexity of 
hardware, software and security requirements, the challenge to 
bring up and test the RTOS and basic software (BSW) has 
become much difficult.   

This paper reports on the use of a virtual platform (software 
simulation) based environment for the bring up and testing of a 
secure, many-core RTOS on an ECU.  The RTOS is the eMCOS 
RTOS from eSOL, the hardware represented in the virtual 
platform is two Renesas RH850F1H devices (SoCs), and the 
virtual platform tools are from Imperas.  In addition to the 
RTOS, AUTOSAR and a Real Time Environment (RTE) were 
brought up in the virtual environment.   

This paper will describe the process of building the virtual 
platform models, and the bring up and testing of eMCOS, 
AUTOSAR and the RTE. Overall simulation performance of 
about 200 million instructions per second (MIPS) was achieved.  
Key, unique and innovative features of this approach include 
platform-centric debugging, non-intrusive tools and a powerful 
set of APIs for modular tool development.   
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I.  INTRODUCTION 
In recent years, automotive electronics hardware has seen a 

significant increase in complexity due to the increased number 
of processor cores in the individual SoCs and the increased 
number of SoCs in Electronic Control Units (ECUs).  The 
software for these ECUs has seen an even larger increase in 
complexity, due to the increased complexity of the hardware, 
the increasing number of system scenarios that must be 

satisfied and the increasing safety requirements for automotive 
systems.   

Part of the increased complexity of the software is 
embodied in the use of many-core real time operating systems 
(RTOSs) on these SoCs and ECUs.  On top of the RTOS is 
usually AUTOSAR, plus a run time environment (RTE).  
While the use of a software stack including a many-core 
RTOS, AUTOSAR and RTE brings a level of complexity, one 
of the benefits of this stack is reduced complexity for software 
engineers using the environment.   

Also, one other requirement has been added to the system: 
security.  Security presents an additional challenge for software 
development, since secure software by its very nature should 
not be visible on the hardware, so debug using normal 
hardware-based techniques is exceedingly difficult.   

Virtual platforms (software simulation) do not have the 
restrictions in debug visibility that hardware-based platforms 
have.  Virtual platforms for software development, debug and 
test have additional advantages over hardware platforms such 
as early availability, increased controllability and observability, 
ease of automation of the development environment and ease 
of replication of the development environment.   

This paper reports on the use of a virtual platform (software 
simulation) based environment for the bring up and testing of a 
secure, many-core RTOS, AUTOSAR and RTE on an ECU.  
The advantages of using virtual platforms are elaborated, 
followed by a description of the process used to build the 
virtual platform.  The simulator engine and debug and test tools 
are described.  Finally, the case study is completed with details 
of bring up methodology, including simulation results.   

II. VIRTUAL PLATFORMS FOR SOFTWARE DEVELOPMENT 
The standard methodology for embedded software 

development is to use some type of hardware as the 
development platform.  This could be a previous generation of 
the SoC, a hardware emulator, a FPGA prototype, or some 



other type of development board.  These platforms have the 
benefit of cycle accurate execution of the software, which is 
needed for some software development, especially that 
software that contains real time execution requirements.  

While there are advantages to using a hardware-based 
development methodology, there are also disadvantages.  
These disadvantages include 

 

• Limited physical system availability 
• Limited external test access (controllability) 
• Limited internal visibility 

 

Also, depending on the exact hardware platform being 
used, it can be months from project start until a hardware 
platform is available for the software engineering team.   

Instruction accurate virtual platforms are not cycle or 
timing accurate.  However, these virtual platforms do have 
significant advantages:   
 

• Early system availability 
• Full controllability of platform both from external 

ports and internal nodes 
• Full visibility into platform 
• Easy to replicate platform and test environment to 

support automated testing on compute farms 
 

Also, while instruction accurate virtual platforms do not 
have the timing information, the majority (75 – 90%) of bugs 
in these applications are purely functional.   

The full visibility feature of virtual platforms is key to 
development of secure software.  Virtual platforms can provide 
access to secure parts of the system that are not visible, 
deliberately, to any of the hardware platforms.  This visibility 
is important for conventional debug, however, it is also 
important for other virtual platform tools including such tools 
as code coverage, memory monitors and OS-aware tools.  A 
further advantage of these tools is that the tools are completely 
non-intrusive: no modification or instrumentation of the source 
code, or compiling of a debug kernel, is necessary for the use 
of these tools in the virtual platform environment.   

