
www.embedded-world.eu

 Virtual Platform Environment for the Bring Up and
Test of a Secure Many-Core RTOS

Atsushi Shinbo and Shuzo Tanaka
eSOL TRINITY Co., Ltd.

Tokyo, Japan
s-tanaka@esol-trinity.co.jp

Masaki Gondo
eSOL Co., Ltd.
Tokyo, Japan

Duncan Graham and Larry Lapides
Imperas Software Ltd.

Oxford, England
larryl@imperas.com

Abstract — The increasing numbers of cores in the individual
SoCs, the move to multiple SoCs in Electronic Control Units
(ECUs) and the increase in complexity of software for automotive
electronics has led to the need for many-core support for real
time operating systems (RTOSs). In addition, security
requirements on the systems are directly flowed down to security
requirements on the RTOS. With this increasing complexity of
hardware, software and security requirements, the challenge to
bring up and test the RTOS and basic software (BSW) has
become much difficult.

This paper reports on the use of a virtual platform (software
simulation) based environment for the bring up and testing of a
secure, many-core RTOS on an ECU. The RTOS is the eMCOS
RTOS from eSOL, the hardware represented in the virtual
platform is two Renesas RH850F1H devices (SoCs), and the
virtual platform tools are from Imperas. In addition to the
RTOS, AUTOSAR and a Real Time Environment (RTE) were
brought up in the virtual environment.

This paper will describe the process of building the virtual
platform models, and the bring up and testing of eMCOS,
AUTOSAR and the RTE. Overall simulation performance of
about 200 million instructions per second (MIPS) was achieved.
Key, unique and innovative features of this approach include
platform-centric debugging, non-intrusive tools and a powerful
set of APIs for modular tool development.

Keywords — RTOS, virtual platform, many-core, security,
software simulation, virtual prototype, automotive, AUTOSAR, real
time environment

I. INTRODUCTION
In recent years, automotive electronics hardware has seen a

significant increase in complexity due to the increased number
of processor cores in the individual SoCs and the increased
number of SoCs in Electronic Control Units (ECUs). The
software for these ECUs has seen an even larger increase in
complexity, due to the increased complexity of the hardware,
the increasing number of system scenarios that must be

satisfied and the increasing safety requirements for automotive
systems.

Part of the increased complexity of the software is
embodied in the use of many-core real time operating systems
(RTOSs) on these SoCs and ECUs. On top of the RTOS is
usually AUTOSAR, plus a run time environment (RTE).
While the use of a software stack including a many-core
RTOS, AUTOSAR and RTE brings a level of complexity, one
of the benefits of this stack is reduced complexity for software
engineers using the environment.

Also, one other requirement has been added to the system:
security. Security presents an additional challenge for software
development, since secure software by its very nature should
not be visible on the hardware, so debug using normal
hardware-based techniques is exceedingly difficult.

Virtual platforms (software simulation) do not have the
restrictions in debug visibility that hardware-based platforms
have. Virtual platforms for software development, debug and
test have additional advantages over hardware platforms such
as early availability, increased controllability and observability,
ease of automation of the development environment and ease
of replication of the development environment.

This paper reports on the use of a virtual platform (software
simulation) based environment for the bring up and testing of a
secure, many-core RTOS, AUTOSAR and RTE on an ECU.
The advantages of using virtual platforms are elaborated,
followed by a description of the process used to build the
virtual platform. The simulator engine and debug and test tools
are described. Finally, the case study is completed with details
of bring up methodology, including simulation results.

II. VIRTUAL PLATFORMS FOR SOFTWARE DEVELOPMENT
The standard methodology for embedded software

development is to use some type of hardware as the
development platform. This could be a previous generation of
the SoC, a hardware emulator, a FPGA prototype, or some

other type of development board. These platforms have the
benefit of cycle accurate execution of the software, which is
needed for some software development, especially that
software that contains real time execution requirements.

While there are advantages to using a hardware-based
development methodology, there are also disadvantages.
These disadvantages include

• Limited physical system availability
• Limited external test access (controllability)
• Limited internal visibility

Also, depending on the exact hardware platform being
used, it can be months from project start until a hardware
platform is available for the software engineering team.

Instruction accurate virtual platforms are not cycle or
timing accurate. However, these virtual platforms do have
significant advantages:

• Early system availability
• Full controllability of platform both from external

ports and internal nodes
• Full visibility into platform
• Easy to replicate platform and test environment to

support automated testing on compute farms

Also, while instruction accurate virtual platforms do not
have the timing information, the majority (75 – 90%) of bugs
in these applications are purely functional.

