Open Virtual Platforms

OVP Processor Modeling Guide

Imperas Software Limited

Imperas Buildings, North Weston,
Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

IIperas

Author: Imperas Software Limited

Version: 7.48.1

Filename: OVP_Processor Modeling Guide.doc
Project: OVP Processor Modeling Guide

Last Saved: | Thursday, 13 January 2022

Keywords:

© 2022 Imperas Software Limited www.OVPworld.org

Page 1 of 321

OVP Processor Modeling Guide

Copyright Notice

Copyright © 2022 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation

The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer

IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

© 2022 Imperas Software Limited.www.OVPworld.org Page 2 of 321

OVP Processor Modeling Guide

Table of Contents

1 PIETACE. ...ttt bt re e 10
I R N[0 - (o] TP URPPUPTPPPRRN 10
1.2 Recommended REAAINGooveiiiiriieeiesee e e 10
1.3 Related Imperas & OVP DOCUMENLSccverieiiriiesieeiesee e esie e sie e 10

2 INEFOTUCTION ...ttt sttt et sne e 11
A R o (T =0 U1 | OSSP 11

3 Imperas SIMUIAtION OVEIVIEWcccoiiiiiiiiiieiieie e 12
3.1 SIMUulation ENVIFONMENTS.......cciiiiiiieiesie e 12
3.2 ProCcesSOr MOGEISc..oiuiiiieii s 12
3.3 SEMINOSING....cciiiiiee et reere e 13
3.4 Cache and Memory Subsystem MOdEIS...........ccooiiiiiiiniiiineee e 13

4 Introduction to Processor Modeling.........cocvoveiveieiieieee e 14
41 PIEIEUISITES ...ttt ettt et sb e sr e 14
4.2 Creating a Processor Outline Modelccooviieiieiiiiecece e 14

4.2.1 Declaring Shared Functions - orLkFunctions.h.........cccccceeiiene.n, 15
422 Defining Processor Structure - or1kStructure.h.........cccoceien, 15
4.2.3 Constructor, Destructor and Ports - oOr LKMain.cCcccceeveneenvnnnnen, 15
4.2.4 JIT Translations - Or LKMOFrPph . C.....c.ccooeveiiiiicc e 18
4.2.5 Support Functions - OrLKUTI IS .C ..cccoooveviiiecece e 18
4.2.6 Processor Information - OrLKINTO . C...c.ooovvevvvviiiiice e, 19
4.2.7 Function Registration - Or1lKATErS.C....ccccovveviiieiicie e, 23
4.3 Implementing a Test Platform using OVPSIMcccccceiveiieiiic e 24
4.4 Creating an Application TESt CASEcceiveriiriiririiieieeee s 26
4.5 Running the Application Test Case with the Processor Model 27

5 Implementing the INStruction DECOTENccoviiiiiiiiiieiere e 28

5.1 The Template Decoder Modelc.ccoveiiiiiiiiiiece e 28
5.1.1 Defining Decoder Types - orlkDecode . h........ccccoviiiiiiniinicninnnnn, 28
5.1.2 Decode Implementation - orlkDecode.C.........cccooevveieiieieccc s, 29
5.1.3 JIT Translations - Or LKMOFPh . C....coovvveiiiiiicc e 34
5.1.4 Instruction Disassembler - orlkDisassemble.cC........cccoooiiiiinnnne 36

5.2 Running the Application Test Case with the Processor Model 37

5.3 More CompleX DECOUEISueiieieiieiie et eiese et sie e sre e sre e e ne e 38

6 Implementing the Instruction Disassembler ... 39

6.1 The Template Disassembler Modelcccocoviieiiiieiiese e 39
6.1.1 Instruction Formats - orlkDisassembleFormats.h.................... 39
6.1.2 Supporting Instruction Formats - orlkDecode.h.........cccccooeiivinnnen, 40
6.1.3 Adding Instruction Formats - or1kDecode.C........cccoovvvvniviiniinennnnne 40
6.1.4 Using Instruction Formats - orlkDisassemble.cC ..., 41

6.2 Running the Application Test Case with the Processor Model 44

6.3 Creating Disassembler POINE TESTSccccviiiieieieicieseresese e 45
6.3.1 Elegant Test Termination using SemMIhoStiNgccccceevveviieiieiiiieieea, 46

6.4 UNCOOKed DiSaSSEMDIYcouiiiiiiiiiiiiiisiieeie e 47

7 Implementing Simple BEhavior ... 50

© 2022 Imperas Software Limited.www.OVPworld.org Page 3 of 321

OVP Processor Modeling Guide

7.1 An Introduction to Code MOrphiNgccccceoeiirieniieiieniee e 50
7.2 The Template Simple Behavioral Model............ccccooovevieieiieciece e 51
7.2.1 Defining GPRs - or LKStructure.h........cccocooiiiiiicic e, 51
7.2.2 Initializing GPRS - OFrLKMaiN.C ..c.ccoveiveiiiiieece e 52
7.2.3 Implementing Binops - OrLKMOrph.C ..o, 52
7.3 Running the Application Test Case with the Processor Model 55
7.4 INSLrUCLION TEMPOTAITES ...eveeeeiiiieiiresieeeesee e eteseeste e e sraesraeste e e e sreesreeneesneenneens 57
8 Processor Flags and Register DUMPINGc.ooveiiiieiie e 59
8.1 The Template FIags MOdelcccooeiiiiiiececee e 59
8.1.1 Adding Flag Registers - orLKStructure.h.........cccceeviiiicinennnn, 59
8.1.2 Using Flags - OrLKMOFpPhR . C....cooveovviiieec e, 60
8.2 Validating Flag Behavior With TEStScccccveiiiiierice e 62
8.3 Model-Specific DUMP FOIMALccoiiiiiie e 65
8.3.1 Defining Status Register - or 1kStructure._.h...........cccocvvvvvvninnenn, 65
8.3.2 Adding Register DUump - Or1KUEIIS . C ..ooooeiviiiiiiie 66
8.3.3 Initializing Status Register - Or LIKMainN.C.........cccovevvvvieiieerncie e 69
8.34 Dump Function Registration - Or LKATErS.C....ccccevveviienieesienn, 70
8.4 Validating Register Dumping with POINt TEStSccccoeririiniiiiereneneseen 71
8.5 DErVEU FIaQSocieii et e 71
9 Implementing Unconditional Jump INSErUCTIONS..........ccoveieieieniiinieiee e 74
9.1 The Template Unconditional Jump Modelcccoeoeiieiiiiciicece e, 74
911 Defining Link Register - orL1kStructure._h..........ccccviivinnnenn. 74
9.1.2 Defining Jump Instruction Types - orlkDecode.hcccoeenennnen, 74
9.1.3 Decoding Jump Instructions - or1kDecode.Ccccoovvverveiesennnnn, 75
9.14 Jump Instruction Formats - orlkDisassembleFormats.h............. 77
9.15 Jump Instruction Disassembly - or1kDisassemble.c.................... 77
9.1.6 Implementing Jump Instructions - orlkMorph.cC......c.ccccoceviviivivennnne. 78
9.2 Validating Unconditional Jumps with POINt TESES.........ccccvvriieierenciinineens 83
10 Implementing Conditional Jump INStrUCLIONS..........cccvveviiiiiieceee e 85
10.1 The Template Conditional Jump Modelccooiiiiiiiiii e 85
10.1.1 Defining Branch Flag - or1kStructure.hccccccoieiiviinieennnne 85
10.1.2 Decoding Instructions - orlkDecode. [ch] ..., 86
10.1.3 Disassembling Conditions - or1kDisassemble.C..........ccocoviennn, 87
10.1.4 Implementing Conditional Jumps - orLkMorph.cC......cccceoviviinennne. 88
10.2 Validating Conditional Jumps with POint TeStS........ccccevvveieeriiieseerr e 90
11 Implementing Memory ACCESS INSTIUCTIONSccuvvieiiriieesie e 94
11.1 The Template Memory Access MOdel...........ccooveieiieiicicciceee e 94
11.1.1 Decoding Loads and Stores - or1kDecode.Ccccocvvveivivieivennenne. 95
11.1.2 Load/Store Disassembly - orlkDisassemble.C.......ccoceviiennne. 96
11.1.3 Implementing Loads and Stores - orLKMorph.C.......c.ccocvcviiiiiiniennn, 97
11.1.4 Load/Store Test Harness - platform/harness.ccccocvvennenne 99
11.2 FiboNaCC EXAMPIE...c..iiiiiiiiiecee e e 101
11.2.1 BaSiC EXAMPIEooeeiiecie et 101
11.2.2 Validating Simulation Performance...........cccccooveviieiesiesieese e seeseenn 102
11.2.3 Demonstrating Jump Hint EffeCtiVeNessccocvviiiiniciiicicncnie 103

© 2022 Imperas Software Limited.www.OVPworld.org Page 4 of 321

OVP Processor Modeling Guide

12 MOdeling EXCEPLIONSoivieiieiiiiiie ittt 105
12,1 BaSIC EXAMPIEoeiiieiieie ettt 105
12.1.1 Adding Exception Registers - or1kStructure.h...........cccoeenee. 108
12.1.2 Declaring Exception Handlers - or LkFunctions.h............ccc....... 108
12.1.3 Defining Exception Types - or1lkExceptionTypes.h................ 109
12.1.4 Implementing Exceptions - or LKEXCeptions.C.........ccccceevevvenenen. 109
12.1.5 Taking Exceptions - or1kUtils.[ch].....ccccoiiiiiiiiiiiiccree, 113
12.1.6 Exception Function Registration - Or LKATErS.C........ccccevcvvveieiennnn, 115
12.1.7 bL.rfeand F.SYS INStrUCLIONS........ccoiieiiiieriec e 116
12.2 Misaligned Load/Store Address Snapping and Value Rotation 119
12.2.1 ARM Model Load/Store Address Snap Callback............cccccevererinnnnnne 121
12.3 MEMONY ADOIS....c.uiiiicieiieie et te et e e sre e e sneesreesaeanaesneas 121
12.4 Misaligned Fetch Address SNappingcccoovvererieieienesc e 123
13 Modeling Mode-Dependent Behavior (Part 1)ccccccveveieeveeiiesec e 125
13.1 The Template Modal MOdel ... 125
13.2 Correcting 1. rFe BehaVior..........cccuevveiiiieciee e 126
13.3 Implementing B oMESPI ..o 128
13.4 Implementing B omEFSPE oo 131
13.5 Root Module Simulation - platform/harness.c.......cccecvvvevveiennn, 131
13.6 Testing lllegal INStruction EXCEPLIONSccvevveieiieiieie e 131
13.7 Testing I .mtspr and I .mFspr Performance............ccoccvvveveieieeicinennn, 134
13.7.1 Increase application/asmtest.Sto Loop Countc.cccveueeneee. 134
13.7.2 Use IndexX REGISIEr F3L......ccciiiiiiiiiiiriesiieeeee e 135

13.8 Passing Register Arguments to Embedded Calls..........ccccccooovevviiiienninnnnn, 135
14 Modeling Mode-Dependent Behavior (Part 2)cccccvevevveiecie s 138
14.1 The Template Fast Modal Model.............coooiiiiin 138
14.2 Remove Temporary Flag - orlkStructure.h.........ccciiiviienivciennn, 139
14.3 Mode-Dependent JIT Functions - orLKMOrph.C.......ccccceeviniiiiieiniiinnn, 139
14.4 Testing Optimized Illegal Instruction EXCEPLiONScccoceevvereeneniinieenennns 141
14.5 Using Multiple Code DICLIONAIIESc.ccvveriereerieiieieesiesiee e esie e e sie e e 142
14.6 Cautionary Notes about Code DICtIONAIIES........ccccceererieriieiieie e 145
14.6.1 VMITESETMOAE IS SIOW...c.ooiiiiieieiicie e 145
14.6.2 Model Code is More Complicated..........cccoeiereriieninieicee e 146

15 Implementing @ TICK TIMETccoviiieiiie e 147
15.1 ORIK TiCK TIMEr OVEIVIEWccuveiiiirieiiiesieeiesiesieeeesreesieeiesseesteeeesreesseeseens 147
15.2 Tick Timer Modeling Considerations............cccccevveieeiiesieese e ese s 148
15.3 The Template Tick Timer Model...........cccoviiriiiiiii 149
15.4 Adding Timer Registers - orlkStructure.h.........ccccoviiiiiicineieenn, 149
15.5 Timer Register Read and Write - orLKMOrph._C......cccocoiiiiiiiiiiie 150
15.6 Adding Timer Exceptions - Or LKEXCEPTIONS . Cccccecvevvviieieciireienin, 150
15.7 Status Register Update - Or LKUTIIS.C..cooveiviiiiieicc e 156
15.8 Fetch/Timer Callback Registration - Or1KATErS.C.....ccccoovvviviviicienn, 157
15.9 Testing Tick Timer EXCEPIONS.coiiiiiiiiieieience e 157
15.10 EXPHCIt ProCESSOr TIMEISuviiveeieiieiieeiesiesteeite e ste et ae e ste e e e naeenne s 160
16 Modeling External INterruptS........coviveiiiiieee s 162

© 2022 Imperas Software Limited.www.OVPworld.org Page 5 of 321

OVP Processor Modeling Guide

16.1 ORIK PIC OVEIVIEWoviiiieiieieiiesie sttt sttt 162
16.2 The Template External Interrupt Modelcccoevviieiiieiiecie e 162
16.3 Defining PIC Registers - orLkStructure.h..........cccoeviiiiiiccneieenn, 162
16.4 Adding PIC Register Read and Write - orLkKMorph.cC.....cccccoovvivivvinnnen, 163
16.5 Adding PIC Exceptions - Or1KEXCEPEIONS . C...ccoovvveriiriiniiiinieieieene 163
16.6 Adding Net Ports - OFIKMaEN . Ccccoeoviiiiiieiecieceece e 166
16.7 Enhancing Register DUMp - OrLKUTIIS.C ..cocvoviiviiiic e 168
16.8 PIC Test Harness - platform/harness.C.....ccccccovviviieieiiesieeie e, 168
16.9 Testing External EXCEPLIONScc.ooiiiriiiiiieiciee e 169
17 Implementing the Debug INterfacec.cooevveie i 172
17.1 The Template Debug Interface Model ..o 172
17.2 Adding Query Functions - OrIKUTE IS . C...ccccvevviveiice e 172
17.2.1 Processor Mode Iterator FUNCLION.........cccveeiienieeie e 172
17.2.2 Processor Current Mode Query FUNCLIONcccceoveiieiiececic e 174
17.2.3 Processor Exception Iterator FUNCHIONcooviiiiiiieniceeieee, 174
17.2.4 Processor Current Exception Query FUNCLIONccccovevveieiieieeieenns 175
17.3 Register Access Functions - orlkRegisSters.C......c.cciiiiiiiiicicnnenn, 176
17.3.1 Register Read Callback FUNCLIONS...........cccoiiiiiiiiiiie e 182
17.3.2 Register Write Callback FUNCLIONScoceiieiieiiiie e 183
17.4 Raw and Callback RegiSter ACCESS........coviiriieiieiieiiere e 183
17.5 Handling Artifact Accesses - Or LKEXCEPEIONS . C......cccovvvrvvveieiennnn 184
17.6 Debug Function Registration - Or LKATErS.C ...ccccevvviiiieiiieieereeie s 185
17.7 Debug Function Test Harness - platform/harness.c...........cccooevereicncnennnn. 185
17.8 Testing the Debugger INterface...........ccoviveieiiieiiieii e 187
17.9 Testing Register Change TraCiNg.......cccovereeiinrieiiesieie s 189
18 Adding an Extended Programmers VIBWcccoouiiimeieienenenesiesieseseeeenee s 191
18.1 An Example Programmers VIBWccccovevviieieeiueeiieseesesiee e sresneseesse e 191
18.2 Adding View Object and Event - orlkStructure.h..........cccoooiinn, 191
18.3 Implementing Programmer’s View - OrLKVEEW.Ccccoovevviieieciinenennn, 192
18.4 Triggering View Events - Or LKEXCEPTIONS . Ccccvevvviveviecieseece e 192
18.5 Testing the Extended Programmers VIEWcccccvevuevivereeiiesieeseesieseesieenens 193
18.5.1 RUNNING IN OVP ..ot 193
18.5.2 Operation in Imperas MP DebUQQEr........cccecveieiiiiieeie e 194
19 Implementing SAVE/RESIOIEoiieiiiie et 197
19.1 Example Save/Restore Implementation...........ccccoeveveiienieeiesiee e 197
19.2 Save/Restore Mode Active - orlkStructure.h.........ciiivienne, 198
19.3 Save/Restore Interface Functions - Or LKMainN . Cccccoovviiiiiiinciennn, 198
19.3.1 Save/Restore Data CONSLrAINTS........c.ccoverueiieiieriesieseeseseeseesee e seeeens 202
19.3.2 MUILICOIE PrOCESSOIS.uiiuieiierieiesie st sttt sttt nneas 203
19.4 Save/Restore Function Registration - Or IKATErS.C....cccccevviiiviiiiinnnn, 203
19.5 Save/Restore Mode Accesses - Or LKEXCEPTIONS.C......cccccveveiveiieenenen, 204
19.6 Save/Restore Test Harness - platform/Zharness.c.......ccccvevcveeenen, 204
19.7 TeSting SAVE/RESIONEccveiieeieeie et sreesae e nneas 206
19.7.1 State File FOrMAL.........ccoviiiiiiiieicce e e 208
20 Implementing INStruction AFDULES..........ooiiiiiiiiee e 210

© 2022 Imperas Software Limited.www.OVPworld.org Page 6 of 321

OVP Processor Modeling Guide

20.1 Instruction Attribute Access —ocl/Zoclia.h.......iiiiiiiiiiiicnnn, 210
20.1.1 Information Available..........ccccoiiiiiiiii 211
20.2 Example Instruction Attributes Implementation.............c.ccoovviiiiiciencicnnn 213
20.3 Baseline Instruction AttrDULEScooviiiiiiieesc e 214
20.4 Test Harness - platform/harnNeSS.Cccciiiiiiii i 215
20.4.1 INSEFUCKION ClaSS...cuiiiiiiiiiiiiiiieieee ettt 217
20.4.2 FEtCN RECOIUS......uiiiiiiieiieie ettt ste e nnees 218
20.4.3 Read and Written REQISLENSccveieieeiieie et 218
20.4.4 Unmatched Read and Written RaNGEScccoverirerinieiieieie e 219
20.45 NEXt PC EXPreSSIONS....c..ciieivieieiiieiteeitesieesieeeestaesteaeessaesaesnesreesresneesneas 219
20.4.6 AJAreSS EXPreSSIONSccuoiuiiuirieiieieitesiesie sttt sbe e 221
20.5 Testing Baseline Instruction Attributesccccccevvevi s 222
20.6 Adding INSLrUCTION CIASSEServiiiieieieiiesie e 231
20.7 Testing Enhanced Instruction AttribUteScccccveveiieiicie e 233
21 Implementing Fixed-Mapped Virtual MemOrYccccoovviiiiininieeere e 235
21.1 Example Memory IMapS.......cccoueiieiieiieieeie et re et 235
21.2 The Template Fixed-Mapped MOdelcccceviiiiiniiiiiec e 236
213 OFLKVIMLLC ..ttt ettt bbbt 236
21.4 VM Function Registration - Or LKATEFS . C...ocovevviiiiiiiieneeeeeeeie s 239
21.4.1 Virtual Memory Test Harness - platform/harness.c................ 240
21.5 Testing Fixed-Mapped Virtual MEMOIYcccccevveveiieieece e 240
22 Implementing a Dynamic-Mapped TLB..........ccoiiiiiiiiieceeeee e 244
22.1 General TLB CONCEPLSccveeieiieiiieiie sttt ettt sae s 244
22.2 The Simple EXample TLBoooiiiiiiieeeee e 244
22.3 The Template Simple TLB Model.........ccccoviiiiiiiiecece e 245
22.4 Defining TLB Structures - orIkStructure.hccocviiiiniiniininnnn, 246
22.5 Implementing Virtual Memory - or IKVM. [Ch]cccooiiiiiiiee, 246
22.6 Adding TLB Update Instruction - or LKMOrph.Ccccoooeviiiiiiiiiiicieen, 249
22.7 Testing the Simple TLB MOdelccccooiiiiiiiieee 250
22.8 TLB Modeling with Multiple Processor MOdesccccovvevviieieeriesiesieenn. 254
22.8.1 Apply Changes in All TLB-Mapped DOmainscccccveervrvnenieinenne. 254
22.8.2 Maintain Multiple Copies of the TLBcccccoveveiieiieieccceeee e 254
22.9 TLB Modeling with ASID-Mapped ENtriescccocevrenenenineneseseeeee, 255
22.9.1 Managing Virtual Address Aliases with Different ASID 256
22.10 Lazy Mapping Of TLB ENLIIES......ccooiiiiiieiieieeeeeee e 256
23 Implementing a TLB LRU Replacement POIICY..........ccceveiieiievciiciecce e 259
23.1 Introduction to LRU Replacement Implementationcccceovvviincnennnnn 259
23.2 The Template LRU Replacement Policy Model............cccccevviiiiiiecenene. 260
23.3 Adding MRU Entry State - or1kStructure_h ..., 260
23.4 Using MRU Entry State - OFIKVM_C ...ccocoviiiiiieiececeec e 261
23.5 Testing the LRU Replacement Policy Modelcccocvevviieieiieiicceeien, 262
24 Implementing QuantumLeap-Compatible Modelsccooeiiiiiiiinie, 265
24.1 Introduction to Multiprocessor SImulation............cccccevveieiivenecieseese e 265
24.2 QuantumbLeap REQUITEMENTSccooviiiriiiie e 265
24.3 Test-and-Set or Atomic Swap INSTFUCTIONSccvvveiieiicie e 266
24.4 Load/Store EXCIUSIVE CONSIIUCES.......ccveiieiiiie e 267

© 2022 Imperas Software Limited.www.OVPworld.org Page 7 of 321

OVP Processor Modeling Guide

24.4.1 Describing the Load Exclusive INStruction............ccoceveveiveniveneseesnenne. 267
24.4.2 Describing the Store Exclusive INStruction............cccccevvvvevivervceesnenne. 267
24.4.3 Handling the Address MONITOL...........cccueiririeeieiie e 268
24.4.4 Load/Store Exclusive with QuUantumLeapccocceevvevveresieeseeriesiennenn 269
24.5 Accessing Shared RegiSter State..........ccoveeiirieiiienieie e 270
24.6 Enabling QuantumLeap in a processor Modelcccevvevveiviieieenecie e 270
25 Function Address SEMINOSTINGccoouiiiriinieiie e 271
AT R 101 (=] (ot o1 o] USSR SRR 271
25.2 The Template Semihosting LIDIarycccocovoieiiiiiniene e 271
25.3 File semihosting/orlkNewlib.C......coiiiiiiiiiee, 272
25.3.1 OR1K Newlib Semihosting vmiosAttr Definitionc.ccoeceenrnen. 273
25.3.2 OR1K Newlib Semihosting Constructor Definition.............c..cccccvevueenee. 277
25.3.3 OR1K Newlib Semihosting Destructor Definition...............cccccocenvrnnnnne 278
25.3.4 Function Address Intercept Example: closelntccccocvvveenen, 278
25.4 Semihosting Function Return - or1kSemiHOST . C......cccooovvvvvieiieiieenen, 282
25.5 File platForm/NarNEeSS . C ...t 283
25.6 Flow of Control for Opaque Address INtercepts........ccuverveierinneerieninneenne 283
25.7 Testing the Semihosting Intercept Librarycccccoovevviieiiienesiie e 283
25.8 Intercepts and MUItICOre PrOCESSOIScc.uuviiierieeiesie e siee e 284
26 Using Intercept Libraries for Instruction Set Enhancementccccccevvevvieenee. 287
26.1 The Template Instruction Set Enhancement Libraryccccccoovviniinninnnn. 287
26.2 File exchange/orlKEXChange.C ..., 287
26.2.1 OR1K Newlib Semihosting vmiosAttr Definitioncccccoeenee. 289
26.2.2 Constructor DefiNItioNcoocviiiiiieiieiere e 290
26.2.3 The Morpher Callback: exchangeMorph..........cccoccooiiiiviiiniiincnen, 294
26.2.4 The Exchange Instruction Morpher Callback: emitExchange.......... 295
26.2.5 The Next Instruction Callback: exchangeNextPCc.cccccevuenen. 297
26.2.6 The Disassembler Callback: exchangeDisass..........ccoocvvviieinnen. 298
26.2.7 The Register Group lterator Callback: exchangelterRegGroup... 299
26.2.8 The Register Iterator Callback: exchangelterRegInfo............... 299
26.3 The Harness File, platform/harness.C......cccocvviviiiiiieiiesieseee e, 299
26.4 Testing the INtercept Library ... 300
26.5 Extension Libraries and Multicore ProCeSSOrScccovvviieiinieerieriesie e 301
26.6 Pre-Morph and Post-Morph Callbacks ... 303
27 Processor CoONfIGUIALION.ccuviieiieieee et 308
27.1 Example of a Configurable ProCeSSOr.........ccciveieriiiieniiie e 308
27.2 The Parameters STIUCLUIEccoiviiiiiiieieeeie e 308
27.3 Parameter Specification - orlkParameters.Cccccoveviiiieiiecieeiieenn, 309
27.3.1 STTUCKUIE SIZE ...ooveiiiieiie ettt bbb 309
27.3.2 SPECIfiCation ODJECESoiiiiiieieiee s 309
27.3.3 USING the Parametersccccveiveiieiieie et 310
27.4 Parameter Function Registration - Or LKATErS.C.....cccooeviviieieiieiieiens 312
27.5 Using a parameterized model...........ccoooiieiiiiiiiiie e 313
27.6 Testing Processor Configuration..........cccccveieviereeriesieesesse e se e 314
28 Making High-Performance Processor Models..........ccooeviiinniiiic e, 317

© 2022 Imperas Software Limited.www.OVPworld.org Page 8 of 321

OVP Processor Modeling Guide

28.1 Processor Model Efficiency ANalySiS.........ccooiiiriiiiinieie e 318
28.1.1 Processor Model Profilingccccvvveiiiieiiiee e 320

© 2022 Imperas Software Limited.www.OVPworld.org Page 9 of 321

OVP Processor Modeling Guide

1 Preface

This document describes how to create processor models for use with OVPsim and
Imperas simulation tools.

1.1 Notation

Code Code extracts

1.2 Recommended Reading

Imperas simulation technology is based on just-in-time (JIT) compiler technology. The
following book provides a good introduction to the concepts involved:

Virtual Machines, by James E. Smith, Ravi Nair
ISBN 1-55860-910-5
Publisher: Morgan Kaufmann/Elsevier

1.3 Related Imperas & OVP Documents

e VVMI Morph Time Function Reference
e VVMI Run Time Function Reference

© 2022 Imperas Software Limited.www.OVPworld.org Page 10 of 321

OVP Processor Modeling Guide

2 Introduction

Imperas simulation technology enables very high performance simulation, debug and
analysis of platforms containing multiple processors and peripheral models. The
technology is designed to be extensible: you can create new models of processors and
other platform components using interfaces and libraries supplied by Imperas. Processor
models developed using this technology can be used both with Imperas simulation
products and the freely-available OVPsim platform simulator.

This document describes how to use the OVP interfaces to create new processor models.

The documentation here is supported by C code samples in the Examples directory of
your Imperas installation, and also to download from the OVPWorld website
(www.ovpworld.org). The compilation makes use of Makefiles, the instructions for
which indicate the use of the command make. On Windows systems, the MinGW
mingw32-make command should be used in its place.

2.1 Prerequisites

Since models for use with Imperas and OVP tools are written in C, an important
prerequisite is that you must be an expert in the C language.

In very rare circumstances it is beneficial to implement some highly-performance-critical
routines directly in assembler. You should ensure you are familiar with the x86
instruction set and assembler usage if required.

GCC Compiler Versions
Linux32 45.2 1686-nptl-linux-gnu (Crosstool-ng)
Linux64 4.4.3 | x86_64-unknown-linux-gnu (Crosstool-ng)
Windows32 | 4.4.7 mingw-w32-bin_i686-mingw
Windows64 | 4.4.7 | mingw-w64-bin_i686-mingw

© 2022 Imperas Software Limited.www.OVPworld.org Page 11 of 321

OVP Processor Modeling Guide

3 Imperas Simulation Overview

Before starting to create models for use with the Imperas simulation environment, you
must understand how the components used in that environment interact. This section
describes this in detail.

3.1 Simulation Environments
There are two simulation environments that can be used with models that you create:

e OVPsim allows processor models created using OVP modeling technology to be
used in C harness or platform files to create executables that execute binaries
compiled for those processor models. It can also simulate behavioral components
(the subject of this guide). OVPsim can also be used in 3" party simulation
environments (for example, SystemC). It can also be used to create a test harness
to help validate processor models under construction, or even to create custom
simulation environments. OVPsim has less functionality than the Imperas
Professional Simulator Products in some areas and has restricted commercial
usage as stipulated in the OVP click-through license agreement.

e Imperas Professional Simulator Products enhance the basic capabilities provided
by OVPsim, particularly in the areas of debugger integration, tool integration and
multiprocessor simulation support (including QuantumLeap parallel simulation).
Contact Imperas for more information.

3.2 Processor Models

The core simulation components are processor models. In order to create a new processor
model, you must implement the following major components by writing C code using the
Imperas Virtual Machine Interface (VMI) API:

e Aninstruction decoder, capable of decoding a single processor instruction. This is
a required component for the disassembler, morpher and debugger interface,
described in section 5.

e Aninstruction disassembler, capable of generating a text representation of an
instruction, described in section 6.

e Aninstruction morpher, capable of describing the behavior of a single instruction,
described in sections 7 - 16.

e A debugger and register interface, which provides functions required for the
model to be debugged using gdb or the Imperas multiprocessor debugger,
described in section 17. This is also a prerequisite for advanced features such as
register change tracing, save/restore and instruction attributes generation.

e A programmer’s view, which allows details of model operation to be made
available to tools such as debuggers in a structured way. This is described in
section 18.

e |f a processor implements virtual memory, then the hardware structures that
support that virtual memory (MMU and TLB, for example) should also form part
of the processor model. This is described in sections 21 - 23.

© 2022 Imperas Software Limited.www.OVPworld.org Page 12 of 321

OVP Processor Modeling Guide

e If processors are to be used with the QuantumLeap parallel simulation algorithm
of the Imperas Professional Simulation products, some changes may be required
(for example, to identify atomic instructions). This is described in section 24.

e Most processor models will need to model members of a family of processors
(family members are referred to as variants). To re-use your code as far as
possible it is often convenient for one processor model to support multiple
variants and configuration options that can be configured from the platform.
Model configuration is covered in section 26.6.

Processor models are compiled into a shared object (.so or .dll) which is then dynamically
loaded by the simulation environment.

3.3 Semihosting

Semihosting allows behavior that would normally occur on a simulated system to be
implemented using features of the host system instead. As a simple example, a real
platform might contain a UART peripheral to receive output. When simulating this
system, it is generally more convenient not to simulate the UART at all but instead to
intercept any write call that a processor makes and redirect the output to the simulator
log instead. Such behavior is specified in a semihosting library for a processor.

Implementation of semihosting libraries is described in section 25.

3.4 Cache and Memory Subsystem Models

Memory subsystem models such as caches can be modeled as loadable shared objects (or
dynamic linked libraries on Windows) and separately instantiated. This makes it very
easy to explore hardware options: what happens to the performance of this application if |
double the size of the L2 cache?

Memory subsystem models can be either full or transparent. A full model implements
memory contents: for example a full cache model would implement both cache tags and
the cache line contents. A transparent model implements some state but not the memory
contents: for example, a transparent cache model would implement the cache tags but not
the line contents, which is useful for performance analysis models that simply count hits
and misses.

Implementation of memory subsystem models is beyond the scope of this document.

© 2022 Imperas Software Limited.www.OVPworld.org Page 13 of 321

OVP Processor Modeling Guide

4 Introduction to Processor Modeling

4.1 Prerequisites

Before starting implementation of a new processor model, we recommend that you do the
following:

1. Identify the particular processor variant to be modeled (when variants exist).

2. Obtain a processor tool chain and understand how to use it for the variant you will
be modeling (if a tool chain is available). Typically, you will find it useful to have
an assembler, linker, object dump utility and C compiler. If you are writing a
model for a completely new processor then it is possible that no supporting tools
may Yyet exist: in this case, you will need to become familiar with the object code
format of the processor and possibly implement a custom object file loader as part
of the modeling project.

3. Obtain a golden reference model if possible. Validating a processor model is
much easier if there is a golden reference against which comparisons can be
made.

4.2 Creating a Processor Outline Model
A minimal processor outline model is available in the directory:

$IMPERAS_HOME/Examples/Models/Processor/1.orlkOutline

This model is for the freely-available OR1K processor (see
http://opencores.org/orlk/Main_Page). At this point, the model implements the bare
minimum functionality to create a shared object usable by the Imperas simulation tools.

Take a copy of the outline model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/1.orlkOutline .

Compile the model using the make utility:

cd 1.orlkOutline
make

Running make compiles the model in the current directory (using Makefile) and links it
with an Imperas stub library (vmiStubs.static.a) to create a shared object loadable by
the Imperas tools (model .so/model .dl1).

The model source code covered here and in following sections refers to Imperas
header files in the directory:

$IMPERAS_HOME/ ImpPublic/include/host/vmi

© 2022 Imperas Software Limited.www.OVPworld.org Page 14 of 321

OVP Processor Modeling Guide

These header files comprise the Imperas Virtual Modeling Interface (VMI) API.

The outline model files are described in the following subsections.

4.2.1 Declaring Shared Functions - orlkFunctions.h

File orikFunctions.h declares prototypes of functions used throughout the processor
model. Functions that must have particular prototypes for use with the Imperas tools
should be defined using macros from file vmiAttrs.h within the VMI header directory;
for example, every processor must have constructor, which is declared as:

VMI_CONSTRUCTOR_FN(oril1kConstructor);

The macro VM1_CONSTRUCTOR_FN is defined in vmiAttrs.h as:

#define VMI_CONSTRUCTOR_FN(_NAME) void _NAME(C \

vmiProcessorP processor, \
Bool simulateExceptions, \
vmiSMPContextP smpContext, \
void *parameterValues \

)

In other words, function orikConstructor is a void function which is passed an
argument processor which is of type vmiProcessorpP, a Boolean argument
simulateExceptions, an argument smpContext oOf type vmiSMPContextP and an
argument parameterValues of type void*. The vmiProcessorP type is an opaque type
pointer representing the current processor state — we will see how this is used later in this
section.

Always use the macros provided in the VMI header files to declare and define your
functions: this protects any code you write from future changes to any of the Imperas
function definitions.

