
© 2022 Imperas Software Limited www.OVPworld.org Page 1 of 93

OVP Peripheral Modeling Guide

A guide to writing behavioral components / peripheral models in the OVP
and Imperas environments.

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas
Version: 1.8.10
Filename: OVP_Peripheral_Modeling_Guide.doc
Last Saved: Thursday, 28 April 2022
Keywords: Peripheral PSE Modeling OVP

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 2 of 93

Copyright Notice
Copyright © 2022 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 3 of 93

Table of Contents

1 Preface... 7
1.1 Notation... 7
1.2 Related OVP Documents .. 7

2 Introduction... 8
2.1 Peripheral Model Template Generation with iGen... 8
2.2 Prerequisites .. 8

2.2.1 MinGW ... 8
2.2.2 Cross Compiler Toolchain .. 8

3 OVP Simulation Overview ... 9
3.1 Imperas & OVP Tools .. 9
3.2 Processor Models .. 9
3.3 Peripheral Models ... 9

4 Behavioral Modeling Methodology.. 10
4.1 Peripheral Modeling API .. 10

4.1.1 BHM API .. 11
4.1.1.1 Threads and events .. 11
4.1.1.2 Parameters ... 11
4.1.1.3 Diagnostics .. 11
4.1.1.4 Networking .. 11

4.1.2 PPM API ... 11
4.2 Data Endianness.. 11
4.3 Host Feature Access.. 11

5 Behavioral Modeling (BHM) API Overview ... 13
5.1 Interface Definition... 13

5.1.1 Parameter definitions .. 14
5.1.2 Overriding a parameter ... 15
5.1.3 Bus port definitions... 15
5.1.4 Net port definitions ... 16
5.1.5 Packetnet port definitions ... 17
5.1.6 Conn (FIFO) port definitions .. 19

5.2 Initialization .. 20
5.3 Diagnostic output .. 21
5.4 Threads.. 22

5.4.1 Events.. 23
5.4.1.1 Named Events.. 24

5.4.2 System Events... 24
5.4.3 Delays ... 24

5.4.3.1 Considerations ... 25
5.4.3.2 Relationship between delays and time-slice.. 25

5.5 Callbacks... 26
5.5.1 Delays in callbacks ... 26

5.5.1.1 Callbacks that Block Unconditionally ... 27
5.5.1.2 Callbacks that Block Conditionally... 29
5.5.1.3 Notes and Restrictions ... 31

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 4 of 93

5.6 Time .. 31
5.6.1 Current Simulation Time .. 32
5.6.2 Local Time .. 32

6 Peripheral Platform Modeling (PPM) API Overview... 35
6.1 Bus Slave connection.. 35

6.1.1 Fixed Mapping .. 35
6.1.1.1 Aborted Access.. 38

6.1.2 Dynamic Mapping .. 38
6.2 Bus master connections... 39

6.2.1 By handle .. 39
6.2.2 By Address Space ... 40

6.3 Dynamic Bridges .. 41
6.4 Nets ... 43
6.5 Conn (FIFO) Support .. 43

6.5.1 FIFO Word Size.. 44
6.5.2 Example .. 44

6.6 Memory Mapped Registers and Bit Fields ... 44
6.6.1 Callbacks... 45
6.6.2 Masking... 45
6.6.3 Diagnostics and debug .. 45
6.6.4 Endian-ness ... 45
6.6.5 Example .. 45
6.6.6 Bit-fields ... 47
6.6.7 Register arrays .. 48

6.7 Callbacks without registers ... 50
6.7.1 Overlapping callbacks... 51
6.7.2 Fragmented access .. 52
6.7.3 Simulating a bus error in a callback.. 52

6.8 Programmers View ... 53
6.8.1 Automatic Object and Event Generation .. 53
6.8.2 Objects .. 53

6.8.2.1 Creating an Object ... 53
6.8.2.2 Associating Values with Objects... 54
6.8.2.3 Removing an Object .. 54

6.8.3 View Events .. 54
6.8.3.1 Adding an Event .. 54
6.8.3.2 Triggering an Event ... 55

6.8.4 Actions .. 55
7 Host Code.. 56

7.1 The constructor ... 57
7.1.1 Environment Checks... 57

7.1.1.1 Raw Intercepts ... 57
7.1.1.2 ABI Intercepts.. 57

7.1.2 The Peripheral Simulation Engine ABI .. 57
7.1.2.1 Raw Intercepts ... 57
7.1.2.2 ABI Intercepts.. 57

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 5 of 93

7.2 Obtaining Intercepted Function Arguments.. 57
7.2.1.1 Raw Intercepts ... 57
7.2.1.2 ABI Intercepts.. 58

7.3 Passing the Return Code from an Intercepted Function 58
7.3.1.1 Raw Intercepts ... 58
7.3.1.2 ABI Intercepts.. 58

7.4 Data Exchange .. 59
8 Peripheral Model Example ... 60

8.1 Example Source .. 60
8.2 IGEN... 60

8.2.1 Register model .. 61
8.2.2 Parallel Operations and Signaling Events... 61
8.2.3 Master Memory Access .. 62
8.2.4 Interrupts ... 62
8.2.5 Behavior using Native host code .. 62

8.3 Platform Overview.. 65
8.3.1 Virtual Platform Design.. 65

8.3.1.1 Virtual Platform Memory Map.. 65
8.3.1.2 Virtual Platform Module Definition .. 65

8.4 Peripheral Model Template... 66
8.5 Peripheral Model Entry... 68

8.5.1 Attribute Table .. 68
8.5.2 The Main Function.. 68
8.5.3 Information about available ports ... 69
8.5.4 Information about parameters ... 70
8.5.5 Creating a Slave Port Interface ... 71
8.5.6 Registers.. 71

8.5.6.1 Installing a Register ... 71
8.5.7 Running the Example.. 74

9 Dynamic Slave Port example.. 75
9.1 Instance Peripheral in Module .. 76
9.2 Peripheral iGen Definition.. 76
9.3 Peripheral User Code .. 76

9.3.1 Initialization .. 76
9.3.2 Dynamic mapping... 77

9.4 Running the Example.. 77
10 QuantumLeap with Peripherals... 78

10.1 The QuantumLeap Algorithm... 78
10.2 Example .. 79

10.2.1 Peripheral Code... 79
10.2.2 Peripheral Native Code ... 80
10.2.3 Module Definition... 81
10.2.4 Threaded Operation .. 82
10.2.5 Non-Threaded Operation .. 84

10.3 QuantumLeap Results ... 85
10.4 Configuration of Peripheral Native Code ... 85

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 6 of 93

11 Building Peripherals.. 88
11.1 OVP Library Structure.. 88
11.2 Peripheral Model Makefiles.. 88

11.2.1 Selecting PSE Type... 89
11.3 Building Peripheral Models .. 89

11.3.1 Building to the Default Output Location .. 89
11.3.2 Building to a Defined Output Location .. 90

12 Troubleshooting .. 91
12.1 Runaway Recursion .. 91

12.1.1 Error Description .. 91
12.1.2 Example of Error in Peripheral Intercept Coding 91

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 7 of 93

1 Preface
This document describes the features available for modeling peripheral components using
the OVP and Imperas tools.

1.1 Notation
Code A code extract.
Function The name of a function, variable or type
keyword A word with special meaning.

Note that for clarity, examples generally omit error handling code.

1.2 Related OVP Documents
• BHM PPM Function Reference

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 8 of 93

2 Introduction
OVP and Imperas simulation technology enables very high performance simulation,
debug and analysis of platforms containing multiple processors and peripheral models.
The technology is designed to be extensible: you can create new models of processors,
peripherals and other platform components using interfaces and libraries supplied by
Imperas.

This document describes how to use the OVP interfaces to create peripheral models and
peripheral interception libraries (which enable peripheral models to interact with the
native host)

Many examples in this document appear in full in the Examples directory of your OVP /
Imperas installation.

Documents are in the doc/ovp and doc/Imperas directories.

Refer to OVP_BHM_PPM_Function_Reference for details of each function in the API.

2.1 Peripheral Model Template Generation with iGen
Many examples in this document include code that can be generated by the iGen
productivity tool. The use of iGen to generate peripheral model templates is discussed in
detail in the document iGen Peripheral Generator User Guide.

2.2 Prerequisites
Familiarity with the C language.
If using iGen, familiarity with the TCL language.

2.2.1 MinGW
For compilation on a Windows host system the MSYS and MinGW environments are
required.
The MinGW program make is suitable for use with the PSE toolchain and will compile
the examples in this document.

2.2.2 Cross Compiler Toolchain
To compile and link a peripheral model, you will need an Imperas Peripheral Simulation
Engine (PSE) toolchain, which can be downloaded from the OVP website
(www.ovpworld.com) as the package OVPpse.toolchain. This is based on GNU gcc and
comprises a C-compiler, assembler, linker, objdump and other utilities.

http://www.ovpworld.com/

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 9 of 93

3 OVP Simulation Overview
Before creating models for use in the OVP simulation environment you must understand
how the components used in that environment interact. This section describes this.

3.1 Imperas & OVP Tools
There are several Imperas and OVP tools that can be used with models that you create:

• Imperas OVPsim allows processor models created using OVP modeling
technology to be used in a harness or platform to execute binary applications
compiled for those processors. It can simulate peripheral models (the subject of
this guide) and can be used in 3rd party simulation environments (for example,
SystemC). It can be used as a test harness to help validate processor models under
construction OVPsim has less functionality than the Imperas CpuManager
product.

• Imperas CpuManager extends OVPsim with a powerful debugger and tools to
monitor or analyze a platform as it executes code. It can also be used to create a
standalone virtual platform for delivery to your customers.

• Imperas iGen is a productivity tool that generates a C template for the model from
a TCL programmers view description.

3.2 Processor Models
The core simulation components are processor models. The creation of a new processor
model is described in detail in the documentation “Imperas Processor Modeling Guide”
with reference to the OVP Virtual Machine Interface (VMI) API.

3.3 Peripheral Models
The creation of a new peripheral model is described in this document with reference to
the iGen Peripheral Generator User Guide, the OVP BeHavioral Modeling (BHM) and
the Peripheral Programming Model (PPM) APIs.

A peripheral model is compiled into an ELF format executable for a PSE processor
architecture. It is dynamically loaded by the simulator OVPsim or CpuManager or other
tools. There are three PSE processor architecture options available, selected by setting the
IMPERAS_PSE environment variable in the peripheral model Makefile:

IMPERAS_PSE Setting PSE Implementation
PSE 32-bit x86 architecture (default)
PSE_RV32 32-bit RISC-V architecture
PSE_RV64 64-bit RISC-V architecture

See section 11.2.1 Selecting PSE Type in this document for more information.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 10 of 93

4 Behavioral Modeling Methodology

Each instance of a peripheral model runs in its own virtual machine. Each virtual machine
has a processor and memory that are separate from any other processors, memories and
buses in the platform being simulated; it exists only to execute the code of the peripheral
model. This processor is called a Peripheral Simulation Engine or PSE.

Threads and callbacks are initiated in the virtual machine by the simulator. Code in the
model relinquishes control back to the simulator by returning from a callback or by
calling a function in the API.

A peripheral model can create and control threads of execution using the BHM API and
can interact with other components in the platform using the PPM API.

In addition to BHM and PPM, the model can use functions from libc for access to the
host file system:

• low level i/o: open(), close(), read(), write(), etc.
• libc I/O built on the above: fopen(), fread(), fwrite(), etc.

It can use libc functions that do not use the host:

• string handling: strcmp(), strcat(), etc.
• searching and sorting: qsort() etc.
• mathematical functions: sqrt() etc.

The use of networking, graphics and other I/O routines is prohibited.

4.1 Peripheral Modeling API
Code for the PSE is written using an API that is split into two parts:

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 11 of 93

4.1.1 BHM API
The BHM API provides general behavioral modeling capabilities.
4.1.1.1 Threads and events
BHM uses a thread-based programming model to:
• Create and delete threads.
• Wait for an amount of simulated time.
• Wait for an event in another thread or an external trigger.
• Trigger an event in another thread.

4.1.1.2 Parameters
A parameter interface allows different instances of a model to be configured by the
platform in different ways.

4.1.1.3 Diagnostics
The model can put messages into the simulator log.

4.1.1.4 Networking
The model can use generic serial and ethernet interfaces

4.1.2 PPM API
The PPM API provides an interface to the platform that instances the model. It models;

• memory local to the peripheral (such a frame store)
• bus interfaces - master or slave – with static or dynamic mappings.
• nets or interrupts
• packetnets (for protocols such as CAN, Ethernet or USB)
• named registers with named bit-fields

PPM can produce objects visible to the debugger.
PPM can install callbacks to take control of the simulator in the event of a memory
access, change of value on a net or receipt of a packet through a packetnet.

4.2 Data Endianness
PSE processors are little-endian. To model a big endian peripheral device the data must
be converted at the interface between the peripheral model and each bus interface.

Macros are provided in ImpPublic/include/target/peripheral/impTypes.h to
convert between little endian and big endian for 2 byte, 4 byte and 8 byte types.

The peripheral model register interface can be programmed to swap data from big to
little endian as required. See ppmCreateNByteRegister().

4.3 Host Feature Access
The PSE processor runs in its own private (simulated) memory space, which is isolated
from the host environment. To access features of the host system the model writer can

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 12 of 93

create an intercept library to be loaded as part of the peripheral model. The intercept
library runs on the host so has access to all host features.

As an example, a platform might contain a video display device. The model of the display
will represent the display device registers and frame buffer in a PSE but use the host to
display the contents of the frame buffer using a video package such as SDL.

Implementation of an interception library is described in Host Code in section 7.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 13 of 93

5 Behavioral Modeling (BHM) API Overview

This section introduces the features available to model the behavior of a peripheral. These
features will be used in a later section in an example that creates a DMA controller.

All peripheral models use the BeHavioral Modeling (BHM) API which is defined in
ImpPublic/include/target/peripheral/bhm.h

The BHM provides the ability to write behavioral models of hardware which will interact
with other models. To do this a thread-based programming model allows the user to:
• Create and delete threads
• Let a thread wait for an amount of simulated time
• Let a thread wait for an event in another thread
• Perform host I/O

The BHM API gives access to:

• Parameters
• Threads
• Events
• Simulated delays
• Simulator control
• The simulator message stream
• Diagnostic control
• Save/Restore
• A generic serial interface
• A generic Ethernet interface

Code discussed in sections 5.1 “Interface Definition, 5.1.6 “Conn (FIFO) port
definitions” and 5.3 “Diagnostic output” can be generated as part of the peripheral
template by iGen. For more information on using iGen for peripheral model generation
please see iGen_Peripheral_Generator_User_Guide.

5.1 Interface Definition
This shows how a model defines its name, type, and parameters.

A peripheral model must declare a structure describing its interface, which will be
interrogated by the simulator (before any peripheral model code is executed). The
structure must be called modelAttrs and be of type ppmModelAttr, defined in
ppm/ppmAttrs.h. It’s at the end of this code block.

#include "peripheral/ppm.h"
#include "peripheral/bhm.h"

static ppmParameter parameters[] = {
 {

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 14 of 93

 .name = "aNumber",
 .type = ppm_PT_UNS32,
 .description = "A description of aNumber",
 .u.uns32Param = { 100, 10, 1000 }
 },
 {
 .name = "endian",
 .type = ppm_PT_ENDIAN,
 .description = "Set the endian"
 },
 {
 .name = "aString",
 .type = ppm_PT_STRING,
 .description = "A description of aString"
 },
 { 0 }
};

static PPM_PARAMETER_FN(nextParameter) {
 if(!parameter) {
 return parameters;
 }
 parameter++;
 return parameter->name ? parameter : 0;
}

ppmModelAttr modelAttrs = {

 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,

 .paramSpecCB = nextParameter,
 .busPortsCB = nextBusPort, // defined in following code example
 .netPortsCB = nextNetPort, // defined in following code example
 .packetnetPortsCB = nextPacketnetPort, // defined in following code example
};

int main() {
 Uns32 aNumber;
 if(bhmUns32ParamValue("aNumber", &aNumber)) {
 bhmPrintf("aNumber = %u\n", aNumber);
 }

 char aString[128];
 if(bhmStringParamValue("aString", aString, sizeof(aString))) {
 bhmPrintf("aString = %s\n", aString);
 }

 bhmEndian endian;
 if(bhmEndianParamValue("endian", &endian)) {
 bhmPrintf("endian = %u\n", endian);
 }
 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
}

5.1.1 Parameter definitions
ppmParameter is a structure filled by the model and read by the simulator. The function
nextParameter is a callback which must return a pointer to each ppmParameter
structure in turn, ending with null. Each returned structure describes one parameter.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 15 of 93

In the peripheral model constructor (in this case, in main()) the parameters values can be
read using appropriate parameter value functions then used to modify the model’s
construction or behavior. ppm.h defines all parameter types and their access functions.

When the calls to bhmStringParamValue() and bhmEndianParamValue() in the example
are executed, the simulator will search for the parameter value:

1. in an override command on the simulator command line
2. in the module where the peripheral instance is created
3. in modules further up the hierarchy
4. the default value in the peripheral parameter specification

The call will return non-zero if a parameter has been set (cases 1, 2, 3) or zero if not (case
4).

5.1.2 Overriding a parameter
To set a parameter on the simulator command line

• start the simulator with –showoverrides ; this will show the full path to each
parameter.

bash> harness.exe –modulefile module/model.so \
 -showoverrides

...
--override top/module/diagnosticlevel=0 (Uns32) (default=0) (default) ...
--override top/module/aNumber=0 (Uns32) (default=0) (default) ...
--override top/module/aString=0 (String)(default=(null)) ...
--override top/module/endian=0 (Endian)(default=little) ...