The full visibility feature of virtual platforms is key to
development of secure software. Virtual platforms can provide
access to secure parts of the system that are not visible,
deliberately, to any of the hardware platforms. This visibility
is important for conventional debug, however, it is also
important for other virtual platform tools including such tools
as code coverage, memory monitors and OS-aware tools. A
further advantage of these tools is that the tools are completely
non-intrusive: no modification or instrumentation of the source
code, or compiling of a debug kernel, is necessary for the use
of these tools in the virtual platform environment.

Looking at the complete software development
methodology, virtual platforms should be used, exclusively,
early in the development process. However, the virtual
platforms, due to the visibility and controllability and the
software development tools available, can continue to be used
and add value throughout the duration of the software project.
The hardware platforms, including especially the final
hardware, can be used when they become available, with
hardware based testing and virtual platform based testing
providing complementary benefits to software engineers.

III. BUILDING THE VIRTUAL PLATFORM
The virtual platform is a set of instruction accurate models

that reflect the hardware on which the software will execute.
The virtual platform could be a single SoC, multiple SoCs, a

board, a system; it is a virtual platform, and there are no
physical limitations. This is the traditional instruction set
simulator concept, now extended to a complete platform, with
a simulator that supports a full set of software development
tools.

These instruction accurate models are built with a set of
APIs which are supported by the virtual platform simulator.
The running of the virtual platform then just involves the
execution of the models with the simulator linked in. There are
different APIs used for the processor core models, the non-
processor models (called “peripheral models” here) and the
platform connections including memory and busses.
Components in the virtual platform are connected just as in the
hardware, and the memory map is the same as for the
hardware. Also, peripheral models, e.g. of CAN, ethernet or
USB components, can be connected to the real world via the
appropriate port on the host x86 workstation.

These models should have only as much information in the
models as the software developers need. There is no timing
information needed in these models, and any unnecessary
information will slow the virtual platform performance.

Just as with the models themselves, the platform should
only have the models that are necessary for the specific task
that the virtual platform is being used for. Virtual platform
based development does not replace hardware based testing, so
models of components needed for hardware based testing
should not be included in the virtual platform, except at an
instruction accurate level needed for execution of the software.

A key point about virtual platforms is that the combination
of virtual platform models plus simulator executes exactly the
same binary software stack as will eventually run on the
hardware. No compiling for the host x86 workstation; if the
system uses an ARM or Renesas processor, the same cross
compilation tool chain and flow are used to create the ARM or
Renesas binary executables to run on the virtual platform or on
the hardware.

Open Virtual Platforms (OVP) [1] C language models and
modeling APIs were used to build the virtual platform of the
Renesas RH850F1H devices and virtual ECU used here
because of the availability of the processor core models in the
OVP library, the performance of the processor core models, the
ease of use of model development with the APIs and the tool
power that is enabled when running the platform with the
Imperas simulators [2].

OVP includes a library of models, APIs for developing
models and platforms and a reference simulator (OVPsim) for
executing those virtual platforms. The model library includes
over 200 processor models, over 300 peripheral models and
over 50 reference platforms. The reference platforms are
Extendable Platform Kits (EPKs) of devices and development
boards with software – bare metal or an operating system –
running on the virtual platform. These EPKs give a user a
known good starting point, from which extension of the virtual
platform of the EPK to meet the specific project goals can be
easily accomplished.

The RH850F1H devices include a two separate
RH850G3M processors and assorted peripheral components.

www.embedded-world.eu

For this project, instruction accurate models of the RH850F1H
devices were built, using the RH850G3 Fast Processor Model
from the Open Virtual Platforms (OVP) Library, and using the
OVP APIs to build the peripheral models and the virtual
platform. A block diagram of the RH850F1H is given in Fig.
1. The RH850F1H virtual platform is shown in Figure 2. Note
that there is only the minimal set of models needed to run the
RTOS, AUTOSAR and RTE. The single virtual platform of
the RH850F1H can be considered a “pseudo-ECU”.

Fig. 1. RH850F1H block diagram. (Courtesy Renesas Electronics.)

Fig. 2. RH850F1H virtual platform block diagram. Note that only the
minimal peripheral models needed to boot the software stack are used.