4.2.2 Defining Processor Structure - or1kStructure.h

File or1ksStructure.h defines a structure that will be used to hold the state of a single
ORI1K processor. Because this is a generic model, at this point the structure is empty
except for a pointer describing the bus ports of the processor:

typedef struct orilkS {
vmiBusPortP busPorts; // bus port descriptions
} orilk, *orilkP;

4.2.3 Constructor, Destructor and Ports - orlkMain.c

File orikMain.c implements two functions that must be present in every processor
model: the constructor and destructor. The constructor function is called for each new
instance of a processor. It should initialize the processor state (for example, by setting
registers in the processor structure to a known state). The destructor is called at the end of
simulation for each processor instance. It should perform any required processor-model-
specific shutdown actions.

© 2022 Imperas Software Limited.www.OVPworld.org Page 15 of 321

OVP Processor Modeling Guide

In this example, the constructor and destructor perform no action except to print that they
have been called (using the message API defined in vmiMessage.h), and to allocate and
free the model’s bus interface:

VMI_CONSTRUCTOR_FN(orlkConstructor) {
orlkP orlk = (orlkP)processor;
vmiPrintf(""%s called\n", FUNC_NAME);

// create bus port specifications
newBusPorts(orlk);

}
VMI_DESTRUCTOR_FN(orilkDestructor) {

orlkP orlk = (orlkP)processor;
vmiPrintf(""%s called\n", FUNC_NAME);

// free bus port specifications
freeBusPorts(orik);

It is good practice to give each public model declaration a common, model specific
prefix: this simplifies debugging the model in a simulation where several models of
different types are in use. In this case, we have chosen the prefix orik.

File orikMain.c also implements a bus port specification function for the processor,
which tells the simulator the number of bus ports that the OR1K has and their width. The
OR1K, like many processors, has two bus ports. The first, called INSTRUCTION is a bus
master port used to fetch instructions from memory. The second, called DATA is also a bus
master port, used to read and write data to memory (on many systems, these two ports are
connected to the same physical bus, so share the same address space). Objects
representing these two ports are allocated and stored on the processor instance by
function newBusPorts:

const static vmiBusPort busPorts[] = {
{""INSTRUCTION", vmi_BP_MASTER, vmi_DOM_CODE, {32,322}, 1},
{"'DATA" , vmi_BP_MASTER, vmi_DOM_DATA, {32,32}, 0},

}:
static void newBusPorts(orlkP orilk) {
Uns32 i;
orlk->busPorts = STYPE_CALLOC_N(vmiBusPort, NUM_MEMBERS(busPorts));

for(i=0; i<NUM_MEMBERS(busPorts); i++) {
orlk->busPorts[i] = busPorts[i];
¥

© 2022 Imperas Software Limited.www.OVPworld.org Page 16 of 321

OVP Processor Modeling Guide

The template structure busPorts describes the instruction and data bus ports. The
vmiBusPort type is defined in vmiPorts.h as follows:

typedef enum vmiBusPortTypeE {
vmi_BP_MASTER,
vmi_BP_SLAVE,
vmi_BP_MASTER_SLAVE

} vmiBusPortType;

typedef enum vmiDomainTypeE {

vmi_DOM_CODE, // code domain port
vmi_DOM_DATA, // data domain port
vmi_DOM_OTHER // other domain port

} vmiDomainType;

typedef struct vmiBusPortS {

const char *name;

vmiBusPortType type;

vmiDomainType domainType;

struct {Uns8 min; Uns8 max; Uns8 unset;} addrBits;
Bool mustBeConnected;

// space for documentation
const char *description;
void *descriptionDom;

// domain is non-NULL if port is connected
memDomainP domain;

} vmiBusPort;

The model fills the name, type, domainType, addrBits.min, addrBits.max and
mustBeConnected fields; remaining fields are filled by the simulator as the model is
instantiated. The fields have the following meanings:

1. name: the name of the port;
type: the port type (master or slave);
domainType: the port usage (code, data, or another purpose);
addrBits.min: the minimum width of a bus that can be connected;
addrBits.max: the maximum width of a bus that can be connected:;
mustBeConnected: Whether the port must be connected (if False, it may be left
unconnected).

o abkwn

After the processor constructor has been called, the simulator obtains information about
the model’s bus ports by calling an iterator function here implemented by
orlkGetBusPortSpec Which returns a pointer to a vmiBusPort structure for each
implemented port. Like most VMI iterators, it is called with zero to return the first object,
with the previous object to return the next, and it returns zero when all objects have been
iterated:

VMI_BUS_PORT_SPECS_FN(orilkGetBusPortSpec) {

orlkP orlk = (orlkP)processor;

if(Iprev) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 17 of 321

OVP Processor Modeling Guide

// first port
return orlk->busPorts;

} else {

// port other than the first
Uns32 previndex = (prev-orlk->busPorts);
Uns32 thislndex previndex+1;

return (thislndex<NUM_MEMBERS(busPorts)) ? &orlk->busPorts[thislndex]:0;

}

When simulation ends, the destructor frees the allocated bus port list by calling function
freeBusPorts:

static void freeBusPorts(orlkP orilk) {

if(orlk->busPorts) {
STYPE_FREE(orilk->busPorts);
orlk->busPorts = 0;

}

4.2.4 JIT Translations - or1kMorph.c

File orikMorph.c implements the OR1K morpher function. The morpher function is
responsible for defining how each processor instruction should be implemented; this is
described in detail in section 7. The minimal example simply contains a call to function
vmimtExit, which will cause the processor to terminate on the first instruction
encountered.

4.2.5 Support Functions - orlkUtils.c
File orikutils.c implements two simulation support functions required in every model:
the processor endianness function and the next instruction function.

4.2.5.1 The Endianness Function

This function must return the endianness of the processor when fetching code or
performing a load or store. Currently supported options are MEM_ENDIAN_BIG and
MEM_ENDIAN_LITTLE. This OR1K model is big endian, so the function is defined as:

VMI_ENDIAN_FN(orlkGetEndian) {
return MEM_ENDIAN_BIG;
}

Some models have endianness dependent upon the current processor state. For this
reason, the endianness callback is passed the current processor as an argument so that
its state can be accessed if required.

This function can be called to request both the endianness of instruction fetches and
the endianness of loads and stores: which is required is specified by the second

© 2022 Imperas Software Limited.www.OVPworld.org Page 18 of 321

OVP Processor Modeling Guide

argument to the VM1_ENDIAN_FN, a Boolean called isFetch. This is True for an
instruction fetch and False for a data access.

4.2.5.2 The Next Instruction Function

Given an instruction address, this function must return the next instruction address. This
function is used by the simulator to step through the simulated code when generating
(morphing) equivalent native code.

For processors with variable-length instructions (for example, x86 variants) the next
instruction address function will be required to perform a full or partial instruction decode
in order to determine the next instruction address. On RISC processors, the instruction
size may be constant, so no decode is required. See section 5 for details of implementing
an instruction decoder.

The minimal processor model assumes a constant instruction size of four bytes and is
therefore implemented like this:

VMI_NEXT_PC_FN(orlkNextlnstruction) {
Uns32 nextAddress = (Uns32)(thisPC + 4);
return nextAddress;

The next instruction function must correctly handle instruction wraparound. In the

example above, it would be incorrect to implement the function as:
return thisPC + 4;

(this would not wrap round as required after oxfFFffffc, because the Addr type of
thisPC is 64 bits, not 32).

4.2.6 Processor Information - orlkiInfo.c

File orikInfo.c implements the processor information function, which returns
information about the model in several categories. Specifically, it defines a VLNV
reference for the model (saying where it is located in a library), a VLNV reference for a
default semihost library to use with the model, and information executable ELF codes
and compatible debuggers:

#include "'vmi/vmiAttrs.h"
#include "vmi/vmiModellInfo.h"

#include "orlkFunctions.h"
VMI_PROC_INFO_FN(orl1lkProcinfo) {

static const vmiProcessorinfo info = {
-vinv._vendor “ovpworld.org"

-vinv_library = "processor"
-vinv._name = "orlk™"
.vinv.version = "1.0"

-semihost.vendor "ovpworld.org"

-semihost._library = *"semihosting™
.semihost.name = "orlkNewlib"
.semihost.version = "1.0"

© 2022 Imperas Software Limited.www.OVPworld.org Page 19 of 321

OVP Processor Modeling Guide

.elfCode = 33906,

-endianFixed = True,

.endian = MEM_ENDIAN_BIG,

gdbPath = "$IMPERAS_HOME/lib/$IMPERAS_ARCH/CrossCompiler/or32-

elf/bin/(-)r32—elf—gdb" VMI_EXE_SUFFIX,
-Family = "openCores",
}:

return &info;

}

This example uses a static structure; in a more complex model the member values could
depend on the current mode of the processor and therefore the structure might need to be
dynamically allocated for a particular processor instance. The vmiProcessorInfo
structure type is defined in header file vmiModel Info.h like this:

typedef struct vmiProcessoriInfoS {

// Location of this model
vmiVinvinfo vlinv;

// semihost library used by default with this model.
vmiVinvinfo semihost;

// Path to the gdb used to debug this model.
// Remember to use the VMI_EXE_SUFFIX so this works on Windows
const char *gdbPath;

// Flags (if any) required by this GDB for this processor
const char *gdbFlags;

// Startup commands (if any) sent to this GDB for this processor
// Separate and terminate each command with newline (\n)

// e.g. "command one\ncommand two\n"

const char *gdblnitCommands;

// CPU Helper used by this model
vmiVinvinfo helper;

// Helper used by this model to replace GDB
vmiVinvinfo debugHelper;

// List of extension libraries to be unconditionally loaded
// by this processor model.
vmiVinvinfoListCP mandatoryExtensions;

// If endianFixed is true, this iIs it, otherwise ignore it.
memEndian endian;

// This model supports one endian
Bool endianFixed;

// By default, choose this model to execute a program with the following
// elf code. Only one model in your library should have this set.
Bool defaultModel ;

// When reading executables for this model, the loader should use
// physical addresses, not virtual.

// (This is a legacy feature; unlikely to be required).

Bool loadPhysical;

// True if this model can run in QuantumLeap mode

© 2022 Imperas Software Limited.www.OVPworld.org Page 20 of 321

OVP Processor Modeling Guide

Bool QLQualified;

// True if this model contains instances of different types
Bool AMP;

// standard ELF code used by this processors
Uns32 elfCode;

// Alternative ELF codes used by this processor
const Uns32 *alternativeElfCodes;

// Deprecated field
const char *variant;

// Processor family string
const char *family;

// Processor group strings
const char *groupH;
const char *grouplL;

// If the gdb associated with this processor sets the lower address bits
// to indicate the processor mode, use this field to clear the bits prior
// to setting a breakpoint.

// =0 or 1 if no snap required

// =2 to snap to 2-byte short

// =4 to snap to 4-byte word

// =8 to snap to 8-byte long word

Uns32 debugSnapAddress;

} vmiProcessorinfo;
Some of the important fields in this structure are explained below.

4.2.6.1 Model Location (vinv)
The vinv member specifies where the model will be stored, using the "“Vendor, Library,
Name, Version" (VLNV) notation.

4.2.6.2 Default Semihost Library Location (semihost)
The semihost member specifies the location of the default semihost library (see Chapter
21) to be used with this model, using VLNV notation.

4.2.6.3 List Of Extension Libraries (mandatoryExtensions)

The mandatoryExtensions member specifies the start of a list of extension libraries

used to enhance the instruction set of the model (see Chapter 26). The member can be

nul I or pointer to a vmiVInvinfoList structure which points to a vmiVIinvinfo structure
and (optionally) another in the list. The vmiVinvinfo should contain the VLNV reference
of the library to be loaded.

4.2.6.4 ELF codes (elfCode and alternativeElfCodes)

The elfCode field specifies the primary ELF code that is expected for executables that
can run on this processor. If non-NULL, field alternativeElfCodes specifies a zero-
terminated list of other ELF code that are acceptable. These fields let the simulator check

© 2022 Imperas Software Limited.www.OVPworld.org Page 21 of 321

OVP Processor Modeling Guide

the compatibility of an application program before it is loaded for execution by this
model.

4.2.6.5 Endian fields (endianFixed and endian)

Setting endianFixed to False indicates that the processor can be either endian. This is
not to be confused with the endianness function defined with the vMI_ENDIAN_FN macro,
which returns the current endianness of the processor. If endianFixed is True, the
subsequent member endian specifies that fixed endianness (otherwise it is ignored).

4.2.6.6 gdbPath

This field specifies the path to the debugger to be used with the model. The
VMI_EXI_SUFFIX macro can be used to conditionally add the .exe file suffix required for
an executable on a Windows host.

4.2.6.7 gdbFlags

This field specifies any flags to be supplied on the debugger command line when it is
invoked. If omitted (as in this case) then no special flags are supplied on the debugger
command line.

4.2.6.8 gdblnitCommands

This field specifies any commands to be sent to the debugger after starting the executable,
but before debugging begins. For example if the debugger supports several architectures,
set arch <specific_architecure> can be used to choose one. If more than one
command is required, separate them using the newline “\n” character. If omitted (as in
this case), no special initialization commands are required.

4.2.6.9 helper

This field optionally specifies the VLNV reference of an intercept library that helps the
VAP tools to understand the processor’s ABI.

Please refer to the Imperas_Binary_Intercept_Technology User_Guide.

4.2.6.10 debugHelper
This field optionally specifies the VLNV reference of a library that helps the Imperas
Multiprocessor debugger to understand the processor’s call stack, in the absence of a
suitable gdb debugger.

4.2.6.11 QLQualified
This field specifies that the processor is able to run in parallel mode. See section 24.6.

4.2.6.12 Debugger snap address

Some processors do not use byte addressing; all instructions fall on 2-byte or 4-byte
boundaries. A processor of this kind might use the least significant bits of its address to
indicate special processor modes. If the gdb that is used with this processor requests
breakpoints with the least significant bits set (also indicating the special processor
modes), the simulator will not correctly detect the processor executing at a breakpoint

© 2022 Imperas Software Limited.www.OVPworld.org Page 22 of 321

OVP Processor Modeling Guide

address. The debugsnapAddress field can used to work around this problem; set this field
to force breakpoint addresses from the debugger to the appropriate boundary:

debugSnapAddress meaning

0 (default) or 1 Breakpoint lies on 8-bit boundary
2 Breakpoint lies on 16-bit boundary
4 Breakpoint lies on 32-bit boundary
8 Breakpoint lies on 16-bit boundary
(Other values are illegal)

4.2.7 Function Registration - orl1kAttrs.c

File orikAttrs.c implements the VMI instruction attributes object for the OR1K
processor. This is a C structure of type vmi 1ASAttrs, the type of which is defined in the
VMI header file vmiAttrs.h. The structure encapsulates all required information about
the processor in a form that is usable by the Imperas simulation products.

const vmilASAttr modelAttrs = {
//////77777777/777777777777777777/77/77/77/77/77/77/777777/77/77/7/777/7/7777777777777
// VERSION & SIZE ATTRIBUTES
/////777777777/7777777777/777777/77/7/777/77/77/7777/77777/7/77777/777/7/7/77/7777777777

-versionString = VMI_VERSION,

-modelType = VMI_PROCESSOR_MODEL,
.dictNames = dictNames,
.cpuSize = sizeof(orilk),

L11177777777777777777777777777777/7777//777777///7777///77/7////7//77//7//
// CREATE/DELETE ROUTINES
L11177777777777777777777777777777//7777//777777///7777///7/7/7////7//77//7/7/

.constructorCB = orlkConstructor,
.destructorCB = orlkDestructor,

1/1//1/77777777777/77777/7/////77//7////////////////7//7//////////////////7//7777
// MORPHER CORE ROUTINES
1/1//1//77/7/7//7////7//7///7//7//7//

-morphCB = orilkMorphlnstruction,
L11/7/77777777777777777777777777777/7777777777/7/77777/777//7//////777/7777777
// SIMULATION SUPPORT ROUTINES
L1/1/1/77/777777/777/7/77/////7/77/7777777

-getEndianCB
-nextPCCB

= orlkGetEndian,

= orlkNextlnstruction,

L1177 77777777/7/7777777777777/777777//7/77777/7/777/7//7/7/77/7//7/77/777/7/777777
// PORT ROUTINES

L1117 77777777777777777/777777/7/7777/7/77/7/7//7/7/7//7/7/77/7//7/7/77/7/7//7/7777

-busPortSpecsCB = orilkGetBusPortSpec,
L//1/7777777777777777777777777777/77777/77/7/7777777/7/77777/7/77/7/7/7/7/7/7/777777777

// PROCESSOR INFO ROUTINE
1/1//1//77777777777777777/77///7/7/7////7/////////////7////////////////////7777

© 2022 Imperas Software Limited.www.OVPworld.org Page 23 of 321

OVP Processor Modeling Guide

-procInfoCB = orlkProclinfo,

Note that all fields in the structure are initialized by name. This is done so that source
code changes are not required if new fields are added to the structure in future.

In the case of the minimal processor model, the structure contains:

1. A VMI version string, vM1_VERSION (defined in vmiVersion.h). This is used
when the model is loaded by Imperas simulation products to ensure compatibility.

2. The type of model, vM1_PROCESSOR_MODEL (defined in vmiTypes_.h). This is used
by Imperas simulation products to ensure the correct kind of model is being
loaded.

3. Alist of dictionary names used by the model, dictNames. Dictionaries provide a
mechanism to efficiently model modal processors and are discussed in chapter 14.
Every processor must have at least one dictionary name, specified in a null-
terminated array of constant strings. In the case of the minimal processor model,

the dictionary names are specified as:
static const char *dictNames[] = {“NORMAL”, O0};

so there is a single dictionary called NORMAL in this model.

4. An indication of the size required for the processor structure defined in
orlkStructure.h, sizeof(orilk).

5. References to all the callbacks required to implement the processor model. For
this minimal model, there are references to seven functions — orikConstructor,
orlkDestructor, orlkMorphlnstruction, orlkGetEndian,
orlkNextlInstruction, orlkGetBusPortSpec and orikProcInfo.

4.3 Implementing a Test Platform using OVPsim

Section 4.2 described how an outline processor model was compiled using the make
command. In order to validate and debug the outline model, it is useful to have a test
harness to drive it. The easiest way to create a test harness is using OVPsim.

Within the 1.or1koutline directory, the subdirectory platform contains source files
and a Makefile for the platform required in this case. There are in fact two forms of
platform present:

1. File platform/harness.c

This file implements a test harness using the OP function API. This powerful API should
be used for all future development. This test platform can be compiled to produce an
executable, harness.$IMPERAS_ARCH.exe, by using this command in the orikOutline
directory:

make -C platform

2. File platform/platform.c
This file implements a test harness using the legacy ICM function API. This API is
supported for legacy code only and should not be used for future development. This test

© 2022 Imperas Software Limited.www.OVPworld.org Page 24 of 321

OVP Processor Modeling Guide

platform can be compiled to produce an executable, platform.$IMPERAS_ARCH.exe, by
using this command in the orikoutline directory:

make -C platform BUILD_ICM_LEGACY=1

Most examples described in this document have both an OP and legacy ICM harness
associated with them, so that they may be compared when porting legacy code to the
current OP interface. In this document, only the OP harnesses will be described.

File harness.c has a main function as follows:

int main(int argc, const char **argv) {

// initialize simulation session before calling any other OP functions
opSessionInit(OP_VERSION);

// check arguments

if(IcmdParser(argc, argv)) {
opMessage("'E", "'CLI", ""Command Line parser error');
return 1;

}

// create root module, enabling simulation interruption if Ctrl-C is pressed
optModuleP mr = opRootModuleNew(
o,
MODULE_NAME,
OP_PARAMS (
OP_PARAM_BOOL_SET(OP_FP_STOPONCONTROLC, 1)
)

);

// create a processor instance
const char *modelFile = "model ."IMPERAS_SHRSUF;
optProcessorP processor = opProcessorNew(mr, modelFile, "cpul™, 0, 0);

// create the processor bus
optBusP bus = opBusNew(mr, "bus', 32, 0, 0);

// connect processor instruction and data ports to the common bus
opProcessorBusConnect(processor, bus, "INSTRUCTION™);
opProcessorBusConnect(processor, bus, "DATA™);

// create memory
optMemoryP memory = opMemoryNew(mr, "local', OP_PRIV_RWX, OxFffffffff, 0, 0);

// connect the memory onto the busses
opMemoryBusConnect(memory, bus, "mpl™, 0x00000000, OxFFFfffff);

// run processor, one instruction at a time

while(simulate(processor, 1)) {
// keep going while processor is still running
}

// terminate the simulation session
opSessionTerminate();

return O;

© 2022 Imperas Software Limited.www.OVPworld.org Page 25 of 321

OVP Processor Modeling Guide

This main function does the following:

1. Itinitializes the simulation interface by calling opSessionlinit.

2. It creates a command line parser, allowing some standard arguments to be given
on the command line (for example, the application executable to run, which can
be defined by the —program argument).

3. It creates a new root module instance using function opRootModuleNew. All other
components are specified to be children of this module.

4. It creates a single instance of the processor by calling opProcessorNew. The
object file name of the processor shared object is specified as model .so or
model .d11 in the current directory (depending on whether simulating on a Linux
or Windows host).

5. It creates a new bus using opBusNew, which is connected to both the instruction
and data ports of the processor using opProcessorBusConnect.

6. It creates a memory using opMemoryNew, which is connected to the bus using
opMemoryConnect.

7. It calls a routine simulate to simulate the processor one instruction at a time;

8. Finally, it calls opSessionTerminate to end the simulation.

The function simulate calls the OP routine opProcessorSimulate to simulate for a
number of clocks, as follows:

static Bool simulate(optProcessorP processor, Uns64 clocks) {
optStopReason stopReason = opProcessorSimulate(processor, clocks);
switch(stopReason) {

case OP_SR_SCHED:
// hit the scheduler limit
return True;

case OP_SR_EXIT:
// processor has exited
return False;

case OP_SR_FINISH:
// simulation must end
return False;

default:
opPrintf("'unexpected stopReason %u\n', stopReason);
return False;

4.4 Creating an Application Test Case

A test case must be created using the application tool chain. Because the OR1K processor
is supported by Imperas tools and shipped as an example, there is already an encapsulated
tool chain that you can use to compile test cases for it.

© 2022 Imperas Software Limited.www.OVPworld.org Page 26 of 321

OVP Processor Modeling Guide

Within the orikoutline directory is a sample test case, application/application.c,
which simply prints a message and exits. The application can be compiled by using this
command in the orikoutline directory:

make -C application

The result is an ELF format file for the OR1K called application.OR1K.elf.

4.5 Running the Application Test Case with the
Processor Model

Having compiled the outline processor model, test platform and application, you are now
ready to run a simulation. Do this by running:

platform/harness.$IMPERAS_ARCH.exe --program application/application.OR1K.elf

in the 1.orikoutl ine directory. You should see the following output:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor
“‘platform/cpul”’

orlkDestructor called

The output from the test case shows debug messages from the processor constructor and
destructor. There is also a warning message about a missing callback in the model
attributes structure (the register information callback, used to identify registers of
particular interest to the simulator, such as the program counter); this can be ignored at
this stage. As yet, the outline model has no functionality so it exits on execution of the
first instruction. The steps you need to perform to make the model execute the application
correctly are covered in the following chapters.

© 2022 Imperas Software Limited.www.OVPworld.org Page 27 of 321

OVP Processor Modeling Guide

5 Implementing the Instruction Decoder

A key component of every processor model is the instruction decoder. The result of the
decoder is used by several other model components, specifically:

1. The morpher, which generates equivalent native code for each simulated
instruction.

2. The disassembler, which creates a text string representation of an instruction.

3. The next address function, which determines the address of the next instruction
after a given address (for processors with variable-size instructions only).

5.1 The Template Decoder Model

A template model for the OR1K processor with a decoder can be found in:

$IMPERAS_HOME/Examples/Models/Processor/2.orlkDecoder

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/2.orlkDecoder .

Compile the model, harness and application using the make command:

cd 2.orlkDecoder
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous outline model, with the changes listed
below.

5.1.1 Defining Decoder Types - orlkDecode.h

File orikDecode . h defines types used by the OR1K decoder and the decode function
itself, as follows:

typedef enum orlklInstructionTypeE {

// arithmetic instructions
OR1K_IT_ADDI,
OR1K_1T_ADDIC,
OR1K_IT_ANDI,

OR1K_IT ORI,

OR1K_IT_XORI,
OR1K_IT_MULI,

// KEEP LAST: for sizing the array
OR1K_IT_LAST

© 2022 Imperas Software Limited.www.OVPworld.org Page 28 of 321

OVP Processor Modeling Guide

} orlklInstructionType;

orlklInstructionType enumerates the instruction types that the decoder will find. The
enumeration will grow to cover many instructions as the model develops. Currently,
some simple binary operations are decoded.

typedef struct orlkInstructionInfoS {

const char *opcode; // opcode name
orlkinstructionType type; // instruction type
Uns32 thisPC; // instruction address
uUns32 instruction; // raw instruction
Uns32 rl; // register 1

uUns32 r2; // register 2

Uns32 C; // constant value

} orilklInstructionlnfo, *orlklnstructionlnfoP;

orlkInstructionlnfo is an intermediate structure that is filled by the decoder with
information about the decoded instruction. At this stage, the following fields are present:
1. opcode: this string field is the instruction mnemonic;

2. type: this is a member of the orilklInstructionType enumeration, described above;
3. thisPC: this holds the address of the decoded instruction;

4. r1and r2: these are register indices extracted from the instruction;

5. c: thisis a constant value extracted from the instruction.

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklnstructionlnfoP info);

orlkDecode is the decoder function entry point. It decodes the OR1K instruction at
address thisPC and fills the passed orlkInstructionlnfo structure with the results.

5.1.2 Decode Implementation - orlkDecode.c
File orikDecode.c implements the OR1K instruction decoder using the decoder utility
API defined in the VMI header file vmi/vmiDecode . h. The decoder APl works as
follows:
1. A new decode table is created using vmidNewDecodeTable.
2. A set of decode entries is added to the table using vmidNewEntryFmtBin. Each
entry added identifies a single instruction type.
3. Instructions are decoded using a call to vmidDecode, passing the decode table and
an instruction, which returns an identifier describing the instruction type found.
Refer to the Imperas VMI Morph Time Function Reference for more detailed information
about the decoder API.

File orikDecode. c first contains the following definitions:

#define WIDTH(W, _ARG) ((_ARG) & ((1<<(_W))-1))

#define OP_D(_I) WIDTH(5, (_1)>>21)
#define OP_ACI) WIDTH(5, C_1)>>16)
#define OP_UL(1) WIDTH(16, (_1)>>0)
#define OP_S1(1) ((Int16)0P_U1(_1))

© 2022 Imperas Software Limited.www.OVPworld.org Page 29 of 321

OVP Processor Modeling Guide

These lines define C macros that extract fields from OR1K instructions, which have a

fixed width of 32 bits. In this example,

macros are defined only for some of the

arithmetic and bitwise instructions of the OR1K: the list will be expanded in subsequent

chapters.

Next, the file declares some structure types which are used to describe decoded

instructions:

typedef enum regSpeckE {

no register
register at bits 25:21
register at bits 20:16

in an instruction

no register
signed constant in bits 15:0
unsigned constant in bits 15:0

// Structure defining characteristics of each opcode type

R_NA, //
R D, //
R_A, //

} regSpec;

//

// Define the location of constant

//

typedef enum constSpecE {
C_NA, //
C_sa, //
C_u1, //

} constSpec;

//

//

typedef struct opAttrsS {
const char *member; //
const char *opcode; //
const char *decode; //
regSpec rl . 8; //
regSpec r2 : 8; //
constSpec ¢ . 8; //

} opAttrs, *opAttrsP;

enumeration member name
opcode name

decode string

register 1 specification
register 2 specification
constant value specification

A structure of this type describes each instruction recognized by the decoder. The
particular bit pattern for the instruction is given by the decode member, described in
detail below. The r1, r2 and ¢ members say how to extract register and constant

descriptions from the instruction.

Next, a static decode table is defined for each recognized instruction, using macros that

initialize members of the table:

#define ATTR_SET ADDI(_NAME, _OPCODE, _DECODE) \

[OR1K_IT_## NAME] = {

member : # NAME,
opcode : _OPCODE,
decode : _DECODE,
ri R D,

r2 R_A,

Cc C s1

}

A

#define ATTR_SET ANDI(_NAME, OPCODE, _DECODE) \

[ORIK_IT ## NAME] = {
member : # NAME,
opcode : _OPCODE,

777

© 2022 Imperas Software Limited.www.OVPworld.org

Page 30 of 321

OVP Processor Modeling Guide

decode : _DECODE, \
ri : RD, \
r2 R_A, \
c c_u1 \

}

const static opAttrs attrsArray[OR1K IT_LAST+1] = {

ATTR_SET_ADDI (ADDI, “addi', "J100111. . .- eaae e eeaaeens ™.
ATTR_SET_ADDI (ADDIC, "addic™, "]101000. . . .- uuceeee e ™.
ATTR_SET_ANDI (ANDI, “andi', "J101001. . . - unce e eeaaee. ™.
ATTR_SET_ANDI (ORI, ™ori™, "]101020. . ..o ™.
ATTR_SET_ADDI (XORI, "XOri', "J101011. . .- ccumce e aaen. ™.
ATTR_SET_ADDI (MULE, “muli™, "]101100. . .. oucoemee e, D)

}:

The last argument to the ATTR_SET_ADDI and ATTR_SET_ANDI macros are patterns in
suitable form for use by the VMI function vmidNewEntryFmtBin:

Bool vmidNewEntryFmtBin(
vmidDecodeTableP table,

const char *name,

Uns32 matchValue,
const char *format,
Int32 priority

D

The arguments to this function are:
1. A decode table into which to add a new decode entry;
2. A name for the new entry;
3. A value to return if the entry matches (typically an enumeration member, in this
example a member of the orikInstructionType enumeration);
4. A format string, which specifies the bit pattern for a matching entry. Characters in
this string may have the following meanings:
a. 0: the corresponding bit in the instruction must be 0;
b. 1:the corresponding bit in the instruction must be 1,
C. | .,/ <space> <tab>: formatting character (ignored);
d. Any other character: the corresponding bit can be either 1 or 0.
5. A priority for the entry. This allows instructions to be defined that are subsets of

others. For example, a processor might have an instruction
move rl, r2

which actually decodes as
ori rl, r2, O

(in other words, the move instruction is just a special case of the ori instruction).
The above situation can be handled by adding two entries to the decode table, one
for ori (with lower priority) and one for move (with higher priority).

As an example, the pattern "]100111. | defined for the
addi instruction specifies that the six most significant bits of an ADDI instruction are
“b100111, and the remaining 26 bits can be any value (indicated by the “.” character in
the format). The vertical bar characters are for formatting only and have no significance
as part of the pattern.

© 2022 Imperas Software Limited.www.OVPworld.org Page 31 of 321

OVP Processor Modeling Guide

The static array is used to create the decode table in function createDecodeTable:
static vmidDecodeTableP createDecodeTable(void) {

vmidDecodeTableP table = vmidNewDecodeTable(32, OR1K_IT_LAST);
orlkinstructionType type;

for(type=0; type<OR1K_IT_LAST; type++) {
const opAttrs *attrs = &attrsArray[type];
vmidNewEntryFmtBin(table, attrs->member, type, attrs->decode, 0);

}

return table;

}

The function creates a new decode table, specifying that the value OR1K_I1T_LAST should
be returned if there is no match for a particular instruction pattern. Then, it iterates over
all members of the attrsArray table, creating a decode entry for each one. This function
is called from ori1kDecode (see below).

Next, there is a function that extracts information from an instruction word for a given
regSpec value:

static Uns32 getReg(Uns32 instruction, regSpec rs) {
Uns32 result = 0;

switch(rs) {
case R_NA:
break;
case R_D:
result
break;
case R_A:
result = OP_A(instruction);
break;
default:
VMI_ABORT(""'unimplemented case'); // LCOV_EXCL_LINE
break;

OP_D(instruction);

}

return result;

}

For example, a regSpec of R_D returns an index extracted from bits 25:21 of this
instruction, i.e. the rd position defined by the OR1K instruction set. Then, there is a
similar function for exacting constants from an instruction:

static Uns32 getConst(Uns32 instruction, constSpec cs) {
Uns32 result = 0;

switch(cs) {
case C_NA:
break;
case C_S1:
result = OP_Si1(instruction);
break;

© 2022 Imperas Software Limited.www.OVPworld.org Page 32 of 321

OVP Processor Modeling Guide

case C_U1l:
result = OP_Ul(instruction);
break;
default:
VMI_ABORT(*"'unimplemented case'™); // LCOV_EXCL_LINE
break;

}

return result;

}

Note that the constSpec member C_S1 returns the sign-extended value extracted from
bits 15:0 of the instruction, and the constSpec member C_U1 returns the zero-extended
value from the same position.

Having the decoder be responsible for instruction field interpretation and sign/zero
extensions means that downstream clients (the disassembler and JIT code morpher) are
abstracted from details of instruction encoding which greatly improves modularity.

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklnstructioninfoP info) {

// get the instruction at the passed address - always 4 bytes on OR1K
vmiProcessorP processor = (vmiProcessorP)orilk;
Uns32 instruction = vmicxtFetch4Byte(processor, thisPC);
// get the OR1K decode table
static vmidDecodeTableP decodeTable;
if(1decodeTable) {

decodeTable = createDecodeTable();

b

// decode the instruction to get the type and attributes
orlklnstructionType type = vmidDecode(decodeTable, instruction);
const opAttrs *attrs = &attrsArray[type];

// Till structure fields
info->opcode attrs->opcode;

info->type type;
info->thisPC thisPC;
info->instruction instruction;

info->r1 getReg(instruction, attrs->rl);
info->r2 getReg(instruction, attrs->r2);
info->c getConst(instruction, attrs->c);

}

Finally, the routine orikDecode implements the decoder entry point. It does the
following:

1. It calls vmicxtFetch4Byte to get the four-byte instruction for the passed

processor at the given address.

It calls createDecodeTable to create the OR1K decode table, if required.

It calls the VMI function vmidDecode to get the instruction type;

4. It fills the passed oriklInstructionlinfo structure with data extracted from the
instruction, given its type.

wmn

© 2022 Imperas Software Limited.www.OVPworld.org Page 33 of 321

OVP Processor Modeling Guide

In this example, the decode table is saved as a static variable, so it will be shared by
all OR1K instances in a multiprocessor simulation. In more complex examples, where
the table contents depend on model parameters, it could instead by saved as a field in
the processor structure, so that each instance would have its own decode table.