• add the appropriate -override to the command line

bash> harness.exe –modulefile module/model.so \
--override top/module/aNumber=3

5.1.3 Bus port definitions
ppmBusPort is a structure filled by the model and read by the simulator. The function
nextBusPort() is a callback which must return a pointer to each ppmBusPort structure
in turn, ending with null. Each returned structure must describe one bus port. In the
example the first port is a slave, meaning that it must satisfy read or write requests from
models elsewhere in the platform.

The slave bus interface defines its size in bytes, but the address at which it appear is
specified by the module that instances this model. The function
ppmCreateBusSlavePort() , called from the model’s constructor, returns a pointer to a
memory region of the same size in the peripheral’s address space. This region can be
used as memory or have memory mapped registers installed in it.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 16 of 93

The master bus interface defines the maximum and minimum number of address bits that
this model must control when working as a bus master. The actual number will be
determined by the module that instances this model. The function
ppmOpenAddressSpace() returns a handle to be used when this model initiates bus reads
and writes.

ppmBusPort, ppmNetPort and ppmPacketnetPort have a member mustBeConnected
which if true requires that the port is connected in the platform, otherwise an error is
raised.

// (continued from above)

static ppmBusPort busPorts[] = {
 {
 .name = "sp1",
 .type = PPM_SLAVE_PORT,
 .addrHi = 63,
 .mustBeConnected = 1,
 .description = "sp1 description",
 },
 {
 .name = "mp1",
 .type = PPM_MASTER_PORT,
 .mustBeConnected = 1,
 .description = "mp1 description",
 .addrBitsMin = 16,
 .addrBitsMax = 32
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 return busPorts;
 } else {
 busPort++;
 }
 return busPort->name ? busPort : 0;
}

ppmAddressSpaceHandle mp1;
void *sp1;

static void installSlavePorts(void) {
 sp1 = ppmCreateSlaveBusPort("sp1", 64);
}

static void installMasterPorts(void) {
 mp1 = ppmOpenAddressSpace("mp1");
}

5.1.4 Net port definitions
ppmNetPort is a structure filled by the model and read by the simulator. The function
nextNetPort() is a callback which must return a pointer to each ppmNetPort structure
in turn, ending with null. Each returned structure must describe one net port.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 17 of 93

The first net port is an output, the second an input which calls the model’s function
netChangeNotify().

ppmNetHandle np1, np2;

PPM_NET_CB(netCB){
 bhmPrintf("Net np%u has value %u\n", (Uns32)userData, value);
}

Bool readNP2(void) {
 return ppmReadNet(np2);
}

void setNP1(void) {
 ppmWriteNet(np1, 1);
}

static ppmNetPort netPorts[] = {
 {
 .name = "np1",
 .type = PPM_OUTPUT_PORT,
 .handlePtr = &np1,
 .mustBeConnected = 1,
 .description = "np1 description"
 },
 {
 .name = "np2",
 .type = PPM_INPUT_PORT,
 .handlePtr = &np2,
 .netCB = netCB,
 .userData = 2,
 .mustBeConnected = 1,
 .description = "np2 description"
 },
 { 0 }
};

static PPM_NET_PORT_FN(nextNetPort) {
 if(!netPort) {
 netPort = netPorts;
 } else {
 netPort++;
 }
 return netPort->name ? netPort : 0;
}

void writeNP1(Uns32 value) {
 ppmWriteNet(np1, value);
}

5.1.5 Packetnet port definitions
ppmPacketnetPort is a structure filled by the model and read by the simulator. The
function nextPacketnetPort() is a callback which should return a pointer to each
ppmPacketnetPort structure in turn, ending with null. Each returned structure describes
one packetnet port.

Packetnet ports can be bidirectional but a model might choose to use the port
uni-directionally.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 18 of 93

The simulator sets the handle pktPortHandle which can then be used by the function
ppmPacketnetWrite() to transmit data:

// define the packet protocol

typedef struct myDataPacketS {
 char header;
 char payload[100];
 char checksum;
} myDataPacket;

// called when a packet is received

static PPM_PACKETNET_CB(pktTrigger) {
 bhmPrintf("packetnet received\n");
}

ppmPacketnetHandle pktPortHandle;

// one packet must be reserved for use by the simulator
myDataPacket packetSharedData;

static ppmPacketnetPort packetnetPorts[] = {
 {
 .name = "pktPort",
 .description = "Packetnet port",
 .sharedData = &packetSharedData,
 .sharedDataBytes = sizeof(packetSharedData),
 .handlePtr = &pktPortHandle,
 .packetnetCB = pktTrigger,
 },
 { 0 }
};

static PPM_PACKETNET_PORT_FN(nextPacketnetPort) {
 if(!port) {
 port = packetnetPorts;
 } else {
 port ++;
 }
 return port ->name ? port: 0;
}

// call this to send a packet
void sendPacket(myDataPacket *pkt) {
 ppmPacketnetWrite(pktPortHandle, pkt, sizeof(myDataPacket));
}

The variable packetSharedData, required by the simulator, reserves space for one
packet. The maximum number of bytes supported by the protocol is specified in the
sharedDataBytes field in the packetnetPort structure. This value must match the
corresponding size in all models connected to the packetnet.

A complete example using a packetnet is in:
Examples/Models/Peripherals/packetnet

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 19 of 93

5.1.6 Conn (FIFO) port definitions
A Conn is an abstraction of a hardware FIFO used for point-to-point links between
processors or peripherals. Definition of conn ports is covered in section Error!
Reference source not found..

A Conn is an abstraction of a hardware FIFO used for point-to-point links between
processors or peripherals.

If the model has Conn input ports it must define a callback function using the prototype
macro PPM_CONN_INPUT_FN, and set the connInputsCB pointer in the modelAttrs
structure. The ppmConnInputPort is a structure filled by the model and read by the
simulator. When passed zero, the function should return a pointer to the first
ppmConnInputPort structure, then each consecutive structure, ending with null when all
have been passed.

If the model has Conn output ports it must define a callback function using the prototype
macro PPM_CONN_OUTPUT_FN, and set the connOutputsCB pointer in the
modelAttrs structure. The ppmConnOutputPort is a structure filled by the model and
read by the simulator. When passed zero, the function should return a pointer to the first
ppmConnOutputPort structure, then each consecutive structure, ending with null when all
have been passed.

The ppmConnInputPort and ppmConnOutputPort structures contains these fields:

Type Name Description
const char * name name of the port
const char * description Short description of the port
bool mustBeConnected True if this port must be connected
Uns32 width Width in bits of one word

Example

#include “peripheral/ppm.h”

ppmConnInputHandle port1Handle;
ppmConnOutputHandle port2Handle;

static ppmConnInputPort connInputPorts[] = {
 {
 .name = “port1”,
 .musrBeConnected = 1,
 .handlePtr = &port1Handle,
 .width = 32
 },
 { 0 }
};

static ppmConnOutputPort connOutputPorts[] = {
 {
 .name = “port2”,
 .musrBeConnected = 1,

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 20 of 93

 .handlePtr = &port2Handle,
 .width = 32
 },
 { 0 }
};

static PPM_CONN_INPUT_FN(nextConnInputPort) {

 if(!port) {
 port = connInputPorts;
 } else {
 port++;
 }
 return port->name ? port : 0;
}

static PPM_CONN_OUTPUT_FN(nextConnOutputPort) {

 if(!port) {
 port = connOutputPorts;
 } else {
 port++;
 }
 return port->name ? port : 0;
}

ppmModelAttr modelAttrs = {
 // ...
 .connInputPortsCB = nextConnInputPort,
 .connOutputPortsCB = nextConnOutputPort,
 // ...
};

5.2 Initialization

A peripheral model must declare a function main().
At the start of simulation this will be called (with argc=null and argv==0). It should

• perform software initialization.
• make any connections to the hardware platform (see Peripheral Platform

Modeling (PPM) API Overview in section 6).
• perform any hardware reset functions to initialize the peripheral1.
• start any threads required by the model.
• optionally, wait for the BHM_SE_END_OF_SIMULATION event (see System Events in

section 5.4.2). If main() does not wait for an event the function will complete but
any constructed objects will persist

• optionally perform other tasks after the BHM_SE_END_OF_SIMULATION.

 int main(int argc, char *argv[])
 {
 busPortConnections()
 netPortConnections();
 userInit();

1 If the model is programmed to respond to a reset input port, this action will also be in a callback.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 21 of 93

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
 }

5.3 Diagnostic output
A model should produce diagnostic output using bhmMessage() and bhmPrintf().

NOTE
When using the default 32-bit x86 architecture, printing long long ints using the formats
%llx, %lld and %llu in bhmPrintf and bhmMessage should be avoided due to a bug in the
toolchain used to compile the PSE behavioral code. This restriction does not apply to
RISC-V architecture PSEs.

In each model the variable usually called diagnosticlevel is set by the simulator then
used to determine the amount of diagnostic output to be produced. The simulator sets or
changes the diagnostic level by calling the callback that was installed using
bhmInstallDiagCB()

The simulator command line flag --modeldiags calls this function.
The diagnostics command in the Imperas multiprocessor debugger calls this function.

Bits 0 and 1 of diagnosticlevel should be used to determine the level of diagnostics
according to these guidelines:

0: No output
1: Print at startup (and possibly shutdown)
2: Print each change of mode, major operations
3: Print maximum detail.

Bits 2 and 3 are typically passed to the intercept library part of a peripheral model, if it
exists, to control diagnostic output there.

Bit 4 is used by the simulator. When set it causes the simulator to produce diagnostics:

• when a thread is created
• from an ethernet interface
• from an http interface
• when a peripheral input net or packetnet is written
• when a peripheral register is read or written
• when a peripheral aborts during a read or write operation
• from a serial port (for example from a UART)
• when data is written into the peripheral’s address space by another processor

#include "peripheral/ppm.h"
#include "peripheral/bhm.h"

/////////////////////////////// Diagnostic level ///////////////////////////////

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 22 of 93

// Test this variable to determine what diagnostics to output.

Uns32 diagnosticLevel;

/////////////////////////// Diagnostic level callback //////////////////////////

static void setDiagLevel(Uns32 new) {
 diagnosticLevel = new;
}

///////////////////////////////////// Main /////////////////////////////////////

int main(int argc, char *argv[]) {

 diagnosticLevel = 0;
 bhmInstallDiagCB(setDiagLevel);

 if (BHM_DIAG_MASK_LOW(diagnosticLevel)) {
 bhmMessage("I", "DIAG", "Starting model");
 }

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
}

5.4 Threads
A peripheral model can use a light-weight cooperative threading model to express
concurrent behavior. For example a multi-channel DMA engine has several channels
operating independently of each other.

A thread is started using the bhmCreateThread() function.

A thread is given a name and a user data pointer typically used if several copies of the
same thread are launched with different contexts.

#include "peripheral/bhm.h"

bhmThreadHandle thA, thB; // required if you wish to delete the thread

typedef struct myThreadContextS {
 const char *name;
 Uns32 wait;
} myThreadContext, *myThreadContextP;

myThreadContext contextA = { "threadA", 1 };
myThreadContext contextB = { "threadB", 2 };;

void myThread(void *user)
{
 myThreadContextP p = user;
 while(1) {
 bhmWaitDelay(p->wait * 1000);
 bhmPrintf("%s says tick\n", p->name);
 bhmWaitDelay (p->wait * 1000);
 bhmPrintf("%s says tock\n", p->name);
 }
}

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 23 of 93

int main (void) {
 thA = bhmCreateThread(myThread, &contextA, contextA.name, 0);
 thB = bhmCreateThread(myThread, &contextB, contextB.name, 0);
 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
}

Once started, a thread will run to the exclusion of all other simulator activity until it
yields so a thread’s main loop must yield. Calls which yield are:

• bhmWaitEvent()
• bhmWaitDelay()

Threads can be created using bhmCreateThread() at any time.
They can be destroyed from another thread using bhmDeleteThread() or can destroy
themselves by returning from the thread function.

Although threads are visible to the debugger, they cannot be seen by models outside this
PSE.

A thread requires a stack which can be normally allocated by the simulator be setting the
4th argument of bhmCreateThread()to zero. If more than 1Mb is required, it must be
allocated by the user and the address of its highest location passed to that parameter
(since the stack grows downwards). Stack overruns are not detected.

Should it be needed, a thread can determine its own handle using bhmThisThread().

5.4.1 Events
Threads can be synchronized using events. An event handle is declared, an event is
created and can then be used to stop a thread until another thread or callback restarts it.

#include "peripheral/bhm.h"
bhmEventHandle goEvent;

void myThread(void *user) {
 while(1) {
 bhmWaitEvent(goEvent);
 bhmPrintf("Event has been triggered\n");
 }
}

int main (void) {
 goEvent = bhmCreateNamedEvent("start", "start a transaction");
 bhmCreateThread(myThread, 0, "myThread", 0);
 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
}

void otherThreadOrCallback() {
 bhmTriggerEvent(goEvent);
}

An event can be deleted. If an event is deleted any threads waiting on that event are
restarted and will no longer stop on that event.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 24 of 93

bhmDeleteEvent(start);

 bhmDeleteEvent() returns true when the event handle is valid.

5.4.1.1 Named Events
bhmCreateNamedEvent()creates event that works like a regular event, but is also visible
to the MPD.

5.4.2 System Events
Two events are created by the simulator and can be accessed using
bhmGetSystemEvent(). They are:

• BHM_SE_START_OF_SIMULATION
• BHM_SE_END_OF_SIMULATION

BHM_SE_START_OF_SIMULATION is triggered by the simulator after construction and
when all the peripherals in the platform have executed code up to their first wait. No
application processors will have started at this time.

BHM_SE_END_OF_SIMULATION is triggered by the simulator after all the application
processors have finished executing code.

#include "peripheral/bhm.h"

bhmEventHandle startEvent;
bhmEventHandle endEvent ;

main() {
 startEvent = bhmGetSystemEvent(BHM_SE_START_OF_SIMULATION)
 endEvent = bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION)
}

void myThread(void *user){
 bhmWaitEvent(startEvent);
 bhmWaitEvent(endEvent);
}

A model must not trigger a system event.

5.4.3 Delays
A thread can pause its execution by waiting for a simulated delay. Alternatively, a thread
can schedule the triggering of an event in the future. Triggering an event in the future will
cancel any other scheduled triggers of that event.

#include "peripheral/bhm.h"

bhmEventHandle ev1, ev2;

void thread1(void *user) {
 while(1) {
 bhmWaitDelay(120 /*uS*/);

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 25 of 93

 bhmTriggerEvent(ev1);
 bhmPrintf("thread1 triggers thread2 now\n");
 }
}

void thread2(void *user)
{
 while(1) {
 bhmWaitEvent(ev1);
 bhmTriggerAfter(ev2, 120 /*uS*/);
 bhmPrintf("thread2 triggers thread1 in 120uS\n");
 }
}

int main() {
 ev1 = bhmCreateEvent();
 ev2 = bhmCreateEvent();
 bhmCreateThread(thread1, 0, "thread1", 0);
 bhmCreateThread(thread2, 0, "thread2", 0);
 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
}

The delay is simulated time (not wallclock) specified in microseconds. A fraction of a
microsecond may be specified.

5.4.3.1 Considerations
When setting the simulator timeslice, you must consider the delays that the simulator is
expected to model; the timeslice must be set significantly shorter that the shortest delay
that is requested by any model.

5.4.3.2 Relationship between delays and time-slice

A newly introduced delay will take effect at the start of the next timeslice; consider the
following situation:

• The timeslice is set to 10mS.
• 5mS into a timeslice, a register callback in a PSE requests a 2mS delay before

triggering an event.
• The current timeslice is in progress so cannot be shortened - other processors have

already run instructions in this timeslice on the assumption that it is 10mS.
• The event will trigger as soon a possible - at the start of the next timeslice, i.e.

3mS late.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 26 of 93

If however the simulation is running with a timeslice of 1mS then the 2mS requested
delay would always fall in the next timeslice and so could be correctly scheduled by the
simulator. Note that the next timeslice can be shortened because it has not yet started.
When a timeslice is shorted, each processor is made to run fewer instructions to
compensate.

5.5 Callbacks
Discussed elsewhere in this document, the model can install callbacks to be invoked by
the simulator. Callbacks are summarized in this table:

Object with callback Called when Delay allowed?
Net The net is written no
Packetnet A packet is transmitted no
Diagnostic level Simulator diagnostic level changes no
View object The object is written no
Memory region The memory is read or written yes
Memory mapped register The register is read or written yes

5.5.1 Delays in callbacks
Peripheral memory region and memory-mapped register callbacks are normally expected
to return immediately, without causing any delay or otherwise blocking execution.
However, in some circumstances it can be a requirement that such a read or write should
cause the initiating processor to block: for example, a peripheral model of a structure like
a FIFO might wish to block execution of an initiating processor on a register read if the

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 27 of 93

FIFO is empty. However, such requests to block execution must not cause the simulation
as whole to block (there may be other processors that are still executing) and must not
leave the initiating processor in an inconsistent state (where it has partially-executed an
instruction), or in a state where it is unable to respond to interrupts.

To support such cases, functions bhmWaitDelay, bhmWaitEvent, bhmSerReadB,
bhmSerWriteB, bhmEthernetReadFrameB and bhmEthernetWriteFrameB may all be
used in callbacks (see table in section 5.5). When they are encountered in a callback, the
behavior is as follows:

1. A peripheral thread is implicitly created. The state of the new thread is cloned from the
callback thread.

2. The callback thread is cancelled and returns immediately to the initiating processor.

3. The initiating processor is blocked in a state in which, on resumption, it will re-execute
the instruction that caused the read or write of the memory-mapped register from the
beginning. This means that the initiating processor is blocked in a consistent state, in
which it can respond to interrupts, for example.