Looking at the complete software development 
methodology, virtual platforms should be used, exclusively, 
early in the development process.  However, the virtual 
platforms, due to the visibility and controllability and the 
software development tools available, can continue to be used 
and add value throughout the duration of the software project.  
The hardware platforms, including especially the final 
hardware, can be used when they become available, with 
hardware based testing and virtual platform based testing 
providing complementary benefits to software engineers.   

III. BUILDING THE VIRTUAL PLATFORM  
The virtual platform is a set of instruction accurate models 

that reflect the hardware on which the software will execute.  
The virtual platform could be a single SoC, multiple SoCs, a 

board, a system; it is a virtual platform, and there are no 
physical limitations.  This is the traditional instruction set 
simulator concept, now extended to a complete platform, with 
a simulator that supports a full set of software development 
tools.  

These instruction accurate models are built with a set of 
APIs which are supported by the virtual platform simulator.  
The running of the virtual platform then just involves the 
execution of the models with the simulator linked in.  There are 
different APIs used for the processor core models, the non-
processor models (called “peripheral models” here) and the 
platform connections including memory and busses.  
Components in the virtual platform are connected just as in the 
hardware, and the memory map is the same as for the 
hardware.  Also, peripheral models, e.g.  of CAN, ethernet or 
USB components, can be connected to the real world via the 
appropriate port on the host x86 workstation.   

These models should have only as much information in the 
models as the software developers need.  There is no timing 
information needed in these models, and any unnecessary 
information will slow the virtual platform performance.   

Just as with the models themselves, the platform should 
only have the models that are necessary for the specific task 
that the virtual platform is being used for.  Virtual platform 
based development does not replace hardware based testing, so 
models of components needed for hardware based testing 
should not be included in the virtual platform, except at an 
instruction accurate level needed for execution of the software.  

A key point about virtual platforms is that the combination 
of virtual platform models plus simulator executes exactly the 
same binary software stack as will eventually run on the 
hardware.  No compiling for the host x86 workstation; if the 
system uses an ARM or Renesas processor, the same cross 
compilation tool chain and flow are used to create the ARM or 
Renesas binary executables to run on the virtual platform or on 
the hardware.   

Open Virtual Platforms (OVP) [1] C language models and 
modeling APIs were used to build the virtual platform of the 
Renesas RH850F1H devices and virtual ECU used here 
because of the availability of the processor core models in the 
OVP library, the performance of the processor core models, the 
ease of use of model development with the APIs and the tool 
power that is enabled when running the platform with the 
Imperas simulators [2].   

OVP includes a library of models, APIs for developing 
models and platforms and a reference simulator (OVPsim) for 
executing those virtual platforms.  The model library includes 
over 200 processor models, over 300 peripheral models and 
over 50 reference platforms.  The reference platforms are 
Extendable Platform Kits (EPKs) of devices and development 
boards with software – bare metal or an operating system – 
running on the virtual platform.  These EPKs give a user a 
known good starting point, from which extension of the virtual 
platform of the EPK to meet the specific project goals can be 
easily accomplished.   

The RH850F1H devices include a two separate 
RH850G3M processors and assorted peripheral components.  
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For this project, instruction accurate models of the RH850F1H 
devices were built, using the RH850G3 Fast Processor Model 
from the Open Virtual Platforms (OVP) Library, and using the 
OVP APIs to build the peripheral models and the virtual 
platform.  A block diagram of the RH850F1H is given in Fig. 
1.  The RH850F1H virtual platform is shown in Figure 2.  Note 
that there is only the minimal set of models needed to run the 
RTOS, AUTOSAR and RTE.  The single virtual platform of 
the RH850F1H can be considered a “pseudo-ECU”.   

 

 
Fig. 1.  RH850F1H block diagram.  (Courtesy Renesas Electronics.)   

 

 
Fig. 2.  RH850F1H virtual platform block diagram.  Note that only the 
minimal peripheral models needed to boot the software stack are used.     

 

For this work, focused on the many-core eMCOS RTOS / 
AUTOSAR / RTE, running on multiple processors and ECUs, 
two instances of the RH850F1H pseudo-ECU, connected via a 

two UARTs, were implemented in the virtual platform to 
represent the two ECUs.  While in the real hardware the ECUs 
are connected via a CAN bus, in this virtual platform the model 
of the CAN peripheral is not needed, since the focus of the 
testing was just to verify the communication content, not the 
protocol. This is shown in Fig. 3.   