5.1.3 JIT Translations - or1kMorph.c

This file implements the OR1K morpher function. The morpher function is responsible
for defining how each processor instruction should be translated. This is described in
detail in section 7; this example prepares the ground as follows:

typedef const struct orlkMorphAttrS *orlkMorphAttrCP;
typedef struct orlkMorphStateS *orlkMorphStateP;

These lines define pointers to a morpher attributes structure, orikMorphAttr, and a
morpher state structure, orlkMorphState, respectively. The morpher attributes structure
gives information required to translate an instruction to native code. At this point, the
only member of the structure is a morpher callback function:

#define OR1K_MORPH_FN(_NAME) void _NAME(orlkMorphStateP state)
typedef OR1K_MORPH_FN((*orlkMorphFn));

typedef struct orlkMorphAttrS {

orlkMorphFn morphCB; // function to translate one instruction
} orlkMorphAttr;

The morpher state structure is a scratchpad for useful information to provide to the
morpher callback function. Currently, it is defined like this:

typedef struct orlkMorphStateS {

orlkinstructioninfo info; // instruction description (from decoder)
orlkMorphAttrCP attrs; // instruction attributes
orlkP orilk; // current processor

} orlkMorphState;

This file currently defines a single morpher callback function, which does nothing:

static OR1K_MORPH_FN(morphNOP) {
// no action for a NOP
ks

In this example, morphNOP is used for each of the arithmetic functions in orikDecode.h.
This implies that each arithmetic function is currently implemented as a NOP:

const orlkMorphAttr orlkMorphTable[OR1K_IT_LAST+1] = {

// handle arithmetic instructions (second argument constant)
[OR1K_IT_ADDI] = {morphCB:morphNOP},
[OR1K_IT_ADDIC] = {morphCB:morphNOP},
[OR1K_IT_ANDI] = {morphCB:morphNOP},
[OR1K_IT_ORI] {morphCB:morphNOP},
[OR1K_IT_XORI] {morphCB:morphNOP},
[OR1K_IT_MULI] = {morphCB:morphNOP},

© 2022 Imperas Software Limited.www.OVPworld.org Page 34 of 321

OVP Processor Modeling Guide

This table associates function morphNOP with each of the instructions decoded by the
decoder.

static void unimplemented(
vmiProcessorP processor,
Uns32 thisPC,
Uns32 instruction

) {

// report that unimplemented instruction was encountered
vmiPrintf(
"CPU "%s® Ox%08x:0x%08x *** undecoded instruction: exiting ***\n",
vmirtProcessorName(processor),
thisPC,
instruction
):

// exit the CPU
vmirtExit(processor);

}

Function unimplemented prints a message when an unimplemented instruction is
encountered and halts the current processor by calling function vmirtexit (defined in
vmiRt.h, the VMI Run Time Function API).

static OR1K_MORPH_FN(emitUnimplemented) {

vmimtArgProcessor();
vmimtArguns32((Uns32)state->info.thisPC);
vmimtArguns32(state->info. instruction);
vmimtCall ((vmiCallFn)unimplemented) ;

}

Function emitUnimplemented is a dispatcher function that that is called for
unimplemented instructions in or1kDecode . c. It creates native code to call the
undecoded function previously defined. Code morphing is explained in detail in chapter
7.

VMI_MORPH_FN(orlkMorphlnstruction) {

orlkP orlk
orlkMorphState state

(orlkP)processor;

{{0}};

// decode instruction
orlkDecode(orlk, thisPC, &state.info);

// get morpher attributes for the decoded instruction and initialize other
// state fields

state.attrs &orlkMorphTable[state. info.type];

state.orilk orlk;

if(state.attrs->morphCB) {
// translate the instruction
state.attrs->morphCB(&state);

} else {
// here if no translation callback specified
emitUnimplemented(&state);

© 2022 Imperas Software Limited.www.OVPworld.org Page 35 of 321

OVP Processor Modeling Guide

Function orikMorphlinstruction is the morpher entry point (referenced in the

vmi IASAttrs structure for this processor model, in or1lkAttrs.h). It defines a local
orlkMorphState structure, initialized to zero. It then calls the decoder interface to
decode an instruction given the current PC, filling the info substructure. It then fills the
supplementary attrs and orik fields of the morpher state structure, based on the
instruction type returned by the decoder. Finally, it calls the appropriate morpher callback
for the instruction, or the unimplemented instruction callback if the decode failed.

Note that the size of the ori1kMorphTable array was defined to be OR1K_IT_LAST+1.
This means that the table contains a final (all zero) entry that is found if instruction
decode fails (returning type OR1K_IT_LAST). This entry has no defined morphCB,
ensuring that the unimplemented instruction callback will be called for undecoded
instructions.

5.1.4 Instruction Disassembler - or1kDisassemble.c

This file implements the OR1K disassembler function. The disassembler function is
responsible for generating a string disassembly of a given instruction. This is described in
detail in section 6; this example does the following:

static const char *disassemblelnfo(

orlkP orlk,
orlklInstructioninfoP info,
vmiDisassAttrs attrs

) {
// static buffer to hold result

static char result[256];

// default disassembly just shows instruction pattern
sprintf(result, "??? instruction:0x%08x", info->instruction);

// return the result
return result;

}
VMI_DISASSEMBLE_FN(orlkDisassemble) {

// static buffer to hold disassembly result
orlkP orlk = (orlkP)processor;
orlklInstructionlnfo info;

// decode instruction
orlkDecode(orlk, thisPC, &info);

// return disassembled instruction
return disassemblelnfo(orlk, &info, attrs);

}

Function orikDisassemble disassembles one instruction. It calls the decoder and then
utility function disassembleInfo, which fills a static string with the required
disassembly, which is then returned. In this example, the disassembler simply echoes the
instruction pattern to the disassembly string; later stages of the model implement a true
disassembler.

© 2022 Imperas Software Limited.www.OVPworld.org Page 36 of 321

OVP Processor Modeling Guide

Note that the disassembler is never called asynchronously or in a re-entrant manner
by the simulator, and there is no requirement for the disassembly string to persist
between calls. This means that it is acceptable to use a static array to hold the result,
as above.

The prototype for orikDisassemble is in file orlkFunctions.h, and is referenced in the
vmi IASAttr structure defined in or1kAttrs.c. The reason for this will be seen when an
application example is run using the new model.

5.2 Running the Application Test Case with the

Processor Model

The platform is identical to the previous example. When you have compiled all
components of the test, run:

platform/harness.$IMPERAS_ARCH.exe —trace \
—-—program application/application.OR1K.elf

in the 2.orikDecoder directory. The standard —trace parameter enables a trace mode
where the model disassembly routine is called just before each instruction is executed,
which is why the disassembler routine was added to the model vmi IASAttr structure You

should see the following output:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor

“‘platform/cpul”’

Info "cpul®, 0x0000000000000100: ??? instruction:0x9c400000
Info "cpul®, 0x0000000000000104: ??7? instruction:0x9c600000
Info "cpul®, 0x0000000000000108: ??? instruction:0x9c800000
Info “cpul®, 0x000000000000010c: ??? instruction:0x9ca00000
Info "cpul®, 0x0000000000000110: ??7? instruction:0x9cc00000
Info “cpul®, 0x0000000000000114: ??? instruction:0x9ce00000
Info "cpul®, 0x0000000000000118: ??7? instruction:0x9d000000
Info “cpul®, 0x000000000000011c: ??? instruction:0x9d200000
Info "cpul®, 0x0000000000000120: ??7? instruction:0x9d400000
Info “cpul®, 0x0000000000000124: ??7? instruction:0x9d600000
Info "cpul®, 0x0000000000000128: ??7? instruction:0x9d800000
Info “cpul®, 0x000000000000012c: ??? instruction:0x9da00000
Info "cpul®, 0x0000000000000130: ??7? instruction:0x9dc00000
Info “cpul®, 0x0000000000000134: ??7? instruction:0x9de00000
Info "cpul®, 0x0000000000000138: ??7? instruction:0x9e000000
Info “"cpul®, 0x000000000000013c: ??7? instruction:0x9e200000
Info "cpul®, 0x0000000000000140: ??? instruction:0x9e400000
Info "cpul®, 0x0000000000000144: ??? instruction:0x9e600000
Info "cpul®, 0x0000000000000148: ??7? instruction:0x9e800000
Info "cpul®, 0x000000000000014c: ??? instruction:0x9ea00000
Info "cpul®, 0x0000000000000150: ??7? instruction:0x9ec00000
Info "cpul®, 0x0000000000000154: ??? instruction:0x9ee00000
Info “"cpul®, 0x0000000000000158: ??7? instruction:0x9f000000
Info "cpul®, 0x000000000000015c: ??? instruction:0x9f200000
Info "cpul®, 0x0000000000000160: ??? instruction:0x9f400000
Info "cpul®, 0x0000000000000164: ??? instruction:0x9f600000
Info "cpul®, 0x0000000000000168: ??? instruction:0x9f800000
Info "cpul®, 0x000000000000016¢c: ??? instruction:0x9fa00000

© 2022 Imperas Software Limited.www.OVPworld.org

Page 37 of 321

OVP Processor Modeling Guide

Info "cpul®, 0x0000000000000170: ??7? instruction:0x9fc00000

Info "cpul®, 0x0000000000000174: ??? instruction:0x9fe00000

Info "cpul®, 0x0000000000000178: ??? instruction:0x1820FfFff

CPU "cpul® 0x00000178:0x1820fFfFff *** undecoded instruction: exiting ***
orlkDestructor called

After the constructor line, there is a line of trace output for every instruction that was
successfully decoded by the decoder in this example. Each trace line gives the instruction
address (starting with 0x100, the start address specified in the ELF file) and the
instruction disassembly, produced using the disassembler we defined. At address 0x178,
the processor encounters the first instruction not recognized by the decoder and is halted.
In the next chapter, we will see how to terminate simulation more elegantly than this.

5.3 More Complex Decoders

The decoder in this OR1K example is quite simple because the OR1K instruction set has
a small number of similar instructions of constant size (32 bits). CISC processors with
variable-length instructions require a more sophisticated decoder. A good approach is to
have multiple decode tables (a level 1 table is used to decode the first byte of the
instruction, on the basis of this alternate level 2 tables are used, and so on). When
decoders are complex, it is often useful to fill a data structure with information about the
decoded instruction to use in later stages (instruction translation and disassembly); see the
MIPS processor models on the ovpworld.com website for good examples.

All instruction fetches performed by a decoder should use vmicxtFetch4Byte, or related
routines defined in vmiCxt.h. A single decode may perform several calls to fetch
routines if required: in the example of the CISC processor, there may be an initial call to
vmicxtFetchl1Byte to fetch the first byte of an instruction, then a possible further call to
vmicxtFetchl1Byte to fetch the next byte, and so on.

© 2022 Imperas Software Limited.www.OVPworld.org Page 38 of 321

OVP Processor Modeling Guide

6 Implementing the Instruction Disassembler

Having implemented an initial decoder framework, the next step is to start implementing
the details of the instruction disassembler.

6.1 The Template Disassembler Model

A template model for the OR1K processor with a decoder and disassembler can be found
in:

$IMPERAS_HOME/Examples/Models/Processor/3.orlkDisassembler

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/3.orlkDisassembler .

Compile the model, harness and application using the make command:

cd 3.orlkDisassembler
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous decoder model, with the changes listed
below.

6.1.1 Instruction Formats - orlkDisassembleFormats.h

The disassembler we are about to write is implemented by a state machine that consumes
a format string which describes how to construct disassembled output arguments. The
format strings are defined in file orikDisassembleFormats.h as follows:

// These are placeholders in disassembly decoder

#define EMIT_R1 “\001*
#define EMIT_R2 “\002"
#define EMIT_XIMM *\003"
// These are placeholders in disassembly format strings
#define EMIT_R1_S "\001"
#define EMIT_R2_S "\002"
#define EMIT_XIMM_S "\003"

// These are disassembly format strings
#define FMT_R1_R2_XIMM EMIT_R1_S ","™ EMIT_R2_S ", EMIT_XIMM_S

The format string uses primitive tokens, EMIT_R1, EMIT_R2 and EMIT_XIMM, with the
following meanings:

© 2022 Imperas Software Limited.www.OVPworld.org Page 39 of 321

OVP Processor Modeling Guide

EMIT_R1: emit description of GPR in r1 position
EMIT_R2: emit description of GPR in r2 position
EMIT_XIMM: emit description of constant c in hexadecimal format.

Primitive tokens are specified using non-printing characters (\001, \002, \003 etc). A full
format string is a concatenation of these tokens with other printable characters. For
example, the format string:

EMIT R1. S ™," EMIT_R2_S ™,"™ EMIT_XIMM_S

Specifies that the disassembly arguments should be of the form r1,r2,0xnnnnnnnn, where
commas are echoed literally.

6.1.2 Supporting Instruction Formats - or1kDecode.h

The orilklInstructionInfoS type now contains a new format field, which is a
disassembly format string as described above:

typedef struct orlklInstructioninfoS {

const char *opcode; // opcode name

const char *format; // disassembly format string
orlkinstructionType type; // instruction type

Uns32 thisPC; // instruction address

uUns32 instruction; // raw instruction

Uns32 rl; // register 1

uUns32 r2; // register 2

Uns32 C; // constant value

} orilklInstructioninfo, *orlklnstructionlnfoP;

6.1.3 Adding Instruction Formats - orlkDecode.c
The opAttr structure also contains a new format field:

typedef struct opAttrsS {

const char *member; // enumeration member name
const char *opcode; // opcode name

const char *format; // format string

const char *decode; // decode string

regSpec rl 8; // register 1 specification
regSpec r2 : 8; // register 2 specification
constSpec ¢ : 8; // constant value specification

} opAttrs, *opAttrsP;

The ATTR_SET_ADDI and ATTR_SET_ANDI macros have been modified to initialize the
new format entry using the FvT_R1_R2_X1mM value specified in
orlkDisassembleFormats.h. For example:

#define ATTR_SET_ADDI(_NAME, _OPCODE, _DECODE) \

[ORIK_IT_## NAME] = { \
member : # NAME, \
opcode : _OPCODE, \
format : FMT_R1 R2 XIMM, \
decode : _DECODE, \
ri R_D, \
r2 R_A, \
c C_s1 \

© 2022 Imperas Software Limited.www.OVPworld.org Page 40 of 321

OVP Processor Modeling Guide

}

Function or1kDecode copies the new format value from the opAttrs to the
orlklinstructionlnfo structure:

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklInstructioninfoP info) {

lines omitted .

// Fill structure fields
info->opcode
info->format

attrs->opcode;
attrs->format;

info->type type;
info->thisPC thisPC;
info->instruction instruction;

info->r1 getReg(instruction, attrs->rl);
info->r2 getReg(instruction, attrs->r2);
info->c getConst(instruction, attrs->c);

}

6.1.4 Using Instruction Formats - orlkDisassemble.c

orlkDisassemble.c now implements a state machine disassembler, driven from the
decoded instruction. The file first contains utility functions that append a single character

and a string to a working buffer:

//

// Append the character to to the result

//

static void putChar(char **result, char ch) {

// get the tail pointer
char *tail = *result;

// do the append
*tail++ = ch;

// add null terminator
*tail = 0;

// update the tail pointer
*result = tail;

}

//
// Append the string to to the result
//

static void putString(char **result, const char *string) {

// get the tail pointer
char *tail = *result;
char ch;

// do the append
while((ch=*string++)) {
*tail++ = ch;

ks
// add null terminator
*tail = 0;

© 2022 Imperas Software Limited.www.OVPworld.org

Page 41 of 321

OVP Processor Modeling Guide

// update the tail pointer
*result = tail;

}

Then there are two functions that will append a number in unsigned and hexadecimal
format, respectively:

static void putU(char **result, Uns32 value) {
char tmp[32];
sprintf(tmp, *“%u™, value);

putString(result, tmp);
}

static void putX(char **result, Uns32 value) {
char tmp[32];
sprintf(tmp, "Ox%x", value);

putString(result, tmp);
¥

And also a function to write a GPR name, derived from an index:

static void putRegister(char **result, Uns32 r) {
putChar(result, "r");
putU(result, r);

Note that this example uses fixed-width types (Uns32 etc). These types are defined in
the include file:

$IMPERAS_HOME/ ImpPublic/include/host/impTypes.h.

Function disassemblelnfo has been modified to call a new function,
disassembleFormat?®;

static const char *disassemblelnfo(

orlkP orilk,
orlkinstructionlnfoP info,
vmiDisassAttrs attrs

) {
// static buffer to hold result

static char result[256];
const char *format = info->format;
char *tail result;

// disassemble using the format for the type

! This disassembler supports uncooked disassembly. The meaning and purpose of this are discussed at the
end of this chapter. For the moment, assume that any reference to Boolean uncooked is False.

© 2022 Imperas Software Limited.www.OVPworld.org Page 42 of 321

OVP Processor Modeling Guide

}

if(format) {
disassembleFormat(orlk, info, &tail, format, attrs==DSA_UNCOOKED) ;
} else {

sprintf(result, "??? instruction:0x%08x", info->instruction);
}

// return the result
return result;

Function disassembleFormat operates in two parts. Firstly, the opcode is printed, using
the putString utility function shown earlier:

static void disassembleFormat(

) {

orlkP orlk,
orlklinstructionlnfoP info,
char **result,
const char *format,
Bool uncooked

char *argStart = (*result)+9;
char ch;

// emit opcode
putString(result, “1.");
putString(result, info->opcode);

Each opcode has a constant prefix 1. followed by an opcode string extracted from the
decode structure. If the instruction has arguments, the opcode is padded to 9 characters
for alignment:

if(*format) {

// pad opcode to start of arguments
if(luncooked) {

putChar(result, * ");

while(*result!=argStart) {
putChar(result, = ");

}

Secondly, there is a loop that consumes the format string:

while((ch=*format++)) {
switch(ch) {

case EMIT_R1:
putUncookedKey(result, * R1"™, uncooked);
putRegister(result, info->rl);
break;

case EMIT_R2:
putUncookedKey(result, "™ R2", uncooked);
putRegister(result, info->r2);
break;

© 2022 Imperas Software Limited.www.OVPworld.org Page 43 of 321

OVP Processor Modeling Guide

case EMIT_XIMM:
putUncookedKey(result, " CX", uncooked);
putX(result, info->c);
break;

default:
if(luncooked) {putChar(result, ch);}
break;

}

If the loop encounters one of the special tokens, it is handled appropriately. For example,
token EMIT_R1 causes the register name passed in the info->r1 field to be emitted.
Otherwise, if a non-token is encountered, it is emitted literally.

6.2 Running the Application Test Case with the
Processor Model
Run:

platform/harness.$IMPERAS_ARCH.exe —trace \
--program application/application.OR1K.elf

in the 3.orikDisassembler directory. You should see the following output:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000000000100: I.addi r2,r0,0x0
Info “"cpul®, 0x0000000000000104: 1.addi r3,r0,0x0
Info "cpul®, 0x0000000000000108: 1.addi r4,r0,0x0
Info “cpul®, 0x000000000000010c: I.addi r5,r0,0x0
Info "cpul®, 0x0000000000000110: I.addi r6,r0,0x0
Info “cpul®, 0x0000000000000114: 1.addi r7,r0,0x0
Info "cpul®, 0x0000000000000118: I.addi r8,r0,0x0
Info “"cpul®, 0x000000000000011c: 1.addi ro,r0,0x0
Info "cpul®, 0x0000000000000120: I.addi r10,r0,0x0
Info “cpul®, 0x0000000000000124: 1.addi rii,r0,0x0
Info "cpul®, 0x0000000000000128: I.addi r12,r0,0x0
Info “cpul®, 0x000000000000012c: 1.addi ri3,r0,0x0
Info "cpul®, 0x0000000000000130: I.addi r1l4,r0,0x0
Info “cpul®, 0x0000000000000134: 1.addi ri5,ro0,0x0
Info “"cpul®, 0x0000000000000138: 1.addi rl6,r0,0x0
Info "cpul”, 0x000000000000013c: I1.addi r17,r0,0x0
Info “"cpul®, 0x0000000000000140: 1.addi ri8,ro0,0x0
Info "cpul®, 0x0000000000000144: 1.addi r19,r0,0x0
Info “"cpul®, 0x0000000000000148: 1.addi r20,r0,0x0
Info "cpul®, 0x000000000000014c: 1.addi r21,r0,0x0
Info “"cpul®, 0x0000000000000150: I.addi r22,r0,0x0
Info "cpul®, 0x0000000000000154: 1.addi r23,r0,0x0
Info “"cpul®, 0x0000000000000158: 1.addi r24,r0,0x0
Info "cpul®, 0x000000000000015c: 1.addi r25,r0,0x0
Info “"cpul®, 0x0000000000000160: 1.addi r26,ro0,0x0
Info "cpul®, 0x0000000000000164: 1.addi r27,r0,0x0
Info “"cpul®, 0x0000000000000168: 1.addi r28,ro0,0x0
Info "cpul®, 0x000000000000016c: 1.addi r29,r0,0x0
Info “cpul®, 0x0000000000000170: 1.addi r30,r0,0x0
Info "cpul®, 0x0000000000000174: I.addi r31,r0,0x0
Info “"cpul®, 0x0000000000000178: ??? instruction:0x1820FfFff
CPU "cpul® 0x00000178:0x1820FfFff *** undecoded instruction: exiting ***

© 2022 Imperas Software Limited.www.OVPworld.org Page 44 of 321

OVP Processor Modeling Guide

This reveals that the first instructions executed in the application are OR1K addi
instructions, which clear the processor GPRs.

6.3 Creating Disassembler Point Tests

When a class of instructions has been added to a decoder (such as the arithmetic
instructions above) it is good practice to fully test the disassembly behavior of the entire
class before implementing any behavior for that instruction class. This is done most
easily by assembler-level tests. File asmtest.S in directory
3.orlkDisassembler/application is an OR1K assembler file that is a good starting
point for a disassembler test:

-global _start

_start: I.addi ri,r2,0
1.addi ri,r2,1
I.addi ri,r2,-1
1.addic ri,r2,1
l.addic ri,r2,-1
1.addic ri,r2,0
l.andi ri,r2,1
I.andi ri,r2,-1
1.andi ri,r2,0
I.ori ri,r2,1
1.ori ri,r2,-1
I.ori ri,r2,0
1.xori ri,r2,1
I.xori ri,r2,-1
1.xori ri,r2,0
I.muli ri,r2,1
I.muli ri,r2,-1
I.muli ri,r2,0

-global exit

exit:
1.add ri,r2,0

Assemble this file using:

cd application
make asmtest.OR1K.elf
cd ..

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
--program application/asmtest.OR1K.elf

The output from this should be as follows:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000001000074: 1.addi rl,r2,0x0

Info “"cpul®, 0x0000000001000078: 1.addi rl,r2,0x1

Info "cpul”, 0x000000000100007c: 1.addi rl,r2,0xFrFrfrfff

Info “"cpul®, 0x0000000001000080: I.addic ri1,r2,0x1

Info "cpul®, 0x0000000001000084: l1.addic rl,r2,0xFFFrffff

© 2022 Imperas Software Limited.www.OVPworld.org Page 45 of 321

OVP Processor Modeling Guide

Info “cpul®, 0x0000000001000088:
Info "cpul®, 0x000000000100008c:
Info “cpul®, 0x0000000001000090:
Info "cpul®, 0x0000000001000094:

.addic rl1,r2,0x0
.andi rl,r2,0x1
.andi rl,r2,0xffff
.andi rl,r2,0x0

Info “"cpul®, 0x0000000001000098: 1.ori rl,r2,0x1
Info "cpul®, 0x000000000100009c: l.ori rl,r2,0xffff
Info “"cpul®, 0x00000000010000a0: 1.ori rl,r2,0x0

.Xori ril,r2,0x1
.Xori rl,r2,0xFrfrrfrfff
.Xori rl,r2,0x0
-muli rl,r2,0x1
-muli rl,r2,0xfFFfFfrfff

Info "cpul®, 0x00000000010000a4:
Info “cpul®, 0x00000000010000a8:
Info "cpul®, 0x00000000010000ac:
Info "cpul®, 0x00000000010000b0:
Info "cpul®, 0x00000000010000b4:
Info “cpul®, 0x00000000010000b8: I._.muli rl,r2,0x0

Info "cpul®, 0x00000000010000bc: 1.addi rl,r2,0x0
Processor “cpul’ terminated at “exit’, address 0x10000bc
orlkDestructor called

It is good practice to make the output from the disassembler conform as closely as
possible to the output generated by existing tools (for example, the OR1K objdump
executable). This simplifies verification because output generated by the disassembler
can be automatically compared against a golden log generated by the existing tool.

6.3.1 Elegant Test Termination using Semihosting
Note that the assembler test terminated more elegantly than the previous run: instead of:

CPU "cpul® 0x00000178:0x0400037b *** undecoded instruction: exiting ***

We saw:

Processor “cpul’ terminated at “exit’, address 0x10000bc

This was possible because the test platform used with this example was modified to use
semihosting, which will be briefly introduced here and covered in detail in chapter 25.

Imperas semihosting allows the default behavior of specified functions or instructions to
be modified using a semihosting shared object library that is loaded by the simulator in
addition to the processor model. In this case, we defined a global label, exit, on the last
instruction of the assembler test. This label can be used in conjunction with a standard
Imperas semihosting shared object library, located at the following location under
$IMPERAS_HOME:

$IMPERAS_VLNV/ovpworld.org/modelSupport/imperasexit/1.0/model . $SHRSUF

NOTE; $IMPERAS_VLNYV is equivalent to $IMPERAS_HOME/lib/$SIMPERAS_ARCH/ImperasLib

What this semihosting library does is terminate simulation immediately after any
instruction labeled exit. To use the semihosting library, platform/harness.c has been
modified as follows to select the imperasExit semihost library from the VLNV library
and load it onto the instantiated processor:

// get semihost library to exit simulation
const char *semihostFile = opVLNVString(

© 2022 Imperas Software Limited.www.OVPworld.org Page 46 of 321

OVP Processor Modeling Guide

0, "ovpworld.org', "modelSupport', "imperasExit’™, "1.0", OP_EXTENSION,
True

):

// attach imperaskExit semihost library to processor
opProcessorExtensionNew(processor, semihostFile, "imperaseExit"”, 0);

You may use the imperasExit semihosting library with any processor model: it is
not specific to the OR1K processor we are creating here.

6.4 Uncooked Disassembly

When implementing a disassembler, it is good practice to implement two different

formats:

1. Normal (cooked) disassembly, as described above. In this mode, the output from the
disassembler will be a string using the standard mnemonics and format for the model
architecture.

2. Uncooked disassembly. In this mode, the output from the disassembler can be any
format that is easy for downstream tools to consume and parse. When instruction sets
are complex, implementing a good uncooked disassembly format can greatly simply
tool construction, if those tools need to decode instructions.

Clients can request that a processor model disassemble an instruction in various ways. In
the VMI interface, use the following function:

typedef enum vmiDisassAttrsE {

DSA NORMAL = 0x00000000, // normal disassembly

DSA_UNCOOKED = 0x00000001, // model-specific uncooked format

DSA_BASE = 0x00000002, // use base model disassembly (not intercept)
DSA_MODEL = 0x80000000, // model-specific mask

} vmiDisassAttrs;

const char *vmirtDisassemble(
vmiProcessorP processor,
Addr simPC,
vmiDisassAttrs attrs

Here, passing attrs of DSA_NORMAL will cause cooked disassembly to be returned, and
attrs of DSA_UNCOOKED will cause uncooked disassembly to be returned?. There is a
very similar function available in the OP interface:

typedef enum optDisassAttrsE {
OP_DSA_NORMAL 0x00000000, ///< normal disassembly
OP_DSA_UNCOOKED 0x00000001, ///< model-specific uncooked format
OP_DSA_BASE 0x00000002, ///< use base model disassembly (nhot
/// intercept)
0x80000000 ///< model-specific mask

OP_DSA_MODEL
} optDisassAttrs;

const char *opProcessorDisassemble (

2 For completeness, DSA_BASE disables any disassembler specified in an intercept library, and the
DSA_MODEL mask is passing model-specific flags to the disassembly callback.

© 2022 Imperas Software Limited.www.OVPworld.org Page 47 of 321

OVP Processor Modeling Guide

optProcessorP processor,
Addr addr,
optDisassAttrs attrs

To see how the disassembler behaves in uncooked mode, modify platform/harness.c
as follows. Firstly, add a call to opRootModulePreSimulate before the first call to
simulate in function main (required because disassembly is only possible in the
simulation phase):

int main(int argc, const char **argv) {

lines omitted .

// connect the memory onto the busses
opMemoryBusConnect(memory, bus, "mpl"™, 0x00000000, OxFFfffffr);

// complete elaboration
opRootModulePreSimulate(mr);

// run processor, one instruction at a time
while(simulate(processor, 1)) {

hs
lines omitted .

}

Then, modify function simulate so that each instruction is disassembled in uncooked
mode before it is executed:
static Bool simulate(optProcessorP processor, Uns64 clocks) {

// validate uncooked disassembly
Uns32 thisPC = opProcessorPC(processor);

opPrintf(
""UNCOOKED 0x%08x: %s\n'',

thisPC,
opProcessorDisassemble(processor, thisPC, OP_DSA_UNCOOKED)

);

optStopReason stopReason = opProcessorSimulate(processor, clocks);

switch(stopReason) {
lines omitted .
}

¥
Rebuild the harness using:

make —C platform clean
make —C platform

And rerun as before:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest_OR1K.elf

© 2022 Imperas Software Limited.www.OVPworld.org Page 48 of 321

OVP Processor Modeling Guide

The output from this should be as follows:

orlkConstructor called

Warning (PC_NRI) No register information callback given for processor
"platform/cpul*”

UNCOOKED 0x01000074: 1.addi R1:rl1 R2:r2 CX:0x0

Info "platform/cpul®, 0x0000000001000074(_start): l.addi rl,r2,0x0
UNCOOKED 0x01000078: 1.addi R1:rl R2:r2 CX:0x1

Info "platform/cpul®, 0x0000000001000078(_start+4): I_addi rl,r2,0x1
UNCOOKED 0x0100007c: l.addi R1:rl R2:r2 CX:OxFFFfffff

Info "platform/cpul®, 0x000000000100007c(_start+8): I_addi rl,r2,OxFFrfFrfff
UNCOOKED 0x01000080: l1.addic R1:rl1 R2:r2 CX:0x1

Info "platform/cpul®, 0x0000000001000080(_start+c): l.addic r1,r2,0x1
UNCOOKED 0x01000084: 1.addic R1:rl R2:r2 CX:OxFfFffffff

Info "platform/cpul®, 0x0000000001000084(_start+10): l.addic ri1,r2,0xfFFFFfff
UNCOOKED 0x01000088: 1.addic R1:rl1 R2:r2 CX:0x0

Info "platform/cpul®, 0x0000000001000088(_start+14): l.addic r1,r2,0x0
UNCOOKED 0x0100008c: l.andi R1:rl R2:r2 CX:0x1

Info "platform/cpul®, 0x000000000100008c(_start+18): I.andi rl,r2,0x1
UNCOOKED 0x01000090: I.andi R1:rl R2:r2 CX:Oxffff

Info "platform/cpul®, 0x0000000001000090(start+1lc): l.andi rl,r2,0xffff
UNCOOKED 0x01000094: 1.andi R1:rl R2:r2 CX:0x0

Info "platform/cpul®, 0x0000000001000094(_start+20): I.andi rl,r2,0x0
UNCOOKED 0x01000098: l1.ori R1:rl R2:r2 CX:0x1

Info "platform/cpul®, 0x0000000001000098(_start+24): l.ori rl,r2,0x1
UNCOOKED 0x0100009c: l.ori R1:rl R2:r2 CX:OxFfff

Info "platform/cpul®, 0x000000000100009c(_start+28): l.ori rl,r2,0xfFfFff
UNCOOKED 0x010000a0: l.ori R1:rl R2:r2 CX:0x0

Info "platform/cpul®, 0x00000000010000a0(_start+2c): l.ori rl,r2,0x0
UNCOOKED 0x010000a4: 1.xori R1:rl R2:r2 CX:0x1

Info "platform/cpul®, 0x00000000010000a4(_start+30): I._xori rl,r2,0x1
UNCOOKED 0x010000a8: l1.xori R1l:rl R2:r2 CX:OxFFfffff

Info "platform/cpul®, 0x00000000010000a8(_start+34): l_xori rl,r2,OxFFFFFFff
UNCOOKED 0x010000ac: I.xori R1:rl R2:r2 CX:0x0

Info "platform/cpul®, 0x00000000010000ac(_start+38): l._xori rl,r2,0x0
UNCOOKED 0x010000b0: I.muli R1:rl R2:r2 CX:0x1

Info “platform/cpul®, 0x00000000010000b0(_start+3c): I.muli rl,r2,0x1
UNCOOKED 0x010000b4: 1.muli R1:rl R2:r2 CX:OxFFFfffff

Info “platform/cpul®, 0x00000000010000b4(_start+40): I.muli rl,r2,OxFrFfrffef
UNCOOKED 0x010000b8: I.muli R1:rl R2:r2 CX:0x0

Info “platform/cpul®, 0x00000000010000b8(_start+44): I._.muli rl,r2,0x0
UNCOOKED 0x010000bc: 1.addi R1:rl1 R2:r2 CX:0x0

Info “platform/cpul®, 0x00000000010000bc(exit): 1._.addi rl,r2,0x0
Processor "platform/cpul® terminated at "exit", address 0x10000bc

This clearly shows the uncooked format selected for this model: it consists of the opcode,
followed by a space-separated list of key:value pairs. This format is good because it is
easy to parse and extensible (it is easy to add new key:value pairs if required). Examine
the calls to function putUncookedKey in orlkDisassemble.c to see how this is
implemented.

© 2022 Imperas Software Limited.www.OVPworld.org Page 49 of 321

OVP Processor Modeling Guide

7 Implementing Simple Behavior

When the processor decoder and disassembler are working correctly for a subset of
processor instructions, you can start to implement behavior for those instructions. This
chapter shows how this is done for simple instructions using the Imperas code morphing
technology.

7.1 An Introduction to Code Morphing

Conventional processor models written in an HDL or similar modeling language might be
implemented by a loop that is activated by a clock signal. On each activation of the clock,
the model might fetch the next instruction, decode it, and call specific functions to
perform the instruction (update model registers, read and write memory, and so on). If the
model is cycle-accurate, there may be further complications of modeling pipelines,
branch prediction and so on.

Although models written in this conventional style can be accurate and straightforward in
structure, they are not fast: even a simple instruction accurate model written in C will
probably run no faster than a few million instructions per second. Unfortunately, platform
testing may require the execution of billions of instructions, which makes this style of
model too slow.

Processor models designed for the Imperas tool set instead use just-in-time (JIT) code
morphing technology. This works as follows:

1. As each new processor instruction is encountered during program execution, the
instruction is translated (morphed) into equivalent native machine code. The exact
translations to be made are specified by the processor modeler using the Imperas
Virtual Machine Interface (VMI) API.

2. Contiguous sections of translated processor instructions are gathered into code
blocks, which are held in a dictionary for the processor.

3. If aprocessor performs a jJump to a simulated address that has already been
translated to a code block held in the dictionary, there is no need to perform the
translation again: the simulator simply re-executes the existing code block.