4. When the implicitly-created peripheral thread awakens, it runs to its conclusion. Note
that it may make further calls to the blocking functions listed above before terminating.

5. When the implicitly-created peripheral thread terminates, the simulator determines
whether the initiating processor is still blocked waiting for the thread. If it is not (it has
responded to an interrupt, for example) there is no further action. Otherwise, if it is still
blocked, it is restarted, re-executing the peripheral callback.

5.5.1.1 Callbacks that Block Unconditionally
To use this mechanism to model blocking memory reads and writes where blocking is
unconditional, peripheral callbacks must be designed to operate in two modes:

1. A blocking mode, in which the complex sequence of actions described above is
performed, but the returned data value is not used;

2. A non-blocking mode, which returns data to the initiating processor without delay.

Which mode is used depends on the data ready state of the peripheral. The required
structure of the callback is shown by the following simple example.

A complete example is in: Examples/Models/Peripherals/blockingCallback

//
// This indicates CONTROL data is available
//
static Bool CONTROLTready;

PPM_NBYTE_READ_CB(rCONTROL) {

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 28 of 93

 checkAccessSize(bytes);

 if(artifactAccess) {

 // no blocking and no side effects
 (Uns32)data = bport1_REG_data.CONTROL.value;

 } else {

 if(CONTROLTready) {

 CONTROLTready = False;

 // callback requires explicit data transfer
 (Uns32)data = bport1_REG_data.CONTROL.value;

 } else {

 // wait for arbitrary delay
 bhmWaitDelay(0);

 bport1_REG_data.CONTROL.value++;

 CONTROLTready = True;

 // If delayed, then no transfer of data and no side effects.
 }
 }
}

...
//
// Register installer
//
ppmCreateNByteRegister(
 "CONTROL", // name
 "Read control", // description
 regPort, // base
 0, // offset from base
 4, // bytes
 rCONTROL, // readCB
 wCONTROL, // writeCB (not shown)
 0, // viewCB
 &bport1_REG_data.CONTROL.value, // address of data (ignored because call
 // backs are installed)
 0, // userData (unused)
 False, // isVolatile
 True, // readable, ignored because read CB installed
 True, // writable, ignored because write CB installed
 BHM_ENDIAN_BIG // endian
);

This peripheral implements a blocking register called CONTROL. The current value is
stored in bport1_REG_data.CONTROL.value (created by iGen). The mode of the
callback is controlled by the CONTROLTready Boolean: if CONTROLTready is True, then
the callback operates in non-blocking mode (the first branch of the if statement). In this
mode, it simply clears CONTROLTready and uses the data in variable

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 29 of 93

bport1_REG_data.CONTROL.value. If CONTROLTready is False, it waits for a delta
cycle2 before entering data-ready state and returning.

The boolean artifactAccess is used to suppress the blocking behaviour and any side
effects that reading the register would otherwise have. This allows debuggers and other
diagnostic tools to view the model without perturbing it.

To clarify the operation of the callback, imagine the sequence of operations when a
processor reads register CONTROL and data is not ready. The operation will be as follows:

1. Execution will go down the blocking mode branch (because CONTROLTready is False),
calling bhmWaitDelay().

2. A new peripheral thread will be created, cloning the callback thread state. The callback
thread will be cancelled. No transfer of data occurs.

3. The initiating processor will be blocked in a state where it will re-execute the
peripheral read on restart.

4. After a delta delay, the peripheral thread will reawaken. It will prepare a new value in
bport1_REG_data.CONTROL.value and set CONTROLTready to True. It will then return.
Note that the value in bport1_REG_data.CONTROL.value is ignored at this point.

5. The initiating processor will be reawakened, and will re-execute the memory-mapped
register read, calling function rCONTROL again.

6. This time, executing will go down the non-blocking mode branch (because
CONTROLTready is True). This will cause a transition back to blocking state (by setting
CONTROLTready to False) and the current value of bport1_REG_data.CONTROL.value
is copied back to the simulator.

5.5.1.2 Callbacks that Block Conditionally
To use this mechanism to model blocking memory reads and writes where blocking is
conditional (because bhmSerReadB or bhmSerWriteB are used, for example), peripheral
callbacks must be designed to operate in three modes:

1. Normal callback mode, where bhmSerReadB/bhmSerWriteB etc do not block.

2. Thread mode, where the bhmSerReadB/bhmSerWriteB etc block, and peripheral
execution resumes in a spawned thread.

3. Post-thread callback mode, where the blocked application processor resumes and re-
executes the peripheral callback.

2 It is possible to wait for a non-zero delay, or for an event instead.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 30 of 93

The required structure of read and write callbacks is shown by
Examples/Models/Peripherals/peripheralRegisterBlockedBySerialPort, a
simplified extract of which of which is shown below:

// read asynchronous mode and value byte
static Bool rxAsync = False;
static Uns8 rxByte;

// write asynchronous mode
static Bool txAsync = False;

static PPM_NBYTE_READ_CB(regRd8) {

 if(rxAsync) {

 // mode 3: transition to mode 1
 rxAsync = False;

 } else {

 // mode 1: read one character using potentially-blocking call
 bhmThreadHandle h1 = bhmThisThread();
 Uns32 bytes = bhmSerReadB(ch, &rxByte, 1);
 bhmThreadHandle h2 = bhmThisThread();

 // detect whether still in mode 1 or resuming in mode 2
 rxAsync = (h1!=h2);
 }

 // return value if mode 1 or mode 3
 if(!rxAsync) {
 (Uns8)data = rxByte;
 }
}

static PPM_NBYTE_WRITE_CB(regWr8) {

 if(txAsync) {

 // mode 3: transition to mode 1, ignoring written character that
 // has already been sent
 txAsync = False;

 } else {

 // mode 1 and mode 2: cache character to write
 Uns8 dataByte = *(Uns8*)data;

 // write one character using blocking call
 bhmThreadHandle h1 = bhmThisThread();
 Uns32 bytes = bhmSerWriteB(ch, &dataByte, 1);
 bhmThreadHandle h2 = bhmThisThread();

 // detect whether still in mode 1 or resuming in mode 2
 txAsync = (h1!=h2);
 }
}

The read and write peripheral callbacks each have a Boolean to indicate whether they are
in an asynchronous thread or post-thread mode (rxAsync and txAsync, respectively). To

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 31 of 93

detect whether the potentially-blocking call did indeed block, the thread handle before the
call is compared with the handle after the call: if the handles match, then no blocking
occurred. In the case of the read callback, data is returned to application space only in
modes 1 and 3, not in mode 2.

5.5.1.3 Notes and Restrictions
You should be aware of the following when using blocking peripheral callbacks:

1. Only accesses made by processors may be blocked. This is implemented by testing the
artifactAccess parameter to the callback and doing nothing if it is set. Accesses made
by other peripheral callbacks will not block. Attempting to do so will cause the error
message:

PSE <name>: <callback_name> may not be used in a nested callback

Artifact accesses (from a debugger, for example) will also not block, and the following
warning will be printed:

PSE <name>: <callback_name> delay for non-processor access ignored

In both cases, the call to bhmWaitDelay() or bhmWaitEvent() will return the error status
PSE_RR_BADEVENT.

2. As stated above, returning from an implicitly-created peripheral thread will have no
effect on the initiating processor unless it is still blocked waiting for that thread. If it has
taken an interrupt and blocked again for a different reason, it will not be restarted, for
example.

3. It is possible in a multiprocessor simulation to have several processors concurrently
blocked on the same peripheral register. In this case, each initiating processor will have
its own implicitly-created thread. In such cases, the peripheral will need to manage the
concurrency between the implicitly-created threads so that the initiating processors restart
in appropriate fashion. As with real hardware, the peripheral will need information from
other sources (e.g. particular values on the address bus) to determine which processor is
making each access.

4. Only a single blocking event per executed instruction is supported (because the
instruction is restarted after the blocking event). This means that blocking callbacks are
not suitable for modeling general memory delays when there are multiple memory
accesses with delays per executed instruction. In such cases, the blocking processor will
fail to make forward progress.

5.6 Time
A peripheral can inquire the current simulation time. Simulation time starts at zero and
will progress faster or slower than real (wall-clock) time. Stopping the simulator in a

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 32 of 93

debugger will stop time from advancing. While a peripheral thread is running, time will
not progress unless the model makes a call to bhmWaitDelay() or bhmWaitEvent().

5.6.1 Current Simulation Time
The current simulation time is obtained using the function bhmGetCurrentTime(). The
current time is advanced at the start of a timeslice so each call to this function within the
timeslice will return the same time.

#include "peripheral/bhm.h"

int main() {
 Uns64 microseconds1 = bhmGetCurrentTime();

 bhmPrintf("Calling bhmPrintf() does not take time\n");

 Uns64 microseconds2 = bhmGetCurrentTime();

 if(microseconds1 != microseconds2) {
 bhmPrintf("This cannot happen\n");
 }

 bhmWaitDelay(1000);
 Uns64 microseconds3 = bhmGetCurrentTime();

 if(microseconds3 != microseconds1) {
 bhmPrintf("Time has moved on\n");
 }
 return 0;
}

5.6.2 Local Time

The function bhmGetLocalTime() returns a time in the same format as
bhmGetCurrentTime() but the time is calculated from the configured MIPS and cycle
count of the initiating processor, if the peripheral has been activated by a callback from
that processor. This will return a time within the current timeslice. If the function is not
called from a processor callback then it behaves identically to bhmGetCurrentTime().
Notes

1. Local time is always less than or equal to current time (because current time is
advanced before processors are run)

2. Times returned by calls to bhmGetLocalTime() do not necessarily increase
monotonically in a multiprocessor simulation: if processor A reads a peripheral
register towards the end of its quantum then a processor B reads a peripheral
register towards the beginning of the same quantum then local time will appear to
go backwards.

3. In a peripheral model, the creation of a thread or an event can only occur on a
timeslice boundary. So to request a delay in a peripheral model from inside a
callback, it should take into account how much time is left in the quantum.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 33 of 93

To do this we use a combination of the simulated time and the local time as shown in the
following diagram.

The callback determines the delay required when the processor performs the write. The
use of bhmTriggerAfter(delayStart, usec_wait) is used to cause a peripheral
model thread to perform the required action after the delay has expired:

This example calculates the time to the end of the current timeslice and adds this to the
required delay of 3000uS. The thread reports the exact time it wakes up and shows how
the timeslice length was adjusted to compensate.

bhmEventHandle delayStart;

void periodicThread(void* user) {

 if(PSE_DIAG_LOW) {
 bhmMessage("I", "THR", "Initialized");
 }

 while(1) {
 bhmWaitEvent(delayStart);

 double flt_sim_now = bhmGetCurrentTime();
 double flt_cpu_now = bhmGetLocalTime();
 bhmMessage("I", "THR", "Thread wakes up\n");
 bhmMessage("I", "THR", "CurrentTime : %10.3f\n", flt_sim_now);
 bhmMessage("I", "THR", "LocalTime : %10.3f\n", flt_cpu_now);
 }
}

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 34 of 93

PPM_NBYTE_WRITE_CB(writeR1) {

 double flt_sim_now = bhmGetCurrentTime();
 double flt_cpu_now = bhmGetLocalTime();
 double request = 3000;

 bhmMessage("I", "DEL", "CurrentTime : %10.3f\n", flt_sim_now);
 bhmMessage("I", "DEL", "Proc Time : %10.3f\n", flt_cpu_now);
 bhmMessage("I", "DEL", "Required delay : %10.3f\n", request);

 double usec_wait = request - (flt_sim_now - flt_cpu_now);

 bhmMessage("I", "DEL", "Requested delay : %10.3f\n", usec_wait);

 if (usec_wait >= 0) {
 bhmMessage("I", "DEL", "Wait Delay : %10.3f usec \n", usec_wait);
 bhmTriggerAfter(delayStart, usec_wait);

 } else {
 if(PSE_DIAG_MEDIUM) {
 bhmMessage("W", "ERR",
 "Delay %10.3f usec falls within slice",
 usec_wait
);
 }
 }
}

PPM_CONSTRUCTOR_CB(constructor) {
 delayStart = bhmCreateEvent();

 bhmCreateThread(periodicThread, 0, "periodicThread", 0);
 periphConstructor();
}

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 35 of 93

6 Peripheral Platform Modeling (PPM) API Overview

The PPM API allows the model to interact with components in a platform. PPM includes
operations to:
• Bind to a bus port which is connected to a bus.
• Bind to a net port which is connected to a net.
• Read and write to memory through bus ports.
• Generate and receive interrupts through net ports.
• Create and control windows into other address spaces
• Install callbacks on memory regions
• Create memory mapped registers.
• Create programmers view objects that can be seen by the debugger

The PPM API is defined in the header file:
ImpPublic/include/target/peripheral/ppm.h and implemented in the library
lib/$IMPERAS_ARCH/TargetLibraries/pse-elf/libImperas.a.
These file are automatically included by the peripheral compiler and linker.

The definition of bus, net and packetnet ports is covered in section 5.1.

6.1 Bus Slave connection
The model can connect to a simulated bus as a slave in three ways:

1. By mapping an area of the peripheral model address space to the address space of
the simulated bus. The two regions must be of the same size. Refer to
ppmCreateSlaveBusPort(). This is used to model a peripheral that contains
memory this is visible in the programmer’s view but to which reading and writing
has no side effects.

2. By requesting read/write callbacks on the address space. Refer to

ppmInstallReadCallback(), ppmInstallWriteCallback() and
ppmInstallChangeCallback(). This is used when reading and writing the
memory has side effects.

3. By creating memory mapped register objects in the address space. A register can

have read/write callbacks to allow side affects to occur in the model when the
register is accessed. See ppmCreateNByteRegister().

6.1.1 Fixed Mapping
In a fixed mapping the address of the slave port is specified in the platform, not in the
model. The address offset specified as loaddress in the bus slave port connection is not
visible through this API; an access to the lowest address on the simulated bus appears at
lowest address in the mapped region.

#include "peripheral/bhm.h"

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 36 of 93

#include "peripheral/ppm.h"

#define sizeInBytes 32

static ppmBusPort busPorts[] = {
 {
 .name = "sp1",
 .type = PPM_SLAVE_PORT,
 .addrHi = sizeInBytes-1,
 .mustBeConnected = 1,
 .description = "sp1 description",
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 return busPorts;
 } else {
 busPort++;
 }
 return busPort->name ? busPort : 0;
}

ppmModelAttr modelAttrs = {

 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,
 .busPortsCB = nextBusPort
};

Uns8 mappedRegion[sizeInBytes]; // a region to be read/written

int main() {

 ppmOpenSlaveBusPort(
 "sp1",
 mappedRegion,
 sizeof(mappedRegion)
);

 // code in the peripheral can read or write mappedRegion[]
 // which is now shared with an other models in the platform

 bhmPrintf("memory=%u\n", mappedRegion[0]);
 return 0;
}

A read or write by a processor to the region specified in the bus slave port connection will
read and write to the array mappedRegion. The peripheral model can examine or update
these values as required.

If the peripheral model is required to act on a read or write, it can install callbacks on
mappedRegion. A read or write to the port will trigger a callback.

Callback arguments include:

• addr: the address of the access in the peripheral’s address space. This can be
converted to an offset by subtracting the address of mappedRegion.

• bytes: the size of the access

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 37 of 93

• artifactAccess: true if the access comes from the debugger
• data: (in the write callback)

The value returned by the read will be that returned by readCallback().

#include "peripheral/bhm.h"
#include "peripheral/ppm.h"

#define sizeInBytes 32

static ppmBusPort busPorts[] = {
 {
 .name = "sp1",
 .type = PPM_SLAVE_PORT,
 .addrHi = sizeInBytes-1,
 .description = "sp1 description",
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 return busPorts;
 } else {
 busPort++;
 }
 return busPort->name ? busPort : 0;
}

ppmModelAttr modelAttrs = {

 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,
 .busPortsCB = nextBusPort
};

Uns8 mappedRegion[sizeInBytes]; // a region to be read/written

PPM_READ_CB(readCallback) {
 bhmPrintf(
 "readCallback: offset:%u size:%u %s\n",
 (Uns32)(((Uns8*)addr)-mappedRegion),
 bytes,
 artifactAccess ? "artifact" : "regular"
);
 return 99;
}

PPM_WRITE_CB(writeCallback) {
 bhmPrintf(
 "writeCallback: offset:%u size:%u data:%u %s\n",
 (Uns32)(((Uns8*)addr)-mappedRegion),
 bytes,
 data,
 artifactAccess ? "artifact" : "regular"
);
 }

int main() {

 ppmOpenSlaveBusPort(

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 38 of 93

 "sp1",
 mappedRegion,
 sizeof(mappedRegion)
);

 ppmInstallReadCallback (readCallback, NULL, mappedRegion, sizeInBytes);
 ppmInstallWriteCallback(writeCallback, NULL, mappedRegion, sizeInBytes);

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));

 return 0;
}

6.1.1.1 Aborted Access
The peripheral can model incomplete reads or writes by calling ppmReadAbort() or
ppmWriteAbort() from inside the callback. If it’s in the correct mode, the processor that
initiated the access will take an exception.

6.1.2 Dynamic Mapping
Rather than taking the bus port address from the platform, a model can specify its own
address on the simulated bus and perhaps change this mapping during simulation.
The bus port specification must set the remappable field to true.
Any port address supplied by the platform will be ignored.