 
Fig. 3.  Virtual platform containing two RH850F1H pseudo-ECUs.     

 

IV. DEBUG AND TEST OF THE SOFTWARE STACK  

A. eMCOS RTOS 
The eMCOS many-core RTOS [3] has been available from 

eSOL for several years.  Originally developed as a general 
purpose RTOS, it was enhanced to add AUTOSAR Classic 
Platform (CP) and the RTE for automotive electronics.  RTE 
provides an API to the AUTOSAR CP application called SW-
C (Software Components).  It provides communication 
between SW-Cs on the same ECU, and also between SW-Cs 
that reside in different ECUs, via CAN for example.   

Recently, with security requirements imposed on 
automotive systems, eMCOS has been enhanced to support 
secure software execution.   

The eMCOS RTOS uses a distributed microkernel 
architecture that is different from any existing single-core or 
multi-core RTOS.  This enables it to make the best use of 
many-core processor hardware, because it does not depend on 
cache coherency mechanisms.  A microkernel is allocated to 
every core to offer basic services, including inter-core message 
passing, local thread scheduling and thread management. 
Because eMCOS supports POSIX and AUTOSAR APIs, 
developers can reuse their existing software assets.  

eMCOS also uses the MPUs in the target hardware to allow 
users to designate secure memory regions.  The eMCOS RTOS 
operation is shown in Fig. 4.  

B. Simulator and Tools 
The simulator used to run the virtual platform and test the 

eMCOS / AUTOSAR / RTE stack was the S*DEV product 
from Imperas.  S*DEV enables the simulation of a virtual 
platform with multiple homogeneous processors, plus 
connection to GDB for software debug on any of the 
processors.  S*DEV typically has performance of 200-500 
MIPS, with that performance split equally between the 
processors in the virtual platform.  For example, for a virtual 



platform with four processors, each processor would run at 100 
MIPS.   

 

Fig. 4.  eMCOS RTOS structure.      

 

A block diagram of the test set up is shown in Fig. 5.  

 
Fig. 5.  Block diagram of the test set up.      

 

C. Results 
Goals for the use of the virtual platform based test 

environment included 

§ Verification of eMCOS/AUTOSAR/RTE 

§ Enable Continuous Integration (CI) flow 

§ Enable multiple teams to use the same test 
environment 

The virtual platform environment was brought up in stages, 
with the initial stage consisting of developing the single 
pseudo-ECU and bringing up eMCOS without AUTOSAR on 
the single pseudo-ECU.  This effort took less than 2 weeks of 
engineering effort.   

From this initial milestone, the bring up of the full virtual 
platform environment, as shown in Fig. 5, proceeded in a 
straightforward manner, and took less than 2 months.   

Overall simulation performance of greater than 200 million 
instructions per second (MIPS) was achieved, or about 50 
MIPS per core.  This performance was somewhat dependent 
upon the specific test cases.  Performance of at least 200 MIPS 
was critical because of the large test cases, and large number of 
tests (nearly 5,000) being used.  Even so, running the full test 
suite takes nearly 3 days.   

The virtual platform, as a software executable, was easy to 
replicate and deliver to additional engineering teams located at 
different sites.   

The visibility of the virtual platform was key.  Using the 
virtual platform enabled catching bugs that would have been 
found much later in the test cycle, if at all.  This visibility also 
enabled the debug of secure elements of the software stack.   

Also, the S*DEV simulator can be controlled both by 
interactive debug tools and from the command line.  This 
command line control, via a rich set of C commands, allowed 
easy integration of the simulation environment into the 
Continuous Integration flow.   

While it is difficult to calculate the time saved in this 
project due to the use of the virtual platform, the ability to run 
tests automatically overnight coupled with the performance of 
the simulator enabled schedule savings of months on this 
project.   

V. CONCLUSIONS 
Using the virtual platform as a complementary tool to 

hardware-based testing accelerated the overall software testing 
task by months. More comprehensive testing was achieved, 
finding bugs quicker, and enabling debug of secure software.   

Using the virtual platform is not a cure-all.  A test plan is 
necessary, separating out tests for each of the platforms.  The 
virtual platform should be used for test tasks where significant 
ROI can be achieved, due to the strengths of the virtual 
platform.   

Further work is desired, including extending the use of the 
virtual platform to use additional simulation tools such as code 
coverage and fault injection.   
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