Imperas technology handles the generation of native machine code and the efficient
management of code blocks and dictionaries to give extremely fast simulation.
Depending on the complexity of the processor being simulated, speeds of billions of
simulated instructions per second can be achieved. This is possible because, as simulation
proceeds, run time (execution of translated code blocks) dominates morph time (JIT
compilation).

To support the JIT compiler, you must implement the morpher, which is responsible for
defining how each processor instruction should be executed.

© 2022 Imperas Software Limited.www.OVPworld.org Page 50 of 321

OVP Processor Modeling Guide

7.2 The Template Simple Behavioral Model
A template model for the OR1K processor with a decoder, disassembler and behavior can
be found in:

$IMPERAS_HOME/Examples/Models/Processor/4.or1kBehaviorSimple

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/4.orlkBehaviorSimple .

Compile the model, harness and application using the make command:

cd 4.orlkBehaviorSimple
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous disassembler model, with the changes
listed in following sections.

7.2.1 Defining GPRs - or1kStructure.h

The processor structure defined in file or1kStructure.h is where you define the
registers and other state of the model. For this example, we need to model the 32 OR1K
general-purpose registers. The structure is therefore declared like this:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits

// processor structure
typedef struct orlkS {
Uns32 regs[OR1K_REGS]; // basic registers
vmiBusPortP busPorts; // bus port descriptions
} orilk, *orilkP;

The OR1K general purpose registers are declared as a C array of uns32 values, regs.
As we will see in section 7.2.3, Imperas API routines for generating morphed code need
to know about the register byte offsets of the register fields within the processor structure.

In this case, the C structure offsets are as follows:

Register Byte Offset

regs[0] 0
regs[1] 4
regs[2] 8
... etc ...

© 2022 Imperas Software Limited.www.OVPworld.org Page 51 of 321

OVP Processor Modeling Guide

To simplify calculation of these offsets, orikStructure.h defines the following macros
for use in variable C expressions:

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(_F) VMI_CPU_REG(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[R])
For example:

OR1K_REG(3)

Is used to identify OR1K general purpose register r3 in morpher VMI API calls (see
section 7.2.3 for examples).

7.2.2 Initializing GPRs - orlkMain.c
Now that the OR1K structure has real state implemented, the constructor in file
orlkMain.c should be upgraded to initialize that state.

The constructor is called by the simulator whenever a new instance of the OR1K
processor model is created. It is passed a pointer to the new processor model instance
using a generic parameter called processor of type vmiProcessorP. In order to initialize
the processor, the generic processor pointer should be cast to a specific or1kpP pointer so
that fields in the structure can be set.

By default, the new processor model instance is entirely zeroed out. In this example, we
initialize every general purpose register in the OR1K from r2 to r31 with the pattern
Oxdeadbeef:

VMI_CONSTRUCTOR_FN(orlkConstructor) {

orlkP orlk = (orlkP)processor;
uns32 i;

for(i=2; i1<OR1K_REGS; i++) {
orlk->regs[i] = Oxdeadbeef;
}

// create bus port specifications
newBusPorts(orlk);

}

Register ro is left unmodified (zeroed out) because it is hardwired to zero in the OR1K.
Register r1 is also left zeroed out because this is the stack pointer register, implicitly
initialized to zero.

(Note that the constructor and destructor no longer print that they have been called.)

7.2.3 Implementing Binops - orlkMorph.c
An extra field, binop, has been added to the orikMorphAttr structure:

© 2022 Imperas Software Limited.www.OVPworld.org Page 52 of 321

OVP Processor Modeling Guide

typedef struct orlkMorphAttrS {
orlkMorphFn morphCB; // function to translate one instruction
vmiBinop binop; // if a simple binary operation

} orlkMorphAttr;

This new field will be used to control the precise action of the arithmetic instructions
implemented here. The morpher table, orikMorphTable, has been updated to initialize
the new field as follows:

const orlkMorphAttr orlkMorphTable[OR1K IT_LAST+1] = {

// handle arithmetic instructions (second argument constant)
[OR1K_IT_ADDI] = {morphCB:morphBinopRRC, binop:vmi_ADD },
[OR1K_1T_ADDIC] {morphCB:morphBinopRRC, binop:vmi_ADC },
[OR1K_IT_ANDI] {morphCB:morphBinopRRC, binop:vmi_AND },
[OR1K_IT_ORI] {morphCB:morphBinopRRC, binop:vmi_OR 7},
[OR1IK_IT_XORI] {morphCB:morphBinopRRC, binop:vmi_XOR },
[OR1K_IT_MULIT] = {morphCB:morphBinopRRC, binop:vmi_IMUL},

e

The behavior of each of the instructions we will implement now is described by a
common function, morphBinopRRC:

static OR1K_MORPH_FN(morphBinopRRC) {

vmiBinop op
vmiReg rd
vmiReg ra
uns32 c

state->attrs->binop;
getGPR(state->info.rl);
getGPR(state->info.r2);
state->info.c;

vmimtBinopRRC(OR1K_BITS, op, rd, ra, c, 0);
T

This function uses a routine from the Imperas morph time function API (vmimt.h) to
describe the behavior of the arithmetic instructions we are implementing in this example.
The destination register number (rd), argument register number (ra) and constant value
(c) are extracted from the decoded instruction structure. It is very important to understand
that vmimt-prefixed routines do not themselves perform any arithmetic operation on the
processor registers: instead, they describe the action to be performed. The action
descriptions are used as input to the Imperas JIT compiler to generate native code that,
when executed, performs the required arithmetic operation.

To further clarify this example, we will consider lines from morphBinopRRC in detail. The
first line gets the operation to implement:

vmiBinop op = state->attrs->binop;

The operation op can be any of the operations specified in the vmiBinop enumeration,
declared in file vmiTypes.h:

typedef enum {

// ARITHMETIC OPERATIONS
OCL_BIN_ADD, // d<-a+b
OCL_BIN_ADC, // d<-a+b+C

vmi_ADD
vmi_ADC

© 2022 Imperas Software Limited.www.OVPworld.org Page 53 of 321

OVP Processor Modeling Guide

vmi_SUB
vmi_SBB
vmi_RSBB
vmi_RSUB
vmi__IMUL
vmi_MUL
vmi_IDIV
vmi_DIV
vmi__IREM
vmi_REM
vmi_CMP

vmi_ADDSQ
vmi_ADCSQ
vmi_SUBSQ
vmi_SBBSQ
vmi_RSUBSQ
vmi_RSBBSQ
vmi_ADDUQ
vmi_ADCUQ
vmi_SUBUQ
vmi_SBBUQ
vmi_RSUBUQ
vmi_RSBBUQ

vmi_ADDSH
vmi_SUBSH
vmi_RSUBSH
vmi_ADDUH
vmi_SUBUH
vmi_RSUBUH
vmi_ADDSHR
vmi_SUBSHR
vmi_RSUBSHR
vmi_ADDUHR
vmi_SUBUHR
vmi_RSUBUHR

vmi_OR
vmi_AND
vmi_XOR
vmi_ORN
vmi_ANDN
vmi_XORN
vmi_NOR
vmi_NAND
vmi_XNOR

vmi_ROL
vmi_ROR
vmi_RCL
vmi_RCR
vmi_SHL
vmi_SHR
vmi_SAR

vmi_SHLSQ
vmi_SHLUQ

OCL_BIN_SUB,
OCL_BIN_SBB,
OCL_BIN_RSBB,
OCL_BIN_RSUB,
OCL_BIN_IMUL,
OCL_BIN_MUL,
OCL_BIN_IDIV,
OCL_BIN_DIV,
OCL_BIN_IREM,
OCL_BIN_REM,
OCL_BIN_CMP,

OCL_BIN_ADDSQ,
OCL_BIN_ADCSQ,
OCL_BIN_SUBSQ,
OCL_BIN_SBBSQ,
OCL_BIN_RSUBSQ,
OCL_BIN_RSBBSQ,
OCL_BIN_ADDUQ,
OCL_BIN_ADCUQ,
OCL_BIN_SUBUQ,
OCL_BIN_SBBUQ,
OCL_BIN_RSUBUQ,
OCL_BIN_RSBBUQ,

OCL_BIN_ADDSH,
OCL_BIN_SUBSH,
OCL_BIN_RSUBSH,
OCL_BIN_ADDUH,
OCL_BIN_SUBUH,
OCL_BIN_RSUBUH,
OCL_BIN_ADDSHR,
OCL_BIN_SUBSHR,

OCL_BIN_RSUBSHR,

OCL_BIN_ADDUHR,
OCL_BIN_SUBUHR,

OCL_BIN_RSUBUHR,

OCL_BIN_OR,
OCL_BIN_AND,
OCL_BIN_XOR,
OCL_BIN_ORN,
OCL_BIN_ANDN,
OCL_BIN_XORN,
OCL_BIN_NOR,
OCL_BIN_NAND,
OCL_BIN_XNOR,

OCL_BIN_ROL,
OCL_BIN_ROR,
OCL_BIN_RCL,
OCL_BIN_RCR,
OCL_BIN_SHL,
OCL_BIN_SHR,
OCL_BIN_SAR,

OCL_BIN_SHLSQ,
OCL_BIN_SHLUQ,

/7/

DO O0O000000QQ
AN
11
DO DYOYYOYTTO D
COTCTOTTUTUTY®Y QTT

- b

C
C

(signed)
(unsigned)
(signed)
(unsigned)
(signed)
(unsigned)

SATURATED ARITHMETIC OPERATIONS

<- saturate_signed(a
<- saturate_signed(a
<- saturate_signed(a
<- saturate_signed(a
<- saturate_signed(b
<- saturate_signed(b a

saturate_unsigned(a + b)
<- saturate_unsigned(a +

<- saturate_unsigned(a - b)
<- saturate_unsigned(a - b - C)
<- saturate_unsigned(b - a)
<- saturate_unsigned(b - a - C)

000000000000
N
|

HALVING ARITHMETIC OPERATIONS

000000000000

BITWISE OPERATIONS

<- a

L TTOCT

D RO mmm > QR0 mmm
l
O OTUT

N
|
QOO P

<= ~(a I b)
<- ~(a & b)
<- ~(a ™ b)

000000000
AN
|

SHIFT/ROTATE OPERATIONS

<- ((unsigned)(b - a))
<- round(((signed)(a +
<- round(((signed)(a -
<- round(((signed)(b - a)) 7/ 2)

<- round(((unsigned)(a + b)) /7 2)
<- round(((unsigned)(a - b)) 7/ 2)
<- round(((unsigned)(b - a)) 7/ 2)

<- ((signed)(a + b)) 7 2
<- ((signed)(a - b)) 7 2
<- ((signed)(b - a)) 7/ 2
<- ((unsigned)(a + b)) /
<- ((unsigned)(a - b)) 7/
/
b
b

2)

d <- a << b | a > <bits>-b
d <- a>b | a<< <bits>-b
(d,c) <- (a,c)<<b | (a,c) >> <bits>-b
(d,c) <- (a,c)>>b | (a,c) << <bits>-b

d<-a=<<b

d <- (unsigned)a >> b
d <- (signed)a >> b

SATURATED SHIFT OPERATIONS
// d <- saturate_signed(a << b)
// d <- saturate_unsigned(a << b)

© 2022 Imperas Software Limited.www.OVPworld.org

Page 54 of 321

OVP Processor Modeling Guide

// ROUNDING SHIFT OPERATIONS

vmi_SHRR = OCL_BIN_SHRR, // d <- round((unsigned)a >> b)
vmi_SARR = OCL_BIN_SARR, // d <- round((signed)a >> b)
vmi_BINOP_LAST = OCL_BIN_LAST // KEEP LAST

} vmiBinop;

Next, destination register rd and argument register ra are obtained from the decoded
instruction:

vmiReg rd
vmiReg ra

getGPR(state->info.rl);
getGPR(state->info.r2);

In the OR1K processor, register ro is hardwired to the constant value 0. Any attempt to
write to this register should be discarded: this is indicated to the morph time API
functions by using the special value vM1_NOREG for the register. If the target register is
writable, the macro or1K_REG(rd) from orlkStructure.h is used to specify it, as
described in section 7.2.1. This complexity is encapsulated in function getGPR, defined as
follows:

static vmiReg getGPR(Uns32 r) {
return r ? OR1K_REG(r) : VMI_NOREG;
}

Next, a constant value is extracted from the decoded instruction:

Uns32 c = state->info.c;

Finally, the operation to perform is described by the morph time API function
vmimtBinopRRC:

vmimtBinopRRC(OR1K_BITS, op, rd, ra, c, 0);

Refer to the Imperas VMI Morph Time Reference manual for more detailed
information on all of the morph-time functions available in this API.

7.3 Running the Application Test Case with the
Processor Model
Run the application using this command:

platform/harness.$IMPERAS_ARCH.exe —trace —traceregs \
-—program application/application.OR1K.elf

in the 4_orikBehaviorSimple directory. The new —traceregs parameter, in
combination with —trace, enables trace of register values. You should see the following
output:

© 2022 Imperas Software Limited.www.OVPworld.org Page 55 of 321

OVP Processor Modeling Guide

Warning (PC_NRI) No register information callback given for processor “cpul”

Info "cpul-,

0x0000000000000100:

Info "cpul®™ REGISTERS
(instruction 1):

CPU cpul

0:
16:
32:
48:
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF

128:
Info "cpul®, 0x0000000000000104:

00000000
deadbeef
deadbeef
deadbeef

08daa790

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

Info “cpul® REGISTERS
(instruction 2):

CPU cpul

0:

16:

32:

48:

64:

80:

96:

112:

128:

Info “cpul-,

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
08daa790

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

0x0000000000000108:

Info "cpul®™ REGISTERS
(instruction 3):

CPU cpul

0:
16:
32:
48:
64:
80:
96:

112:
128:

00000000
00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
08daa790

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

. (many lines cut) ..

Info "cpul”,

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

0x0000000000000178: ??7?

CPU "cpul® 0x00000178:0x1820FfFfFf ***
Info "cpul® REGISTERS
(instruction 31):

CPU cpul

- 00000000
- 00000000
- 00000000
- 00000000
= 00000000
- 00000000
- 00000000
- 00000000
- 08daa790

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

1.addi r2,r0,0x0

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

1.addi r3,r0,0x0

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

1.addi r4,r0,0x0

00000000
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

instruction:0x1820FfFff
undecoded instruction: exiting ***

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

We now see the processor model executing instructions for the first time. In detail, the
sequence when generating output is:
1. The instruction about to be executed is disassembled;
2. The instruction is executed;
3. The register state of the processor is dumped.

© 2022 Imperas Software Limited.www.OVPworld.org Page 56 of 321

OVP Processor Modeling Guide

Because this ORK1 model has no register value print functionality specified at this
point, the register values printed after each instruction are simply the raw contents of
the OR1K structure. This includes the pointer value, busPorts, at offset 128. Because
this is a pointer, its value will change from run to run. The next chapter describes how
a model-specific register dump callback is written.

The initial instructions of the application zero out registers r2-r31 of the OR1K processor
using 1.addi instructions. As this happens, we see each register value change from
Oxdeadbeef (Set in the processor constructor) to 0x00000000.

7.4 Instruction Temporaries

Some instructions cannot be implemented as a single VMI operation and instead require a
sequence of operations and intermediate temporaries to generate the correct result. For
example, suppose that there is a signed halfword multiply instruction, which works
according to the following pseudo-code:

T1ls, o = sign_extend(R1lis. o)
T23, o = sign_extend(R2:5. ¢):;
R332..0 = Tlzs. 0 * T23_ 0;

In other words, the instruction sign-extends the lower half of the two arguments and then
multiplies those sign-extended values to produce the result. Implementing this instruction
requires the use of two temporaries that are not true processor registers but instead
represent intermediate values that are required only within an instruction.

The way to implement this is to introduce two new pseudo-registers into the processor
structure as follows:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits
#define OR1K_TNUM 2 // number of temporaries

// processor structure

typedef struct orilkS {
Uns32 regs[OR1K_REGS]; // basic registers
Uns32 temp[OR1K_TNUM]; // temporary pseudo-registers
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

The temporaries are specified to the morpher as follows:

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(F) VMI_CPU_REG(orikP, _F)
#define OR1K_REG(R) OR1K_CPU_REG(regs[R1)
#define OR1K_CPU_REG_TEMP(_F) VMI_CPU_TEMP(orlkP, _F)
#define ORIK_TEMP(1) OR1K_CPU_REG_TEMP(temp[_11)

The macro vMI_CPU_TEMP identifies temporaries in exactly the same way that macro
VMI_CPU_REG identifies true registers. Because the morpher knows that these values are
temporaries and not true registers, it can generate more efficient code (the temporary

© 2022 Imperas Software Limited.www.OVPworld.org Page 57 of 321

OVP Processor Modeling Guide

values do not need to be written back to the processor structure at the end of the
instruction).

These temporaries could then be used to implement the signed halfword multiply
instruction as follows:

QmiRég target = (rd==0) ? VMI_NOREG : OR1K REG(rd);

// generate intermediates
vmimtMoveExtendRR(OR1K_BITS, OR1K_TEMP(0), OR1K_BITS/2, OR1K_REG(ra), True);
vmimtMoveExtendRR(OR1K_BITS, OR1K_TEMP(1), OR1K_BITS/2, OR1K REG(rb), True);

// generate result
vmimtBinopRRR(OR1K_BITS, vmi_IMUL, target, OR1K_TEMP(0), OR1K_TEMP(1), 0);

© 2022 Imperas Software Limited.www.OVPworld.org Page 58 of 321

OVP Processor Modeling Guide

8 Processor Flags and Register Dumping

In general, arithmetic operations can both take as input and generate as output flag
values. For example an add-with-carry operation has a carry flag input, and might
generate a carry flag output. This chapter enhances the previous simple behavioral model
to handle flag values for arithmetic instructions, and shows how to implement a model
specific register dump routine to simplify model validation.

8.1 The Template Flags Model

A template model for the OR1K processor implementing instruction flags can be found
in:

$IMPERAS_HOME/Examples/Models/Processor/5.orlkBehaviorFlags

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/5.or1kBehaviorFlags .

Compile the model, harness and application using the make command:

cd 5.orlkBehaviorFlags
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

8.1.1 Adding Flag Registers - or1kStructure.h
For this example, we need to model the 32 OR1K general-purpose registers and three
boolean flags: carry, overflow and branch. The structure is therefore modified like this:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits

// processor structure
typedef struct orilkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool branchFlag; // branch flag

Uns32 regs[OR1K_REGS]; // basic registers
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

© 2022 Imperas Software Limited.www.OVPworld.org Page 59 of 321

OVP Processor Modeling Guide

The C structure byte offsets of the various fields are now as follows:

Register Byte Offset
carryFlag 0
overflowFlag 1
branchFlag 2

regs[0] 4

regs[1] 8

... etc ...

To simplify calculation of these offsets, orikStructure.h now has the following macros
for use in variable C expressions:

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(_F) VMI_CPU_REG(orlkP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_RD)
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)

In constant expression contexts (for example static structure initializers) these variants
should be used instead:

// macros to specify target registers in CONSTANT expressions
#define OR1K_CPU_REG_CONST(_F) VMI_CPU_REG_CONST(orlkP, _F)

#define OR1K_REG_CONST(_R) OR1K_CPU_REG_CONST(regs[_R1)
#define OR1K_CARRY_CONST OR1K_CPU_REG_CONST(carryFlag)
#define OR1K_OVERFLOW_CONST OR1K_CPU_REG_CONST(overflowFlag)

8.1.2 Using Flags - orlkMorph.c

How flags should be handled in an arithmetic operation is indicated by a flags argument
to the VMI morph-time API call describing the operation. This argument is a pointer to a
structure type defined in vmiTypes.h:

typedef enum {

vmi_CF=0, // carry flag
vmi_PF=1, // parity flag
vmi_ZF=2, // zero flag
vmi_SF=3, // sign flag
vmi_OF=4, // overflow flag
vmi_LF=5 // KEEP LAST

} vmiFlag;

typedef enum {
vmi_FN_NONE =0x00, // empty negate mask
vmi_FN_CF_IN =0x01, // negate carry in flag
vmi_FN_CF_0OUT=0x02, // negate carry out flag

vmi_FN_PF =0x04, // negate parity flag
vmi_FN_ZF =0x08, // negate zero flag
vmi_FN_SF =0x10, // negate sign flag
vmi_FN_OF =0x20, // negate overflow flag

} vmiFlagNegate;

typedef struct vmiFlagsS {

© 2022 Imperas Software Limited.www.OVPworld.org Page 60 of 321

OVP Processor Modeling Guide

vmiReg cin; // register specifying carry in
vmiReg fLvmi_LF]; // registers to hold operation results
vmiFlagNegate negate; // bitmask of negated flags

} vmiFlags;

The vmiFlag enumeration lists all the flags that can be generated by an arithmetic
operation: carry, parity, zero, sign and overflow. The vmiFlagNegate enumeration
describes how flags are negated on input to and output from the operation.

The vmiFlags structure contains the following:

1. Afield cin of type vmiReg. This field specifies the register offset in a processor
structure of a flag byte to use for the carry in value.

2. An array of vmiReg values indexed by vmiFlag type. This field specifies the
register offsets in a processor structure of flag bytes into which generated flags
should be written.

3. A bitmask of type vmiFlagNegate specifying how flags should be negated on
input to and output from the operation.

In other words, the vmiFlags structure allows you to specify boolean flag locations
within your processor structure that can provide and accept flag values in arithmetic
operations. These flags should always be declared in the processor structure as type Bool.

The orikMorphAttr structure has now been enhanced to include an extra field of type
vmiFlagsCP:

typedef struct orlkMorphAttrS {

orlkMorphFn morphCB; // function to translate one instruction
vmiBinop binop; // if a simple binary operation
vmiFlagsCP flags; // flags used by the instruction

} orlkMorphAttr;

Function morphBinopRRC now extracts this flags field and uses it in the call to
vmimtBinopRRC:

static OR1K_MORPH_FN(morphBinopRRC) {

vmiBinop op state->attrs->binop;

vmiReg rd = getGPR(state->info.rl);
vmiReg ra = getGPR(state->info.r2);
Uns32 c = state->info.c;

vmiFlagsCP flags = state->attrs->flags;

vmimtBinopRRC(OR1K_BITS, op, rd, ra, c, flags);
}

In the specific example of the OR1K processor, the bitwise logical operations do not use
or affect any processor flags. This is indicated by specifying a null pointer for the flags
argument in the or1kMorphTable initialization:

[OR1K_IT_ANDI]
[OR1K_IT_ORI]
[OR1K_IT_XORI]

{morphCB:morphBinopRRC, binop:vmi_AND, flags:0 3},
{morphCB:morphBinopRRC, binop:vmi_OR, flags:0
{morphCB:morphBinopRRC, binop:vmi_XOR, flags:0

3
}

© 2022 Imperas Software Limited.www.OVPworld.org Page 61 of 321

OVP Processor Modeling Guide

The remaining arithmetic operations can generate carry and overflow flags, and (in the
case of instruction I.adc) take a carry flag as input. Other possible output flags do not
exist on the OR1K. This is indicated using a vmiFlags structure flagsCo:

const vmiFlags flagsCO = {

OR1K_CARRY_CONST, // offset to carry in flag
{
OR1K_CARRY_CONST, // offset to carry out flag
VMI_NOFLAG_CONST, // parity flag not used
VMI_NOFLAG_CONST, // zero flag not used
VMI_NOFLAG_CONST, // sign flag not used
OR1K_OVERFLOW_CONST // offset to overflow flag
}

};
The new FlagsCo structure is used in the orikMorphTable initialization like this:

[OR1K_IT_ADDI] = {morphCB:morphBinopRRC, binop:vmi_ADD, flags:&flagsCO},
[OR1K_IT_ADDIC] = {morphCB:morphBinopRRC, binop:vmi_ADC, flags:&flagsCO},
[OR1K_IT_MULI] = {morphCB:morphBinopRRC, binop:vmi_IMUL, flags:&flagsCO},

In detail, F1agsCO specifies that:

1. Any input carry required by the arithmetic operation should be obtained from the
processor structure at offset OR1K_CARRY_CONST, specified in orikStructure.h.
This corresponds to the carry Boolean field in the structure.

2. Any output carry generated by the arithmetic operation should be written to the
processor structure at offset OR1K_CARRY_CONST.

3. Any output overflow generated by the arithmetic operation should be written to
the processor structure at offset OR1K_OVERFLOW_CONST.

4. Any other output flags generated by the arithmetic operations should be discarded
(indicated by using the special value VM1_NOFLAG_CONST in the appropriate
vmiFlags structure field).

5. The carry flag should not be negated when used as an input and no flags should be
negated on output. Therefore, the negate field of flagscCo is initialized to the
default zero value (vmi_FN_NONE) by omitting it from the structure initializer.

Note what happens in morphBinopRRC when the output register rd is r0. Recall that
r0 is hardwired to zero on the OR1K processor. What should happen to the processor
flags for an instruction where the output register is ro? The result should be discarded
but changes to the flag values preserved. This can be indicated to the VMI morph-
time API by specifying the special value VM1_NOREG as the destination register to
vmimtBinopRRC.

8.2 Validating Flag Behavior with Tests

For even apparently simple instructions like 1.addic, it is clear that there are already a
number of separate cases to be tested. An ideal test plan should cover the following
options in various combinations:

© 2022 Imperas Software Limited.www.OVPworld.org Page 62 of 321

OVP Processor Modeling Guide

NoakwnE

target register rd of ro-r31
target register rd of ro
source register ra of r1-r31
source register ra of ro
validate carry output generated when required
validate overflow output generated when required
validate carry input used when required

File asmtest.S in directory 5.orikBehaviorFlags/application is an example of how this
could be done.

-global _start

_start:

.addi
.addi
.addi
.addi
-muli
-muli
.addi

.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic

.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic
.addic

// TEST
ri,r0,0 // rl
r2,r0,1 // r2
r3,r0,-1 // r3

r4,r0,0x800 // r4
r4,r4,0x800 // r4
r4,r4,0x200 // ra
r5,r4,-1 /7 r5

r20,r0,-1
r20,r0,0
r20,r0,1
r20,rl1,-1
r20,r1,0
r20,r1,1
r20,r2,-1
r20,r2,0
r20,r2,1
r20,r3,-1
r20,r3,0
r20,r3,1
r20,r4,-1
r20,r4,0
r20,r4,1
r20,r5,-1
r20,r5,0
r20,r5,1

ro,r0,-1
ro,r0,0
ro,r0,1
ro,rl,-1
ro,r1,0
ro,rl,1
ro,r2,-1
ro,r2,0
ro,r2,1
ro,r3,-1
ro,r3,0
ro,r3,1
ro,r4,-1
ro,r4,0
ro,r4,1
ro,r5,-1
ro,r5,0
ro,r5,1

PROLOGUE

0

1

-1
0x00000800
0x00400000
0x80000000
OX7FFFFfff

© 2022 Imperas Software Limited.www.OVPworld.org

Page 63 of 321

OVP Processor Modeling Guide

-global exit
exit:
1.addi ri,r2,0

Run the application using this command:

platform/harness.$IMPERAS_ARCH.exe —trace -—traceregs \
-—program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul’
Info “"cpul®, 0x0000000001000074: 1.addi rl,r0,0x0
Info "cpul® REGISTERS
CPU cpul (instruction 1):
0: 00000000 00000000 00000000 deadbeef

16: deadbeef deadbeef deadbeef deadbeef

32: deadbeef deadbeef deadbeef deadbeef

48: deadbeef deadbeef deadbeef deadbeef

64: deadbeef deadbeef deadbeef deadbeef

80: deadbeef deadbeef deadbeef deadbeef

96: deadbeef deadbeef deadbeef deadbeef

112: deadbeef deadbeef deadbeef deadbeef

128: deadbeef 08daa790

. (many lines cut) ..

Info “"cpul®, 0x0000000001000118: l1.addic rO0,r5,0x0
Info "cpul®™ REGISTERS
CPU cpul (instruction 42):
0: 00000100 00000000 00000000 00000001
16: FFFFFFFF 80000000 7FFFFFFF deadbeef
32: deadbeef deadbeef deadbeef deadbeef
48: deadbeef deadbeef deadbeef deadbeef
64: deadbeef deadbeef deadbeef deadbeef
80: deadbeef 80000000 deadbeef deadbeef
96: deadbeef deadbeef deadbeef deadbeef
112: deadbeef deadbeef deadbeef deadbeef
128: deadbeef 08daa790
Info “cpul®, 0x000000000100011c: l.addic rO,r5,0x1
Info "cpul®™ REGISTERS
CPU cpul (instruction 43):
0: 00000100 00000000 00000000 00000001
16: FFFFFFFF 80000000 7FFFFFFF deadbeef
32: deadbeef deadbeef deadbeef deadbeef
48: deadbeef deadbeef deadbeef deadbeef
64: deadbeef deadbeef deadbeef deadbeef
80: deadbeef 80000000 deadbeef deadbeef
96: deadbeef deadbeef deadbeef deadbeef
112: deadbeef deadbeef deadbeef deadbeef
128: deadbeef 08daa790
Info "cpul®, 0x0000000001000120: 1.addi rl,r2,0x0
Processor "cpul® terminated at "exit", address 0x1000120
Info "cpul®™ REGISTERS
CPU cpul (instruction 44):
0: 00000000 00000000 00000001 00000001
16: FFFFFFFF 80000000 7FFFFFFF deadbeef
32: deadbeef deadbeef deadbeef deadbeef
48: deadbeef deadbeef deadbeef deadbeef
64: deadbeef deadbeef deadbeef deadbeef
80: deadbeef 80000000 deadbeef deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org Page 64 of 321

OVP Processor Modeling Guide

96: deadbeef deadbeef deadbeef deadbeef
112: deadbeef deadbeef deadbeef deadbeef
128: deadbeef 08daa790

8.3 Model-Specific Dump Format

Comparing the output from the above example with that from the simple behavioral
model (section 7.3), there is a significant difference in format because each register dump
now has 34 words (136 bytes) instead of 33 words (132 bytes). This is because adding the
flags to the processor structure has increased its size. It also isn’t clear what the dump is
showing: which values represent general purpose registers, which represent flags, and
which are supplemental values (for example the busPorts pointer) which do not
represent true processor state at all? To address this problem, we need to add a model-
specific register dump routine. A template model for the OR1K with this routine added
can be found in:

$IMPERAS_HOME/Examples/Models/Processor/6.orlkBehaviorDump

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/6.or1kBehaviorDump .

Compile the model, harness and application using the make command:

cd 6.orlkBehaviorDump
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

8.3.1 Defining Status Register - or1kStructure.h

While implementing the OR1K register dump routine, we will update the processor
model to partially implement the OR1K status register (sr). This is a 32-bit register
which must be added to the processor definition in orikStructure.h as follows:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits

// processor structure
typedef struct orilkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag
Bool branchFlag; // branch flag
Uns32 regs[OR1K_REGS]; // basic registers

© 2022 Imperas Software Limited.www.OVPworld.org Page 65 of 321

OVP Processor Modeling Guide

uUns32 SR;

vmiBusPortP busPorts;

} orik,

The status register bits are conveniently accessed using these macros:

*orlkP;

// status register

// Bit definitions for the SR register

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SPR_SR_CID

SPR_SR_SUMRA

SPR_SR_FO
SPR_SR_EPH
SPR_SR_DSX
SPR_SR_OVE
SPR_SR_OV
SPR_SR_CY
SPR_SR_F
SPR_SR_CE
SPR_SR_LEE
SPR_SR_IME
SPR_SR_DME
SPR_SR_ICE
SPR_SR_DCE
SPR_SR_IEE
SPR_SR_TEE
SPR_SR_SM

0xf0000000
0x00010000
0x00008000
0x00004000
0x00002000
0x00001000
0x00000800
0x00000400
0x00000200
0x00000100
0x00000080
0x00000040
0x00000020
0x00000010
0x00000008
0x00000004
0x00000002
0x00000001

// bus port descriptions

Context ID

Supervisor SPR read access

Fixed one

Exception Prefix High
Delay Slot Exception
Overflow flag Exception
Overflow flag

Carry flag

Condition Flag

CID Enable

Little Endian Enable
Instruction MMU Enable

Data MMU Enable

Instruction Cache Enable
Data Cache Enable

Interrupt Exception Enable
Tick timer Exception Enable
Supervisor Mode

8.3.2 Adding Register Dump - orlkUtils.c
This file implements the OR1K register dump function using the vM1_DEBUG_FN macro,
defined in vmiDbg.h. The function is as follows:

VMI_DEBUG_FN(orlkDumpRegisters) {

orlkP orlk = (orlkP)processor;
uUns32 i = 0;
vmiPrintf(”

\n");

// print general-purpose registers

whi le (i<OR1K_REGS) {

}

// newline if required before derived registers

vmiPrintf(" R%-2u: %08x",

i++;

if(1(&3)) {

vmiPrintf('\n");

} else {

}

vmiPrintf(”

if(i&3) {

}

vmiPrintf('\n");

// flags
vmiPrintf(
" BF:%u CF:%u OF:%u ',

");

i, orlk->regs[i]);

© 2022 Imperas Software Limited.www.OVPworld.org

Page 66 of 321

OVP Processor Modeling Guide

orlk->branchFlag,
orlk->carryFlag,
orlk->overflowFlag

);

// program counter
vmiPrintf("" PC : %08x ', (Uns32)vmirtGetPC(processor));

// status register
vmiPrintf("" SR : %08x ", orlkGetSR(orlk));

vmiPrintfC\p--------------- - ——— ——
\n\n"");
}

The register dump function is passed a single vmiProcessorP argument, indicating the
processor for which to dump registers. The first step is to cast this to an or1kpP type:

orlkP orlk = (orlkP)processor;

Next, the function prints out the values of the OR1K general purpose registers, naming
them ro, r1, r2 and so on. All output is generated using the VMI routine vmiPrintf,
defined in vmiMessage . h:

while(i<OR1K_REGS) {
vmiPrintf("" R%-2u: %08x', i, orlk->regs[i]);
i++;
if(1(i&l3)) {
vmiPrintf(''\n"");

} else {
vmiPrintf(" *);
}

}

Next, the function prints the current settings of the branch, carry and overflow flags:

// flags

vmiPrintf(
" BF:%u CF:%u OF:%u ™
orlk->branchFlag,
orlk->carryFlag,
orlk->overflowFlag

)

8.3.2.1 Printing the Program Counter (PC)

The OR1K processor has a program counter register, PC, which we would like to print in
the dump routine. Until this point, we have not modeled the processor program counter at
all; how should it be done?