#include "peripheral/bhm.h"
#include "peripheral/ppm.h"

#define sizeInBytes 32
#define portName "sp1"

static ppmBusPort busPorts[] = {
 {
 .name = portName,
 .type = PPM_SLAVE_PORT,
 .addrHi = sizeInBytes-1,
 .description = "sp1 description",
 .remappable = 1
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 return busPorts;
 } else {
 busPort++;
 }
 return busPort->name ? busPort : 0;
}

ppmModelAttr modelAttrs = {

 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,
 .busPortsCB = nextBusPort
};

Uns8 mappedRegion[sizeInBytes]; // a region to be read/written

Uns32 addr1 = 0x40000000;
Uns32 addr2 = 0x50000000;

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 39 of 93

int main() {
 ppmCreateDynamicSlavePort(// set the initial port address
 portName,
 addr1,
 sizeInBytes,
 mappedRegion
);

 bhmWaitDelay(100);

 ppmDeleteDynamicSlavePort(// remove the old mapping
 portName,
 addr1,
 sizeInBytes
);

 ppmCreateDynamicSlavePort(// remap
 portName,
 addr2,
 sizeInBytes,
 mappedRegion
);

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));

 return 0;
}

6.2 Bus master connections
A bus master port lets the peripheral model initiate bus transactions. There are two
methods of connecting a model to its bus master port:

6.2.1 By handle
Get a handle to the address space on the simulated bus and then use
ppmReadAddressSpace() and ppmWriteAddressSpace() to read or write to the bus.

This method gives the peripheral access to any size of address space but has the overhead
of an intercepted function on each access.

#include "peripheral/bhm.h"
#include "peripheral/ppm.h"

#define portName "mp1"

static ppmBusPort busPorts[] = {
 {
 .name = portName,
 .type = PPM_MASTER_PORT,
 .addrBits = 32,
 .description = "mp1 description",
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 return busPorts;
 } else {
 busPort++;

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 40 of 93

 }
 return busPort->name ? busPort : 0;
}

ppmModelAttr modelAttrs = {

 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,
 .busPortsCB = nextBusPort
};

ppmAddressSpaceHandle mh;

int main() {

 mh = ppmOpenAddressSpace(portName);

 Uns32 data;
 Addr address = 0x10000000;

 bhmWaitDelay(100);

 ppmReadAddressSpace (mh, address, sizeof(data), &data);
 data++;
 ppmWriteAddressSpace(mh, address, sizeof(data), &data);

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));

 return 0;
}

6.2.2 By Address Space
Map an area of PSE memory to the simulated bus. This allows the model to directly read
and write to the simulated address space. Access to the bus is more efficient since each
bus access does not require a function to be intercepted, The simulator cannot track bus
activity caused by the model. The peripheral model has access to range of addresses
limited to the size of the window.

#include "peripheral/bhm.h"
#include "peripheral/ppm.h"
#include <string.h>

#define portName "mp1"

static ppmBusPort busPorts[] = {
 {
 .name = portName,
 .type = PPM_MASTER_PORT,
 .addrBits = 32,
 .description = "mp1 description",
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 return busPorts;
 } else {
 busPort++;
 }

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 41 of 93

 return busPort->name ? busPort : 0;
}

ppmModelAttr modelAttrs = {

 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,
 .busPortsCB = nextBusPort
};

ppmExternalBusHandle mh;
static char window[128];

int main() {

 Addr remoteAddress = 0x10000000;

 mh = ppmOpenMasterBusPort(
 portName,
 window,
 sizeof(window),
 remoteAddress
);

 // write zeros into simulated address space
 memset(window, 0 , sizeof(window));

 // move the window along
 remoteAddress += sizeof(window);
 ppmChangeRemoteLoAddress(mh, remoteAddress);

 // write more zeros into simulated address space
 memset(window, 0 , sizeof(window));

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));

 return 0;
}

6.3 Dynamic Bridges
A common platform requirement is for an address map to change at run-time (e.g. a PCI
bus model). In this situation, the platform model describes the topology of the buses
without specifying address decodes. The PSE model can map (or remap) address regions
from one bus to another using a dynamic bridge. A dynamic bridges is unidirectional;
reads and writes to a bus connected to the peripheral slave port are mapped to a (possibly)
different address on a bus connected to the peripheral master port. A peripheral with a
dynamic bridges can bridge more than one master and/or slave port at the same time and
can have multiple bridges though each port. However, it is an error to create overlapping
slave regions, or to overlap with other fixed ports on the same bus.

Overlapping master regions creates the effect of dual-port or shared devices. When
remapping, the peripheral model must keep track of active bridges and delete an old
bridge before a new one is created.

The functions ppmCreateDynamicBridge() and ppmDeleteDynamicBridge()
implement dynamic bridging.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 42 of 93

The first part of this example creates a region of 0x1000 bytes starting at address
0x40000000 on the bus connected to slavePort. Reads or writes by bus masters on this
bus to this region will be mapped to the bus connected to masterPort, starting at address
0. The second part removes the mapping, after which reads or writes to this area will
cause a bus error.

#include "peripheral/bhm.h"
#include "peripheral/ppm.h"

#define portName1 "p1"
#define portName2 "p2"

static ppmBusPort busPorts[] = {
 {
 .name = portName1,
 .type = PPM_MASTER_PORT,
 .addrBits = 32,
 .description = "p1 description",
 },
 {
 .name = portName2,
 .type = PPM_MASTER_PORT,
 .addrBits = 32,
 .description = "p2 description",
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 return busPorts;
 } else {
 busPort++;
 }
 return busPort->name ? busPort : 0;
}

ppmModelAttr modelAttrs = {
 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,
 .busPortsCB = nextBusPort
};

int main() {

 Addr slavePortLoAddress = 0x10000000;
 Uns32 windowSizeInBytes = 0x1000;
 Addr masterPortLoAddress = 0;

 // create bridge
 ppmCreateDynamicBridge(
 portName1,
 slavePortLoAddress,
 windowSizeInBytes,
 portName2,
 masterPortLoAddress
);

 bhmWaitDelay(100);

 // delete bridge

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 43 of 93

 ppmDeleteDynamicBridge(
 portName1,
 slavePortLoAddress,
 windowSizeInBytes
);

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
}

6.4 Nets
A net is usually used to model a wire carrying a logic value. A net carries an integer value
which can represent anything you wish but usually the values zero or non-zero represent
logic values zero or one. A peripheral model can declare a net port in its interface; the
platform must declare the net and connect it to ports. The example in section 5.1.4 shows
the use of net input and output ports.

handlePtr must be set to point to a net handle. During platform construction the
simulator sets the value of the handle which can then be used to read or write the net. If
the net is an input, netCB can be set to a callback function which will be called when the
net is written.

The value of a net is read using ppmReadNet(). It is written using ppmWriteNet().

Writing to a net will call the callback in all models that has one registered, even if the
current value is re-written. It is the responsibility of the model to suppress writing the
same value multiple times. The order in which other models are called cannot be
guaranteed.

A net connection can be passed through the module hierarchy; this will not affect
simulation performance.

The net callback must not block or delay; it must store the new value and/or trigger an
event then return.

ppmOpenNetPort() is a deprecated method of obtaining a net handle and
ppmInstallNetCallback() a method of installing a callback.

6.5 Conn (FIFO) Support
A Conn is an abstraction of a hardware FIFO used for point-to-point links between
processors or peripherals. The definition of conn or FIFO ports is covered in section
Error! Reference source not found..

A peripheral model can put data into a FIFO or read data out using a polling or event
driven interface and can query a FIFO to determine its dimensions, connections and how
much data is currently in the queue. Please refer to the section on FIFOs in the
OVP_BHM_PPM_Function_Reference document or the example below.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 44 of 93

6.5.1 FIFO Word Size
The FIFO interface is intended to model a hardware FIFO, so sends one word at a time. A
word is specified in bits in the width member of the ppmConnInputPort and
ppmConnOutputPort structures (see section 5.1.6) rounded up to the nearest byte (1-8
bits = 1 byte, 9-16 bits = 2 bytes). This number controls how many bytes are transferred
by each call to ppmConnGet() and ppmConnPut(). In the current implementation the
sender and receiver must use the same word size.

6.5.2 Example
Directory: Examples/Models/Peripherals/FIFO

This example uses a FIFO to communicate (in one direction) between two identical
peripheral models, one configured as a source and one a sink of character data. Referring
to the above directory the module directory contains a module described in TCL that
creates two instances of the peripheral model connected by a FIFO. The module is built
using iGen and the host C compiler.

The peripheral directory contains the peripheral model. Its structure is described in
TCL, the behaviour in the C file user.c. It is built using iGen and the PSE C compiler.

In user.c the function constructor checks the FIFO input and output ports to
determine if this instance is to be used as the source or sink of data. Data will be read or
written to the FIFO using ppmConnGet() and ppmConnPut() which are non-blocking
(polling) functions.

To prevent the peripheral model from wasting CPU time by polling, a FIFO input port
can be bound to a peripheral event using ppmRegisterConnInputEvent() or a FIFO
output port can be bound to an event using ppmRegisterConnOutputEvent(). Functions
readFromFifo() and writeToFifo() in user.c in the example do this. Note that
ppmConnGet() can be used to peek at the first word in the FIFO without removing it.

6.6 Memory Mapped Registers and Bit Fields
To model memory mapped registers, a region of memory in the peripheral model’s
address space (the window) must be reserved then mapped to the simulated bus using
ppmCreateSlaveBusPort(). Registers are then installed with different offsets from the
base of the window using ppmCreateNByteRegister(). Each register has a name and
description, a separate region when it’s data is stored, plus optional read, write and view
callbacks. It is accessed when an application processor (or other bus master) reads or
writes to an address on the simulated bus that is mapped to the window in the peripheral
model.

Without readCB, writeCB or viewCB callbacks, data will be read or written to the storage
referenced by the data pointer. A read or write that is larger than the bytes parameter is
illegal. A read or write of fewer bytes will access a lower part of the storage.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 45 of 93

6.6.1 Callbacks
If a read or write requires side effects then the readCB and or writeCB must be supplied
in which case data is not automatically copied to the storage.
Note that more than one register can share a callback; the userData pointer can be used
to distinguish which register was accessed. If at any time the true value of the register is
not stored in the location referenced by userData, then viewCB must also be supplied.

6.6.2 Masking
Masking of bit fields during reads and writes can be implemented by the simulator when
required. See ppmCreateRegisterField.

6.6.3 Diagnostics and debug
Reads and writes to the register will trigger debugger event-points and (if the model's
diagnostic level is set to enable system diagnostics) cause a message to be sent to the
simulator log.

6.6.4 Endian-ness
The simulator can be programmed to byte-swap data supplied to and from the callbacks
(if supplied) or byte-swap the data as it is read or written to the register’s storage.

6.6.5 Example
In the example, reg1 occupies the first 4 bytes of the 32-byte port. The contents of the
variable reg1 will always be the register’s value.
reg2 occupies the next 4 bytes. It’s read, write and view functions are handled by
callbacks which cause side effects.
The remaining 24 bytes of the window have no visible registers but will appear on the
simulated bus, so can be accessed by code in the peripheral.

#include "peripheral/ppm.h"
#include "peripheral/bhm.h"

static ppmBusPort busPorts[] = {
 {
 .name = "regPort",
 .type = PPM_SLAVE_PORT,
 .addrBits = 32,
 .description = "register port",
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 return busPorts;
 } else {
 busPort++;
 }
 return busPort->name ? busPort : 0;
}

ppmModelAttr modelAttrs = {

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 46 of 93

 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,
 .busPortsCB = nextBusPort
};

Uns32 reg1, sideEffect=0;

// this is cleared by another thread (not shown)
Bool dataReady;

PPM_NBYTE_READ_CB(readCB) {

 // validate the access by checking bytes, offset etc,
 if(bytes != sizeof(sideEffect)) {
 bhmMessage("E", "ERR", "Illegal read. Wrong number of bytes\n");
 return;
 }
 // return the data, with side effects
 (Uns32)data = sideEffect++;
}

PPM_NBYTE_WRITE_CB(writeCB) {

 // validate the access by checking bytes, offset etc,
 if(bytes != sizeof(sideEffect)) {
 bhmMessage("E", "ERR", "Illegal write. Wrong number of bytes\n");
 return;
 }
 sideEffect = *(Uns32*)data;
 dataReady = True;
}

// (Could be achieved without a callback in this case)
PPM_NBYTE_VIEW_CB(viewCB) {
 (Uns32)data = sideEffect;
}

int main (){

 void *regPort = ppmCreateSlaveBusPort("regPort", 32);

 ppmCreateNByteRegister(
 "reg1", // name
 "control register1", // description
 regPort, // base of window
 0, // offset from window base
 sizeof(reg1), // size in bytes
 0, // bus read function
 0, // bus write function
 0, // debugger view function
 ®1, // storage
 0, // userData
 True, // volatile register
 True, // read access
 True, // write access
 BHM_ENDIAN_LITTLE
);
 ppmCreateNByteRegister(
 "reg2", // name
 "control register2", // description
 regPort, // base of window
 4, // offset from window base

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 47 of 93

 sizeof(sideEffect), // size in bytes
 readCB, // read function
 writeCB, // write function
 viewCB, // debugger view function
 &sideEffect, // storage
 0,
 True, // volatile register
 True, // read access
 True, // write access
 BHM_ENDIAN_LITTLE
);

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
}

6.6.6 Bit-fields

Bit fields give names to groups of bits in a register and allow control of how bits are read
or written:

// (continuing the previous example)

 registerHandle reg1 = ppmCreateNByteRegister(
 "reg1", // name
 "control register1", // description
 regPort, // base of window
 0, // offset from window base
 sizeof(reg1), // size in bytes
 0, // bus read function
 0, // bus write function
 0, // debugger view function
 ®1, // storage
 0, // userData
 True, // volatile register
 BHM_ENDIAN_LITTLE
);
 ppmCreateRegisterField(
 reg1, // containing register
 "f1", // name
 "f1 description", // description
 0, // offset from LSB
 4, // number of bits
 True, // can be read
 True // can be written
);
 ppmCreateRegisterField(
 reg1, // containing register
 "f2", // name
 "f2 description", // description
 4, // offset from LSB
 2, // number of bits
 True, // can be read
 False // cannot be written
);

When a register with no write callback is written, bitfields without write access will not
be changed. When a register with no read callback is read, bitfields without read access
will be read as zero.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 48 of 93

6.6.7 Register arrays
Register functions accept a userData pointer which is passed to the callbacks. This
allows arrays or banks of registers to share functionality. This example shows a pair of
registers replicated 8 times.

#include "peripheral/ppm.h"
#include "peripheral/bhm.h"
#include <stdio.h>

static ppmBusPort busPorts[] = {
 {
 .name = "regPort",
 .type = PPM_SLAVE_PORT,
 .addrBits = 64,
 .description = "register port",
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 return busPorts;
 } else {
 busPort++;
 }
 return busPort->name ? busPort : 0;
}

ppmModelAttr modelAttrs = {

 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,
 .busPortsCB = nextBusPort
};

#define BANKS 8

typedef struct bankTypeS {

 Uns32 control;
 Uns32 data;
 Bool dataReady;

} bankType, *bankTypeP;

bankType bank[BANKS];

PPM_NBYTE_READ_CB(readCB) {

 bankTypeP p = userData;

 // validate the access by checking bytes, offset etc,
 if(bytes != sizeof(p->data)) {
 bhmMessage("E", "ERR", "Illegal read. Wrong number of bytes\n");
 return;
 }
 // return the data, with side effects
 (Uns32)data = p->data++;
}

PPM_NBYTE_WRITE_CB(writeCB) {

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 49 of 93

 bankTypeP p = userData;

 // validate the access by checking bytes, offset etc,
 if(bytes != sizeof(p->data)) {
 bhmMessage("E", "ERR", "Illegal write. Wrong number of bytes\n");
 return;
 }
 p->data = *(Uns32*)data;
 p->dataReady = True;
}

int main (){

 void *regPort = ppmCreateSlaveBusPort("regPort", 64);

 Uns32 i;
 for(i=0; i < BANKS; i++) {

 char name[8];
 sprintf(name, "control%u", i);

 registerHandle reg = ppmCreateNByteRegister(
 name, // name
 "control register", // description
 regPort, // base of window
 0, // offset from window base
 sizeof(bank[i].control), // size in bytes
 0, // bus read function
 0, // bus write function
 0, // debugger view function
 &bank[i].control, // storage
 0, // userData
 True, // volatile register
 True, // read access
 True, // write access
 BHM_ENDIAN_LITTLE
);

 sprintf(name, "data%u", i);

 ppmCreateNByteRegister(
 name, // name
 "data register", // description
 regPort, // base of window
 4, // offset from window base
 sizeof(bank[i].data), // size in bytes
 readCB, // read function
 writeCB, // write function
 0,
 &bank[i].data, // storage
 &bank[i], // userData
 True, // volatile register
 True, // read access
 True, // write access
 BHM_ENDIAN_LITTLE
);

 ppmCreateRegisterField(
 reg, // containing register
 "f1", // name
 "f1 description", // description
 0, // offset from LSB

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 50 of 93

 4, // number of bits
 True, // can be read
 True // can be written
);

 ppmCreateRegisterField(
 reg, // containing register
 "f2", // name
 "f2 description", // description
 4, // offset from LSB
 2, // number of bits
 True, // can be read
 False // cannot be written
);
 }

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 return 0;
}

6.7 Callbacks without registers
We have discussed how to map part of the PSE address space to a slave port and how to
install registers with callback in that space. It is also possible to install a callback without
creating a register. This is useful when reading or writing to a range of addresses will
have side effects but the peripheral does not have conventional registers at these
addresses.