For this work, focused on the many-core eMCOS RTOS /
AUTOSAR / RTE, running on multiple processors and ECUs,
two instances of the RH850F1H pseudo-ECU, connected via a

two UARTs, were implemented in the virtual platform to
represent the two ECUs. While in the real hardware the ECUs
are connected via a CAN bus, in this virtual platform the model
of the CAN peripheral is not needed, since the focus of the
testing was just to verify the communication content, not the
protocol. This is shown in Fig. 3.

Fig. 3. Virtual platform containing two RH850F1H pseudo-ECUs.

IV. DEBUG AND TEST OF THE SOFTWARE STACK

A. eMCOS RTOS
The eMCOS many-core RTOS [3] has been available from

eSOL for several years. Originally developed as a general
purpose RTOS, it was enhanced to add AUTOSAR Classic
Platform (CP) and the RTE for automotive electronics. RTE
provides an API to the AUTOSAR CP application called SW-
C (Software Components). It provides communication
between SW-Cs on the same ECU, and also between SW-Cs
that reside in different ECUs, via CAN for example.

Recently, with security requirements imposed on
automotive systems, eMCOS has been enhanced to support
secure software execution.

The eMCOS RTOS uses a distributed microkernel
architecture that is different from any existing single-core or
multi-core RTOS. This enables it to make the best use of
many-core processor hardware, because it does not depend on
cache coherency mechanisms. A microkernel is allocated to
every core to offer basic services, including inter-core message
passing, local thread scheduling and thread management.
Because eMCOS supports POSIX and AUTOSAR APIs,
developers can reuse their existing software assets.

eMCOS also uses the MPUs in the target hardware to allow
users to designate secure memory regions. The eMCOS RTOS
operation is shown in Fig. 4.

B. Simulator and Tools
The simulator used to run the virtual platform and test the

eMCOS / AUTOSAR / RTE stack was the S*DEV product
from Imperas. S*DEV enables the simulation of a virtual
platform with multiple homogeneous processors, plus
connection to GDB for software debug on any of the
processors. S*DEV typically has performance of 200-500
MIPS, with that performance split equally between the
processors in the virtual platform. For example, for a virtual

platform with four processors, each processor would run at 100
MIPS.

Fig. 4. eMCOS RTOS structure.

A block diagram of the test set up is shown in Fig. 5.

Fig. 5. Block diagram of the test set up.

C. Results
Goals for the use of the virtual platform based test

environment included

§ Verification of eMCOS/AUTOSAR/RTE

§ Enable Continuous Integration (CI) flow

§ Enable multiple teams to use the same test
environment

The virtual platform environment was brought up in stages,
with the initial stage consisting of developing the single
pseudo-ECU and bringing up eMCOS without AUTOSAR on
the single pseudo-ECU. This effort took less than 2 weeks of
engineering effort.

From this initial milestone, the bring up of the full virtual
platform environment, as shown in Fig. 5, proceeded in a
straightforward manner, and took less than 2 months.

Overall simulation performance of greater than 200 million
instructions per second (MIPS) was achieved, or about 50
MIPS per core. This performance was somewhat dependent
upon the specific test cases. Performance of at least 200 MIPS
was critical because of the large test cases, and large number of
tests (nearly 5,000) being used. Even so, running the full test
suite takes nearly 3 days.

The virtual platform, as a software executable, was easy to
replicate and deliver to additional engineering teams located at
different sites.

The visibility of the virtual platform was key. Using the
virtual platform enabled catching bugs that would have been
found much later in the test cycle, if at all. This visibility also
enabled the debug of secure elements of the software stack.

Also, the S*DEV simulator can be controlled both by
interactive debug tools and from the command line. This
command line control, via a rich set of C commands, allowed
easy integration of the simulation environment into the
Continuous Integration flow.

While it is difficult to calculate the time saved in this
project due to the use of the virtual platform, the ability to run
tests automatically overnight coupled with the performance of
the simulator enabled schedule savings of months on this
project.

V. CONCLUSIONS
Using the virtual platform as a complementary tool to

hardware-based testing accelerated the overall software testing
task by months. More comprehensive testing was achieved,
finding bugs quicker, and enabling debug of secure software.

Using the virtual platform is not a cure-all. A test plan is
necessary, separating out tests for each of the platforms. The
virtual platform should be used for test tasks where significant
ROI can be achieved, due to the strengths of the virtual
platform.

Further work is desired, including extending the use of the
virtual platform to use additional simulation tools such as code
coverage and fault injection.

REFERENCES
[1] Open Virtual Platforms (OVP), www.OVPworld.org
[2] Imperas Software Ltd., www.imperas.com
[3] eSOL Co. Ltd., www.esol.co.jp