One solution would be to introduce an extra pc field into the processor structure, which
we could update at the start of every instruction using a morph-time operation. For
example:

// processor structure
typedef struct orilkS {

© 2022 Imperas Software Limited.www.OVPworld.org Page 67 of 321

OVP Processor Modeling Guide

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool branchFlag; // branch flag

Uns32 regs[OR1K_REGS]; // basic registers

Uns32 SR; // status register

Uns32 PC; // program counter
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;
#define OR1K_PC OR1K_REG(PC)

VMI_MORPH_FN(orl1lkMorphlnstruction) {
vmimtMoveRC(OR1K_BITS, OR1K PC, (Uns32)thisPC);
orlkDecode((ori1kP)processor, thisPC, OR1K_MORPH, 0);

}

However, this is unnecessarily inefficient: we have already seen from the instruction trace
in previous examples that the simulator always knows the address of the current
instruction. Instead of maintaining the program counter value in the model, it would be
much better just to ask the simulator for the current program counter value when we need
it. A routine to give exactly what is required is available in the VMI run-time interface
(defined in file vmiRt_h):

//

// Return the current program counter for a processor
//

Addr vmirtGetPC(vmiProcessorP processor);

The OR1K register dump function uses this as follows:

vmiPrintf(*" PC : %08x ', (Uns32)vmirtGetPC(processor));

This highlights a very important point: when writing a processor model, do not
explicitly model register values that are infrequently referenced and can easily be
created on demand. This is always the case for the program counter and very often
the case for processor status registers. Failure to do this will result in processor
models which are much slower than they need to be.

8.3.2.2 Printing the Status Register (sr)

As a second example of creating register values on demand, the OR1K also contains a
status register, sr. This register encodes the values of the three OR1K flags (carry,
overflow and branch) in addition to other status information (whether the processor is in
supervisor mode, for example). The OR1K register dump function prints the current
value of the status register like this:

vmiPrintf(*" SR - %08x ', orlkGetSR(or1lk));

The routine or1kGetsSR is implemented in orikUtils.c like this:

© 2022 Imperas Software Limited.www.OVPworld.org Page 68 of 321

OVP Processor Modeling Guide

Uns32 orlkGetSR(orlkP orlk) {
FillSR(orlk);
return orlk->SR;

}

The routine i 1 1SR updates the current value of the sr register field in the processor
structure so that it includes the three boolean flags:

#define SET BIT(R, C, M \

ifCO { \
(R =CR | (M; \
} else { \
R = (R & ~(M); \

inline static void fillSR(orlkP orilk) {
SET_BIT(or1k->SR, orlk->branchFlag, SPR_SR_F);
SET_BIT(orlk->SR, orlk->carryFlag, SPR_SR_CY);
SET_BIT(or1k->SR, orlk->overflowFlag, SPR_SR_0OV);
¥

In other words, when the model requires the current value of the OR1K status register sr,
it should call the routine orikGetSR, which assembles the value by combining some bits
stored in the processor structure SR field with the current values of the three flag registers.
This is much more efficient than regenerating the full value of sr after each instruction
that could possibly modify flag values.

For completeness, orikuUtils.c also implements a public function to set the sr register,
orlkSetSR. This isn’t used in this example, but will be required in the full model.

#define GET BIT(R, M) \
CRH &) 7?21 :0)

void orlkSetSR(orlkP orlk, Uns32 value) {

// it is never possible to clear the fixed-one (FO) bit
value |= SPR_SR_FO;

// set the SR
orlk->SR = value;

orlk->branchFlag GET_BIT(value, SPR_SR_F);
orlk->carryFlag GET_BIT(value, SPR_SR CY);

// set the current branch flag, carry flag and overflow flag from the SR
orlk->overflowFlag = GET_BIT(value, SPR_SR_0V);

}

The function or1kSetSR extracts the flag bits from the new value of the status register sr
and copies them into the flag fields in the processor model structure so that consistency is
maintained.

8.3.3 Initializing Status Register - orlkMain.c
The constructor has been changed to initialize the new status register sr:

© 2022 Imperas Software Limited.www.OVPworld.org Page 69 of 321

OVP Processor Modeling Guide

VMI_CONSTRUCTOR_FN(orlkConstructor) {

}

orlkP orlk = (orlkP)processor;
uns32 i;

// initialize general purpose registers

for(i=2; i<OR1K_REGS; i++) {
orlk->regs[i] = Oxdeadbeef;

}

// initialize status register SR
orlk->SR = SPR_SR_FO | SPR_SR_SM;

// create bus port specifications
newBusPorts(orlk);

8.3.4 Dump Function Registration - or1kAttrs.c
The register dump routine has been added to the vmi 1ASAttr structure for the OR1K:

const vmilASAttr modelAttrs = {

1/1//1/7777777/77/77/777/77/7/////7////////////////////7////7////////////////7777
// VERSION & SIZE ATTRIBUTES
1/1/7/7777777777777/7777/77///////////////7///////7//////7//////////////7//7777

-versionString = VMI_VERSION,
-modelType = VMI_PROCESSOR_MODEL,
.dictNames = dictNames,

.cpuSize = sizeof(orilk),

L11177777777777777777777777777777/77777///7777////7777///77/77////7/7///77/
// CREATE/DELETE ROUTINES
L11171777777777777777777777777777/777777//7777////7777///7777////7/7///77/

orlkConstructor,
orlkDestructor,

.constructorCB =
.destructorCB =
L1117 7777777777/777777/7777/7/7/7777/7/77/7/7//7/77/7//7/7/77/7///7/77/77/77/777/7
// MORPHER CORE ROUTINES

L1117 7777777777/7/7777/7777/7/7/7777/7/77/7/7/77/77/7/7/7/7/77/7//7/7/77/7//77/777

-morphCB = orilkMorphlnstruction,
/1/1/177777777777777777777777777/77/77/77/7/77//77/77////7/7//77/7//777/7777777

// SIMULATION SUPPORT ROUTINES
L111717777777777777777777777777777/7777///77777///7777///77/77////7//77//7//

.getEndianCB = orlkGetEndian,
.nextPCCB = orlkNextlnstruction,
.disCB = orlkDisassemble,

L111777777777777777777777777777777/7777//777777///7777///7/7/7////7//7//7/7/
// REGISTER ACCESS SUPPORT ROUTINES (DEBUGGER & SEMIHOSTING)
L111717777777777777777777777777777/7777///77777///7777///77/77////7//77//7//

-debugCB = orilkDumpRegisters,

L11177777777777777777777777777777777777//77777////7777///77/77////7/7///7/77
// PORT ROUTINES

© 2022 Imperas Software Limited.www.OVPworld.org

Page 70 of 321

OVP Processor Modeling Guide

1/1//1/7777777777777/7777/77////7//////////////////7//7//////////////////7//7777

-busPortSpecsCB = orilkGetBusPortSpec,

1/1//1/77777777/777777777/77///7/7/7////7///////7//////////////////////////7777
INFO ROUTINE
1/1//1/7/77777777/77/77777/7/////77//////////////7////7////////////////////7//7777

// PROCESSOR

-procInfoCB = orlkProclInfo

};
8.4

Run the platform using the assembler executable file:

Validating Register Dumping with Point Tests

platform/harness.$IMPERAS_ARCH.exe —trace —traceregs \
-—program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”

Info "cpul®, 0x0000000001000074:
Info "cpul® REGISTERS

: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef

RO
R4 :
R8
R12:
R16:
R20:
R24:
R28:

BF:0 CF:0 OF:0

Info "cpul”, 0x0000000001000078:
"cpul® REGISTERS

- 00000000
: deadbeefF
: deadbeef

Info

R12:
R16:
R20:
R24:
R28:

BF:0 CF:0 OF:O

- 00000000

deadbeef

: deadbeefF

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

- 00000000
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: 01000078

= 00000000
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: deadbeef
: deadbeefF
: 0100007c

1.addi rl,r0,0x0
R2 : deadbeef R3
R6 : deadbeef R7
R10: deadbeef R11
R14: deadbeef R15
R18: deadbeef R19
R22: deadbeef R23
R26: deadbeef R27:
R30: deadbeef R31:
SR : 00008001

1.addi r2,r0,0x1
R2 : 00000001 R3
R6 : deadbeef R7
R10: deadbeef R11
R14: deadbeef R15
R18: deadbeef R19
R22: deadbeef R23
R26: deadbeef R27
R30: deadbeef R31
SR : 00008001

deadbeef
deadbeef

: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef
: deadbeef

Now the trace output is much easier to understand because registers are printed with

meaningful names.

8.5

Derived Flags

We have seen that the VMI API allows any of the sign, carry, overflow, zero or parity
flags to be generated by an operation. It is often required to derive more complex flags
from these: for example, it may be required to implement an unsigned below-or-equal

© 2022 Imperas Software Limited.www.OVPworld.org

Page 71 of 321

OVP Processor Modeling Guide

condition flag, which is true if either the carry flag is set or the zero flag is set. The best
approach is as follows:

1. generate the sign, carry, overflow, zero or parity flags as required as true
processor registers;

2. use binary operations with width 8 to generate the derived flag using the basic
flags as arguments as described below.

As an example, suppose that the OR1K model has been modified to implement sign and
zero flags and a new temporary flag as follows:

#define OR1K_REGS 32 // basic OR1K registers
#define OR1K_BITS 32 // register size in bits

// processor structure
typedef struct orilkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool zeroFlag; // carry flag

Bool signFlag; // overflow flag

Bool branchFlag; // branch flag

Bool tempFlag; // temporary flag

Uns32 regs[OR1K_REGS]; // basic registers
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

and that new accessor macros for these flags have been added:

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(_F) VMI_CPU_REG(orlkP, _F)
#define OR1K_CPU_TEMP(_F) VMI_CPU_TEMP(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_R])
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)
#define OR1K_ZERO OR1K_CPU_REG(zeroFlag)
#define OR1K_SIGN OR1K_CPU_REG(signFlag)
#define OR1K_TF OR1K_CPU_TEMP(tempFlag)

Given these changes, use the following sequences to generate a derived flag in tempFlag:

Unsigned below-or-equal (CF==1) || (ZF==1):
vmimtBinopRRR(8, vmi_OR, OR1K_TF, OR1K_CARRY, OR1K_ZERO, 0);

Signed less-than (SF1=0F):
vmimtBinopRRR(8, vmi_XOR, OR1K_TF, OR1K_SIGN, OR1K_OVERFLOW, 0);

Signed less-than-or-equal ((zF==1) || (SF!=0F)):
vmimtBinopRRR(8, vmi_XOR, OR1K_TF, OR1K_SIGN, OR1K_OVERFLOW, 0);
vmimtBinopRR(8, vmi_OR, OR1K TF, OR1K_ZERO, 0);

© 2022 Imperas Software Limited.www.OVPworld.org Page 72 of 321

OVP Processor Modeling Guide

Complement of any flag:
vmimtBinopRRC(8, vmi_XOR, OR1K _TF, <flag_reg>, 1, 0);

Note that the recommended way to complement a flag is to exclusive-or it with 1.

© 2022 Imperas Software Limited.www.OVPworld.org Page 73 of 321

OVP Processor Modeling Guide

9 Implementing Unconditional Jump Instructions

Up to this point, the OR1K examples have executed straight line code only. We will now
implement unconditional jump instructions to allow simple non-linear programs to be
run.

9.1 The Template Unconditional Jump Model

A template model for the OR1K processor implementing unconditional jump instructions
can be found in:

$IMPERAS_HOME/Examples/Models/Processor/7.or1kBehaviorUncondJump

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/7 .orlkBehaviorUncondJump .

Compile the model, harness and application using the make command:

cd 7.orlkBehaviorUncondJump
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

9.1.1 Defining Link Register - or1kStructure.h
The OR1K has a link register, r9, which is set to required return address in a jump-and-
link (call) instruction:

#define OR1K_LINK 9 // link register index (R9)
#define OR1K_LINKREG OR1K_REG(OR1K_LINK)

9.1.2 Defining Jump Instruction Types - or1lkDecode.h
The OR1K unconditional jump instructions have been added to the
orlklInstructionType enumeration:

typedef enum orlklnstructionTypeE {

// arithmetic instructions
OR1K_ IT_ADDI,
OR1K_IT_ADDIC,
OR1K_IT_ANDI,

OR1K_IT ORI,

OR1K_IT_XORI,

OR1K IT_MULI,

© 2022 Imperas Software Limited.www.OVPworld.org Page 74 of 321

OVP Processor Modeling Guide

// branch instructions
OR1K_IT_J,

OR1K_IT_JR,
OR1K_IT_JAL,
OR1K_IT_JALR,

// KEEP LAST: for sizing the array
OR1K_IT_LAST

} orlklInstructionType;

9.1.3 Decoding Jump Instructions - or1lkDecode.c

New macros have been added for extraction of a register index defined in bits 15:11 of an
instruction and a signed offset from bits 25:0 of an instruction (the signed offset is
multiplied by 4):

#define OP_B(_I) WIDTH(S, (C_1)>>11)
#define OP_T(_I) (((Int32) (WIDTH(26, (_1)>>0)<<6))>>4)

The enumerations describing register and constant types have been enhanced:

typedef enum regSpeckE {

R_NA, // no register
R D, // register at bits 25:21
R_A, // register at bits 20:16
R B, // register at bits 15:11
} regSpec;
//
// Define the location of constant in an instruction
//
typedef enum constSpecE {
C_NA, // no register
C s1, // signed constant in bits 15:0
c u1, // unsigned constant in bits 15:0
CT, // signed target offset in bits 25:0

} congtSpec;

The OR1K unconditional jump instructions have been added to the attrsArray table in a
similar manner as for previous instructions:

const static opAttrs attrsArray[OR1K_IT_LAST+1] = {

// handle arithmetic instructions (second argument constant)

ATTR_SET_ADDI (ADDI, ™addi™, "™J100111.... ... @ i aiaanan-- 1',
ATTR_SET_ADDI (ADDIC, "addic™, "J101000.o eia e e ',
ATTR_SET_ANDI (ANDI, ™Mandi™, "J101001.... @ @ iiooeoiaana-- 1',
ATTR_SET_ANDI (ORI, ori", 1101010, - - e ',
ATTR_SET_ADDI (XORI, "xori™, "™]J101011.. @ i 1',
ATTR_SET_ADDI (MULI, "muli™, "J1012100. @i e I'D,
// handle branch instructions

ATTR_SET_BF Q, "y, "JO00000. - - e 1',
ATTR_SET_JR R, yre, MJ010001 . i I'D,
ATTR_SET_BF (JAL, “jal", MJO0000L . - .o 1',
ATTR_SET_JR (JALR, "jalr™, "™]010010. i I'D,

© 2022 Imperas Software Limited.www.OVPworld.org Page 75 of 321

OVP Processor Modeling Guide

The new macros ATTR_SET_BF and ATTR_SET_JR describe jump instructions that take a
relative offset and register argument, respectively:

#define ATTR_SET_BF(_NAME, _OPCODE, _DECODE) \
[ORIK_IT_## NAME] = {
member : # NAME,
opcode : _OPCODE,
format : FMT_TARGET,
decode : _DECODE,
© - CT

O

}

#define ATTR_SET_JR(_NAME, _OPCODE, _DECODE) \
[ORIK_IT ## NAME] = {
member : # NAME,
opcode : _OPCODE,
format : FMT_R1,
decode : _DECODE,
rl : R B

A d

}

Function getReg has a new case to handle a register in the rb position in an instruction:

static Uns32 getReg(Uns32 instruction, regSpec rs) {
Uns32 result = 0;

switch(rs) {

case R_NA:
break;

case R_D:
result = OP_D(instruction);
break;

case R_A:
result
break;

case R_B:
result = OP_B(instruction);
break;

default:
VMI_ABORT ("'unimplemented case'); // LCOV_EXCL_LINE
break;

OP_A(iinstruction);

return result;

}

And function getConst now handles a constant target address (note that the offset from
the instruction is added to the current PC to get the result in this case):

static Uns32 getConst(Uns32 instruction, constSpec cs, Uns32 thisPC) {
Uns32 result = 0;

switch(cs) {
case C_NA:
break;
case C_S1:

© 2022 Imperas Software Limited.www.OVPworld.org Page 76 of 321

OVP Processor Modeling Guide

result = OP_Si(instruction);
break;
case C_U1l:
result = OP_Ul(instruction);
break;
case C_T:
// PC-relative address
result = thisPC + OP_T(instruction);
break;
default:
VMI_ABORT(*"'unimplemented case'™); // LCOV_EXCL_LINE
break;

}

return result;

}

9.1.4 Jump Instruction Formats - orlkDisassembleFormats.h
A new token has been added for a target address, and new formats for instructions with a
single register argument and an address argument:

//

// These are placeholders in disassembly decoder

//

#define EMIT_R1 “\001"

#define EMIT_R2 “\002*

#define EMIT_XIMM “\003"

#define EMIT_TARGET “\004*

//

// These are placeholders in disassembly format strings
//

#define EMIT_R1_S "\001"

#define EMIT_R2_S "\002"

#define EMIT_XIMM_S "\003"

#define EMIT_TARGET_S "\004"

//

// These are disassembly format strings

//

#define FMT_TARGET EMIT_TARGET_S

#define FMT_R1 EMIT_R1_S

#define FMT_R1_R2_XIMM EMIT_R1_S ", EMIT_R2_S "," EMIT_XIMM_S

9.1.5 Jump Instruction Disassembly - or1kDisassemble.c
A new function putTarget has been added to print a target address:

static void putTarget(char **result, Uns32 value) {
char tmp[32];
sprintf(tmp, 0x%08x', value);

putString(result, tmp);
}

And function disassembleFormat has been enhanced to handle the new target address
token:

© 2022 Imperas Software Limited.www.OVPworld.org Page 77 of 321

OVP Processor Modeling Guide

static void disassembleFormat(

orlkP

orlk,

orlklInstructioninfoP info,

char

const char

Bool

**result,
*format,
uncooked

) {

lines omitted .

// generate arguments in appropriate format
while((ch=*format++)) {

switch(ch) {

case EMIT_R1:
putUncookedKey(result, * R1"™, uncooked);
putRegister(result, info->rl);
break;

case EMIT_R2:
putUncookedKey(result, * R2"™, uncooked);
putRegister(result, info->r2);
break;

case EMIT_XIMM:
putUncookedKey(result, " CX", uncooked);
putX(result, info->c);
break;

case EMIT_TARGET:
putUncookedKey(result, " T", uncooked);
putTarget(result, info->c);
break;

default:

if(luncooked) {putChar(result, ch);}
break;

}

9.1.6 Implementing Jump Instructions - orlkMorph.c
This file has been upgraded to implement morph callback functions for the jump
instructions, as described below.

The main morpher entry point function, orikMorphlinstruction, has been modified to
indicate whether the current instruction is in a delay slot:

typedef struct orlkMorphStateS {

orlkinstructioninfo info; // instruction description (from decoder)
orlkMorphAttrCP attrs; // instruction attributes

orlkP orlk; // current processor

Bool inDelaySlot; // true if iInstruction is in delay slot

} orlkMorphState;
VMI_MORPH_FN(orlkMorphlnstruction) {

orlkP orlk = (orlkP)processor;

© 2022 Imperas Software Limited.www.OVPworld.org Page 78 of 321

OVP Processor Modeling Guide

orlkMorphState state = {{0}};

// decode instruction
orlkDecode(orlk, thisPC, &state.info);

// get morpher attributes for the decoded instruction and initialize other
// state fields
state.attrs
state.orlk

state. inDelaySlot

&orlkMorphTable[state. info.type];
orlk;
inDelaySlot;

if(state.attrs->morphCB) {
// translate the instruction
state.attrs->morphCB(&state);

} else {

// here if no translation callback specified
emitUnimplemented(&state);

}

When performing just-in-time compilation using the model morph callback, the simulator
always knows whether the current instruction is a delay slot instruction. It provides this
information to the model morpher entry point function as an argument, inDelaySlot, of
the call to the vM1_MORPH_FN of the model.

There are new entries in the orlkMorphTable array for the unconditional jumps:

const orlkMorphAttr orlkMorphTable[OR1K IT_LAST+1] = {

// handle arithmetic instructions (second argument constant)

[OR1K_IT_ADDI] = {morphCB:morphBinopRRC, binop:vmi_ADD, flags:&flagsCO},
[OR1K_1T_ADDIC] {morphCB:morphBinopRRC, binop:vmi_ADC, flags:&flagsC0},
[OR1K_IT_ANDI] {morphCB:morphBinopRRC, binop:vmi_AND, flags:0 1.
[OR1K_IT_ORI] {morphCB:morphBinopRRC, binop:vmi_OR, flags:0 1.
[OR1K_IT_XORI] {morphCB:morphBinopRRC, binop:vmi_XOR, flags:0 ,
[ORIK_I1T_MULI] {morphCB:morphBinopRRC, binop:vmi_IMUL, flags:&fFlagsCO},

// handle branch instructions

[OR1K_IT_J] = {morphCB:morphJdump, link: False},
[OR1K_IT_JR] = {morphCB:morphJumpReg, link: False},
[OR1K_I1T_JAL] = {morphCB:morphJdump, link: True },
[OR1IK_IT_JALR] = {morphCB:morphJumpReg, link: True %},

};

A new link field in the orikMorphAttr structure indicates whether this is a jump-and-
link instruction. It is True for 1.jr and 1. jalr instructions:

typedef struct orlkMorphStateS {

orlkinstructioninfo info; // instruction description (from decoder)
orlkMorphAttrCP attrs; // instruction attributes

orlkP orilk; // current processor

Bool inDelaySlot; // true if instruction is in delay slot

} orlkMorphState;

9.1.6.1 Direct Unconditional Jump Instructions (I.j and 1. jal)
The OR1K supports two direct unconditional jump instructions that we will implement
now. Instruction I_j is a simple jump to a target address. Instruction 1.jal is a jump-

© 2022 Imperas Software Limited.www.OVPworld.org Page 79 of 321

OVP Processor Modeling Guide

and-link instruction: there is a jump to a target address and a return address is saved in the
link register (r9). Both these instructions are implemented with a single function:
morphJump:

static OR1K_MORPH_FN(morphJdump) {

Uns32 toAddress = state->info.c;

uUns32 nextAddress = state->info.thisPC + 8;

Bool inDelaySlot = state->inDelaySlot;

Bool link = state->attrs->link;

vmiReg linkReg = link ? OR1K_LINKREG : VMI_NOREG;

vmiJumpHint hint;

// select an appropriate jump hint

if(link) {

hint = vmi_JH CALL;
} else {

hint = vmi_JH_NONE;
}

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpDelaySlot(
1, // slotOps
nextAddress, // 1inkPC
toAddress, // toAddress
l1inkReg, // linkReg
hint, // hint
0 // slotCB
);
s

}

Whether the required instruction is a jump or a jump-and-link is specified by the Iink
field of the or1kMorphAttr structure described previously. For these direct jumps, the
jump target is calculated from the current instruction address plus a signed offset encoded
in a field in the instruction, but this complexity is implemented in the decoder: the
morpher callback is presented with a value indicating the full target address:

Uns32 toAddress = state->info.c;
The main work of doJump is in these lines:

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpDelaySlot(
1, // slotOps
nextAddress, // 1inkPC
toAddress, // toAddress
linkReg, // linkReg
hint, // hint
0 // slotCB
);
s

© 2022 Imperas Software Limited.www.OVPworld.org Page 80 of 321

OVP Processor Modeling Guide

If the current instruction is a delay slot instruction, both 1_j and 1.jal have no effect. It
is therefore important that we know whether the current instruction is a delay slot so that
appropriate action can be taken.

The morph-time function vmimtUncondJumpDelaySlot is used to describe the jump to

the simulator. This function has six arguments:

1. slotOps is the number of instructions in the delay slot of this jump instruction.
These OR1K instructions have one delay slot instruction. A value of 0 for
slotOps specifies a jump with no delay slot instructions.

2. linkpPcC is used only if the jump is a jump-and-link, in which case it specifies the
address that should be placed in the link register. For the OR1K, this is the
address of the instruction after the delay slot instruction, i.e. thisPC+8.
toAddress is the jump target address.

4. linkReg is used to specify the link register for the jump, if this is a jump-and-link.
If there is no link register (this is a simple jump), the value vMI1_NOREG should be
passed.

5. hintisused to help the simulator understand what kind of jump this is. In this
chapter, we will see three values used:

w

a. vmi_JH_ CALL: the jump is a call to a function;
b. wvmi_JH_RETURN: the jJump is a return from a function;
C. vmi_JH_NONE: the jJump is neither a call nor a return.

Jump hints do not affect the behavior of a simulation but do improve performance
(the example in later section 11.2.3 demonstrates this).

In this function, the instruction 1. jal has a call hint of vmi_JH_CALL, and
instruction 1 _j has a call hint of vmi_JH_NONE.

6. slotCB, if non-NULL, specifies a post-delay-slot callback function, taking the
current processor as its only argument. The function is called just before the
delayed branch is taken. If the branch is not taken for any reason (for example, if
there is a simulated exception in the delay slot instruction), then the callback is
not called.

The post-delay-slot callback is typically used to update processor state that should
only be changed if the branch is taken. For example, if the instruction implements
a switch to kernel mode then the state change reflecting this should typically be
done in the post-delay-slot callback.

9.1.6.2 Indirect unconditional Jump Instructions (I.jrand 1. jalr)

The OR1K also has two indirect conditional jump instructions. Instruction 1.jr is a jump
to a target address specified in a register. Instruction I.jalr is a jump-and-link
instruction: there is a jump to a target address specified in a register, and a return address
is saved in the link register (r9). Both these instructions are implemented with a single
function: morphJumpReg:

static OR1K_MORPH_FN(morphJdumpReg) {

Uns32 ri = state->info.rl;
vmiReg toReg = getGPR(rl);
uUns32 nextAddress = state->info.thisPC + 8;

© 2022 Imperas Software Limited.www.OVPworld.org Page 81 of 321

OVP Processor Modeling Guide

Bool inDelaySlot = state->inDelaySlot;
Bool link = state->attrs->link;
vmiReg 1inkReg = link ? OR1K_LINKREG : VMI_NOREG;

vmiJumpHint hint;

// select an appropriate jump hint
if(link) {
hint = vmi_JH_CALL;
} else if(r1==0R1K_LINK) {
hint = vmi_JH_RETURN;
} else {
hint = vmi_JH_NONE;
}

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpRegDelaySlot(
1, // slotOps
nextAddress, // 1inkPC
toReg, // toReg
linkReg, // linkReg
hint, // hint
0 // slotCB
)
}

}

Whether the required instruction is a jump or a jump-and-link is again specified by the

1ink field of the or1kMorphAttr structure described previously. For these indirect
jumps, the jump target address is in a register encoded within the instruction:

rl
toReg

Uns32
vmiReg

state->info.rl;
getGPR(rl);

The main work of doJumpReg is in these lines:

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpRegDelaySlot(
1, // slotOps
nextAddress, // linkPC
toReg, // toReg
l1inkReg, // linkReg
hint, // hint
0 // slotCB

Dk
}

Just as for direct jumps, indirect jumps have no effect in the delay slot of another jump.

The morph-time function vmimtUncondJumpRegDe laySlot is used to describe the jump
to the simulator. This function has six arguments; all except the third argument are
exactly the same as for vmimtUncondJumpDelaySlot (described in section 9.1.6.1). The
third argument is used to specify the register containing the jump target address.

© 2022 Imperas Software Limited.www.OVPworld.org Page 82 of 321

OVP Processor Modeling Guide

The jump hint to use with the indirect jump is determined as follows:

// select an appropriate jump hint
if(link) {

hint = vmi_JH_CALL;

} else if(r1==0R1K_LINK) {
hint = vmi_JH RETURN;

} else {
b

hint = vmi_JH NONE;

In other words, the jJump hint indicates the type of the jump using the following rules:
if the this is a jump-and-link, then assume the jump is a function call;
otherwise, if this is an indirect jump using the OR1K link register (r9), then

1.
2.

3.

9.2

assume the jump is a function return;

otherwise, assume the jump is neither a call nor a return.

Validating Unconditional Jumps with Point Tests
Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”

Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info

“cpul-,
“cpul®,
“cpul-,
“cpul®,
“cpul-,
“cpul®,
“cpul-,
“cpul®,
“cpul-,
“cpul®,
“cpul-,
“cpul”,
“cpul®,
“cpul”,
“cpul®,
“cpul®,
“cpul®,
“cpul®,
“cpul®,
“cpul®,

0x0000000001000074:
0x0000000001000078:
0x000000000100007c:
0x0000000001000080:
0x0000000001000090:
0x0000000001000094:
0x000000000100009c:
0x00000000010000a0:
0x00000000010000a4 :
0x00000000010000b8:
0x00000000010000bc:
0x00000000010000c0:
0x00000000010000a8:
0x00000000010000ac:
0x00000000010000b0:
0x0000000001000084:
0x0000000001000088:
0x00000000010000ac:
0x00000000010000b0:
0x000000000100008c:

1.addi
1.addi
1_jal
1.addi
1.]
1.addi
1.addi
1_jal
1.addi
1.addi
1_jr
1.addi
1.addi
1_jr
1.addi
1_jalr
1.addi
1_jr
1.addi
-addi

rl,r0,0x0
r2,r0,0x0
0x01000090
ri,rl,0x1
0x0100009c
ri,rl,0x1
r8,r9,0x0
0x010000b8
rl,rl,0x1
r10,r9,0x4
r9
ri,rl,0x1
r9,r8,0x0
ro
rl,rl,0x1
rl1o
rl,rl,0x1
ro
rl,rl,0x1
ril,rl1,0x0

Processor "cpul® terminated at "exit", address 0x100008c

- 00000000 R1 : 00000007
: deadbeef R5 : deadbeef
- 01000084 R9 : 0100008c
: deadbeefF R13: deadbeef
: deadbeef R17: deadbeef
: deadbeefF R21: deadbeef
: deadbeef R25: deadbeef
: deadbeefF R29: deadbeef

CF:0 OF:0 PC :- 01000090

R2 : 00000000 R3 :
R6 : deadbeef R7 :
R10: 010000ac R11:
R14: deadbeef R15:
R18: deadbeef R19:
R22: deadbeef R23:
R26: deadbeef R27:
R30: deadbeef R31:

SR - 00008001

deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org

Page 83 of 321

OVP Processor Modeling Guide

The file platform/harness.c has been slightly modified from the previous example: at
the end of the simulation, there is a call to opProcessorRegbDump to display the final

processo

r register state.

The test case application/asmtest.S is as follows:

-global
_start:

-global

exit:

funcl:

forward:

L11117777777777777777777777777777/7777///7777////7777///77/7////7//7//7/7/
// MAIN ROUTINE
L11177777777777777777777777777777/7777///7777////7777////7/7////7//7////7/

_start

1_addi rl,r0,0 // rl = 0 (counts taken jumps)

1.addi r2,r0,0 // r2 = 0 (counts untaken jumps)

1_jal funcl // call funcl

1._addi rl,rl,1 // increment rl1 (delay slot instruction)
1_jalr r10 // call indirect using rl10 (i.e. r10_addr)
1._addi rli,rl,1 // increment rl1 (delay slot instruction)

L1177 7777777777/7777/7/7777/7/7/77777/7/777/7/7/777/7/7/777/77//7/77777/7/7/77777
// EXIT FROM POINT TEST

L1117 7777777777/777777/7777/7/777777/7/77777/7/777/77/7/77777//7/777/77/7/777777
exit

I.addi ri,r2,0
L1117 7777777777/77777777777/7/7/7777/7//77/7/7/7/7/77//7//77/77/7//7/7/77//7/7/77/77/7

// FUNCTION funcl
L1117/ 7777777777/777/77/777/77/7/7/77/7/77/777//7/7/7/77/7/77/7/77/77/7/7/77/77

r10_addr:

func2:

1.} forward // jump forward in this function

1_addi rli,rl,1 // increment rl1 (delay slot instruction)
1._addi r2,r2,1 // ** not executed **

1._addi r8,r9,0 // save return address in r8

1_jal func2 // call func2

1.addi rl,rl,1 // increment rl1 (delay slot instruction)
1.addi ro,r8,0 // restore return address from r8

1_jr ro // return from function

1._addi rli,rl,1 // increment rl1 (delay slot instruction)
I.addi r2,r2,1 // ** not executed **

L1117 /777777777777777777/777777/777/777777/777/77///7/77/7//7//77//77//7/7/77
// FUNCTION func2
L1117 17777777777/777777/777777/777/777/77/777/77///7/77/7//7////7//77//7/7/77

I.addi r1o,r9,4 // save return address+4 in rl0

1_jr ro // return from function

1._addi ri,rl,1 // increment rl1 (delay slot instruction)
1._addi r2,r2,1 // ** not executed **

The test case has been designed to execute each of the jump instructions at least once. To
exercise the 1. jalr instruction, func2 stores the address of label r10_addr in register
r10 to provide an appropriate target for the subsequent 1. jalr.

© 2022 Imperas Software Limited.www.OVPworld.org Page 84 of 321

OVP Processor Modeling Guide

10 Implementing Conditional Jump Instructions

In this chapter, we will implement comparison operations and conditional jumps for the
OR1K. On this processor, conditional jumps are performed using two sets of instructions:
1. two registers (or a register and a constant) are compared using an instruction with
the 1_s¥ prefix (for example, 1.sfeq compares two registers for equality). An
internal branch flag is set based on the comparison result.
2. instructions I.bf and I.bnf¥ then conditionally branch if the flag is true or false,
respectively.

10.1 The Template Conditional Jump Model

A template model for the OR1K processor implementing conditional jump instructions
can be found in:

$IMPERAS_HOME/Examples/Models/Processor/8.or1kBehaviorCondJump

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/8.orlkBehaviorCondJump .

Compile the model, harness and application using the make command:

cd 8.orlkBehaviorCondJump
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

Decoder, disassembler and morpher files have been updated in this example to
implement register-register arithmetic/bitwise and I .nop instructions (previously,
only register-constant arithmetic/bitwise instructions were implemented). These
instructions require no significant new knowledge or techniques and are not directly
relevant to this chapter, so no further detail has been given here.

10.1.1 Defining Branch Flag - or1kStructure.h

The OR1K branch flag is set by the comparison operations and used by the conditional
branch instructions. The flag is represented by a boolean field in the oriks structure,
accessed by the OR1K_BRANCH macro:

#define OR1K_BRANCH OR1K_CPU_REG(branchFlag)

© 2022 Imperas Software Limited.www.OVPworld.org Page 85 of 321

OVP Processor Modeling Guide

10.1.2 Decoding Instructions - orlkDecode. [ch]
The OR1K branch and comparison instructions have been added to the attrsArray table
in a very similar manner as for previous instructions.