Uns32 SIZE = 4;

PPM_NBYTE_READ_CB(readCB) {
 const char *txt = userData;
 bhmPrintf("Read %s offset:%u bytes:%u\n", txt, offset, bytes);
}

PPM_NBYTE_WRITE_CB(writeCB) {
 const char *txt = userData;
 bhmPrintf("Write %s offset:%u bytes:%u\n", txt, offset, bytes);
}

PPM_CONSTRUCTOR_CB(constructor) {
 void *window = ppmCreateSlaveBusPort("sp1", SIZE);

 ppmInstallNByteCallbacks(
 readCB, // the callback
 writeCB, // optional user data
 "data",
 window, // address of the port window
 SIZE, // size of the port window
 1,
 1,
 0,
 BHM_ENDIAN_LITTLE
);
}

In the read callback (prototype defined in the macro PPM_NBYTE_READ_CB) the parameter
offset is the address of the access in the window that triggered the call. data points to
where the read data should be copied to by this function. bytes is the size of the access in

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 51 of 93

bytes, userData is user specific data that was passed to the install function.
artifactAccess is true if the access is a simulation artifact. This occurs when the
simulator is pre-fetching values for dynamic code translation or can be caused by a
debugger. The model must inhibit side effects for this kind of access.

Parameters to the write callback are the same as for read except that data points to where
the data is coming from.

ppmInstallNByteCallbacks() installs the supplied callbacks. If the read function is
null then no callback is installed. If the readable parameter is true, a read access to the
port will read the region referenced by window. If readable is false, there will be a bus
error.

If the write function is null then no callback is installed. If the writable parameter is
true, a write access to the port will write to the region referenced by window. If writable
is false, there will be a bus error.

6.7.1 Overlapping callbacks
If ppmInstallNByteCallbacks() is used more than once with overlapping regions, the
more recently installed callback will be called. This also applies when a mixture of
callbacks and registers are installed. Therefore a read and write callback can be installed
on a region, then registers installed on part of the region. The previously installed
callbacks will then catch any reads or writes that fall between the registers.

Uns32 SIZE = 8;

PPM_NBYTE_READ_CB(readCB) {
 bhmPrintf("Warning. Read: offset:%u bytes:%u\n", offset, bytes);
}

PPM_NBYTE_WRITE_CB(writeCB) {
 bhmPrintf("Warning. Write: offset:%u bytes:%u\n", offset, bytes);
}

PPM_CONSTRUCTOR_CB(constructor) {
 void *window = ppmCreateSlaveBusPort("sp1", SIZE);

 ppmInstallNByteCallbacks(
 readCB, // the callback
 writeCB, // optional user data
 0,
 window, // address of the port window
 SIZE, // size of the port window
 1,
 1,
 0,
 BHM_ENDIAN_LITTLE
);

 Uns8 dr;

 ppmCreateNByteRegister(
 “dr”, // name

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 52 of 93

 "data register", // description
 window, // base of window
 4, // offset from window base
 1, // size in bytes
 readCB, // read function
 0, // write function
 0, // view function
 &dr, // storage
 0, // userData
 False, // (not) volatile
 True, // read access
 False, // no write access
 BHM_ENDIAN_LITTLE
);
}

In this example an 8 byte address region is mapped to the slave port SP. A callback is
installed on the whole region, then a register installed over one byte. A one-byte read
from the port with offset 4 will read from the register dr ; a read from elsewhere will
print a warning. For example a 4-bye read from with offset 4 will read the register then
read the remaining 3 bytes from the region mapped to readCB() which produces a
warning. Section 6.7.2 explains why this happens.

6.7.2 Fragmented access
A read or write to memory with a range that straddles more than one region with be split
by the simulator into multiple accesses.

6.7.3 Simulating a bus error in a callback
In a register or memory callback it is possible to abort the read or write access that is
currently in progress on the application processor, or on another peripheral acting as a bus
master, depending on how this peripheral was activated. To do this, call:
ppmReadAbort() or ppmWriteAbort()

In the case that the peripheral was activated by an application processor, and simulated
exceptions are enabled, the processor’s read or write abort exception handler functions
will be called. Typically, these will cause the processor to jump to an exception vector to
handle the abort. If simulated exceptions are not enabled, the simulator will stop,
reporting that an unhandled processor exception has occurred.

To abort another peripheral acting as a bus master, the bus master peripheral must use
functions ppmReadAddressSpace() or ppmWriteAddressSpace()
to initiate a bus transaction. If this bus transaction is aborted by another peripheral, the
functions return False, and the address that caused the abort can be found by calling
ppmGetAbortAddress()

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 53 of 93

6.8 Programmers View
The programmers view provides additional information that can be accessed by the
Imperas Professional tools.

A peripheral model can be written to provide information to the simulator about its
internal operation that can be accessed by the Imperas MPD and by intercept libraries
when the model source is not available. Use of the programmers view includes:

• providing a view of arbitrary objects within the model
• defining special actions that the model can perform, for example flushing a

buffer or resetting part of the model.
• allowing internal values to be read from the model
• generating eventpoints (stopping in the debugger when an event is triggered)

on specific condition being met, for example data received or buffer overflow.

6.8.1 Automatic Object and Event Generation
Some PPM functions automatically generate information for the programmers view. For
example a register created using the ppmCreateNByteRegister()creates a register object
that can be accessed by the Imperas MP Debugger and also creates read and write events
that can trigger a breakpoint in the MPD or be detected by an intercept library. See
section 8.5.6.

6.8.2 Objects
A view object can be explicitly added using the ppmAddViewObject() function.

View objects are hierarchical; the initial object will be supplied with NULL parent
indicating that it is the top-level object, subsequent objects can be added within
previously added objects to build a tree.

When an object is read by the debugger or an intercept library, the value may be
provided as a:

• variable
• constant value
• function call

The types of values that can be associated with an object are defined in the
ppmViewValueType enumerated type in the PPM header file.

6.8.2.1 Creating an Object
This example makes a two-level hierarchy:

ppmViewObject topObject = ppmAddViewObject(
 NULL, // Top level so parent is null
 "topObject", // object name, visible in the debugger
 "top object description" // optional description
);

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 54 of 93

ppmViewObject secondLevelObject = ppmAddViewObject(
 topObject, // parent is previous object
 "level2Object", // object name, visible in the debugger
 "level 2 object description" // optional description
);

6.8.2.2 Associating Values with Objects
The value of the object level2Object is accessed using a callback function so is defined
using the function ppmSetViewObjectValueCallback().

ppmSetViewObjectValueCallback(secondLevelObject, readControlValueCB, 0);

readControlValueCB is a function that must return the current value of the object.

A new object is created and associated with a variable that indicates its state:

ppmViewObject thirdLevelObject = ppmAddViewObject(
 viewControlReg,
 "level3Object",
 "level 3 Object description"
);

Bool level3Value;

ppmSetViewObjectRefValue(thirdLevelObject, PPM_VVT_BOOL, &level3Value);

6.8.2.3 Removing an Object
An object may be transient i.e. it is not always valid. An object can be removed at any
time using ppmDeleteViewObject().

ppmDeleteViewObject(thirdLevelObject);

6.8.3 View Events

6.8.3.1 Adding an Event
An event can be added into the peripheral model to allow any occurrence to be signaled
to the MPD or an intercept library. An event can be generated at the top-level or can be
attached to an existing view object. It’s place in the hierarchy does not affect it’s
behaviour, just where it appears.

This shows two events, one created at the top level and one associated with an object.

//
// Create events which can trigger eventpoints
//
interruptEvent = ppmAddViewEvent(
 NULL, // Top level
 "reset", // Event name
 "triggered when a reset occurs" // Event description
);

overflowEvent = ppmAddViewEvent(
 thirdLevelObject,

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 55 of 93

 "overflow",
 "triggered when overflow occurs"
);

6.8.3.2 Triggering an Event
An event can be explicitly triggered in a peripheral model using
ppmTriggerViewEvent()at any point in the behavior of the peripheral model, as shown
in the following example taken from the behavior of the counter register in the peripheral
model. When the counter overflows, an interrupt is raised and the wrapEvent is triggered.
Anything waiting on or having a breakpoint set on this event will be triggered.

void updateCounter() {
 counter++;
 if (counter == 0) {
 // Counter just overflowed. Generate interrupt.
 generateInterrupt();

 // Inform simulator of overflow.
 ppmTriggerViewEvent(overflowEvent);
 }
}

6.8.4 Actions

A view object can be used to cause an arbitrary action can in a peripheral model. An
action function is registered using ppmAddViewAction().
The following code allows the user of the MPD to reset a counter – an operation that this
model does not normally allow.

void resetCounterActionCB(void *userData) {
 counter = 0; // counter reset to zero without an interrupt
}

ppmAddViewAction(
 thirdLevelObject, // Parent view object
 "reset",
 "reset the timer counter",
 resetCounterActionCB,
 0 // user data
);

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 56 of 93

7 Host Code
The PSE is an isolated environment that runs a peripheral model. Access to the host
environment is restricted; system functions open(), close(), read(), write() and
fstat() (and their libc buffered equivalents fopen() etc.) are available. Should a model
require access to other system functions, the user can use binary interception to run code
on the host. Host functions must be used with care; a blocking host function will block
the simulator.

There is a comprehensive description of function interception applied to application code
in OVP_VMI_OS_Support_Function_Reference. This section illustrates the use of binary
interception to link between PSE code and host code.

Function interception allows a peripheral model to be created that comprises both

1. behavioral code running on a PSE; with the notion of time and structures that
forms part of the platform simulation environment, and

2. functional code running natively; that is closely-linked to the underlying host
system and may use host resources such as physical devices, for example USB
port, Ethernet NIC, or software libraries, for example graphics.

A dynamic library (Linux shared object or Windows dynamic link library) is loaded with
the peripheral instance. This is called an intercept library. The intercept library API binds
by name functions in the PSE to functions in the intercept library.

Empty stub functions in the PSE are called when host functionality is required. When the
peripheral calls the stub function, control passes to a callback in the intercept library.
Since the intercept library can be linked with other host libraries the peripheral has access
to any functionality that the host computer can support. The interface between stub
functions and host functions in the library can be specified on one of two ways:

1. Using raw intercept functions. With these, the host code is responsible for
extracting arguments from known registers using the PSE call ABI (see section
7.2 below).

2. Using ABI intercept functions. With these, the host code is presented a processed
argument list in a useful form. The ABI intercept function methodology should be
used where possible because it is simpler and more intuitive.

To make the simulator load an intercept library, set the extension field in the peripheral
modelAttrs structure to the name of library (without its file extension) and put the
library in the same directory as the peripheral model executable.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 57 of 93

7.1 The constructor
7.1.1 Environment Checks

7.1.1.1 Raw Intercepts
When using raw intercepts, a peripheral model intercept library should check that it is
running on an appropriate PSE processor type (for example, pse or pse_RV32):

const char *procType = vmirtProcessorType(processor);

if (strcmp(procType, "pse") != 0) {
 vmiMessage("F", PREFIX, "Processor must be a PSE\n");
}

7.1.1.2 ABI Intercepts
When using ABI intercepts, a PSE processor type check is usually not required because
the intercept library has no ABI dependency.

7.1.2 The Peripheral Simulation Engine ABI

7.1.2.1 Raw Intercepts
When using raw intercepts, the peripheral model must explicitly access function
arguments using the known ABI of the PSE. Depending on build flags used, the PSE
could be of type pse (which uses a 32-bit X86 compiler and toolchain), pse_RV32 (which
uses a 32-bit RISC-V compiler and toolchain) or pse_RV64 (which uses a 64-bit RISC-V
compiler and toolchain).

For a PSE of type pse, register eax is used when returning values and all parameters are
passed on the stack, pointed to by register esp. The intercept library must get handles to
these x86 registers and store them for future use:

 // return register (standard ABI)
 object->result = vmiosGetRegDesc(processor, "eax");

 // stack pointer (standard ABI)
 object->sp = vmiosGetRegDesc(processor, "esp");

7.1.2.2 ABI Intercepts
When using ABI intercepts, no knowledge of the PSE ABI is required.

7.2 Obtaining Intercepted Function Arguments
7.2.1.1 Raw Intercepts
When using raw intercepts, the peripheral model must explicitly access function
arguments. To read arguments when using a PSE of type pse, all arguments are passed on
the stack. The esp register containing the stack has already been stored by the
constructor; standard code to read an argument from the intercepted function is as
follows:

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 58 of 93

void getArg(
 vmiProcessorP processor,
 vmiosObjectP object,
 Uns32 index,
 void *result
){
 memDomainP domain = vmirtGetProcessorDataDomain(processor);
 Uns32 argSize = 4;
 Uns32 argOffset = (index+1)*argSize;
 Uns32 spAddr;

 // get the stack
 vmiosRegRead(processor, object->sp, &spAddr);

 // read argument value
 vmirtReadNByteDomain(domain, spAddr+argOffset, result, argSize, 0, True);
}

7.2.1.2 ABI Intercepts
When using ABI intercepts, no knowledge of the PSE ABI is required (arguments are
presented directly to the host intercept function).

7.3 Passing the Return Code from an Intercepted
Function

7.3.1.1 Raw Intercepts
When using raw intercepts, the peripheral model must explicitly assign a function result
to an appropriate register if required. For a PSE of type pse, a 32-bit function result is
returned in eax. Before returning from the intercepted function the result is written into
this register using vmiosRegWrite().

Bool result = nativeFunction();

vmiosRegWrite(processor, object->result, &result);

7.3.1.2 ABI Intercepts
When using ABI intercepts, no knowledge of the PSE ABI is required (the function result
is returned directly from the host intercept function).

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 59 of 93

7.4 Data Exchange
This shows how data is transferred from the PSE’s memory at address pseAddr into
native memory at hostData. cachedRegion provides a hint to the simulator, which can
improve simulation performance if this routine is used often. MEM_AA_FALSE indicates
that this is an artifact access.

char hostData[128];
memRegionP cache = 0;

void getData() {
 memDomainP domain = vmirtGetProcessorDataDomain(processor);

 vmirtReadNByteDomain(
 domain,
 pseAddr,
 hostData,
 128,
 &cache,
 MEM_AA_FALSE
);
}

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 60 of 93

8 Peripheral Model Example
This section describes an example of some of the peripheral modeling features introduced
in the earlier sections.

The example is a DMA controller in a system with a RISC-V processor and two memory
regions. This is a simplified model which does not represent a particular DMA device.

Figure 1: Example Virtual Platform Block Diagram

8.1 Example Source
Directory: Examples/Models/Peripherals/creatingDMAC

The examples are a progression of self-contained models, each building on the last. To
see the full source code of each model, refer to to the directory above. The file
Examples/Models/Peripherals/creatingDMAC/INFORMATION.README.txt
describes the files and how to run the example.

8.2 IGEN
Each example uses the iGen productivity tool to generate most of the code. iGen is
described in iGen_Peripheral_Generator_User_Guide.doc

To view the code (both generated and hand-written) each example should be run:
Copy the complete directory to your own working area then set up your environment to
use Imperas Tools. In the new directory execute the script example.sh on Linux or
example.bat on Windows.

RISC-V

DMAC

Memory
(stack)

Memory
(main)

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 61 of 93

8.2.1 Register model
Directory: Examples/Models/Peripherals/creatingDMAC/1.registers

The peripheral model files are in peripheral/pse. The model has its major parts but no
behavior.

peripheral/pse/pse.attrs.igen.c
This contains the simulator interface structure modelAttrs that describes the model type,
identification, and callbacks. Functions nextParameter() and nextBusPort() are
iterators that return each parameter or bus descriptor in turn. Functions
peripheralSaveState() and peripheralRestoreState() save or restore model state
so that a session can be saved and then later restored. Note that the state of the model’s
PSE memory is automatically saved; only state outside this environment needs to be
saved in these functions.

peripheral/pse/pse.igen.h
This declares storage types to represent register contents; each register is described by a
union of its bitfields and its complete value. Other state variables and function prototypes
are also declared here. The lines

#include "peripheral/bhm.h"
#include "peripheral/ppm.h"

 include the PPM and BHM APIs.

peripheral/pse/pse.igen.c
This reserves space for the model’s state. It contains the constructor which makes
registers and ports. After calling the constructors, the main thread of the model waits until
the end of simulation.

peripheral/pse/dmac.user.c
Originally created by iGen, this file contains templates for each function. It can be edited
by hand, adding code to model the behavior of the peripheral. In this example the read
and write function for each register checks if the access is a legal size then copies to or
from the storage. In this model there is no behavior.

Application
The application code is in the application directory. It runs on a RISCV processor. It is
written as if the model is complete; it commands the DMAC to transfer date from place
to place, but of course, the DMAC does nothing.

8.2.2 Parallel Operations and Signaling Events
Directory: 2.parallelThreadsAndEvents

peripheral/pse/dmac.user.c
This file has been expanded to model part of the DMA mechanism. The function
channelThread() is a peripheral thread (see section 5.4) which waits for an event (see
section 5.4.1) then runs one DMA operation (function dmaBurst() not complete).

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 62 of 93

The DMAC has two channels which run independently so has two threads, started in
userInit() by bhmCreateThread() . An event is triggered in function
writeAndStart() when registers ab32Ch0_config or ab32Ch1_config are written.
Once started, the thread should make the DMA transfer.

8.2.3 Master Memory Access
Directory: 3.memAccess

peripheral/pse/pse.igen.c
The function installMasterPorts() opens address spaces for DMA reads and writes
using ppmOpenAddressSpace(). The reads and writes will be on the buses that the bus
ports are connected to in the platform.

peripheral/pse/dmac.user.c
The function dmaBurst() models DMA operation. Source,destination addresses, byte
counts and transfer sizes are read from their registers. The main loop while(bytes)
reads from simulated memory using ppmReadAddressSpace() and writes using
ppmWriteAddressSpace(). A call to bhmWaitDelay() simulates time taken by the DMA
operation.

Once started, the thread will make the DMA transfer without interruption until complete
(this model does not cope with bus errors or exceptions).