The comparison operation decode differs from previous instructions: the decode for
OR1K_IT_SF and OR1K_IT_SFI instructions match 16 distinct instruction types with a
different cmPoP field, but only 10 of these comparison operations are valid. Therefore, to
decode a comparison operation, both the decode pattern and an opcode validity test are
applied. The comparison condition is extracted from the instruction by function
getCondition:

orlkCondition getCondition(Uns32 instruction, Bool isCond) {
orlkCondition result = OR1K_COND_NA;
if(isCond) {

const static orlkCondition map[16] = {
OR1K_COND_EQ, // 0x0: a == b
OR1K_COND_NE, // O0x1: a = b
OR1K_COND_GTU, // Ox2: b (unsigned)
OR1K_COND_GEU, // 0x3: b (unsigned)
OR1K_COND_LTU, // Ox4: b (unsigned)
OR1K_COND_LEU, // 0Ox5: <= b (unsigned)
OR1K_COND_BAD, // 0x6: invalid
OR1K_COND_BAD, // Ox7: invalid
OR1K_COND_BAD, // 0x8: invalid
OR1K_COND_BAD, // 0x9: invalid
OR1K_COND_GTS, // Oxa: a > b (signed)
OR1K_COND_GES, // Oxb: a >= b (signed)
OR1K_COND_LTS, // Oxc: a < b (signed)
OR1K_COND_LES, // Oxd: a <= b (signed)
OR1K_COND_BAD, // Oxe: invalid
OR1K_COND_BAD // Oxf: invalid

RSO GR Y
A}{V

}:

result = map[OP_CMPOP(instruction)];
}

return result;

}:

Function orikDecode validates the condition and sets the instruction type to
OR1K_IT_LAST if it is bad (indicating that decode failed):

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklnstructioninfoP info) {
lines omitted .

info->cond
info->iSuffix

getCondition(instruction, attrs->isCond);
attrs->iSuffix;

// detect invalid condition and indicate that decode failed if found
if(info->cond==0R1K_COND_BAD) {

info->type = OR1K_IT_LAST;
3

© 2022 Imperas Software Limited.www.OVPworld.org Page 86 of 321

OVP Processor Modeling Guide

10.1.3 Disassembling Conditions - orlkDisassemble.c

This file has been upgraded to implement disassembly callback functions for the
comparison and branch instructions. There is a new function putCondition which adds a
condition description to the disassembly string:

static void putCondition(char **result, orlkCondition cond) {

static const char *map[] = {
[OR1K_COND_NA] e

[OR1IK_COND_EQ] = "eq",
[OR1K_COND_NE] = "ne",
[OR1K_COND_GTU] = "gtu",
[OR1K_COND_GEU] = "geu",
[OR1IK_COND_LTU] = "ltu",
[OR1K_COND_LEU] = "leu",
[OR1K_COND_GTS] = "gts",
[OR1K_COND_GES] = "ges",
[OR1IK_COND_LTS] = "lts",
[OR1K_COND_LES] = "les",

[OR1K_COND_BAD] = "'???",
e

putString(result, map[cond]);
b

The condition string is actually embedded within the opcode instead of being a parameter
to it, and may be followed by an i character (for example, I.sfnei). This is handled as
follows:

//

// Emit "i" suffix if required

//

static void putlSuffix(char **result, Bool iSuffix) {

iT(iSuffix) {
putChar(result, "i");

}

}

static void disassembleFormat(
orlkpP orlk,
orlkinstructionlnfoP info,
char **result,
const char *format,
Bool uncooked

) {
char *argStart = (*result)+9;
char ch;
// emit opcode
putString(result, "I1.");
putString(result, info->opcode);
putCondition(result, info->cond);
putlSuffix(result, info->iSuffix);

lines omitted .
b

© 2022 Imperas Software Limited.www.OVPworld.org Page 87 of 321

OVP Processor Modeling Guide

10.1.4 Implementing Conditional Jumps - or1kMorph.c
This file has been upgraded to implement morph callback functions for the comparison
and branch instructions, as described below.

10.1.4.1 Conditional Branch Instructions (I .b¥and I .bnf)
The two branch instructions are implemented with a single function: morphBranch:

static OR1K_MORPH_FN(morphBranch) {

state->info.c;
state->attrs->jumplfTrue;
state->inDelaySlot;

Uns32 toAddress
Bool jumplfTrue
Bool inDelaySlot

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtCondJumpDelaySlot(
1, // slotOps
OR1K_BRANCH, // TlagReg
JumplfTrue, // jumplfTrue
0, // 1inkPC
toAddress, // toAddress
VMI_NOREG, // linkReg
vmi_JH_NONE, // hint
0 // slotCB
)
}

}

Whether the branch should be taken when the flag is set or cleared is specified by the new
JumpIFTrue field in the orlkMorphAttr structure:

typedef struct orlkMorphAttrS {

orlkMorphFn morphCB; // function to translate one instruction
vmiBinop binop; // if a simple binary operation

vmiFlagsCP flags; // flags used by the instruction

Bool JumplfTrue; // whether to branch if condition flag is True
Bool link; // whether to set link register

} orlkMorphAttr;
const orlkMorphAttr orlkMorphTable[OR1K_IT_LAST+1] = {
lines omitted .

// handle branch instructions
[OR1K_1T_BF] = {morphCB:morphBranch, jumplfTrue:True },
[OR1K_1T_BNF] = {morphCB:morphBranch, jumplfTrue:False},

lines omitted .

}:
The main work of morphBranch is in these lines:

if(inDelaySlot) {
// jump in the delay slot does nothing
} else {
vmimtCondJumpDelaySlot(
1, // slotOps

© 2022 Imperas Software Limited.www.OVPworld.org Page 88 of 321

OVP Processor Modeling Guide

}

OR1K_BRANCH, // flagReg
JumplfTrue, // jumplfTrue
0, // 1inkPC
toAddress, // toAddress
VMI_NOREG, // linkReg
vmi_JH_NONE, // hint

0 // slotCB

If the current instruction is a delay slot instruction, both 1.bf and I .bnf have no effect.
Otherwise, the morph-time function vmimtCondJumpDelaySlot is used to describe the
jump to the simulator. This function has eight arguments:

1.
2.

3.

slotOps is the number of instructions in the delay slot of this jump instruction.
flagReg specifies a register in the processor model that is used to determine
whether the branch is taken. Here, we use the OR1K branch flag.

JumpI¥True indicates how the branch register is used. If jump1¥True is non-zero,
the jJump will be taken if the branch register is non zero. Otherwise, the jump will
be taken if the branch register is zero.

1inkPC is used only if the jump is a jump-and-link, in which case it specifies the
address that should be placed in the link register. This does not apply for OR1K
conditional branches.

toAddress is the jump target address.

1inkReg is used to specify the link register for the jump, if this is a jump-and-link.
If there is no link register (as in this case), the value vMI_NOREG should be passed.
hint is used to help the simulator understand what kind of jump this is — see
chapter 9 for more details.

slotCB, if non-NULL, specifies a post-delay-slot callback function, taking the
current processor as its only argument. The function is called just before the
delayed branch is taken. If the branch is not taken, then the callback is not called.
The post-delay-slot callback is typically used to update processor state that should
only be changed if the branch is taken. For example, if the instruction implements
a switch to kernel mode then the state change reflecting this should typically be
done in the post-delay-slot callback.

10.1.4.2 Comparison Instructions
The comparison instructions are implemented with morphCompareRR (for register-register
comparisons) and morphCompareRC (for register-constant comparisons):

static OR1K_MORPH_FN(morphCompareRC) {

vmiReg ra
uUns32 (o}
vmiCondition cond

getGPR(state->info.rl);
state->info.c;
mapCondition(state->info.cond);

vmimtCompareRC(OR1K_BITS, cond, ra, c, OR1K_BRANCH);

}

static OR1K_MORPH_FN(morphCompareRR) {

vmiReg ra
vmiReg rb

getGPR(state->info.rl);
getGPR(state->info.r2);

© 2022 Imperas Software Limited.www.OVPworld.org Page 89 of 321

OVP Processor Modeling Guide

vmiCondition cond = mapCondition(state->info.cond);

vmimtCompareRR(OR1K_BITS, cond, ra, rb, OR1K_BRANCH);
}

The equivalent vmiCondition for an orlkCondition is produced by function
mapCondition:

static vmiCondition mapCondition(orlkCondition cond) {

static const vmiCondition map[] = {

[OR1K_COND_EQ] = vmi_COND_Z, // 0x0: a == b
[OR1K_COND_NE] = vmi_COND_NZ, // Ox1: a !'= b
[OR1K_COND_GTU] = vmi_COND_NBE, // Ox2: a > b (unsigned)
[OR1K_COND_GEU] = vmi_COND_NB, // 0x3: a >= b (unsigned)
[OR1K_COND_LTU] = vmi_COND_B, // 0x4: a < b (unsigned)
[OR1K_COND_LEU] = vmi_COND_BE, // Ox5: a <= b (unsigned)
[OR1K_COND_GTS] = vmi_COND_NLE, // Oxa: a > b (signed)
[OR1K_COND_GES] = vmi_COND_NL, // Oxb: a >= b (signed)
[OR1K_COND_LTS] = vmi_COND_L, // Oxc: a < b (signed)
[OR1K_COND_LES] = vmi_COND_LE, // Oxd: a <= b (signed)
[OR1K_COND_BAD] = -1, // invalid condition

};

return map[cond];

}

Function morphCompareRR uses the morph-time function vmimtCompareRC to describe
the jump to the simulator. This function has five arguments:
1. bits s the bit width of the registers to be compared. All OR1K registers are
OR1K_BITS bits wide (32 in this model).
2. cond describes the comparison that should be made. The members of the
vmiCondition enumeration are specified in vmiTypes.h.
ra specifies the first register argument of the comparison
c specifies the second constant argument of the comparison
5. flag specifies the Uns8 register that should be written with 1 if the condition is
true and 0 if it is false. In this model, the OR1K_BRANCH register is written.

> w

Function morphCompareRR is similar, except that it uses the morph-time function
vmimtCompareRR to describe the jump to the simulator. This function takes identical
arguments to vmimtCompareRC except that argument 4 is a vmiReg register description
instead of a constant.

10.2 Validating Conditional Jumps with Point Tests

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”

© 2022 Imperas Software Limited.www.OVPworld.org Page 90 of 321

OVP Processor Modeling Guide

Info “"cpul®, 0x0000000001000074:
Info "cpul”, 0x0000000001000078:
Info “"cpul®, 0x000000000100007c:
Info "cpul”, 0x0000000001000080:
Info “"cpul®, 0x0000000001000108:
Info "cpul”, 0x000000000100010c:
Info "cpul®, 0x0000000001000110:
Info "cpul®, 0x0000000001000114:
Info “cpul®, 0x0000000001000118: 1.bf 0x01000124
Info "cpul®, 0x000000000100011c: I.xor r29,r29,r31

1.addi rl,r0,0x3
1
1
1
1
1
1
1
1
1
Info “"cpul®, 0x0000000001000120: 1.xor r29,r29,r31
1
1
1
1
1
1
1
1
1
1

.addi r2,r0,0x2
-jal 0x01000108
-nop 0x0

.addi r29,ro0,0x0
.addi r30,r0,0x1
.addi r31,r0,0x1
-sfeq ri,r2

Info "cpul®, 0x0000000001000124: 1.bnf 0x01000130
Info “"cpul®, 0x0000000001000128: 1.xor r30,r30,r31
Info "cpul®, 0x0000000001000130: I.add r31,r31,r31
Info “"cpul®, 0x0000000001000134: 1.sfne ri,r2

Info "cpul®, 0x0000000001000138: 1.bf 0x01000144
Info “"cpul®, 0x000000000100013c: 1.xor r29,r29,r31
Info "cpul®, 0x0000000001000144: 1.bnf 0x01000150
Info “"cpul®, 0x0000000001000148: 1.xor r30,r30,r31
Info "cpul®, 0x000000000100014c: I.xor r30,r30,r31
Info "cpul®, 0x0000000001000150: 1.add r31,r31,r31
. . . etc . . .

Info "cpul”, 0x0000000001000234:
Info "cpul®, 0x0000000001000238:
Info "cpul”, 0x000000000100023c:
Info "cpul®, 0x0000000001000240: 1.xor r29,r29,r31
Info "cpul®, 0x0000000001000244: 1.bnf 0x01000250

l.sfles ri,r2
1
1
1
1
Info “"cpul®, 0x0000000001000248: 1._xor r30,r30,r31
1
1
1
1
1

.bf 0x01000244
.Xor r29,r29,r31

Info "cpul®, 0x0000000001000250: 1.add r31,r31,r31

Info “"cpul®, 0x0000000001000254: 1_jr r9

Info "cpul®, 0x0000000001000258: 1.nop 0x0

Info “"cpul®, 0x00000000010000fc: 1.addi rl4,r29,0x0

Info "cpul”, 0x0000000001000100: I.addi r15,r30,0x0

Info “"cpul®, 0x0000000001000104: 1.nop 0x0

Processor "cpul® terminated at "exit", address 0x1000104

RO : 00000000 R1 : fFFfFfffd R2 : fFfffffc R3 : 000000ce
R4 : 00000330 R5 : 000002a9 R6 : 00000157 R7 : 00000332
R8 : 000000cc R9 : 010000fc R10: 00000332 R11: 000000cc
R12: 000002a9 R13: 00000157 R14: 000000ce R15: 00000330
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: 000000ce R30: 00000330 R31: 00000400
BF:0 CF:0 OF:0 PC : 01000108 SR : 00008001

The test case application/asmtest.S is as follows:

L1111 1777777777777717777/777777///7777////7777////777////777//////777//77/

// MAIN ROUTINE

L1111 17777717777777177777777777///7777////7777///7777/////77//////77//77
-global _start

_start:
// testl: rl1=3, r2=2
I.addi ri,r0,3 // r1=3
1.addi r2,r0,2 // r2=2
1_jal test // call test
1_nop // (delay slot instruction)
1.addi r3,r29,0 // move bf taken mask to r3
1.addi r4,r30,0 // move bnf taken mask to r4

© 2022 Imperas Software Limited.www.OVPworld.org Page 91 of 321

OVP Processor Modeling Guide

-global
exit:

test:

sfeqF:

stegNF:

sflesF:

sTlesNF:

. etc .
// test6: ri1=-3, r2=-4
1.addi rli,r0,-3 // r1=-3
1.addi r2,r0,-4 // r2=-4
1_jal test // call test
1._nop // (delay slot instruction)
I.addi rl4,r29,0 // move bf taken mask to ri4
1.addi ri5,r30,0 // move bnf taken mask to ri5

L1177 7777777777/7777/7/7777/7/7777/7/7/7/77/7/77/777/77/7/777/77//7/77/777/7/777777
// EXIT FROM POINT TEST

L1177 77777777/7/7777/7/7777/7/7777/7/7/77777/7/777/7//7/777/77//7/77/7/7/7/777777
exit

1._nop
L1/1/1/77777777777777777777777777777/77777/77777777777///7777/77//77//7777/7777777

// FUNCTION test
L11117777777777777777777777777777/7777///77777///7777///77/7////7//77//7//7/

1_addi r29,r0,0 // clear output mask r29 (bf taken)
1.addi r30,r0,1 // clear output mask r30 (bnf taken)
1.addi r31,ro0,1 // initialize bitmask
// test for sfeq
1.sfeq rl,r2 // rl==r2?
1_bf sfeqF // go if true
1.xor r29,r29,r31 // add mask (delay slot instruction)
1.xor r29,r29,r31 // remove mask
1.bnf steqNF // go if false
1_xor r30,r30,r31 // add mask (delay slot instruction)
1._xor r30,r30,r31 // remove mask
1.add r31,r31,r31 // shift mask

. etc .
// test for sfles
1._sfles ri,r2 // rl<=r2? (signed)
1.bf sfleskF // go if true
1._xor r29,r29,r31 // add mask (delay slot instruction)
1.xor r29,r29,r31 // remove mask
1.bnf sFlesNF // go if false
1_xor r30,r30,r31 // add mask (delay slot instruction)
1._xor r30,r30,r31 // remove mask
1.add r31,r31,r31 // shift mask
1_jr ro // return, results in r29 and r30
1_nop // (delay slot instruction)

The test case has been design to exercise all register-register comparison instructions,
with a variety of input operands, and build up masks indicating how the comparison
results are treated by both the 1.bf and I.bnf instructions. For example, this is an
instruction sequence that is executed when function test is called for the first time, when
ri=3 and r2=2:

Info
Info
Info
Info

"cpul®, 0x0000000001000114:
"cpul®, 0x0000000001000118:
"cpul®, 0x000000000100011c:
"cpul®, 0x0000000001000120:

-sfeq
-bFf
-Xor
-Xor

ri,r2
0x01000124
r29,r29,r31
r29,r29,r31

// test for equality
// branch if equal

// (delay slot insn)

// *** pranch NOT taken

© 2022 Imperas Software Limited.www.OVPworld.org

Page 92 of 321

OVP Processor Modeling Guide

Info “"cpul®, 0x0000000001000124: 1._.bnf 0x01000130 // branch if not equal
Info "cpul®, 0x0000000001000128: 1.xor r30,r30,r31 // (delay slot insn)
Info “"cpul®, 0x0000000001000130: 1.add r31,r31,r31 // *** branch TAKEN

In this example, the delay slot instruction is executed whether the branch is taken or
not. It is also possible to describe branches that annul the delay slot instruction if the
branch is not taken — refer to these routines in the Imperas VMI Morph Time
Reference manual for more information:

vmimtCondJumpDelaySlotAnnul
vmimtCondJumpRegDelaySlotAnnul
vmimtSkiplfAnnul

© 2022 Imperas Software Limited.www.OVPworld.org Page 93 of 321

OVP Processor Modeling Guide

11 Implementing Memory Access Instructions

In this chapter, we will implement memory load and store instructions for the OR1K. The
processor supports six load instructions:

1. 1.1wz: load 4 bytes; zero extend to 32 bits;
- lws: load 4 bytes, sign extend to 32 bits (same as 1. 1wz on 32-bit core);
-Ihz: load 2 bytes, zero extend to 32 bits;
- Ihs: load 2 bytes, sign extend to 32 bits;
. 1.1bz: load 1 byte, zero extend to 32 bits;

6. 1.1bs: load 1 byte, sign extend to 32 bhits.
There are three store instructions:

1. 1.sw: store 4 bytes;

2. 1.sh: store 2 bytes;

3. 1.sb: store 1 byte.
Accesses longer than one byte must be aligned with memory, otherwise the access
generates an alignment exception — chapter 12 shows how this requirement can be
modeled efficiently.

2. 1
3.1
4. 1
S5 1

11.1 The Template Memory Access Model

A template model for the OR1K processor implementing memory access instructions can
be found in:

$IMPERAS_HOME/Examples/Models/Processor/9.orlkBehaviorLoadStore

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/9.orlkBehaviorLoadStore.

Compile the model, harness and application using the make command:

cd 9.orlkBehaviorLoadStore
make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

Decoder, disassembler and morpher files have been updated in this example to
implement shift/rotate and 1.movhi instructions. The shift/rotate instructions are very
similar to the arithmetic/bitwise instructions discussed previously. Instruction
I.movhi implements a form of constant load to the high part of a register, common
on RISC processors. These instructions require no significant new knowledge or

© 2022 Imperas Software Limited.www.OVPworld.org Page 94 of 321

OVP Processor Modeling Guide

techniques and are not directly relevant to this chapter, so no further detail has been
given here.

11.1.1 Decoding Loads and Stores - or1kDecode.c
The opAttrs type now contains fields giving the number of bytes for a load or store and
(for a load) whether zero or sign extension is required:

typedef enum orlkExtendE {

OR1K_EXTEND_NA, // no extension
OR1K_EXTEND_S, // sign extension
OR1K_EXTEND_Z, // zero extension

} orilkExtend;

typedef struct opAttrsS {

const char *member; // enumeration member name

const char *opcode; // opcode name

const char *format; // format string

const char *decode; // decode string

regSpec ri : 8; // register 1 specification
regSpec r2 . 8; // register 2 specification
regSpec r3 : 8; // register 3 specification
constSpec cC : 8; // constant value specification
Uns32 bytes : 8; // load/store size specification
orlkExtend extend : 8; // load sign extension

Bool isCond : 1; // is instruction conditional?
Bool iSuffix - 1; // does opcode require "i" suffix?

} opAttrs, *opAttrsP;

The variants of load and store instruction are specified using the ATTR_SET_LWZz and
ATTR_SET_SW macros, respectively:

#define ATTR_SET_LWZ(_NAME, _OPCODE, _DECODE, BYTES, _EXT) \

[ORIK_IT_## NAME] = { \
member : # NAME, \
opcode : _OPCODE, \
format : FMT_R1 OFFSET_R2, \
decode : _DECODE, \
ri : RD, \
r2 : RA, \
(¢ - C.Ss1, \
bytes : _BYTES, \
extend : OR1K_EXTEND_## EXT \

3
#define ATTR_SET_SW(_NAME, _OPCODE, DECODE, _BYTES) \

[ORIK_IT_## NAME] = { \
member : # NAME, \
opcode : _OPCODE, \
format : FMT_OFFSET R1 R2, \
decode : _DECODE, \
ri I RA, \
r2 : R.B, \
Cc : C.S2, \
bytes : _BYTES \

}

const static opAttrs attrsArray[OR1K IT_LAST+1] = {

© 2022 Imperas Software Limited.www.OVPworld.org Page 95 of 321

OVP Processor Modeling Guide

. lines omitted .

// handle load instructions

ATTR_SET_Lwz (Lwz, 1, M]100001. . .o 1", 4, 2),
ATTR_SET_LWZ (LWS, "1, "]100010. - oo 1", 4, S),
ATTR_SET_LwWz (LBZ, 1, M]100011 . e 1", 1, 2),
ATTR_SET_LWZ (LBS, "1, "]100100. - - e 1", 1, S),
ATTR_SET_LWZ (LHZ, "1, M]100101 . - e 1", 2, 2),
ATTR_SET_LWZ (LHS, 1, 1100110, e 1", 2, 9),
// handle store instructions

ATTR_SET_SW sw, "'s", Ml110101 . . i 1", 4),
ATTR_SET_SW (SB, s, M1110110. e 1", 1,
ATTR_SET_SW (SH, "s", B 0 0 I 5 1", 2),

. lines omitted .

};

The OR1K has six load instructions, which load 1, 2 and 4 byte values either with or
without sign extension. Similarly, there are three store instructions that store 1, 2 and 4
byte values. In the decode table, these are specified using opcodes “1’” and ““s”,
respectively; the full opcode is constructed in the disassembler taking into account the
bytes and extend values specified by the decoder (see the next subsection).

The orlklInstructionlnfo structure also has new bytes and extend fields, which get
initialized from the instruction attributes in function or1kDecode:

void orlkDecode(orlkP orilk, Uns32 thisPC, orlklInstructioninfoP info) {
- lines omitted .

info->bytes
info->extend

attrs->bytes;
attrs->extend;

. lines omitted .

}

11.1.2 Load/Store Disassembly - orlkDisassemble.c
New function putBytes writes an opcode character b, h and w (indicating load store size):

static void putBytes(char **result, Uns32 bytes) {

static const char map[] = {

[1] = b,
[2] = "h-.
[4] = "w"

}:

if(map[bytes]) {
putChar(result, map[bytes]);

}

Similarly, new function putExtend writes an opcode character s or z (indicating sign or
zero extension):

© 2022 Imperas Software Limited.www.OVPworld.org Page 96 of 321

OVP Processor Modeling Guide

static void putExtend(char **result, orlkExtend extend) {

static const char map[] = {
[OR1K_EXTEND_S] = "s*",
[OR1K_EXTEND_Z] = "z°",

e

if(map[extend]) {
putChar(result, map[extend]);
}

}

These functions are used to modify the generated opcode as follows:

static void disassembleFormat(
orlkP orlk,
orlklinstructionlnfoP info,
char **result,
const char *format,
Bool uncooked

) {
char *argStart = (*result)+9;
char ch;

// emit opcode

putString(result, "I1.");
putString(result, info->opcode);
putCondition(result, info->cond);
putlSuffix(result, info->iSuffix);
putBytes(result, info->bytes);
putExtend(result, info->extend);

lines omitted .

instruction disassembly will be incorrect.

By generating the decoded output from the instruction attributes in this way, model
robustness is improved: any error in size or extension decode will be evident because

11.1.3 Implementing Loads and Stores - or1kMorph.c
This file has been upgraded as described below.

11.1.3.1 Load Instructions

The six load instructions are implemented with a single function: morphLoad:

static OR1K_MORPH_FN(morphLoad) {

vmiReg rd = getGPR(state->info.rl);
vmiReg ra = getGPR(state->info.r2);
Int32 offset = state->info.c;
Uns32 bytes = state->info.bytes;
Bool signExtend = (state->info.extend==0R1K_EXTEND_S);
memEndian endian = getEndian();
vmimtLoadRRO(
OR1K_BITS, // destBits

© 2022 Imperas Software Limited.www.OVPworld.org

Page 97 of 321

OVP Processor Modeling Guide

bytes*8, // memBits
offset, // offset

rd, // rd

ra, // ra

endian, // endian
signExtend, // signExtend

MEM_CONSTRAINT_ALIGNED // constraint

}

The size of the load in bytes and whether sign extension is required are extracted from the
decoded instruction attributes:

Int32 offset
Uns32 bytes

state->info.c;
state->info.bytes;

Each load is specified by a call to the function vmimtLoadRRO from the Imperas Morph
Time Function API. This takes eight arguments, as follows:

1. destBits: the size in bits of the destination register for the load;

2. memBits: the size in bits of the value in memory;

3. offset: a constant offset to be added to the address register ra to give the full
memory address;

4. rd: the destination register for the load (if rd is VMI_NOREG, the load is performed
but the fetched value discarded);

5. ra: aregister holding the address from which to load (or vM1_NOREG if the load is
from an address specified by offset only);

6. endian: the endianness of the load. This can be either MEM_ENDIAN_BIG or
MEM_ENDIAN_LITTLE.

7. signExtend: whether the memory value should be assign extended if smaller than
the register — if False, then the value is zero extended.

8. constraint: what constraints should be placed on the memory access. In this
case, the value MEM_CONSTRAINT_ALIGNED is used to specify that the memory
access must be aligned to the data size, and any unaligned access will either cause
simulation to terminate or a simulated exception to be taken: this is described in
chapter 12.

For the OR1K processor, the address from which to load is calculated by adding address
register ra to the constant value ¢ from the instruction.

The endianness of the load is specified by function getEndian. This model supports big-
endian only:

static memEndian getEndian(void) {
return MEM_ENDIAN_BIG;
}

11.1.3.2 Store Instructions
The three store instructions are implemented with a single function: morphStore:

static OR1K_MORPH_FN(morphStore) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 98 of 321

OVP Processor Modeling Guide

vmiReg ra = getGPR(state->info.rl);
vmiReg rb = getGPR(state->info.r2);
Int32 offset = state->info.c;
Uns32 bytes = state->info.bytes;
memEndian endian = getEndian();
vmimtStoreRRO(

bytes*8, // bits

offset, // offset

ra, // ra

rb, // rb

endian, // endian

);
}

MEM_CONSTRAINT_ALIGNED // constraint

The size of the store in bytes is extracted from the decoded instruction attributes in a
similar way as for function morphLoad.

A store of any register except ro0 is specified using vmimtStoreRRO from the Imperas
Morph Time Function API. This takes six arguments, as follows:

1.
2.

3.

11.1.4

bits: the size in bits of the destination register to be stored;

offset: a constant offset to be added to the address register ra to give the full
memory address;

ra: a register holding the address to which to store (or vMI_NOREG if the store is to
an address specified by offset only);

rb: the register to be stored;

endian: the endianness of the store. This can be either MEM_ENDIAN_BIG Or
MEM_ENDIAN_LITTLE.

constraint: what constraints should be placed on the memory access. In this
case, the value MEM_CONSTRAINT_ALIGNED is used to specify that the memory
access must be aligned to the data size, and any unaligned access will either cause
simulation to terminate or a simulated exception to be taken: this is described in
chapter 12.

Load/Store Test Harness - platform/harness.c

The test platform for this example, platform/harness.c, has been changed as follows:

//

// Main simulation routine

//

int main(int argc, const char **argv) {

// initialize simulation session before calling any other OP functions
opSessionInit(OP_VERSION);

// check arguments
if(IcmdParser(argc, argv)) {

}

opMessage(*'E", "CLI', "Command Line parser error™);
return 1;

// create root module, enabling simulation interruption if Ctrl-C is pressed

© 2022 Imperas Software Limited.www.OVPworld.org Page 99 of 321

OVP Processor Modeling Guide

optModuleP mr = opRootModuleNew(
0,
MODULE_NAME,
OP_PARAMS (
OP_PARAM_BOOL_SET(OP_FP_STOPONCONTROLC, 1)
)

Dk

// create a processor instance
const char *modelFile = "model."IMPERAS_SHRSUF;
optProcessorP processor = opProcessorNew(mr, modelFile, *cpul™, 0, 0);

// get semihost library to exit simulation
const char *semihostFile = opVLNVString(

0,

"ovpworld.org",

"*modelSupport™,

"imperaskExit’,

"1.0",

OP_EXTENSION,

True

Dk

// attach imperaskxit semihost library to processor
opProcessorExtensionNew(processor, semihostFile, "imperasexit'”, 0);

// create the processor bus
optBusP bus = opBusNew(mr, "bus', 32, 0, 0);

// connect processor instruction and data ports to the common bus
opProcessorBusConnect(processor, bus, "INSTRUCTION™);
opProcessorBusConnect(processor, bus, "DATA™);

// create memory
optMemoryP memory = opMemoryNew(mr, "local', OP_PRIV_RWX, OxfFFFffff, 0, 0);

// connect the memory onto the busses
opMemoryBusConnect(memory, bus, "mpl™, 0x00000000, OxFFFfffff);

// run processor, one instruction at a time
while(simulate(processor, -1)) {

// keep going while processor is still running
}

// dump the final register contents
opProcessorRegDump(processor) ;

// report the total number of instructions executed
opPrintf(
"processor has executed " FMT_64u " instructions\n",
opProcessor I Count(processor)

);

// terminate the simulation session
opSessionTerminate();

return O;

}

The significant change is in the call to function simulate:

while(simulate(processor, -1)) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 100 of 321

OVP Processor Modeling Guide

Previously, each call to simulate requested a single instruction to be executed. In this
example, we use the value -1 instead, which indicates that the simulator can execute an
unlimited number of instructions before returning®. In this case, this means that the call
will only return when the program has completed.

11.2 Fibonacci Example

To demonstrate the load and store functions, we will use an assembler program that
calculates Fibonacci numbers* using a naive recursive algorithm (normally, instruction
point tests should be created and tested first, or course). Once the basic example is
working, we will use it to demonstrate simulator performance and the effect of jump hints
(first encountered in chapter 9).

11.2.1 Basic Example
Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”
Processor "cpul® terminated at "exit", address 0x1000080
RO : 00000000 R1 : 00000262 R2 : 00000179 R3 : deadbeef
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 01000080 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: deadbeef R31: 00000000
BF:1 CF:1 OF:0 PC : 01000084 SR : 00008601

processor has executed 22687 instructions

The test case application/asmtest.S is as follows:

////17777777777777777777777/777/777/7777/77/77/7/777/777777/77/77777/7/77/7/7/7777777777

// MAIN ROUTINE

/////7/7/777/77/77/7//7/77/77/7/7/7/7777/7/7/7/7/7/7/7//7/7/7/77/7/7///7/7/7/7/7/7//7//7//7//7/77/7777
.global _start

_start:
1.addi r31,r0,0 // initialize stack pointer to O
1_jal fib // calculate fib(15)
1.addi rl,r0,15 // r1l = 15 (delay slot)

® To be precise, the second argument to opProcessorSimulate (and simulate) is an Uns64, so a value of -1
(sign-extended to 64 bits) in fact specifies that 2%-1 instructions should be executed — a very large number,
but not quite unlimited.
* Fibonacci numbers are defined as follows:

1. forN<=1: fib(N) = N;

2. forN>1: fib(N) = fib(N-1) + fib(N-2)

© 2022 Imperas Software Limited.www.OVPworld.org Page 101 of 321

OVP Processor Modeling Guide

/1/1/17777777777777777777777777777/777//7/7/77/7/777/7///77//7/7/7//7/7/77777777777

// EXIT FROM POINT TEST

/1/1/17777777777777777777777777777/777/7/7/77/7/777////7/7/777/77/77/7/7777777777
-global exit

exit:
1_nop
L1111 777777777777777/777777/777777//77777///77777////77/////77/7////7777//
// FUNCTION fib - calculate Fibonacci number of N, passed in rl.
// result is returned in rl, r2 is destroyed
L1111 7777777777777777777777/7777777/77777////7777///777/7////777/7///7777/
fib: 1_sflesi ri,1 // rl1<=1? (signed)
1.bf done // done if so, result is rl
1._nop // (delay slot)
1.addi r31,r31,-12 // create stack frame
1.sw 0(r31),r9 // save link register
1._sw 4(r31),rl // save input rl
1_jal fib // calculate fib(N-1)
1_addi rl,rl,-1 // rl = N-1 (delay slot)
1.sw 8(r31),r1 // save Tib(N-1)
11wz rl,4(r3l) // restore initial N
1_jal fib // calculate fib(N-2)
1.addi rl,rl,-2 // r1l = N-2 (delay slot)
11wz r2,8(r31) // restore Fib(N-1)
1_add rl,rl,r2 // r1l = Fib(N-2) + Fib(N-1)
1_lwz r9,0(r31) // restore link register
1.addi r31,r31,12 // destroy stack frame
done: 1_jr ro // return, result in rl
1._nop // (delay slot instruction)

The testcase calculates the value of fib(15), returning the value in register r1 (0x262, or
610 decimal). Register r2 is used as an intermediate and is destroyed; register r31 is used
as a stack pointer. Because this is a naive recursive implementation, each call to fib
creates up to two further recursive calls, and the current link register value (r9) and input
value (r1) need to be preserved in a stack frame at each level using the load and store
instructions we have just implemented.

11.2.2 Validating Simulation Performance

This Fibonacci implementation rapidly becomes computationally complex. Even when
calculating a relatively small Fibonacci number, such as fib(15), 22,687 instructions are
performed. We can therefore use the example to test the basic simulation speed of the
processor model.

Modify lines 25 and 26 of the test case application/asmtest.S as follows:

1_jal fib // calculate fib(40)
1.addi rl,r0,40 // rl = 40 (delay slot)

Regenerate the assembler test case and run it like this:

© 2022 Imperas Software Limited.www.OVPworld.org Page 102 of 321

OVP Processor Modeling Guide

make -C application
time platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The output from this (after a few seconds) should be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”
Processor "cpul® terminated at "exit", address 0x1000080

RO : 00000000 R1 : 06197ecb R2 : 03c50ea2 R3 : deadbeef
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 01000080 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: deadbeef R31: 00000000
BF:1 CF:1 OF:0 PC : 01000084 SR : 00008601

processor has executed 3808343229 instructions

The program has calculated fib(40) as 0x6197ecb (102,334,155 decimal) using
3,808,343,229 simulated instructions. On a 2.8GHz Intel Core2 processor, time shows
this takes about 7 seconds, giving a simulation speed for this example of about 544
simulated MIPS.