8.2.4 Interrupts
Directory: 4.interrupt

The DMAC notifies the processor when a DMA operation is complete by asserting an
interrupt output.

peripheral/pse/pse.igen.c
The function installNetPorts() sets the net port handle handles.INTTC to the net
connected in the platform to net port INTTC.

peripheral/pse/dmac.user.c
At the end of a DMA operation the function updateNet() writes a 1 to the interrupt net
port. The port is returned to 0 when the appropriate registers are written.

8.2.5 Behavior using Native host code
Directory 5.nativeBehaviour

This example illustrates the use of native host code in a peripheral model.
The example is contrived; there’s no need to use native code in this case; but it shows
how to build an intercept library and to call host functions from inside the PSE’s
environment. One of the two DMA channels uses native code to directly transfer data into

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 63 of 93

the simulated memory. By convention, PSE code is in the directory peripheral/pse;
host code in the intercept library is in peripheral/model.

peripheral/pse/dmac.user.c

Stub functions initSemiHost and transferDataNative will be intercepted by the
simulator and transfer control to the intercept library. initSemiHost is called from the
constructor. transferDataNative is called from within dmaBurst.

peripheral/model/peripheral_native.c

The lines

#include "vmi/vmiMessage.h"
#include "vmi/vmiOSAttrs.h"
#include "vmi/vmiOSLib.h"
#include "vmi/vmiPSE.h"
#include "vmi/vmiRt.h"

include the VMI API required in host code.

The structure modelAttrs is used by the simulator to locate the intercept library entry
points. The .intercepts table defines the intercepted functions and their callbacks:

 .intercepts =
 // -------------------- ------- ---------------------------------------
 // Name Opaque Callback
 // -------------------- ------ ---------------------------------------
 {
 {"transferDataNative", 0, True, VMIOS_ABI_INT('4', "po444", transferDataNative)},
 {"initSemiHost", 0, True, VMIOS_ABI_INT('4', "poa4", initSemiHost) },
 {0}
 }

This example uses ABI intercepts: callbacks are defined using the VMIOS_ABI_INT macro.
The first argument to the VMIOS_ABI_INT macro is a function return type character. This
can be any of:

0: void intercepted function
'b': intercepted function returning Boolean
'4': intercepted function returning Uns32 or Int32
'8': intercepted function returning Uns64 or Int64
'a': intercepted function returning Addr (a pointer in PSE application code)
'f': intercepted function returning Flt32
'd': intercepted function returning Flt64

The second argument to the VMIOS_ABI_INT macro is a parameter format string, which
describes the intercept function parameters. Characters in this string can be any of the ‘b’,
‘4’, ‘8’, ‘a’, ‘f’ or ‘d’ as described above, or additionally any of these implicit argument
format specifiers:

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 64 of 93

'p': the current processor (vmiProcessorP)
'o': the current object (vmiosObjectP)
'c': the name of the intercepted function

⇒ Note that any pointer parameter in PSE application code should be specified using

the ‘a’ format specifier and handled as an Addr parameter in the intercepted
function. Doing this will ensure that the intercept library will behave correctly
irrespective of whether 32-bit or 64-bit PSE architecture is used.

⇒ Note that any implicit arguments (‘p’, ‘o’ or ‘c’) must precede all explicit
arguments in the parameter list.

In this example, the transferDataNative has the following prototype to match the
argument descriptions specified in the table:

static Uns32 transferDataNative(// return type ‘4’
 vmiProcessorP processor, // matches implicit ‘p’ parameter
 vmiosObjectP object, // matches implicit ‘o’ parameter
 Uns32 addressSrc, // matches ‘4’ parameter
 Uns32 addressDest, // matches ‘4’ parameter
 Uns32 bytes // matches ‘4’ parameter
)

The matching function definition in the PSE application code is:

//
// Semihosted function: performs the DMA using native code for a configured channel
//
NOINLINE Uns32 transferDataNative(Uns32 src, Uns32 dest, Uns32 thisAccess)
{
 bhmMessage("F", PREFIX , "Failed to intercept %s", __FUNCTION__);
 return 0;
}

This function has an Uns32 return code and three arguments (matching the last three
explicit parameters specified for the host code transferDataNative function). Take
great care to ensure that the parameters of the PSE application function and host
intercept function are consistent and correctly described by the VMIOS_ABI_INT macro
parameters: mistakes here can be difficult to find.

During initialization the intercept library finds the memory domain to read and write
DMA data (they are the same in this example, but could be different).

object->portReadDomain = vmipsePlatformPortAttributes(
 processor,
 portReadName,
 &lo, &hi, &isMaster, &isDynamic
);

When a DMA transfer is required, this code reads and writes data to the simulated
memory:

char tmp[MAX_BYTES];
vmirtReadNByteDomain (object->portReadDomain, addressSrc, tmp, bytes, 0, False);

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 65 of 93

vmirtWriteNByteDomain(object->portWriteDomain, addressDest,tmp, bytes, 0, False);

8.3 Platform Overview
The virtual platform is created using a module definition and executed using the harness
program (harness.exe). The module is created using iGen.

This example uses a RISC-V processor model, the DMAC and generic OVP memory.

For a full description of virtual platform creation commands start with the user guides
“iGen Platform and Module Creation User Guide” and “Writing Platforms and Modules
in C User Guide”.

8.3.1 Virtual Platform Design

This section describes the virtual platform.

8.3.1.1 Virtual Platform Memory Map

Figure 2 shows the memory map of the virtual platform.

Figure 2: Memory map of platform

8.3.1.2 Virtual Platform Module Definition

Create the module:

ihwnew -name rv32WithDMACPeripheral

0xBFFFFFFF

Unmapped

0x80000140

0xFFFFFFFF

Application memory (stack)

0xC0000000

0x7FFFFFFF

Main application memory

0x00000000

0x8000013F

DMAC memory-mapped registers

0x80000000

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 66 of 93

Add the bus to which the devices can be connected

ihwaddbus -instancename bus -addresswidth 32

Create the memories and connect to the bus. The base addresses of the memories and
their sizes are defined when they are connected to the bus.

ihwaddmemory -instancename ram1 -type ram
ihwconnect -instancename ram1 -busslaveport sp1 -bus bus \
 -loaddress 0x00000000 -hiaddress 0x7fffffff

ihwaddmemory -instancename ram2 -type ram
ihwconnect -instancename ram2 -busslaveport sp1 -bus bus \
 -loaddress 0xc0000000 -hiaddress 0xffffffff

Add the processor and set its variant parameter:

ihwaddprocessor -instancename cpu1 \
 -vendor riscv.ovpworld.org -type riscv \
 -library processor -version 1.0 \
 -semihostname pk \
 -variant RV32I

Connect both processor ports to the bus:

ihwconnect -instancename cpu1 -busmasterport INSTRUCTION -bus bus
ihwconnect -instancename cpu1 -busmasterport DATA -bus bus

Add the peripheral and connect it to the bus. The port name ‘DMACSP’ of the slave port
must match the name in the peripheral model. The size of the port must match the sized
in the call to ppmOpenSlaveBusPort().

ihwaddperipheral -instancename dmac -modelfile peripheral/pse
ihwconnect -instancename dmac -busslaveport DMACSP -bus bus \
 -loaddress 0x80000000 -hiaddress 0x8000013f

The module files generated by iGen are compiled to a host shared object using the
provided Makefile and loaded by the harness.exe program to execute. harness.exe
has a command line parser which allows –program to be used to load the application elf
file into the RISC-V processor memory.

The simulation will run until it is interrupted or until the application finishes.

8.4 Peripheral Model Template
The peripheral model template is generated as C code with further user C code added to
provide the definition of the behavior. It is compiled using a compiler toolchain to run on
a PSE.
This section describes the TCL code used to create the C files in example directory
4.interrupt. TCL in the other examples is similar.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 67 of 93

TCL used by iGen for the peripheral model template creation is described in detail in the
user guide “iGen Peripheral Generator User Guide”

First, create the peripheral:
-name -vendor -library –version sets its location in the component library.
-constructor and -destructor create stub functions to be completed.
-formalvalues generates code to fetch model parameters into variables of the same
name as the formal parameter.
-endianparam endian adds a formal parameter of type endian and makes all memory
mapped registers use the endian setting, which automatically byte-swaps data into and
out of the registers.
-nbyteregisters chooses the new register interface. (Older models use a deprecated
register interface limited to a maximum of 32 bits per register).

imodelnewperipheral \
 -name dmac \
 -vendor ovpworld.org \
 -library peripheral \
 -version 1.0 \
 -constructor constructor \
 -destructor destructor \
 -nbyteregisters \
 -endianparam endian\
 -formalvalues

Define the slave port which will contain the memory-mapped registers.
–mustbeconnected generates code that raises an error if the port is not connected in the
platform.

Slave port for all control registers
imodeladdbusslaveport -name DMACSP -size 0x140 -mustbeconnected

Create an address block to group the 8-bit registers together.
NOTE: In this model the 8 bit registers are aligned onto a 4 byte boundary and there are
gaps between some of the registers.

imodeladdaddressblock -port DMACSP -name ab8 -width 8 -offset 0 -size 0x40

Create the 8 bit registers:

imodeladdmmregister -addressblock DMACSP/ab8 -name intStatus -offset 0x00 -
access r
imodeladdmmregister -addressblock DMACSP/ab8 -name intTCstatus -offset 0x04 -
access rw -writefunction TCclearWr
imodeladdmmregister -addressblock DMACSP/ab8 -name intErrStatus -offset 0x0C -
access rw -writefunction errClearWr
imodeladdmmregister -addressblock DMACSP/ab8 -name rawTCstatus -offset 0x14 -
access r
imodeladdmmregister -addressblock DMACSP/ab8 -name rawErrStatus -offset 0x18 -
access r
imodeladdmmregister -addressblock DMACSP/ab8 -name enbldChns -offset 0x1C -
access r

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 68 of 93

imodeladdmmregister -addressblock DMACSP/ab8 -name config -offset 0x30 -
access rw -writefunction configWr

Add the interrupt output port:

imodeladdnetport -name INTTC -type output

8.5 Peripheral Model Entry
This section describes the code created by iGen.

8.5.1 Attribute Table
The simulator obtains information from the peripheral model by examining the entries in
the attribute table. The attribute table is of type ppmModelAttrS and must be called
modelAttrs. It is in pse.attrs.igen.c.

ppmModelAttr modelAttrs = {

 .versionString = PPM_VERSION_STRING,
 .type = PPM_MT_PERIPHERAL,

 .busPortsCB = nextBusPort,
 .netPortsCB = nextNetPort,
 .paramSpecCB = nextParameter,

 .saveCB = peripheralSaveState,
 .restoreCB = peripheralRestoreState,

 .vlnv = {
 .vendor = "ovpworld.org",
 .library = "peripheral",
 .name = "dmac",
 .version = "1.0"
 },

 .family = "ovpworld.org",

 .releaseStatus = PPM_UNSET,
 .visibility = PPM_VISIBLE,
 .saveRestore = 0,

};

8.5.2 The Main Function

main() is the model’s entry point, called when platform construction is complete and
before application processors are started. It is found in the generated file pse.igen.c.

 main()adds some documentation then installs a callback function used to change the
diagnostic level. This function sets a local variable which can be tested to control
diagnostic output.

///////////////////////////////////// Main /////////////////////////////////////

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 69 of 93

int main(int argc, char *argv[]) {

 ppmDocNodeP Root1_node = ppmDocAddSection(0, "Root");
 {
 ppmDocNodeP doc2_node = ppmDocAddSection(Root1_node, "Description");
 ppmDocAddText(doc2_node, "DMAC peripheral model");
 }

 diagnosticLevel = 0;
 bhmInstallDiagCB(setDiagLevel);
 constructor();

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
 destructor();
 return 0;
}

Uns32 diagnosticLevel;

/////////////////////////// Diagnostic level callback //////////////////////////
static void setDiagLevel(Uns32 new) {
 diagnosticLevel = new;
}

main() then calls the constructor function, into which user construction code can be
added and which calls the generated periphConstructor() function from which
functions are called to add port and net connections.

////////////////////////////////// Constructor /////////////////////////////////

PPM_CONSTRUCTOR_CB(periphConstructor) {
 installSlavePorts();
 installRegisters();
 installMasterPorts();
 installNetPorts();
}

At the end of main() the peripheral waits for the end of simulation event.

 bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));

At the end of simulation the destructor() function will be called. This can be used to
report statistics. There is no need to free memory in the peripheral model.

8.5.3 Information about available ports
The bus, net, conn and packetnet ports are all defined and accessed by specific iteration
functions registered in the attribute table.

The port iteration functions are in the generated file pse.attrs.igen.c

static ppmBusPort busPorts[] = {
 {
 .name = "DMACSP",

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 70 of 93

 .type = PPM_SLAVE_PORT,
 .addrHi = 0x13fLL,
 .mustBeConnected = 1,
 .remappable = 0,
 .description = "DMA Registers Slave Port",
 },
 {
 .name = "MREAD",
 .type = PPM_MASTER_PORT,
 .addrBits = 32,
 .mustBeConnected = 0,
 .description = "DMA Registers Master Port - Read",
 },
 {
 .name = "MWRITE",
 .type = PPM_MASTER_PORT,
 .addrBits = 32,
 .mustBeConnected = 0,
 .description = "DMA Registers Master Port - Write",
 },
 { 0 }
};

static PPM_BUS_PORT_FN(nextBusPort) {
 if(!busPort) {
 busPort = busPorts;
 } else {
 busPort++;
 }
 return busPort->name ? busPort : 0;
}

static ppmNetPort netPorts[] = {
 {
 .name = "INTTC",
 .type = PPM_OUTPUT_PORT,
 .mustBeConnected = 0,
 .description = "Interrupt Request"
 },
 { 0 }
};

static PPM_NET_PORT_FN(nextNetPort) {
 if(!netPort) {
 netPort = netPorts;
 } else {
 netPort++;
 }
 return netPort->name ? netPort : 0;
}

8.5.4 Information about parameters
The parameters for a peripheral model must be defined so that the simulator can obtain
their names, types and any default, minimum and maximum values if appropriate for the
type.

The definition of the iterator function to access the parameters is in the generated file
pse.attrs.igen.c

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 71 of 93

static ppmParameter parameters[] = {
 {
 .name = "endian",
 .type = ppm_PT_STRING,
 .description = "Specify the endian of the processor interface",
 },
 { 0 }
};

static PPM_PARAMETER_FN(nextParameter) {
 if(!parameter) {
 parameter = parameters;
 } else {
 parameter++;
 }
 return parameter->name ? parameter : 0;
}

8.5.5 Creating a Slave Port Interface
The code to create the slave port interface is in pse.igen.c

The peripheral slave port creates a window in the address space of the bus model to
which it is connected. This window also appears in the address space of the PSE at the
address returned by ppmCreateSlaveBusPort()

 handles.DMACSP = ppmCreateSlaveBusPort("DMACSP", 320);

The port name provides the link between the peripheral model and the platform.
If the port is connected to a bus model in the platform, any access to the window on the
simulated bus will access the memory in the PSE. This memory is mapped to peripheral
registers.

8.5.6 Registers
The code to create the memory mapped registers and install their callbacks is in
pse.igen.c

8.5.6.1 Installing a Register
A register is created using ppmCreateNByteRegister().

The function creates a register in the peripheral model. The register has a name and
description and can be provided with a function used by the debugger to allow access
without side effects. Additionally, read and write view events are constructed.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 72 of 93

Figure 3 shows two register types within an example peripheral model. One ‘config’ is
accessible through a port and the other ‘runstate’ is an internal register, only accessible
from within the model itself. The following paragraphs show how these are created using
the API functions.

Figure 3: Example Peripheral Registers

ppmCreateNByteRegister() creates the register object and associates read and write
callbacks that provide the behavior behind a register, and sets the register’s byte offset
from the base address of the port.

Uns8 config;

 ppmCreateNByteRegister(
 "config", // name
 "configuration", // description
 DMACSP_Window, // window base
 0x30, // offset in bytes from the window’s base
 sizeof(config), // register size in bytes
 configRd, // read callback
 configWr, // write callback
 configView, // view callback
 &config, // storage for this register
 0, // user data (not used)
 False, // this register is not volatile,
 readable, // If true, this register is readable
 writable, // If true, this register is writable
 BHM_ENDIAN_LITTLE // no byte swapping
);

In the example a register named config is created in the peripheral. This register is
accessible through the port associated with the memory region DMACSP_Window at an
offset of 0x30 bytes from the base.

Platform Memory Space

Peripheral Model

 Register ‘config’

 Peripheral Port
Mapping in

Memory space

 Read callback
Write callback
 Debug Read callback

Debug Read callback

Internal Register ‘runstate’

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 73 of 93

If reading the register has side effects (changes the peripheral’s state), the read behavior
of the register must be modeled in the function configRd. If there are no side effects the
function can be omitted and the parameter set to zero.

If writing the register has side effects, the write behavior of the register must be modeled
in the function configWr. If there are no side effects the function can be omitted and the
parameter set to zero.

The variable config (which must be the correct size for the register) holds the state of the
register. If the read or write functions are omitted this variable will be read or updated
automatically.

If the configRd function is supplied and the true value of the register is not stored in the
config variable, then the function configView must be supplied. The debugger will use
this to read the register so the function it must not change the peripheral’s state. As an
example, a true read of the data register of a serial device will be destructive; it will cause
the next data item to be available. Viewing the value of the data register in the debugger
should not destroy the data.

If the configRd is not supplied, then the readable parameter controls if a read access is
allowed. If the configWr is not supplied, then the writable parameter controls if a write
access is allowed. If a register is neither readable nor writable then it will not appear in
the peripheral’s memory map so ppmCreateNByteInternalRegister()should be used
instead.

ppmCreateNByteInternalRegister() creates a register that is visible to the debugger
but is not memory-mapped.

Uns8 runstate;

 ppmCreateNByteInternalRegister(
 "runstate", // name
 "operational status", // description
 sizeof(runstate), // register size in bytes
 0, // debug view (not used)
 &runstate // storage for this register
 0 // user data (not used)
);

In the above example an internal register described as operational state and named
runstate is created within the peripheral. This register is not accessible through a port of
the peripheral. Its value is stored in the runstate variable.

Arrays of similar registers can be modeled without duplicating the callbacks; the
userdata field for each register is supplied with a different value. All similar registers
are supplied with the same callbacks. Each callback receives the userData field and uses
this to distinguish which register was accessed. The userData value could be an integer
offset into an array of registers or a pointer to a structure representing one register.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 74 of 93

8.5.7 Running the Example
This section describes the initial stage of peripheral development covered in the example
1.registers. The following provides the commands to run the example and illustrates
the expected output

In Examples/Models/Peripherals/creatingDMAC/1.registers are scripts
example.sh and example.bat that will build the the module, the test application and
generate and the peripheral PSE template and the user behavioral code.

The script will perform the commands to build:

bash> make -C application
bash> make -C module NOVLNV=1
bash> make -C peripheral/pse NOVLNV=1

harness.exe loads the module and runs the simulation:

bash> harness.exe \
 --modulefile module/model \
 --program application/dmaTest.RISCV32.elf

Output should be similar to this:

OVPsim (32-Bit) v20160627.0 Open Virtual Platform simulator from
www.OVPworld.org.
Copyright (c) 2005-2016 Imperas Software Ltd. Contains Imperas Proprietary
Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

OVPsim started: Wed Sep 07 17:25:59 2016

TEST DMA: dmaBurst ch:0 bytes:13
TEST DMA: dmaBurst ch:1 bytes:35
TEST DMA: DMAC Register Read DMA_C0_SRC_ADDR 0xffffefe4
TEST DMA: DMAC Register Read DMA_C0_DST_ADDR 0xffffdfe4
TEST DMA: DMAC Register Read DMA_C0_CONTROL 0x0000000d
TEST DMA: DMAC Register Read DMA_C0_CONFIGURATION 0x00000001
TEST DMA: DMAC Register Read DMA_C1_SRC_ADDR 0xffffcfe4
TEST DMA: DMAC Register Read DMA_C1_DST_ADDR 0xffffbfe4
TEST DMA: DMAC Register Read DMA_C1_CONTROL 0x00000023
TEST DMA: DMAC Register Read DMA_C1_CONFIGURATION 0x00000001

OVPsim finished: Wed Sep 07 17:26:01 2016

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 75 of 93

9 Dynamic Slave Port example
Directory: $IMPERAS_HOME/Examples/Models/Peripherals/dynamicSlavePort

The PCI bus protocol lets a bus device set the address of its slave port itself. This
example that shows how a peripheral model can have this behaviour.

The example is in three parts, an application, a module hardware definition and a
peripheral with a dynamic slave port.

The module assembles the components shown on the left. The memory map is on the
right. The dynamic slave port can be mapped anywhere in the unmapped region.

The peripheral has one register accessible through its slave port. The remap register is at
offset zero. When read it provides the current address mapping. When written it moves
the base address of the dynamic slave port.

Take a copy of the example directory and compile the test application, module and
peripheral using the following commands:

cp -r $IMPERAS_HOME/Examples/Models/Peripherals/dynamicSlavePort .
cd dynamicSlavePort
make all

cpu1
(ARM7)

mem1
(ram)

mem2
(ram)

dynamic
(pse) pse

mem1

mem2

pse

0x000000

0x100000
0x100001

0x200000

0xffffff

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 76 of 93

9.1 Instance Peripheral in Module
In module/module.op.tcl the peripheral is instanced in the normal way but instead of
defining the low and high address for the slave port connection, no address information is
provided:

ihwaddperipheral -instancename dynamic -modelfile peripheral/pse.pse
ihwconnect -instancename dynamic -bus bus -busslaveport hostif

There is also no size information provided when the peripheral is instanced so it is both
dynamically located and sized in the address map.

9.2 Peripheral iGen Definition
The peripheral interface is defined in the iGen file peripheral/pse.tcl, as shown
below.

The only difference in the definition between a static and a dynamic port is the use of the
additional --remappable argument:

set slvPrt "hostif"
set adrBlk "ab"
set size 4

Dynamic slave port connection
imodeladdbusslaveport -name $slvPrt -size $size -mustbeconnected -remappable

The address block and register are added into the peripheral model in the same way for a
dynamic or a static mapping:

Address block
imodeladdaddressblock -name $adrBlk -port $slvPrt \
 -width 32 -offset 0x0 -size $size

Registers
imodeladdmmregister -name remap -addressblock $slvPrt/$adrBlk \
 -offset 0x0 -access rw -writefunction writeRemap

9.3 Peripheral User Code
9.3.1 Initialization
File: peripheral/pse.user.c

In constructor() the handle to the port hostif is initialized to a region the size of the
slave port region. The generated constructor is called, then with the remap register set to
its reset value, the initial mapping is made.

static void portMap(void) {
 ppmCreateDynamicSlavePort(
 "hostif",
 hostif_ab_data.remap.value,
 PORT_SIZE,

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 77 of 93

 handles.hostif
);
}

PPM_NBYTE_WRITE_CB(writeRemap) {

 bhmMessage("I", "MAP", "Old Mapping 0x%0x", hostif_ab_data.remap.value);

 // Delete previous mapping
 ppmDeleteDynamicSlavePort("hostif", hostif_ab_data.remap.value, PORT_SIZE);

 hostif_ab_data.remap.value = *(Uns32*)data;

 bhmMessage("I", "MAP", "New Mapping 0x%0x", hostif_ab_data.remap.value);

 portMap();
}

PPM_CONSTRUCTOR_CB(constructor) {

 handles.hostif = malloc(PORT_SIZE);

 periphConstructor();

 portMap();
}

9.3.2 Dynamic mapping
The function writeRemap() removes the old mapping then installs the new, using the
same function as constructor().

9.4 Running the Example
To run the simulation, in the dynamicSlavePort directory, run:

harness.exe \
 --modulefile module/model.${IMPERAS_SHRSUF} \
 --program application/application.ARM7.elf

You should see the following output as the processor executes the application and
accesses the peripheral registers:

APP: Starting ..
APP: Read Re-Map Reg 0x10000000
APP: Write Re-Map Reg : Move to 0x10000100
Info (MAP) testDynamic/dynamic: Old Mapping 0x10000000
Info (MAP) testDynamic/dynamic: New Mapping 0x10000100
APP: Read Re-Map Reg 0x10000100

The application attempts to read the old mapping. There is nothing there and because the
processor is not programmed to simulate exceptions, the simulation stops with a
processor exception.

APP: Attempt to access old mapping at 0x10000000 - expect failure
Processor Exception (PC_PRX) Processor 'testDynamic/cpu1' <ADDRESS>: ldr etc
Processor Exception (PC_RPX) No read access at 0x10000000

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 78 of 93

10 QuantumLeap with Peripherals
Imperas Professional Simulation products implement a parallel simulation algorithm
called QuantumLeap, which enables platform simulation to be distributed over separate
threads on multiple cores of the host for improved performance. This section shows how
to enable the QuantumLeap algorithm for peripherals and describes how simulation
performance and results are affected.

QuantumLeap allows for the parallel execution of both processor and peripheral models
on host processors. This section describes its use with peripherals; refer to the OVPsim
and CpuManager User Guide for information about parallelization of processors.

10.1 The QuantumLeap Algorithm
The QuantumLeap peripheral algorithm allows peripheral model components
implemented as native code on the host processor to be run in a thread in parallel with
other peripheral models and also the main simulation thread. To use the algorithm, key
parts of peripheral behavior must be implemented using intercepted functions (see section
7).

The QuantumLeap Peripheral algorithm is suitable for use in situations where a single
peripheral function is compute-intensive. An example might be a peripheral that
implements a complex encryption algorithm.

When QuantumLeap is enabled, the simulation flow is as follows:

1. An intercepted function in the peripheral is launched in a separate native thread.
2. Immediately after calling the intercepted function, the PSE issues a wait, either

for a fixed delay, or for an unspecified quantum delay.
3. The peripheral and main simulation threads are then run in parallel.
4. If a fixed delay was specified when the parallel thread was launched, the simulator

will resynchronize with the peripheral thread when the thread returns at that fixed
simulation time. In other words, if the simulator thread reaches the specified
simulated time before the peripheral thread completes, the main simulation thread
will be suspended until the peripheral thread returns before continuing, and if the
peripheral thread completes before the simulation thread reaches the specified
time, then the main simulation thread will continue uninterrupted.

5. If a quantum delay was specified when the parallel thread was launched, the
simulator will resynchronize with the peripheral thread at the next quantum
boundary after the peripheral thread completes, however long that might take. In
this case, the main simulation thread is never suspended.

Fixed delays are used when the purpose of the simulation is to model a specific timing
aspect of peripheral behavior. For example, the peripheral might be implementing an
encryption algorithm that is known to take 100us to complete in the real hardware. Using
fixed delays, the simulation is deterministic.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 79 of 93

Quantum delays are used when the purpose is simply to maximize simulation
performance and there is no need to model specific real-world timing. The point at which
the simulation thread and the peripheral thread resynchronize will vary from run to run
depending on host load and other factors. The simulation will not be deterministic.

The peripheral QuantumLeap algorithm operates independently to the processor
QuantumLeap algorithm – both or either can be enabled independently. Bear in mind that
the two algorithms will, however, compete for limited host resources: it may be necessary
to adjust the number of threads available for parallel processor simulation (see
documentation of option -parallelthreads in the OVPsim and CpuManager User
Guide) or reduce the number of peripherals run as separate threads for best performance.

10.2 Example
Directory: Examples/Models/Peripherals/usingNativeThreading

The example is in three parts; an application, a platform and a peripheral with an
algorithm implemented as native code, in this case a sort algorithm. The peripheral
performs a sort on an area of memory shared with the host so that the sort can be run as
native code in a separate thread.

The number of peripherals that is instanced in the platform may be defined by setting the
PERIPHERAL build variable. This must be set the same in the application and the platform
and should be at least one less than the number of host processors. This allows another
host processor for simulation of a processor in the platform that is controlling the
peripheral execution (and itself executing a Dhrystones benchmark algorithm).

Compile the test application, platform and peripheral using the following commands in
the usingNativeThreading directory:

export PERIPHERALS=2
make –C application
make –C module NOVLNV=1
make –C peripheral/pse NOVLNV=1
make –C peripheral/model NOVLNV=1

10.2.1 Peripheral Code
File: dataSort.user.c

// Thread for each channel
static void channelThread(void *user) {

 for (;;) {
 if (DIAG_HI) bhmMessage("I", PREFIX, "Waiting\n");

 bhmWaitEvent(state.ch.start);

 if (DIAG_HI) bhmMessage("I", PREFIX, "Started\n");

 // run native sort algorithm
 runSort();

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 80 of 93

 // wait for simulated time of 30 seconds, or for as long as required
 // for asynchronous threads to run
 bhmWaitDelay(state.quantumDelay ? QUANTUM_DELAY : 30000000);

 if (DIAG_HI) bhmMessage("I", PREFIX, "Done\n");
 state.ch.dataReady = True;
 updateInterrupt();
 }
}

In the example, a sort algorithm is implemented in native code. This algorithm is
executed when function runSort() is intercepted:

 runSort();

Following the intercepted sort function, the call to bhmWaitDelay(), either waits for a
fixed time (30 seconds) or until the threaded sort function completes. The type of delay is
set by parameter quantumDelay.

 bhmWaitDelay(state.quantumDelay ? QUANTUM_DELAY : 30000000);

Note that the special value QUANTUM_DELAY is used to indicate that the thread should wait
until the quantum boundary after the native thread completes.

In threaded operation, the native function implementing runSort is launched in a thread.
The PSE code continues immediately, executing the bhmWaitDelay. The PSE thread will
then wait, either for the fixed 30 second delay, or until the quantum boundary after the
native thread completes.

10.2.2 Peripheral Native Code

File: peripheral_semihost.c

 .intercepts =
 // --------------- ----------- ------------------------ ------------
 // Name Address Attributes Callback
 // --------------- ----------- ------------------------ ------------
 {
 {"initSemiHost", 0, OSIA_OPAQUE, VMIOS_ABI_INT(0,
"o44b", initSemiHost)},
 {"runSort", 0, OSIA_OPAQUE|OSIA_THREAD, runSort },
 {0}
 }

QuantumLeap is enabled for a native intercepted function by setting bit field attribute
OSIA_THREAD in the attribute table of the peripheral model native code. In this example,
function runSort is specified to be capable of being run in parallel.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 81 of 93

⇒ Note that threaded functions must be raw intercepts: ABI threaded intercepts are
not supported. However, the initSemiHost intercept, which is not threaded, can
be implemented as an ABI intercept. See section 10.4 for more information.

10.2.3 Module Definition

File: module.op.tcl

The example uses harness.exe to load a module.

The hardware definition creates a module then instances and connects the components.

ihwnew -name peripheralNativeThreadTest -vendor ovpworld.org -library module -
version 1.0

ihwaddbus -instancename bus -addresswidth 32

ihwaddnet -instancename int0

ihwaddprocessor -instancename cpu1 \
 -type arm \
 -vendor arm.ovpworld.org \
 -semihostname armNewlib \
 -semihostvendor arm.ovpworld.org \
 -endian little

ihwsetparameter -handle cpu1 -name variant -value Cortex-A9UP -type string

ihwconnect -instancename cpu1 -busmasterport INSTRUCTION -bus bus
ihwconnect -instancename cpu1 -busmasterport DATA -bus bus

ihwconnect -instancename cpu1 -netport fiq -net int0

ihwaddmemory -instancename mem1 -type ram
ihwconnect -instancename mem1 -busslaveport sp1 -bus bus \
 -loaddress 0x00000000 \
 -hiaddress 0x3fffffff

ihwaddmemory -instancename mem2 -type ram
ihwconnect -instancename mem2 -busslaveport sp1 -bus bus \
 -loaddress 0xc0000000 \
 -hiaddress 0xffffffff

The instantiation of the number of peripheral models defaults to 2 but can be changed by
specifying the environment variable PERIPHERALS when the module is built. This will
result in the creation of a module with a specific number of peripherals at a base address
DATASORTSPBASE and with a stride between them of DATASORTSPSIZE both of which can
be modified with the appropriate environment variable setting.

peripherals

set percount 2
set spbase 0x80000000
set spstride 0x1000
set spsize 0x013f

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 82 of 93

if { [info exists env(PERIPHERALS)]} {
 set percount $env(PERIPHERALS)
 puts "MODULE: Set Peripheral Count to $percount"
}
if { [info exists env(DATASORTSPBASE)]} {
 set spbase $env(DATASORTSPBASE)
 puts "MODULE: Set Peripheral Slave Port Base to 0x[format %08x $spbase]"
}
if { [info exists env(DATASORTSPSIZE)]} {
 set spstride $env(DATASORTSPSIZE)
 puts "MODULE: Set Peripheral Slave Port Stride to 0x[format %04x $spstride]"
}

ihwaddformalparameter -name registerOnly -type bool
ihwaddformalparameter -name quantumDelay -type bool

proc addPeripheral {id} {
 global spbase
 global spsize
 global spstride
 set abase [expr $spbase + ($spstride * $id)]
 set atop [expr $abase + $spsize]
 # instance peripheral
 ihwaddperipheral -instancename sort${id} -modelfile peripheral/pse/pse.pse
 # connect slave and master ports to bus
 ihwconnect -instancename sort${id} -busslaveport DATASORTSP -bus bus \
 -loaddress $abase \
 -hiaddress $atop

 ihwconnect -instancename sort${id} -busmasterport DATASORTMP -bus bus

 ihwconnect -instancename sort${id} -netport INT -net int0

 ihwsetparameter -handle sort${id} \
 -name registerOnly \
 -expression registerOnly -type bool

 ihwsetparameter -handle sort${id} \
 -name quantumDelay \
 -expression quantumDelay -type bool
}

Add the peripherals
for {set i 0} {$i < $percount} {incr i} {
 addPeripheral $i
}

The peripheral model has parameters are registerOnly and quantumDelay which can be
used to configure the behavior.

10.2.4 Threaded Operation
To run the simulation, showing threaded peripheral operation, in the
usingNativeThreading directory, run:

harness.exe \
 --modulefile module/model.${IMPERAS_SHRSUF} \
 --program application/dataSortTest.ARM7.elf \
 --parallelperipherals

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 83 of 93

On the simulator command line –parallelperipherals enables the QuantumLeap
algorithm.

You should see the following output as the processor executes the application and starts
the peripheral data processing. CPU1 is executing the Dhrystones benchmark while the
peripherals sort0 and sort1, are sorting data sets in the shared memory:

CpuManagerMulti (64-Bit) v20150901.0 Open Virtual Platform simulator from
www.IMPERAS.com.

...