11.2.3 Demonstrating Jump Hint Effectiveness

Chapter 9 showed how jump hints should be used to tell the simulator what kind of jump
is being performed (a call, a return or a simple jump that is neither a call nor a return).
Now we have a test case that executes many calls and returns, we can demonstrate how
effective these jump hints are when correctly applied. To do this, we will temporarily
remove the jump hints from the processor model and then rerun fib(40) to see the
effect.

Modify functions morphJump and morphJumpReg in file orikMorph.c to remove the
jump hints like this:

static OR1K_MORPH_FN(morphJdump) {

Uns32 toAddress = state->info.c;

uUns32 nextAddress = state->info.thisPC + 8;

Bool inDelaySlot = state->inDelaySlot;

Bool link = state->attrs->link;

vmiReg linkReg = link ? OR1K_LINKREG : VMI_NOREG;

vmiJumpHint hint;

// provide no jump hint!
hint = vmi_JH_NONE;

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpDelaySlot(
1, // slotOps

© 2022 Imperas Software Limited.www.OVPworld.org Page 103 of 321

OVP Processor Modeling Guide

nextAddress, // linkPC
toAddress, // toAddress
l1inkReg, // linkReg
hint, // hint

0 // slotCB

}
static OR1K_MORPH_FN(morphJdumpReg) {

uns32 ri = state->info.rl;

vmiReg toReg = getGPR(rl1);

Uns32 nextAddress = state->info.thisPC + 8;

Bool inDelaySlot = state->inDelaySlot;

Bool link = state->attrs->link;

vmiReg l1inkReg = link ? OR1K_LINKREG : VMI_NOREG;

vmiJumpHint hint;

// provide no jump hint!
hint = vmi_JH_NONE;

if(inDelaySlot) {
// jump in the delay slot does nothing

} else {
vmimtUncondJumpRegDelaySlot(
1, // slotOps
nextAddress, // linkPC
toReg, // toReg
l1inkReg, // linkReg
hint, // hint
0 // slotCB
)
}

}
Rebuild the processor model and rerun fib(40) as follows:

make
time platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The program output is identical to before (jump hints do not affect behavior), but
simulation speed is slower: on a 2.8 GHz Intel Core2 processor, time shows this takes
about 9 seconds, giving a simulation speed for this example of about 423 simulated
MIPS, 120 simulated MIPS slower than previously.

When creating a new processor model, use a Fibonacci test case to validate that jump
hints are working correctly. If performance is unchanged (or slower!) with jump hints
present then they are not being used correctly.

© 2022 Imperas Software Limited.www.OVPworld.org Page 104 of 321

OVP Processor Modeling Guide

12 Modeling Exceptions

In chapter 11, we implemented load and store instructions and noted that on the OR1K
processor all loads and stores should be aligned to the load/store size. In this chapter, we
will model the processor exception behavior that happens when an unaligned load or
store is encountered.

This chapter also shows how to write exception handlers for arithmetic exceptions such
as a divide by zero.

12.1

Basic Example

Firstly, we will examine the simulator behavior when no special action is taken to handle
exceptions. Directory 10.or1kBehaviorExceptions/application contains the
following example in file asmtest.S:

.org 0x200

1///1/7///7//7//7/
// ALIGNMENT EXCEPTION HANDLER (AT 0x200)
L11177777777777777777777777777777/7777///7777////7777////7/7////7//7//7/7/

1.addi r30,r30,1 // increment count of alignment exceptions
1.addi ri,rl,1 // increment store address
1._rfe // return from exception

-org 0x10000

-global
_start:

loop:

-global
exit:

L111717777777777777777777777777777/7777///7777////7777///77//77////7//7//7/7/
// APPLICATION CODE (AT 0x10000)
L111717777777777777777777777777777/7777///77777///7777////7/7////7/7//7//

_start

1_ori r30,r0,0 // r30 = 0 (counts alignment exceptions)
1 _movhi ri,0x8000 // r1 = 0x80000000

I .movhi r2,0x1234 // r2 = 0x12340000

1._ori r2,r2,0x5678 // r2 = 0x12345678

1._ori r3,r0,0 // r3 = 0 (loop count)

1.sb o(rl),r2 // do one-byte store

1.sh o(r1),r2 // do two-byte store

1.sw o(rl),r2 // do four-byte store

1._addi r3,r3,1 // increment loop count

1._sfeqi r3,10 // r3==107?

1.bnf loop // go if not

1.addi rl,rl,1 // increment store address (delay slot)
1.div r30,r30,r0 // divide by zero

exit

1.nop

This example uses rl to hold a write pointer, initially at address 0x80000000. It then
executes a loop ten times, trying to do one-byte, two-byte and four-byte writes to the
pointer. Each time round the loop the pointer r1 is incremented. Finally, it performs an
arithmetic divide-by-zero.

© 2022 Imperas Software Limited.www.OVPworld.org Page 105 of 321

OVP Processor Modeling Guide

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/10.orlkBehaviorExceptions .

Compile the model, harness and application using the make command:

cd 10.orlkBehaviorExceptions

make

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest_OR1K.elf

The output from this should be as follows:

Warning (PC_NRI) No register information

callback given for processor “cpul’

Info "cpul®, 0x0000000000010000: I.ori r30,r0,0x0
Info “"cpul®, 0x0000000000010004: I._.movhi r1,0x8000
Info "cpul®, 0x0000000000010008: I.movhi r2,0x1234
Info “"cpul®, 0x000000000001000c: 1.ori r2,r2,0x5678
Info "cpul®, 0x0000000000010010: l.ori r3,r0,0x0
Info “cpul®, 0x0000000000010014: 1.sb 0x0(rl),r2
Info "cpul®, 0x0000000000010018: I.sh 0x0(rl),r2
Info “cpul®, 0x000000000001001c: I.sw 0x0(rl),r2
Info "cpul®, 0x0000000000010020: I.addi r3,r3,0x1
Info “cpul®, 0x0000000000010024: 1.sfeqi r3,0xa

Info "cpul®, 0x0000000000010028: 1.bnf 0x00010014
Info “cpul®, 0x000000000001002c: 1.addi rl,rl,0x1
Info "cpul®, 0x0000000000010014: I.sb 0x0(rl),r2
Info “cpul®, 0x0000000000010018: 1.sh 0x0(rl),r2
Processor Exception (PC_PRX) Processor "cpul® 0x10018: I.sh 0ox0(rl),r2

Processor Exception (PC_WAX) Misaligned 2-byte write to 0x80000001

: 12345678 R3 : 00000001
: deadbeef R7 : deadbeef

- 00000000 R1 : 80000001
: deadbeef R5 : deadbeef
: deadbeefF R9 : deadbeef
: deadbeef R13: deadbeef
: deadbeefF R17: deadbeef
: deadbeef R21: deadbeef
: deadbeefF R25: deadbeef
: deadbeef R29: deadbeef
: 00010018 SR : 00008001

CF:0 OF:0

processor has executed 14 instructions

: deadbeefF R11: deadbeef
: deadbeef R15: deadbeef
: deadbeef R19: deadbeef
: deadbeef R23: deadbeef
: deadbeefF R27: deadbeef
- 00000000 R31: deadbeef
: deadbeef EPC: deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org

Page 106 of 321

OVP Processor Modeling Guide

The test case runs successfully until an attempt is made to perform a 2-byte store at a 1-
byte-aligned address. Then the processor terminates with a Processor Exception error,
which is signaled to the platform by returning the value oOP_SR_WR_ALIGN from
opProcessorSimulate. File platform/harness.c in directory
10.or1kBehaviorExceptions has been updated like this to handle the possible
exception case:

static Bool simulate(optProcessorP processor, Uns64 clocks) {
optStopReason stopReason = opProcessorSimulate(processor, clocks);
switch(stopReason) {

case OP_SR_SCHED:
// hit the scheduler limit
return True;

case OP_SR_EXIT:
// processor has exited
return False;

case OP_SR_FINISH:
// simulation must end
return False;

case OP_SR_RD_PRIV:

case OP_SR_WR_PRIV:

case OP_SR_RD_ALIGN:

case OP_SR_WR_ALIGN:

case OP_SR_ARITH:
// unhandled processor exception: simulation must end
return False;

default:
opPrintf("'unexpected stopReason %u\n', stopReason);
return False;

Note that the only action taken in the model to enforce alignment checking was to
pass True to the checkAl ign parameter to each of the load/store morph-time
functions: the simulator did the rest automatically.

It is possible instead to envisage using vmimt calls to explicitly construct an
alignment check (for example, the address to which to store could be created in a
temporary register using vmimtBinopRRC, the low-order bits of the temporary register
value could be extracted using vmimtBinopRRC with a vmiBinop of vmi_AND and a
constant value 3, this could be checked for zero and the simulation terminated by
vmimtFinish if not zero). This is not however a good approach: the simulator’s built
in checks are much more efficient than any model code that tries to do the same thing.
Always use simulator alignment checking capabilities in preference to coding your
own.

© 2022 Imperas Software Limited.www.OVPworld.org Page 107 of 321

OVP Processor Modeling Guide

A real processor does not of course “exit” when an exception is encountered: it typically
enters a privileged mode and jumps to an exception vector instead. The model files in
directory 10.ori1kBehaviorExceptions have been enhanced to support this as follows.

12.1.1 Adding Exception Registers - orlkStructure.h
To support exceptions, the OR1K has three new registers we need to model now:
1. esr (exception status register): this saves the value of the sr register on exception
entry;
2. epc (exception program counter register): this saves the current program counter
on exception entry.
3. eear (exception effective address register): for an exception caused by an invalid
memory operation, this records the address that caused the exception.

These have been added to the processor structure:

typedef struct orlkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool branchFlag; // branch flag

Uns32 regs[OR1K_REGS]; // basic registers

Uns32 SR; // status register

Uns32 ESR; // exception status register

Uns32 EPC; // exception program counter register
Uns32 EEAR; // exception effective address register
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

There are also new macros to access the registers when morphing code:

#define OR1K_ESR OR1K_CPU_REG(ESR)
#define OR1K_EPC OR1K_CPU_REG(EPC)
#define OR1K_EEAR OR1K_CPU_REG(EEAR)

Initialization routines (in orikMain.c) and register dump routines (in orikUtils.c)
have also been modified to handle the new registers.

12.1.2 Declaring Exception Handlers - or1kFunctions.h
Prototypes for model routines that are called when the simulator detects a memory
exception have been added:

VMI_RD_PRIV_EXCEPT_FN(orl1kRdPrivExceptionCB);
VMI_WR_PRIV_EXCEPT_FN(orl1kWrPrivExceptionCB);
VMI_RD_ALIGN_EXCEPT_FN(orlkRdAlignExceptionCB);
VMI_WR_ALIGN_EXCEPT_FN(orlkWrAlignExceptionCB);

© 2022 Imperas Software Limited.www.OVPworld.org Page 108 of 321

OVP Processor Modeling Guide

The memory access handlers are called for load/store privilege exceptions and load/store
alignment exceptions. In this example, we are only interested in alignment exceptions but
privilege exceptions will be implemented as well for completeness.

VMI_ARITH_EXCEPT_FN(orlkArithExceptionCB);

This handler is called when the simulator detects an arithmetic exception at run time (for
example, a divide by zero).

12.1.3 Defining Exception Types - or1kExceptionTypes.h
This is a new file giving information about the exceptions on the OR1K. There is an
enumeration of the possible exception types:

typedef enum orlkExceptionE {

OR1K_EXCPT_RST, // reset

OR1K_EXCPT_BUS, // alignment
OR1K_EXCPT_DPF, // data privilege
OR1K_EXCPT_IPF, // instruction privilege
OR1K_EXCPT_TTI, // tick timer
OR1K_EXCPT_ILL, // illegal instruction
OR1K_EXCPT_EXI, // external interrupt
OR1K_EXCPT_SYS, // system call
OR1K_EXCPT_LAST // KEEP LAST: for sizing

} orlkException;

Vector addresses for each exception are also defined:

#define RST_ADDRESS 0x100 // reset exception vector

#define BUS_ADDRESS 0x200 // alignment exception vector

#define DPF_ADDRESS 0x300 // data privilege exception vector
#define IPF_ADDRESS 0x400 // instruction privilege exception vector
#define TTI_ADDRESS 0x500 // tick timer exception vector

#define ILL_ADDRESS 0x700 // illegal instruction exception vector
#define EXI_ADDRESS 0x800 // external interrupt exception vector
#define SYS_ADDRESS 0xcO0 // sys exception vector

12.1.4 Implementing Exceptions - orlIkExceptions.c

This file implements the exception handler callbacks, which are called at run time when a
potential simulated exception occurs. The purpose of the callbacks is to put the processor
into the state that it would enter if the same exception was encountered on the real
hardware: typically, this means entering a privileged mode, saving some exception
context state and jumping to an exception vector address. This is exactly what we will
implement now for the OR1K.

It is possible for multiple exception conditions to be encountered in a single simulated
instruction: for example, a store may be attempted to an address that is both
misaligned and read-only. To handle this situation, the memory exception handlers
work as follows:

1. The alignment handler is called first. This returns an unsigned result indicating
whether the privilege exception handler should be called subsequently;

© 2022 Imperas Software Limited.www.OVPworld.org Page 109 of 321

OVP Processor Modeling Guide

2. If the alignment handler returns non-zero, and there is also a privilege exception
condition, then the privilege exception handler will be called. If the alignment handler
returns zero, the privilege exception handler will not be called.

A non-zero result from the alignment handler may also indicate that the load/store
address requires snapping, or that the value to load or store requires rotation. This is
discussed in detail later in this section.

The memory exception handler callbacks for the OR1K are as follows:

VMI_RD_PRIV_EXCEPT_FN(orl1kRdPrivExceptionCB) {
i F(MEM_AA_IS_TRUE_ACCESS(attrs)) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K _EXCPT_DPF, 0);

}

VMI_WR_PRIV_EXCEPT_FN(orlkWrPrivExceptionCB) {
iT(MEM_AA_IS_TRUE_ACCESS(attrs)) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_DPF, 0);

}

VMI_RD_ALIGN_EXCEPT_FN(orl1kRdAlignExceptionCB) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_BUS, 0);
return O;

}

VMI_WR_ALIGN_EXCEPT_FN(orlkWrAlignExceptionCB) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_BUS, 0);
return O;

}

In this case, both alignment handlers return zero, which means that alignment exceptions
have priority over privilege exceptions (in other words, a store to an address that is both
misaligned and read-only will cause an alignment exception only). Each exception is
implemented by a call to or1kTakeException (implemented in orlkUtils.c), passing
the appropriate exception type (OR1K_EXCPT_DPF for privilege exceptions,
OR1K_EXCPT_BUS for alignment exceptions) and a zero offset (explained in the
description of or1kTakeException). The faulting address is saved in the eear register in
the processor structure.

The read and write privilege handlers are both passed an argument, attrs, of type
memAccessAttrs, defined in vmiTypes.h as follows:

typedef enum memAccessAttrsE {
MEM_AA_FALSE = 0x0, // this is an artifact access

© 2022 Imperas Software Limited.www.OVPworld.org Page 110 of 321

OVP Processor Modeling Guide

MEM_AA_TRUE
MEM_AA_FETCH
} memAccessAttrs;

0Ox1, // this is a true processor access
0x2, // this access is a fetch

The memAccessAttrs type tells the processor model what kind of access is being
performed. There are four possible values:

1. MEM_AA_TRUE: this indicates that the exception handler is being called because of
a true processor read or write, and that the model should take any action needed to
model the exception.

2. MEM_AA_FALSE: this indicates that this access is not a true processor read or write,
but is instead some kind of artifact access. For example, it might be an access
being made by the simulator itself, or by an attached debugger reading memory.
In this case, the processor model should not update its state to reflect an
exception, but might need to take some other action to make the memory readable
or writable. As an example, the OVP ARM processor model implements a TLB
model that maps memory pages on demand based on the contents of a page table
stored in memory, and these mappings need to be made even for an artifact access
(so that a debugger can query virtual memory address locations even if that virtual
address is not currently mapped, for example).

3. MEM_AA_TRUE|MEM_AA_FETCH: this indicates that the exception handler is being
called because of a true processor fetch. Processor state should be updated to
model the exception.

4. MEM_AA_FALSE|MEM_AA_FETCH: this indicates that the exception handler is being
called because of an artifact fetch (usually caused by the JIT code generation
engine). In this case, the processor model should not update its state to reflect an
exception, but might need to take some other action to make the memory readable
or writable.

For the OR1K, the read and write exception handlers both validate that the access is a
non-artifact access before updating any processor state:

VMI_RD_PRIV_EXCEPT_FN(orl1kRdPrivExceptionCB) {
iT(MEM_AA_IS_TRUE_ACCESS(attrs)) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_DPF, 0);

}

VMI_WR_PRIV_EXCEPT_FN(orl1kWrPrivExceptionCB) {
iT(MEM_AA_IS_TRUE_ACCESS(attrs)) {
orlkP orlk = (orlkP)processor;
orlk->EEAR = (Uns32)address;
orlkTakeException(orlik, OR1K_EXCPT_DPF, 0);

}

This OR1K model does not implement any structure such as a demand-mapped TLB, so
no action is taken for artifact accesses.

File orikExceptions.c also implements an arithmetic exception handler:

© 2022 Imperas Software Limited.www.OVPworld.org Page 111 of 321

OVP Processor Modeling Guide

VMI_ARITH_EXCEPT_FN(orlkArithExceptionCB) {
orlkP orlk = (orlkP)processor;
switch(exceptionType) {

// integer divide-by-zero and overflow should not generate exceptions
// but instead set the carry flag
case VMI_INTEGER_DIVIDE_BY_ZERO:
case VMI_INTEGER_OVERFLOW:
orlk->carryFlag = 1;
return VMI_INTEGER_ABORT;

// not expecting any other arithmetic exception types
default:
return VMI_INTEGER_UNHANDLED;

}

When an integer divide or overflow is encountered, the OR1K does not jump to an
exception vector: instead, it indicates the error by setting the processor carry flag. Other
processor types that jump to exception vectors can be simulated in a similar manner to the
memory exception handlers (i.e. save the current program counter and other state, and
then jump to an exception vector — see the discussion of or1lkTakeException in section
12.1.5).

The return value from the arithmetic exception callback is an enumerated value defined in
vmiTypes.h:

typedef enum vmilntegerExceptionResultE {

VMI_INTEGER_UNHANDLED, // not handled
VMI_INTEGER_ABORT, // handled, abort current instruction
VMI_INTEGER_CONTINUE, // handled, continue current instruction

} vmiIntegerExceptionResult;

A return value of VMI_INTEGER_UNHANDLED indicates that the numeric exception was not
expected by this model and simulation should terminate.

A return value of VMI_INTEGER_ABORT indicates that the handler accepted the exception,
and simulation should abort the remainder of this simulated instruction and resume
execution with the next simulated instruction (or at an exception vector address, if
vmirtSetPC or vmi rtSetPCException are used in the handler: see section 12.1.5).

A return value of VMI_INTEGER_CONTINUE indicates that the handler accepted the
exception, and simulation should resume at the next native instruction address after the
offending instruction.

When writing code that could cause simulated exceptions, or which makes an
embedded call that could update the current program counter using vmi rtSetPC or
vmi rtSetPCException, always remember that the part of the instruction after the
embedded call or simulated exception will not be executed if the program counter has

© 2022 Imperas Software Limited.www.OVPworld.org Page 112 of 321

OVP Processor Modeling Guide

been modified by vmirtSetPC or vmirtSetPCException, or if there is an arithmetic
exception for which the handler returns vM1_INTEGER_ABORT. Care must be taken to
leave the processor model in a consistent state in this case.

As a contrived example, suppose that a processor is being modeled that has a single
instruction that implements a pair of loads into registers from different addresses:

0x0020000: ri=(ral), r2=(ra2)

The obvious way to implement this would be with two vmimtLoadRRO calls, for
example:

vmimtLoadRRO(
32, 32, 0, CPU_REG(rl), CPU_REG(ral), endian, False,
MEM_CONSTRAINT_ALIGNED

):

vmimtLoadRRO(
32, 32, 0, CPU_REG(r2), CPU_REG(ra2), endian, False,
MEM_CONSTRAINT_ALIGNED

):

However, suppose that there is a memory access violation on the access using ra2
(but not ra1) that caused control to be transferred to a simulated exception handler. In
this case, the processor would be left in a state with the instruction half-executed,
because the load to r1 would already have been done.

To get correct model behavior in this case, the first load should save its result in a
temporary, which is written to the target register only if the second load succeeds:

vmimtLoadRRO(
32, 32, 0, CPU_TEMP1, CPU_REG(ral), endian, False,
MEM_CONSTRAINT_ALIGNED

)

vmimtLoadRRO(
32, 32, 0, CPU_REG(r2), CPU_REG(ra2), endian, False,
MEM_CONSTRAINT_ALIGNED

):
vmimtMoveRR(32, CPU_REG(rl), CPU_TEMP1);

12.1.5 Taking Exceptions - orlkUtils.[ch]
The new routine orilkTakeException is implemented as:

void orlkTakeException(orlkP orilk, orlkException exception, Uns32 pcOffset) {

Uns8 simD;
Uns32 simPC = (Uns32)vmirtGetPCDS((vmiProcessorP)orlk, &simD);

orlkEnterSupervisorMode(orlk);
orlk->EPC = simPC + pcOffset;

// set sr[DSX] for exception in a delay slot
if(simD) {
orlk->SR |= SPR_SR_DSX;

© 2022 Imperas Software Limited.www.OVPworld.org Page 113 of 321

OVP Processor Modeling Guide

}

// jump to the vector
vmirtSetPCException((vmiProcessorP)orlk, exceptions[exception].code);

}

Because this routine is called at run time (as opposed to morph time) it uses functions
form the Imperas Run Time Function API to update the processor model state. In detail, it
works as follows:

Uns8 simD;
Uns32 simPC = (Uns32)vmirtGetPCDS((vmiProcessorP)orlk, &simD);

The function vmi rtGetPCDS returns the currently-executing instruction address with any
delay-slot byte offset. For non-delay-slot instructions, simPC will be set to the current
instruction address and simD set to zero. For delay-slot instructions, simPC will be set to
the address of the preceding jump or branch instruction and simbD will be the byte offset
of the current instruction from the preceding jump or branch. Since all OR1K
instructions are four bytes long, simd will therefore be 4 for a delay-slot instruction.

orlkEnterSupervisorMode(orilk);

This is a routine that puts the simulated processor into supervisor mode, described below.

orlk->EPC = simPC + pcOffset;

This line saves the current program counter in register epc (or the jump/branch
instruction address for delay slot instructions). A call-specific offset is added to the value
saved (this value is zero for the memory exceptions).

if(simD) {
orlk->SR |= SPR_SR_DSX;
b

These lines set a special bit in the status register sr if the exception occurred in a delay
slot instruction. Recovery from delay slot instruction exceptions requires special
processing in application exception handlers, so they need some way to find out whether
the original exception was in a delay slot instruction or not.

vmirtSetPCException((vmiProcessorP)orlk, exceptions[exception].code);

This line uses vmirtSetPCException to force the processor to jump to the exception
vector address associated with the exception type. A table maps exception types to vector
addresses:

#define ORL1K_EXCEPTION_INFO(D, DESC) [OR1K_EXCPT ## D] = { \
\

name :#D,
code : _D## ADDRESS, \
description : _DESC \

}

static const vmiExceptionlnfo exceptions[OR1K_EXCPT_LAST] = {

© 2022 Imperas Software Limited.www.OVPworld.org Page 114 of 321

OVP Processor Modeling Guide

OR1K_EXCEPTION_INFO(RST, "Reset"),
OR1K_EXCEPTION_INFO(BUS, "Bus error'),
OR1K_EXCEPTION_INFO(DPF, "Data privilege™),
OR1K_EXCEPTION_INFO(IPF, "Instruction privilege™),
OR1K_EXCEPTION_INFO(TTI, "Tick timer™),
OR1K_EXCEPTION_INFOCILL, *"Illegal instruction'™),
OR1K_EXCEPTION_INFO(EXI, "External interrupt™),
OR1K_EXCEPTION_INFO(SYS, "System call™),

};

The exceptions are described using an array of vmiExceptionlnfo type structures
(defined in vmiTypes.h). This structure type will be required when adding debugger
integration support routines to the model (see chapter 17).

The new routine or1kEnterSupervisorMode Saves sr in esr, updates sr to mask out
various exceptions that must be disabled in supervisor mode, and indicates that we are in
supervisor mode by setting the SM bit in sr, like this:

void orlkEnterSupervisorMode(orlkP orlk) {

const Uns32 clearBits = (

SPR_SR_IEE | // interrupt enable
SPR_SR_TEE | // tick timer enable
SPR_SR_DME | // data MMU enable
SPR_SR_IME | // instruction MMU enable
SPR_SR_OVE // overflow exception enable

);

// save the current status register in esr
orlk->ESR = orilkGetSR(or1k);

// mask out the “"clear® bits and mask in supervisor mode
orlk->SR = (orlk->ESR & ~clearBits) | SPR_SR_SM;

}

Note that orikGetsSR is used to get the value of the sr register. This routine ensures that
the flag bits are present in the returned value.

12.1.6 Exception Function Registration - or1kAttrs.c
File orikAttrs.c has been updated to include references to the five new exception
handler callbacks in the modelAttrs structure:

const vmilASAttr modelAttrs = {
. skipped lines .

L11177777777777777777777777777777//7777//777777///7777///7/7/7////7//77//7/7/
// EXCEPTION ROUTINES
L11171777777777777777777777777777//7777//777777///7777///7/7/7////7//77////7/

-rdPrivExceptCB
-wrPrivExceptCB
-rdAlignExceptCB
-wrAlignExceptCB
-arithExceptCB

orlkRdPrivExceptionCB,
orlkWrPrivExceptionCB,
orlkRdAl ignExceptionCB,
orlkWrAlignExceptionCB,
orlkArithExceptionCB,

. skipped lines .

© 2022 Imperas Software Limited.www.OVPworld.org Page 115 of 321

OVP Processor Modeling Guide

e

12.1.7 L.rfe and I .sys Instructions

The model has been enhanced to implement the I . rfe instruction. This OR1K instruction
performs a return from an exception handler: it copies register esr to register sr and
performs an unconditional jump to the address stored in epc. Decode and disassembly for
this instruction are very similar to previous instructions so no further details will be given
here. The functionality of the I . rfe instruction is implemented in or1kMorph.c like this:

static OR1K_MORPH_FN(morphRFE) {

// set sr from esr (must call orlkSetSR to do this)
vmimtArgProcessor();

vmimtArgReg(OR1K_BITS, OR1K_ESR);

vmimtCall ((vmiCalIFn)orlkSetSR) ;

// return to exception program counter
vmimtUncondJumpReg(0, OR1K_EPC, VMI_NOREG, vmi_JH_RETURNINT);

}

The first part of morphRFE constructs an embedded call to function orikSetSR, passing
the current processor as the first argument and the value of register esr from the
processor model structure as the second argument. The effect of this is to assign the
current value of esr to register sr. Remember that whenever sr is set, we must use
orlkSetsSR to do it because assigning to this register implicitly sets the flag fields we
maintain separately in the model.

The second part of morphRFE uses vmimtUncondJumpReg to perform a jump to the
address in the epc register. Note that the 1. rfe instruction is not followed by a delay slot
instruction. As this instruction implements a return from an exception handler, a new
jump hint type is used - vmi_JH_RETURNINT.

In general, it is possible to emit code to call any function from morphed code by using
a sequence of vmimtArg-prefixed functions followed by a call to vmimtCall. This
means that for many instructions there is an important implementation choice to be
made: is it best to implement the instruction directly using vmimtBinopRRR,
vmimtBinopRRC etc, or is it best to use vmimtCall to call a C function to do the work
instead?

In general, the rule is that if the behavior of the instruction requires more than a few
vmimt-prefixed calls to implement, or is difficult to encode using vmimt operations,
then use vmimtCall and a C function to implement the instruction behavior.

One important exception is that, wherever possible, jumps should be implemented
using vmimt jump primitives instead of using vmi rtSetPC, which is significantly
slower. Note that a single instruction can be implemented using a mixture or vmimt
primitive operations and vmirtcCall calls, as in this example.

© 2022 Imperas Software Limited.www.OVPworld.org Page 116 of 321

OVP Processor Modeling Guide

The 1.sys instruction is also now implemented (though not required for this example).
This instruction enters supervisor mode and jumps to an exception vector at address
0xc00, saving the next instruction address in epc. It is implemented in or1kMorph.c as:

static ORLK_MORPH_FN(morphSYS) {

vmimtArgProcessor();

vmimtArguns32(OR1K_EXCPT_SYS);

vmimtArguns32(4);

vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;

}

Note that the value 4 is passed as the third argument to or1kTakeException to ensure
that the saved address in epc is the next instruction address.

The call to orikTakeException in morphSYS is implemented using a more generic
embedded call function, vmimtCal 1Attrs. This function is similar to vmimtCal I
except that it takes an additional argument of type vmiCal IAttrs which gives the JIT
compiler further information about the purpose and nature of the call:

typedef enum vmiCallAttrsk {
VMCA _NA = 0x0, // no attributes
VMCA_PURE 0x1, // this call is to a pure function
VMCA_EXCEPTION 0x2, // this call causes a simulated exception
VMCA_NO_INVALIDATE = 0x4, // this call cannot invalidate this block
VMCA_FP_RESTORE 0x8, // restore floating point state before call
VMCA_FLT32_RESULT 0x10, // function result is of type FIt32
VMCA_FLT64 RESULT 0x20, // function result is of type FIt64

} vmiCallAttrs;

The value VMCA_EXCEPTION indicates that this call is to an exception entry routine and
that therefore the current code block should be terminated after this instruction
(because the next simulated instruction is never executed sequentially). It also
indicates that the called function might cause a processor mode switch (processor
modes are discussed in chapter 14). Refer to the Imperas VMI Morph Time Function
Reference for more detailed information about when to use vmimtCal 1Attrs.

If the test case already contained code to implement simulated exceptions, why did the
original run at the start of this chapter exit from opProcessorSimulate with an
unhandled processor exception? The reason is that whether or not simulated exceptions
should be enabled is specified by a model flag in the platform (most application code
should not generate exceptions in the normal case, and it is usually desired that any
exception is an error that should stop simulation).

To enable simulated exception modeling, modify the processor instantiation in
10.ori1kBehaviorExceptions/platform/harness.c as follows:

© 2022 Imperas Software Limited.www.OVPworld.org Page 117 of 321

OVP Processor Modeling Guide

const char *modelFile = "model ."IMPERAS_SHRSUF;
optProcessorP processor = opProcessorNew(
mr, modelFile, "cpul™, O,
OP_PARAMS(®
OP_PARAM_BOOL_SET(OP_FP_SIMULATEEXCEPTIONS, 1)
)

):
Then rebuild the platform and resimulate:

make -C platform
platform/harness.$IMPERAS_ARCH.exe —-trace --program
application/asmtest.OR1K.elf

The output from this should now be as follows:

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000000010000: l1.ori r30,r0,0x0

Info “cpul®, 0x0000000000010004: I.movhi r1,0x8000

Info "cpul®, 0x0000000000010008: I.movhi r2,0x1234

Info “cpul®, 0x000000000001000c: 1.ori r2,r2,0x5678

Info "cpul®, 0x0000000000010010: l1.ori r3,r0,0x0
Info “cpul®, 0x0000000000010014: 1.sb 0x0(rl),r2
Info "cpul®, 0x0000000000010018: I.sh ox0(r1),r2
Info "cpul®, 0x000000000001001c: I.sw 0x0(rl),r2

Info “cpul®, 0x0000000000010020:
Info "cpul®, 0x0000000000010024:
Info “cpul®, 0x0000000000010028:
Info "cpul®, 0x000000000001002c:
Info “cpul®, 0x0000000000010014:
Info "cpul®, 0x0000000000010018:
Info “cpul®, 0x0000000000000200:
Info "cpul®, 0x0000000000000204:

.addi r3,r3,0x1
.sfeqi r3,0xa

.bnf 0x00010014
.addi rl,rl,0x1
-sb 0x0(rl),r2
.sh 0x0(rl),r2
.addi r30,r30,0x1
.addi rl,rl,0x1

Info “"cpul®, 0x0000000000000208: 1.rfe
Info "cpul®, 0x0000000000010018: I.sh ox0(r1),r2
Info “"cpul®, 0x000000000001001c: I.sw 0x0(rl),r2

Info "cpul”, 0x0000000000000200:
Info “cpul®, 0x0000000000000204:
Info "cpul®, 0x0000000000000208:
Info “cpul®, 0x000000000001001c:
Info "cpul®, 0x0000000000000200:
Info “cpul®, 0x0000000000000204:
Info "cpul®, 0x0000000000000208:
Info “cpul®, 0x000000000001001c:
Info "cpul®, 0x0000000000010020:
Info “"cpul®, 0x0000000000010024:

.addi r30,r30,0x1
.addi rl,rl,0x1
.rfe

-sw 0x0(rl),r2
.addi r30,r30,0x1
.addi rl,rl,0x1
.rfe

-sw 0x0(rl),r2
.addi r3,r3,0x1
.sfeqi r3,0xa

> This shows how processor instantiations can be parameterized. In general, such parameters can be
specified in two ways:

1. Using the op_PARAMS list (as here); or
2. Using command line parser overrides.

As an example, instead of modifying the instantiation, we could have specified the additional command
line argument --override platform/cpul/simulateexceptions=T instead.

If the parameter should always be applied, use the first method. If it is only sometimes required, use the
second.

© 2022 Imperas Software Limited.www.OVPworld.org Page 118 of 321

OVP Processor Modeling Guide

- . . etc . . .

Info "cpul®, 0x0000000000010020: I.addi r3,r3,0x1
Info “"cpul®, 0x0000000000010024: 1.sfeqi r3,0xa

Info "cpul®, 0x0000000000010028: 1.bnf 0x00010014
Info “"cpul®, 0x000000000001002c: 1.addi rl,rl,0x1
Info "cpul®, 0x000000000001002c: I1.div r30,r30,r0
Info "cpul®, 0x0000000000010030: I._nop 0x0
Processor "cpul® terminated at "exit", address 0x10034

RO : 00000000 R1 : 80000025 R2 : 12345678 R3 : 0000000a
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : deadbeef R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 0000001b R31: deadbeef
PC : 00010034 SR : 00008201 ESR: 00008001 EPC: 0001001c
BF:1 CF:1 OF:0

processor has executed 185 instructions

Now, instead of terminating after 14 instructions, the processor jumps to the exception
handler at address 0x200 instead (execution within the exception handler is highlighted in
bold in the trace above for clarity). The exception handler increments the address in ri
and returns using 1. rfe, which re-executes the faulting instruction (obviously, in a real
application the exception handler would do something more sensible than this, but the
example is sufficient for demonstration purposes). As a side effect, the exception handler
also increments r30 so that on termination we have a count of the number of times it was
called (Ox1b, i.e. 27 times).