Info (DATASORT) platform/sort0: Constructor called
Info (PP_CRT) PSE platform/sort0: creating thread 'datasortThread'
Info (DATASORT) platform/sort0: Waiting
Info (DATASORT) platform/sort1: Constructor called
Info (PP_CRT) PSE platform/sort1: creating thread 'datasortThread'
Info (DATASORT) platform/sort1: Waiting
...
Info (DATASORT) platform/sort1: Started
Info (DATASORT_SEMI) platform/sort1, reseeding peripheral data buffer

Dhrystone Benchmark, Version 2.1 (Language: C)

Info (DATASORT_SEMI) platform/sort0: runSort: sort 0x500000 words at 0x2fe68
Program compiled without 'register' attribute

Please give the number of runs through the benchmark:
Execution starts, 2000000 runs through Dhrystone
Info (DATASORT_SEMI) platform/sort1: runSort: sort 0x500000 words at 0x502fe68
Info (DATASORT) platform/sort0: Done
Info (DATASORT) platform/sort0: Interrupt signal asserted
Info (DATASORT) platform/sort0: Waiting
Info (DATASORT) platform/sort1: Done
Info (DATASORT) platform/sort1: Interrupt signal asserted
Info (DATASORT) platform/sort1: Waiting
TEST DATASORT: FIQ Interrupt
TEST DATASORT: check peripheral sort0
Info (PP_RDR) PSE platform/sort0: read register 'ab8_start' = 0x01
TEST DATASORT: active peripheral sort0
sorted[0] = 0x48d
sorted[524288] = 0x199a98d1
...
Bool_Glob: 1
 should be: 1
Ch_1_Glob: A
 should be: A
Ch_2_Glob: B
 should be: B
Arr_1_Glob[8]: 7
 should be: 7
Arr_2_Glob[8][7]: 2000010
 should be: Number_Of_Runs + 10
Ptr_Glob->
 should be: (implementation-dependent)
 Discr: 0
 should be: 0
 Enum_Comp: 2
 should be: 2
 Int_Comp: 17
...

http://www.imperas.com/

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 84 of 93

TEST DATASORT: 6 interrupts received
Info
Info ---
Info PSE SIMULATION TIME STATISTICS
Info 0.03 seconds: PSE THREAD 'platform/sort1'
Info 0.02 seconds: PSE THREAD 'platform/sort0'
Info 0.06 seconds: PSE 'platform/sort1' (and 26 terminated callbacks)
Info 0.06 seconds: PSE 'platform/sort0' (and 26 terminated callbacks)
Info ---
Info
Info ---
Info CPU 'platform/CPU1' STATISTICS
Info Type : arm (Cortex-A9UP)
Info Nominal MIPS : 100
Info Final program counter : 0x22268
Info Simulated instructions: 10,914,295,106
Info Simulated MIPS : 919.1
Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 109.14 seconds
Info User time : 19.28 seconds
Info System time : 0.02 seconds
Info Elapsed time : 11.88 seconds
Info Real time ratio : 9.19x faster
Info ---

CpuManagerMulti ParallelPeripheral finished: Tue Oct 20 16:25:35 2015

At the end of simulation if parallel threaded peripherals have operated, the word
ParallelPeripheral will be seen in the end banner.

10.2.5 Non-Threaded Operation

To run the simulation with non-threaded peripheral operation run:

harness.exe \
 --modulefile module/model.${IMPERAS_SHRSUF}

You should see similar output to the threaded operation, however some of the ordering
may be different as the peripherals are no longer executing in separate threads:

 should be: B
Arr_1_Glob[8]: 7
 should be: 7
Arr_2_Glob[8][7]: 2000010
 should be: Number_Of_Runs + 10
Ptr_Glob->
 should be: (implementation-dependent)
 Discr: 0
 should be: 0
 Enum_Comp: 2
 should be: 2
 Int_Comp: 17
...
TEST DATASORT: 6 interrupts received
Info

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 85 of 93

Info ---
Info PSE SIMULATION TIME STATISTICS
Info 3.70 seconds: PSE THREAD 'platform/sort1'
Info 3.71 seconds: PSE THREAD 'platform/sort0'
Info 0.02 seconds: PSE 'platform/sort1' (and 26 terminated callbacks)
Info 0.03 seconds: PSE 'platform/sort0' (and 26 terminated callbacks)
Info ---
Info
Info ---
Info CPU 'platform/CPU1' STATISTICS
Info Type : arm (Cortex-A9UP)
Info Nominal MIPS : 100
Info Final program counter : 0x22268
Info Simulated instructions: 10,914,295,106
Info Simulated MIPS : 602.2
Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 109.14 seconds
Info User time : 18.09 seconds
Info System time : 0.03 seconds
Info Elapsed time : 18.22 seconds
Info Real time ratio : 5.99x faster
Info ---

CpuManagerMulti finished: Wed Oct 21 09:06:24 2015

Compared with the previous results, PSE threads platform/sort0 and platform/sort1
are now taking significant time in the main simulation thread. Previously, times for these
threads were very low, because most of the time was consumed by separate native
threads, not the main simulation thread.

10.3 QuantumLeap Results
In this example, when threaded operation is enabled the simulation duration is about 12
seconds, allowing the ARM processor to run at 919 MIPS. When non-threaded operation
is enabled, the simulation duration is about 18 seconds, allowing the ARM processor to
run at about 600 MIPS. The difference is explained by the fact that in the second
simulation the sort algorithms are executed in the main simulation thread.

The performance reported may vary and depends on the performance of the host and also
the interaction of the processor applications with the peripheral operations. This example
was run on a 2.4 GHz Dell Core i7-4700MQ.

10.4 Configuration of Peripheral Native Code
When QuantumLeap is enabled, peripheral native code will run in parallel to the invoking
PSE. This means that if a native thread attempts to extract information from the PSE (for
example, arguments on the processor stack or register values) it may no longer be valid,
because the invoking PSE will have continued to execute.

Intercepted functions that run in parallel threads should therefore never pass any
arguments: any initialization information should be passed using a previous initialization
function that does not have threading enabled.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 86 of 93

In this example the initialization is carried out using a separate function, initSemiHost,
which is defined as an ABI non-threaded intercept in the interception attribute table:

 .intercepts =
 // --------------- ----------- ------------------------ ------------
 // Name Address Attributes Callback
 // --------------- ----------- ------------------------ ------------
 {
 {"initSemiHost", 0, OSIA_OPAQUE, VMIOS_ABI_INT(0,
"o44b", initSemiHost)},
...
}

A function in the PSE application code is used to pass configuration data regarding the
data buffer address and size:

//
// Initialize semihost if not already done
//
static void initSH(void) {
 if(!state.initSH) {
 state.initSH = 1;
 initSemiHost(
 DATASORTSP_ab32ch0_data.srcAddr.value,
 DATASORTSP_ab32ch0_data.dataSize.value,
 state.registerOnly
);
 }
}

In the native code the arguments are saved:

static void initSemiHost(
 vmiosObjectP object,
 Uns32 base,
 Uns32 size,
 Bool registerOnly
) {
 object->registerOnly = registerOnly;
 object->memoryBase = base;
 object->memorySize = size;

 ...
}

The threaded callback then uses the saved values to control its operation:

static VMIOS_INTERCEPT_FN(runSort) {

 // don't do operation if register interface only
 if (object->registerOnly) {

 ...

 } else {

 Uns32 base = object->memoryBase;

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 87 of 93

 Uns32 size = object->memorySize;
 ...
 }
}

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 88 of 93

11 Building Peripherals

11.1 OVP Library Structure
When building your own peripherals, it is recommended that you use a file structure
identical to that in ImperasLib, and that you put your models in
ImperasLib/source/<your company URL> or other unique name. This will ensure that
the supplied Makefile can be used and that the simulator will be able to locate your
models.

Figure 4: OVP Library Structure

11.2 Peripheral Model Makefiles
In this section we discuss building a peripheral.

Using the peripheral SimpleDma as an example in the ImperasLib for building, Makefiles
are provided in
• ImperasLib/source,
• ImperasLib/source/imperas.com/peripheral/SimpleDma/1.0/pse
• ImperasLib/source/imperas.com/peripheral/SimpleDma/1.0/model3

There are a set of Makefiles in ImperasLib/buildutils that are used to build different
component types in the source library; for the peripheral model this is Makefile.pse.

The Makefile is includes in the component Makefile which will typically be:

ifndef IMPERAS_HOME
 IMPERAS_ERROR := $(error "IMPERAS_HOME not defined, please setup Imperas/OVP
environment")

3 This directory will only be present for models that build code to run natively on the host system. In a
peripheral this would incorporate the intercept library.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 89 of 93

endif
IMPERAS_HOME := $(shell getpath.exe "$(IMPERAS_HOME)")

include $(IMPERAS_HOME)/ImperasLib/buildutils/Makefile.pse

11.2.1 Selecting PSE Type
The different types of Peripheral Simulation Engine, that may be used to implement the
behavior defined in source code, is selected when the model is built by specifying
IMPERAS_PSE in the Makefile in the pse directory.

IMPERAS_PSE Setting PSE Implementation
PSE 32-bit x86 architecture (default)
PSE_RV32 32-bit RISC-V architecture
PSE_RV64 64-bit RISC-V architecture

For example, to build a PSE file to execute on a 64-bit RISC-V architecture PSE the
following would be used in the Makefile.

…
IMPERAS_PSE=PSE_RV64
include $(IMPERAS_HOME)/ImperasLib/buildutils/Makefile.pse

The default PSE type (32-bit x86 architecture) requires use of a legacy GNU tool chain;
this has a known problem that printing of 64-bit types (e.g. Uns64 or Addr) is not
supported by the printf implementation, which can make debugging PSE code difficult.
As an alternative, either 32-bit or 64-bit RISC-V architecture can instead be used, both of
which use a more modern GNU tool chain that does not have this problem.

Which PSE architecture to choose can be affected by two other factors:

1. If the PSE is being used to run pre-existing software, it is sometimes the case that
the software makes implicit assumptions about the size of a pointer (4-byte or 8-
byte). If this is the case, select a PSE architecture compatible with the software.

2. If the PSE requires to share complex data structures with an application processor,
select a PSE for which the layout of structures in memory matches the application
processor.

The simulator uses information encoded in the generated PSE executable to determine
what architecture PSE to run, so this does not need to be explicitly specified. A single
platform can use PSEs compiled with any combination of architecture if required.

11.3 Building Peripheral Models
11.3.1 Building to the Default Output Location

The default location for the output when building a library is the $SYSTEMVLNV location,
which will be $IMPERAS_HOME/lib/$IMPERAS_ARCH/ImperasLib

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 90 of 93

To build into the default directory, in a shell (MSYS on Windows) type

make –C $IMPERAS_HOME/ImperasLib/source

11.3.2 Building to a Defined Output Location

To build into a specified directory, for example a local directory, for example
myLocalLib, in a shell (MSYS on Windows) type

make –C $IMPERAS_HOME/ImperasLib/source VLNVROOT=$(pwd)/myLocalLib

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 91 of 93

12 Troubleshooting
Here are some common problems encountered in peripheral models.

12.1 Runaway Recursion
12.1.1 Error Description
A region in PSE address space can have a callback installed. If code in this callback
accesses the same addresses the simulator can detect the recursion. However if the code
in the callback is intercepted, and if the host code in the intercept library uses a vmi
function to access the same space, the simulator cannot detect the recursion.

The following illustrates the error as it would be seen when running a platform that
contains a peripheral causing recursive calls.

The simulator monitors the depth of callbacks occurring in the system and if it detects
this is greater than a pre-defined maximum it terminate the simulation.

12.1.2 Example of Error in Peripheral Intercept Coding

The common problem is caused when addresses of regions of memory are passed from
the PSE peripheral into the native peripheral intercept model from which they are used to
access back into the PSE peripheral memory space.

The following diagram illustrates the problem of the native function using VMI API calls
to access a memory region by address that resides in the PSE peripheral memory space.

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 92 of 93

The following is an example of code that could cause this recursion problem.
A read port has been opened on the base of the memory window and a callback readPort
based at the address of window (which is a simple array) is created.

ppmInstallReadCallback(
 readPort,
 0,
 window,
 sizeof(window)
);

When there is an access to the memory addresses contained within window the call back
readPort is called. This function contains a call to an intercepted function. The
intercepted function transfers control to the intercept library.

PPM_READ_CB(readPort){

 Uns32 val;

 semiReadData(&val);

 return val;
}

The function in the intercept library semiReadData() uses a VMI API function to read
from an address which coincides with the peripheral port.

static VMIOS_INTERCEPT_FN(semiReadData)
{
 Uns32 count = 0;

OVP Peripheral Modeling Guide

© 2022 Imperas Software Limited www.OVPworld.org Page 93 of 93

 // Read data from the PSE data space
 memDomainP domain = vmirtGetProcessorDataDomain(processor);
 vmirtReadNByteDomain(domain, addrP, &count, sizeof(count), 0, True);

 vmiMessage("I", PREFIX, "Read Data: read %d from 0x%08x\n",
 count, addrP);

}

This is the address of the base of the window memory region in the PSE over which the
read callback has been allocated. This read access is to the same address that caused the
original callback. It is going to call the callback again and cause the runaway recursion.

	1 Preface
	1.1 Notation
	1.2 Related OVP Documents

	2 Introduction
	2.1 Peripheral Model Template Generation with iGen
	2.2 Prerequisites
	2.2.1 MinGW
	2.2.2 Cross Compiler Toolchain

	3 OVP Simulation Overview
	3.1 Imperas & OVP Tools
	3.2 Processor Models
	3.3 Peripheral Models

	4 Behavioral Modeling Methodology
	4.1 Peripheral Modeling API
	4.1.1 BHM API
	4.1.1.1 Threads and events
	4.1.1.2 Parameters
	4.1.1.3 Diagnostics
	4.1.1.4 Networking

	4.1.2 PPM API

	4.2 Data Endianness
	4.3 Host Feature Access

	5 Behavioral Modeling (BHM) API Overview
	5.1 Interface Definition
	5.1.1 Parameter definitions
	5.1.2 Overriding a parameter
	5.1.3 Bus port definitions
	5.1.4 Net port definitions
	5.1.5 Packetnet port definitions
	5.1.6 Conn (FIFO) port definitions

	5.2 Initialization
	5.3 Diagnostic output
	5.4 Threads
	5.4.1 Events
	5.4.1.1 Named Events

	5.4.2 System Events
	5.4.3 Delays
	5.4.3.1 Considerations
	5.4.3.2 Relationship between delays and time-slice

	5.5 Callbacks
	5.5.1 Delays in callbacks
	5.5.1.1 Callbacks that Block Unconditionally
	5.5.1.2 Callbacks that Block Conditionally
	5.5.1.3 Notes and Restrictions

	5.6 Time
	5.6.1 Current Simulation Time
	5.6.2 Local Time

	6 Peripheral Platform Modeling (PPM) API Overview
	6.1 Bus Slave connection
	6.1.1 Fixed Mapping
	6.1.1.1 Aborted Access

	6.1.2 Dynamic Mapping

	6.2 Bus master connections
	6.2.1 By handle
	6.2.2 By Address Space

	6.3 Dynamic Bridges
	6.4 Nets
	6.5 Conn (FIFO) Support
	6.5.1 FIFO Word Size
	6.5.2 Example

	6.6 Memory Mapped Registers and Bit Fields
	6.6.1 Callbacks
	6.6.2 Masking
	6.6.3 Diagnostics and debug
	6.6.4 Endian-ness
	6.6.5 Example
	6.6.6 Bit-fields
	6.6.7 Register arrays

	6.7 Callbacks without registers
	6.7.1 Overlapping callbacks
	6.7.2 Fragmented access
	6.7.3 Simulating a bus error in a callback

	6.8 Programmers View
	6.8.1 Automatic Object and Event Generation
	6.8.2 Objects
	6.8.2.1 Creating an Object
	6.8.2.2 Associating Values with Objects
	6.8.2.3 Removing an Object

	6.8.3 View Events
	6.8.3.1 Adding an Event
	6.8.3.2 Triggering an Event

	6.8.4 Actions

	7 Host Code
	7.1 The constructor
	7.1.1 Environment Checks
	7.1.1.1 Raw Intercepts
	7.1.1.2 ABI Intercepts

	7.1.2 The Peripheral Simulation Engine ABI
	7.1.2.1 Raw Intercepts
	7.1.2.2 ABI Intercepts

	7.2 Obtaining Intercepted Function Arguments
	7.2.1.1 Raw Intercepts
	7.2.1.2 ABI Intercepts

	7.3 Passing the Return Code from an Intercepted Function
	7.3.1.1 Raw Intercepts
	7.3.1.2 ABI Intercepts

	7.4 Data Exchange

	8 Peripheral Model Example
	8.1 Example Source
	8.2 IGEN
	8.2.1 Register model
	8.2.2 Parallel Operations and Signaling Events
	8.2.3 Master Memory Access
	8.2.4 Interrupts
	8.2.5 Behavior using Native host code

	8.3 Platform Overview
	8.3.1 Virtual Platform Design
	8.3.1.1 Virtual Platform Memory Map
	8.3.1.2 Virtual Platform Module Definition

	8.4 Peripheral Model Template
	8.5 Peripheral Model Entry
	8.5.1 Attribute Table
	8.5.2 The Main Function
	8.5.3 Information about available ports
	8.5.4 Information about parameters
	8.5.5 Creating a Slave Port Interface
	8.5.6 Registers
	8.5.6.1 Installing a Register

	8.5.7 Running the Example

	9 Dynamic Slave Port example
	9.1 Instance Peripheral in Module
	9.2 Peripheral iGen Definition
	9.3 Peripheral User Code
	9.3.1 Initialization
	9.3.2 Dynamic mapping

	9.4 Running the Example

	10 QuantumLeap with Peripherals
	10.1 The QuantumLeap Algorithm
	10.2 Example
	10.2.1 Peripheral Code
	10.2.2 Peripheral Native Code
	10.2.3 Module Definition
	10.2.4 Threaded Operation
	10.2.5 Non-Threaded Operation

	10.3 QuantumLeap Results
	10.4 Configuration of Peripheral Native Code

	11 Building Peripherals
	11.1 OVP Library Structure
	11.2 Peripheral Model Makefiles
	11.2.1 Selecting PSE Type

	11.3 Building Peripheral Models
	11.3.1 Building to the Default Output Location
	11.3.2 Building to a Defined Output Location

	12 Troubleshooting
	12.1 Runaway Recursion
	12.1.1 Error Description
	12.1.2 Example of Error in Peripheral Intercept Coding