The divide-by-zero in the penultimate instruction now does not cause the simulation to
exit, but instead sets the carry flag.

12.2 Misaligned Load/Store Address Snapping and
Value Rotation

On some processors, loads and stores to misaligned addresses do not cause exceptions but
are instead snapped to the correct alignment for the data size (so two-byte load addresses
are rounded down to a two-byte boundary, four-byte load addresses to a four-byte
boundary, and so on). In addition, some processors (e.g. old ARM processors) rotate
values read from misaligned addresses, with the rotate amount based on the misaligned
byte offset.

One way to implement address snapping would be to copy each load/store address to a
temporary, mask it to the appropriate size using vmimtBinopRC with a vmiBinop of
vmi_AND, and then use this resulting address as an argument to the load/store operation.
Unfortunately, this approach adds significant run-time overhead to each memory access.
Implementing value rotation is even more complex.

© 2022 Imperas Software Limited.www.OVPworld.org Page 119 of 321

OVP Processor Modeling Guide

A Dbetter solution is possible using read and write address snap handlers defined in the
processor model. These are defined using a macro in vmiAttrs.h:

#define VMI_RD_WR_SNAP_FN(_NAME) Uns32 _NAME(\

vmiProcessorP processor, \
memDomainP domain, \
Addr address, \
Uns32 bytes \

)
typedef VMI_RD_WR_SNAP_FN((*vmiRdWrSnapFn));

The read and write handlers are specified using the rdSnapCB and wrSnapCB fields in the
processor attributes structure, respectively:

vmiRdWrSnapFn rdSnapCB; // read alignment snap function
vmiRdWrSnapFn wrSnapCB; // write alignment snap function

The return value from each handler is an integer which indicates what address snapping
or value rotation is required. The return value is constructed using macro MEM_SNAP in
vmiTypes.h:

#define MEM_SNAP(_SNAP, _ROTATE) (((Uns8)(_SNAP)) | ((_ROTATE)<<8))

In this macro, _SNAP specifies an address rounding granularity in bytes (typically 1, 2, 4
or 8), and _ROTATE specifies a value rotation in bits. As an example:

MEM_SNAP(4, 24)

indicates that a read/write address should be snapped to 4-byte alignment. In addition, a
value being written should be rotated left by 24 bits before it is written, and a value being
read should be rotated left by 24 bits before being assigned to a processor register.

In detail, the read and write snap handlers are used by the simulator as follows:

1. If an access is made to a misaligned address, any defined address snap handler is
called first. If the handler is defined and returns non-zero, then the read or written
value is modified using the granularity and rotation specified by the result.

2. Otherwise (if there is no address snap handler, or the address snap handler returns
zero) any defined align exception handler is called for a misaligned address
access. This should either return 0 (if the read or write should be terminated,
possibly because an exception is taken) or 1 (if the read or write should proceed,
possibly with a modified value)®.

3. If the read/write address has insufficient privileges, and either the address was
aligned, or the snap handler or align exception handler returns non-zero, then the
privilege exception handler is called.

® In fact, the align exception handler returns a granularity/rotate value in the same format as for the snap
handler. A return value of 1 therefore indicates 1-byte alignment with zero rotation.

© 2022 Imperas Software Limited.www.OVPworld.org Page 120 of 321

OVP Processor Modeling Guide

12.2.1 ARM Model Load/Store Address Snap Callback
This is the read snap address callback from the OVP ARM processor model:

VMI_RD_WR_SNAP_FN(armRdSnapCB) {

armP arm = (armP)processor;
armUnalignedAction ua;

iF(ALIGN_ENABLED(arm) || ((ua=getUnalignedAction(arm))==ARM_UA DABORT)) {

// take exception
return O;

} else if((ua==ARM_UA_ROTATE) && arm->configlnfo.rotateUnaligned) {

// read snaps address and loads rotated value
Uns32 rotate = addressé&(bytes-1);

if(getEndian(arm)==MEM_ENDIAN_LITTLE) {
rotate = bytes - rotate;
}

return MEM_SNAP(bytes, rotate*8);
} else {

// read snaps address
return MEM_SNAP(bytes, 0);

}

This callback does three things:

1. If the current instruction should cause an alignment exception, it returns 0 (so that
the read alignment exception handler will be called);

2. Otherwise, if this is an ARM variant in which unaligned reads cause rotation of
the read value, it calculates the required rotation based on the address are returns a
result aligned to the item byte size with that rotation;

3. Otherwise, it returns a result with an aligned address but no rotation.

12.3 Memory Aborts

In addition to alignment and privilege exceptions, there is one other type of exception that
can be handled in a processor model: a memory abort. Memory aborts are generated by
the memory subsystem, typically when there is no implemented memory at a particular
address. Read and write abort handlers are specified using the rdAbortExceptCB and
wrAbortExceptCB fields in the processor attributes structure, respectively:

vmiRdAbortExceptFn rdSnapCB; // read abort exception
vmiRdAbortExceptFn wrSnapCB; // write abort exception

The read and write abort handlers are called in one of two circumstances:
1. When a read or write privilege exception handler indicates the access should be
retried, but the simulator determines that there is no accessible memory at the
faulting address.

© 2022 Imperas Software Limited.www.OVPworld.org Page 121 of 321

OVP Processor Modeling Guide

2. When an externally-implemented memory model indicates that a memory access
has not succeeded (for example, by calling opProcessorReadAbort or
opProcessor\WriteAbort).

In the first case, read and write privilege exception handlers can indicate that a read or
write should be retried on completion using a by-ref argument, action, which should be
set to the value VM1_LOAD_STORE_CONTINE. As an example, here is the read privilege
exception handler from the OVP ARM model:

VMI_RD_PRIV_EXCEPT_FN(armRdPrivExceptionCB) {
armP arm = (armP)processor;

if(larmvMMiss(arm, domain, MEM_PRIV_R, address, bytes, attrs)) {
*action = VMI_LOAD_ STORE_CONTINUE;
b

}

The function armvMMi ss attempts to map the faulting address using either a TLB or MPU
entry, returning True if the address could not be mapped (indicating a miss). If there is no
miss, the function uses the action argument to indicate that the load should be retried.

The read abort handler in the OVP ARM maodel triggers an external memory abort:

VMI_RD_ABORT_EXCEPT_FN(armRdAbortExceptionCB) {
armP arm = (armP)processor;
armExternalMemoryAbort(arm, address, isFetch ? MEM_PRIV_X : MEM_PRIV_R);

}

The full load/store exception escalation process, including address snapping, alignment,
privilege and abort handlers, is shown in the following figure.

© 2022 Imperas Software Limited.www.OVPworld.org Page 122 of 321

OVP Processor Modeling Guide

address
call snap
?
snap handler? handler N
Y
y
align handler? call align snap address,
: handler N save rotate
Y
terminate terminate
simulation load/store
. > .| [load/store using
privilege ok? >3 »| address & rotate
: - call privilege
priv handler? handler
terminate terminate
simulation load/store
abort handler? call abort
handler
y
terminate terminate
simulation load/store
*continue if (*action==VMI_LOAD_STORE_CONTINUE)

Figure 1: Load/Store Address Snapping and Exception Flow

12.4 Misaligned Fetch Address Snapping

Some processors snap misaligned fetch addresses to even boundaries. For example, the
ARC 600/700 series processors snap all fetch addresses to a 2-byte aligned boundary.

© 2022 Imperas Software Limited.www.OVPworld.org Page 123 of 321

OVP Processor Modeling Guide

There is a specific callback, fetchSnapCB, in the vmi 1ASAttr structure for fetch address
snapping. The address snapping callback should be defined using the macro
VMI_FETCH_SNAP_FN, defined in vmiAttrs.h as:

#define VMI_FETCH_SNAP_FN(_NAME) Addr _NAME(\
vmiProcessorP processor, \
Addr thisPC \

)

typedef VMI_FETCH_SNAP_FN((*vmiFetchSnapFn));

The address snapping callback takes a processor and an address argument and should

return that address, appropriately snapped. For example, to snap addresses to a 2-byte
boundary:

VMI_FETCH_SNAP_FN(orlkFetchSnap) {
return thisPC & ~1;
T

The vmi 1ASAttr structure should reference the fetch address snapping callback:

const vmilASAttr modelAttrs = {
. Tields omitted .
L1/1177/7777///7/77777/7//7//7777777777
// NMORPHER CORE ROUTINES
L1/1/177/7777/77//7//7777777777

-morphCB
-FetchSnapCB

orlkMorphlnstruction,
orlkFetchSnap,

. Fields omitted .

© 2022 Imperas Software Limited.www.OVPworld.org Page 124 of 321

OVP Processor Modeling Guide

13 Modeling Mode-Dependent Behavior (Part 1)

Up to now, all processor instructions have been modeled in a mode-independent way: the
actions performed by each instruction have been independent of the current processor
state. In real processors, there are usually instructions for which this is not the case. For
example, some instructions may be intended for use only in a kernel or supervisor mode,
and any attempt to use those instructions in user mode will generate a privileged
instruction exception. For the OR1K, one such instruction has already been encountered:
1. rfe, which should in fact only allow a return from exception in supervisor mode (S0
the implementation in chapter 12 was incorrect as it takes no account of this).

In this chapter, we will correct the functionality of I . rfe so that it takes account of the
processor mode and also implement two mode modal instructions, 1 .mfspr and I.mtspr.
Chapter 14 shows how modal instructions can be modeled differently to give higher
performance.

13.1 The Template Modal Model

A template model for the OR1K processor implementing modal instructions can be found
in:

$IMPERAS_HOME/Examples/Models/Processor/11.orl1kBehaviorSPR

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/11.orlkBehaviorSPR .

Compile the model, harness and application using the make command:

cd 11.orlkBehaviorSPR
make OPT=1

Note that the processor model has been built with compiler optimizations enabled
(opT=1) for this example, to get the fastest possible model. This is because we will
use the model for performance testing at the end of this chapter.

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

© 2022 Imperas Software Limited.www.OVPworld.org Page 125 of 321

OVP Processor Modeling Guide

13.2 Correcting I.rfe Behavior

The 1. rfe instruction should return from an exception only in the case that the processor
is in supervisor mode. In user mode, the processor should take an illegal instruction
exception (at vector address 0x700). To implement this behavior, function morphRFE in
orlkMorph.c has been updated as follows:

static OR1K_MORPH_FN(morphRFE) {
vmiLabelP inUserMode = vmimtNewLabel();

// test the SPR_SR_SM bit in OR1K_SR, setting OR1K_TEMPFLAG
vmimtBinopRRC(OR1K_BITS, vmi_AND, VMI_NOREG, OR1K_SR, SPR_SR_SM, &FlagsTZ):

// go to label inUserMode if tempFlag set (SPR_SR_SM bit is zero)
vmimtCondJumpLabel (OR1K_TEMPFLAG, True, inUserMode);

L11117777777777777777777777777777/777777//77777///777/7/////77///////7////777
// HERE IN SUPERVISOR MODE
L11117777777777777777777777777777/7777777/77777///777//////7/7///////7////777

// set sr from esr (must call orlkSetSR to do this)
vmimtArgProcessor();

vmimtArgReg(OR1K_BITS, OR1K_ESR);

vmimtCall ((vmiCalIFn)orlkSetSR) ;

// return to exception program counter
vmimtUncondJumpReg(0, OR1K_EPC, VMI_NOREG, vmi_JH_RETURNINT);

L111777777777777777777777777777777777777//77777///777//////7////////7////7777
// HERE IN USER MODE
L1117777777777777777777777777777777777777//77777////777//////7////////7////7777

// insert the label targeted by vmimtCondJumpLabel above
vmimtInsertLabel (inUserMode);

// take illegal instruction exception

vmimtArgProcessor();

vmimtArguns32(OR1K_EXCPT_ILL);

vmimtArguns32(0);

vmimtCal lAttrs((vmiCallFn)orlkTakeException, VMCA_EXCEPTION);

}

This function uses an intra-instruction jump to execute one of two morphed-code
subsequences depending on the setting of the SPR_SR_SM bit in the SR register. In detail, it
works as follows:

vmiLabelP inUserMode = vmimtNewLabel();

This allocates a label that is used as a target of an intra-instruction jump.

// test the SPR_SR_SM bit in OR1K_SR, setting OR1K_TEMPFLAG
vmimtBinopRRC(OR1K_BITS, vmi_AND, VMI_NOREG, OR1K_SR, SPR_SR_SM, &FlagsTZ):

This morphs code to perform a bitwise-and of the SR register (identified using OR1K_SR)
and the constant SPR_SR_SM (defined in orikStructure.h). Because argument 3 of

© 2022 Imperas Software Limited.www.OVPworld.org Page 126 of 321

OVP Processor Modeling Guide

vmimtBinopRRC is VMI_NOREG, the result is discarded. The last (Flags) argument of
vmimtBinopRRC is passed this vmiFlags structure:

const vmiFlags flagsTzZ = {

VMI_NOFLAG_CONST, // carry in flag not used
{
VMI_NOFLAG_CONST, // carry out flag not used
VMI_NOFLAG_CONST, // parity flag not used
OR1K_TEMPFLAG_CONST, // offset to zero flag
VMI_NOFLAG_CONST, // sign flag not used
VMI_NOFLAG_CONST // overflow flag not used
}

}:

The vmiFlags structure specifies that all flags generated by the bitwise-and should be
discarded, except for the zero flag, which should be stored in a new temporary flag
register in the OR1K processor structure (in orlkStructure.h):

typedef struct orlkS {

Bool carryFlag; // carry flag

Bool overflowFlag; // overflow flag

Bool branchFlag; // branch flag

Bool tempFlag; // temporary flag

Uns32 regs[OR1K_REGS]; // basic registers

Uns32 SR; // status register

Uns32 ESR; // exception status register

Uns32 EPC; // exception program counter register
Uns32 EEAR; // exception effective address register
vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

// macros to specify target registers in VARIABLE expressions

#define OR1K_CPU_REG(_F) VMI_CPU_REG(or1kP, _F)
#define OR1K_CPU_TEMP(_F) VMI_CPU_TEMP(or1kP, _F)
#define OR1K_REG(_R) OR1K_CPU_REG(regs[_R1)
#define OR1K_CARRY OR1K_CPU_REG(carryFlag)
#define OR1K_OVERFLOW OR1K_CPU_REG(overflowFlag)
#define OR1K_BRANCH OR1K_CPU_REG(branchFlag)
#define OR1K_TEMPFLAG OR1K_CPU_TEMP(tempFlag)
#define OR1K_LINKREG OR1K_REG(OR1K_LINK)
#define OR1K_SR OR1K_CPU_REG(SR)

#define OR1K_ESR OR1K_CPU_REG(ESR)
#define OR1K_EPC OR1K_CPU_REG(EPC)
#define OR1K_EEAR OR1K_CPU_REG(EEAR)

// macros to specify target registers in CONSTANT expressions
#define OR1K_CPU_REG_CONST(_F) VMI_CPU_REG_CONST(orlkP, _F)
#define OR1K_CPU_TEMP_CONST(_F) VMI_CPU_TEMP_CONST(orlkP, _F)

#define OR1K_REG_CONST(_R) OR1K_CPU_REG_CONST(regs[_R1)
#define OR1K_CARRY_CONST OR1K_CPU_REG_CONST(carryFlag)
#define OR1K_OVERFLOW_CONST OR1K_CPU_REG_CONST(overflowFlag)
#define OR1K_TEMPFLAG_CONST OR1K_CPU_TEMP_CONST(tempFlag)

© 2022 Imperas Software Limited.www.OVPworld.org Page 127 of 321

OVP Processor Modeling Guide

Note that the new tempFlag field does not represent a true processor register: it is simply
a temporary required for modeling purposes. The flag is special because its value is used
as a temporary within one instruction and need not be saved when the instruction
completes: for such temporaries, the JIT compiler is able to generate more efficient code.
To identify a temporary, use the vMiI_CPU_TEMP and VMI_CPU_TEMP_CONST macros as in
the above example.

For best performance, always ensure that all instruction-local temporaries are
correctly identified with the vM1_CPU_TEMP and VMI_CPU_TEMP_CONST macros.

Having generated code that sets the value of the new tempFlag field if the processor is
not in supervisor mode, doRFE then emits code to perform an intra-instruction jump if the
flag is set:

// go to label inUserMode if tempFlag set (SPR_SR_SM bit is zero)
vmimtCondJumpLabel (OR1K_TEMPFLAG, True, inUserMode);

Next, code is generated to perform a return from exception in supervisor mode, just as in
the previous example:

// set sr from esr (must call orlkSetSR to do this)
vmimtArgProcessor();

vmimtArgReg(OR1K_BITS, OR1K_ESR);

vmimtCall ((vmiCallFn)or1kSetSR);

// return to exception program counter
vmimtUncondJumpReg(0, OR1K_EPC, VMI_NOREG, vmi_JH_ RETURNINT);

Now the label is inserted at the location where user mode code starts:

// insert the label targeted by vmimtCondJumpLabel above
vmimtlnsertLabel (inUserMode) ;

And in user mode, I.rfe should cause an illegal instruction exception, implemented by a
run-time call to orikTakeException (in orlkUtils.c):

// take illegal instruction exception

vmimtArgProcessor();

vmimtArguns32(OR1K_EXCPT_ILL);

vmimtArguns32(0);

vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;

As for the I.sys instruction, function vmimtCal IAttrs is used to indicate that this call is
an exception which terminates the current code block.

The example at the end of this section shows the new code in action.

13.3 Implementing I .mtspr

The I.mtspr instruction implements a move to special purpose register. It allows a value
in an OR1K general purpose register (ro, ri etc) to be written to a special purpose

© 2022 Imperas Software Limited.www.OVPworld.org Page 128 of 321

OVP Processor Modeling Guide

register (e.g. sr, epc, esr, and many other special purpose registers that are currently
unimplemented). The target special purpose register is identified by a unique index
number: for example, register sr has index 0x11, register epc has index 0x20 and register
esr has index 0x40.

The index number of the special purpose register is calculated by adding an index register
ra and a constant index k. This means that if the index register is anything other than ro,
the special purpose register to update must be identified at run time (since there is no way
to know the future value of ra when morphing code). However, if ra is ro (which is
always zero) we know at morph time the SPR index (k) and therefore more efficient code
can be created, as we will see below.

I.mtspr has been added to the decoder and disassembler in a similar way as for previous
instructions. In orikMorph.c, the instruction is implemented by function morphMTSPR:

static ORLK_MORPH_FN(morphMTSPR) {

vmiReg ra = getGPR(state->info.rl);
vmiReg rb = getGPR(state->info.r2);
Uns32 k = state->info.c;

iF(VWMI_ISNOREG(ra)) {
// faster variant when ra is rO
morphMTSPR_ra_0(rb, Kk);

} else {

// slower variant when ra is not rO
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, ra);
vmimtArgReg(OR1K_BITS, rb);
vmimtArguns32(k);

vmimtCall ((vmiCallFn)vmic_MTSPR);

}

In the case that ra (the index register) is ro, it calls morphMTSPR_ra_0 to emit code that
targets a specific special purpose register. Otherwise a run-time call is created to function,
vmic_MTSPR, which handles writing any special purpose register, like this:

static void vmic_MTSPR(or1lkP orlk, Uns32 ra, Uns32 rb, Uns32 k) {
Uns32 sprNum = ra | k;
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmic_MTSPR_SYS_SR(or1k, rb);
break;

case SPR_OFF(SPR_SYS,SYS_EPC):
vmic_MTSPR_SYS_EPC(orilk, rb);
break;

case SPR_OFF(SPR_SYS,SYS EEAR):
vmic_MTSPR_SYS EEAR(orlk, rb);
break;

© 2022 Imperas Software Limited.www.OVPworld.org Page 129 of 321

OVP Processor Modeling Guide

case SPR_OFF(SPR_SYS,SYS ESR):
vmic_MTSPR_SYS _ESR(orlk, rb);
break;

default:
ignoreMTSPR(orlk, sprNum);
break;

To avoid confusion between functions that should be called at morph time and those
which are only applicable at run time, it can be helpful to use function prefixes: for
example, use the prefix vmic_ for a function that can only be called at run time.

The function constructs the special purpose register index and uses a case statement to
determine the register to update. It then calls a specific update function for that register.
As an example, the specific function to modify the sr register is:

static void vmic_MTSPR_SYS SR(or1kP orlk, Uns32 value) {
iF(VIN_SUPERVISOR_MODE(ori1k)) {
orlkTakeException(orlk, OR1K_EXCPT_ILL, 0);

} else {
orlkSetSR(orlk, value);
}

}

This function calls or1kTakeException if the processor is in user mode, which will
cause the processor to take an illegal instruction exception. In supervisor mode, it calls
orlkSetSR (from orikutils.c) to update the value of supervisor register sr.

In section 13.2, 1.rfe was implemented using an intra-instruction conditional jump.
It could just as well (and more clearly) have been implemented by a call to a run time
function that performed the supervisor mode check, as above.

When the index register is ro, code to implement the assignment of the special purpose
register is created by morph time function morphMTSPR_ra_o0:

static void morphMTSPR_ra O(vmiReg rb, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)vmic_MTSPR_SYS_SR);
break;

case SPR_OFF(SPR_SYS,SYS EPC):
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)vmic_MTSPR_SYS EPC);
break;

case SPR_OFF(SPR_SYS,SYS_EEAR):
vmimtArgProcessor();

© 2022 Imperas Software Limited.www.OVPworld.org Page 130 of 321

OVP Processor Modeling Guide

vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)vmic_MTSPR_SYS EEAR);
break;

case SPR_OFF(SPR_SYS,SYS_ESR):
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)vmic_MTSPR_SYS_ESR);
break;

default:
vmimtArgProcessor();
vmimtArguns32(sprNum) ;
vmimtCal I ((vmiCallFn)ignoreMTSPR) ;
break;

}

Note that morphMTSPR_ra_0 determines the register to be written at morph time, and
emits code that targets the specific register. vmic_MTSPR has to perform the equivalent
check at run time, which will be slower. We will see this in the examples that follow.

13.4 Implementing I.mfspr

The 1.mFspr instruction implements a move from special purpose register. It allows a
value in an OR1K special purpose register to be assigned to a general purpose register. It
is implemented in an analogous way to I .mfspr by function morphMFSPR in
orlkMorph.c.

13.5 Root Module Simulation - platform/harness.c
A new OP function is used to run simulation in this example:

// run platform
opRootModuleSimulate(mr);

This function simulates all processors in the root module until completion using a built-in
scheduling algorithm.

13.6 Testing lllegal Instruction Exceptions

Directory 11.or1kBehaviorSPR/application contains the following example in file
asmtest.S:

.org 0x700
1/1//1/77777777777/777/777/77/77/77/7/7/7//7///7//7///7///7/7//7////7////7///////7/7/7/77/7777
// 1LLEGAL INSTRUCTION EXCEPTION HANDLER (AT 0x700)
1/1//1//7777777777777777/77/7/7/77/77/7//7/7/7///7/7//7////7//7//7//7////7//////7/7/7/7/777777

1.addi r30,r30,1 // increment count of illegal instructions
1_sw -4(r31),r1 // save value in rl

1_mfspr rl,r0,0x20 // get epc in rl

1_addi rl,rl,4 // move epc past faulting instruction

1 _mtspr ro,rl,0x20 // set epc from ri

1_lwz rl,-4(r31) // restore original rl

1.rfe // return from exception

© 2022 Imperas Software Limited.www.OVPworld.org Page 131 of 321

OVP Processor Modeling Guide

-org 0x10000

-global
_start:

loopl:

-global
exit:

incEPC:

L11177777777777777777777777777777/7777///7777////7777////7/7////7//7//7/7/
// APPLICATION CODE (AT 0x10000)
L11177777777777777777777777777777/7777///7777////7777///77/7////7//77//7/7/

_start
1_ori r30,r0,0 // r30 = 0 (counts illegal instructions)
1._ori r31,r0,0 // r31 = 0 (stack pointer)

1_mtspr ro,r0,0x20 // clear epc

1///1/////7/7///7//7/
// SUPERVISOR MODE LOOP TEST
1///1/7/7/7/7////////7///7//7/

1._ori rl,r0,2 // r1l = 2 (loop count)
1.mfspr r2,r0,0x20 // get epc in r2
1.addi r2,r2,1 // increment r2

1 _mtspr ro,r2,0x20 // set epc from r2
I.addi ri,rl,-1 // decrement ril
1._sfeqi ri1,0 // r1==07?

1.bnf loopl // go if not

1_nop // (delay slot)

11//1/777777777777/7/77/7/77////7//7///7///////////////////////////////7//7777
// SUPERVISOR MODE FUNCTION CALL TEST
1/1//1/777777777777/777/7/77///7/7//7///7///////////////////////////////7//77/77

1_jal incEPC // IncEPC (in supervisor mode)
1_nop // (delay slot)
1 _mtspr ro,r0,0x11 // clear supervisor mode

L111717777777777777777777777777777/7777///7777////7777///77//77////7//7//7/7/
// USER MODE FUNCTION CALL TEST
L111777777777777777777777777777777/7777///7777////7777///77/7////7//7//7/7/

1_jal inckEPC // IncEPC (in user mode)

1._nop // (delay slot)

1.rfe // *ILLEGAL* return from exception
exit

1._nop

1///1/7///7/7/////7///7///7//7/
// FUNCTION CALLED IN BOTH USER AND SUPERVISOR MODE
1/1//1//7///777/7////7////7//7//

1_mfspr r2,r0,0x20 // get epc in r2
1.addi r2,r2,1 // increment r2

1 _mtspr ro,r2,0x20 // set epc from r2
1_jr ro // return

1.nop // (delay slot)

This example begins execution at _start in supervisor mode. It then goes twice round
loop1l, incrementing the value of register epc (SPR index 0x20) each time. These
instructions are legal because the processor is in supervisor mode.

After the second loop iteration, the processor calls function incepPc, which also
increments register epc.

It then clears supervisor mode with the instruction:

© 2022 Imperas Software Limited.www.OVPworld.org Page 132 of 321

OVP Processor Modeling Guide

1 _mtspr ro,r0,0x11 // clear supervisor mode

Then, in user mode, the processor attempts to execute I . rfe. This fails, because it is now
in user mode, and the handler at address 0x700 is executed. The handler updates the
saved epc to skip the faulting instruction and returns (of course, a real handler would do
something more useful than this). Finally, it calls incEPC again. The attempts to read and
write epc in this function also fail, calling the handler.

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe -—trace \
-—program application/asmtest.OR1K.elf

The output from this should be as follows (execution in the illegal instruction exception
handler is highlighted in bold):

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000000010000: I1.ori r30,r0,0x0

Info “cpul®, 0x0000000000010004: 1.ori r31,r0,0x0

Info "cpul®, 0x0000000000010008: I.mtspr r0,r0,32

Info “cpul®, 0x000000000001000c: 1.ori rl,r0,0x2

Info "cpul®, 0x0000000000010010: I.mfspr r2,r0,32

Info “cpul®, 0x0000000000010014: 1.addi r2,r2,0x1

Info "cpul®, 0x0000000000010018: I.mtspr r0,r2,32

Info “cpul®, 0x000000000001001c: I1.addi rl,rl,OxFFFrrfff
Info "cpul®, 0x0000000000010020: I.sfeqi r1,0x0

Info "cpul®, 0x0000000000010024: 1.bnf 0x00010010

Info "cpul®, 0x0000000000010028: 1.nop 0x0

Info "cpul”, 0x0000000000010010: I.mfspr r2,r0,32

Info “"cpul®, 0x0000000000010014: 1.addi r2,r2,0x1

Info "cpul®, 0x0000000000010018: I.mtspr r0,r2,32

Info “"cpul®, 0x000000000001001c: I1.addi rl,rl,OxfFFErfrfff
Info "cpul®, 0x0000000000010020: l.sfeqi ri1,0x0

Info "cpul®, 0x0000000000010024: 1.bnf 0x00010010

Info “cpul®, 0x0000000000010028: 1I.nop 0x0
Info "cpul®, 0x000000000001002c: I.jal 0x00010048
Info “cpul®, 0x0000000000010030: I.nop 0x0

Info "cpul®, 0x0000000000010048:
Info "cpul”, 0x000000000001004c:
Info “"cpul®, 0x0000000000010050:
Info "cpul”, 0x0000000000010054:
Info “cpul®, 0x0000000000010058:
Info "cpul®, 0x0000000000010034:
Info “cpul®, 0x0000000000010038:
Info "cpul®, 0x000000000001003c:
Info “cpul®, 0x0000000000010048:
Info "cpul®, 0x0000000000000700:
Info “cpul®, 0x0000000000000704:
Info "cpul®, 0x0000000000000708:
Info “cpul®, 0x000000000000070c:
Info "cpul®, 0x0000000000000710:
Info “cpul®, 0x0000000000000714:
Info "cpul®, 0x0000000000000718:
Info “cpul®, 0x000000000001004c:
Info “"cpul®, 0x0000000000010050:
Info "cpul®, 0x0000000000000700:
Info “"cpul®, 0x0000000000000704:

-mfspr r2,r0,32

-addi r2,r2,0x1

-mtspr r0,r2,32

gr r9

-nop 0x0

-mtspr r0,r0,17

-jal 0x00010048

-nop 0x0

-mfspr r2,r0,32

.addi r30,r30,0x1

-sw OxFFfFffffc(r3l),rl
-mfspr r1,r0,32

.addi rl,rl,0x4

-mtspr r0,r1,32

-lwz r1,0xFFFffffc(r3l)
.rfe

.addi r2,r2,0x1

-mtspr r0,r2,32

-addi r30,r30,0x1

-sw OxFFFfFfffc(r3l),rl

© 2022 Imperas Software Limited.www.OVPworld.org Page 133 of 321

OVP Processor Modeling Guide

Info “cpul®, 0x0000000000000708:
Info "cpul®, 0x000000000000070c:
Info “cpul®, 0x0000000000000710:
Info "cpul®, 0x0000000000000714:
Info “cpul®, 0x0000000000000718:
Info "cpul®, 0x0000000000010054: 1.jr r9

Info "cpul®, 0x0000000000010058: 1._nop 0x0

I.mfspr r1,r0,32
|
|
|
|
|
|
Info "cpul®, 0x0000000000010040: I.rfe
|
|
|
|
|
|
|

.addi rl,rl,0x4

-mtspr r0,rl1,32

-lwz rl,OxFFFffrffc(r3l)
.rfe

Info “cpul®, 0x0000000000000700: I.addi r30,r30,0x1
Info "cpul®, 0x0000000000000704: 1.sw OxFFfffffc(r3l),rl
Info “cpul®, 0x0000000000000708: I.mfspr r1,r0,32
Info "cpul®, 0x000000000000070c: 1.addi rl,rl,0x4
Info “cpul®, 0x0000000000000710: I.mtspr rO,r1,32
Info "cpul®, 0x0000000000000714: 1.lwz rl,0xfFFFfffc(r3l)
Info “"cpul®, 0x0000000000000718: 1.rfe
Info "cpul®, 0x0000000000010044: 1.nop 0x0
Processor "cpul® terminated at "exit", address 0x10044
RO : 00000000 R1 : 00000000 R2 : 00000004 R3 : deadbeef
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 00010040 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 00000003 R31: 00000000
PC : 00010048 SR : 00008000 ESR: 00008000 EPC: 00010044
BF:0 CF:0 OF:0

processor has executed 56 instructions

13.7 Testing I.mtspr and I .mfspr Performance
When implementing 1.mtspr and I .mfspr, we optimized the case where the index
register is ro to improve performance. We can test the effect of this as follows.

13.7.1 Increase application/asmtest.S to Loop Count
Modify line 44 of application/asmtest.S to greatly increase the number of iterations
of loop1 as follows:

1 _movhi r1,0x1000 // r1l = 0x10000000 (loop count)

This will cause the loop to be executed over 268 million times, which should take long
enough to get meaningful performance numbers.

Then rebuild the test case and rerun (without tracing enabled):

make -C application
time platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

The output from this should be:

Warning (PC_NRI) No register information callback given for processor “cpul”
Processor "cpul® terminated at "exit", address 0x10040

RO - 00000000 R1 - 00000000 R2 - 10000002 R3 : deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org Page 134 of 321

OVP Processor Modeling Guide

R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 00010040 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 00000003 R31: 00000000
PC : 00010048 SR : 00008000 ESR: 00008000 EPC: 00010044
BF:0 CF:0 OF:0

processor has executed 1879048234 instructions

On a 3.5GHz Intel i7-4770K processor, time shows this takes about 1.87 seconds to
execute 1,879,048,234 OR1K instructions, giving a simulation speed for this example of
about 1,000 simulated MIPS.

13.7.2 Use Index Register r31

Now modify the inner loop in application/asmtest.S to use r31 as the index register
instead of ro (r31 happens to hold the value zero in this test case, but isn’t hard wired to
zero like ro):

1 _mfspr r2,r31,0x20 // get epc in r2
1.addi r2,r2,1 // increment r2
1_mtspr r31,r2,0x20 // set epc from r2
1.addi ri,rl,-1 // decrement rl
1._sfeqi ri1,0 // r1==07?

1_bnf loopl // go if not

1.nop // (delay slot)

This will cause the identification of the special purpose register to update to be deferred
to run time, using calls to vmic_MTSPR and vmic_MTSPR, instead of calling the specific
register SPR register access routines directly (e.g. vmic_MTSPR_SYS_SR).

Then rebuild the test case and rerun (again, without tracing enabled):

make —C application
time platform/harness.$IMPERAS_ARCH.exe --program application/asmtest.OR1K.elf

Output is identical to before, but the run time is now 4.0 seconds, giving a simulation
speed for this example of about 470 simulated MIPS. Although the change we made
caused only a small amount of extra C code to be executed at run time (an extra function
call and case statement) simulation performance is 530 MIPS slower than before.

It is very important when creating a high-performance processor model to do as much
work as possible at morph time and as little as possible at run time. The difference in
simulation speed can be dramatic.

13.8 Passing Register Arguments to Embedded Calls

The implementation of I.mtspr and 1.mfspr in this chapter made extensive use of
embedded calls, defined by morph-time calls to vmimtCall and vmimtCal 1Attrs. When

© 2022 Imperas Software Limited.www.OVPworld.org Page 135 of 321

OVP Processor Modeling Guide

creating such functions there is often an implementation choice: when passing a GPR
argument or assigning a GPR result, should the value of the register be used, or its index?

Recall that the embedded call to get the value of the sr register (when the SPR index is
known at morph-time) was implemented like this:

static void morphMFSPR_ra_O(vmiReg rd, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmimtArgProcessor();
vmimtCalIResult((vmiCallFn)vmic_MFSPR_SYS SR, OR1K BITS, rd);
break;

. lines omitted .

}

And that the implementation of vmic_MFSPR_SYS_SR was like this:

static Uns32 vmic_MFSPR_SYS_SR(orlkP orilk) {
iF(VIN_SUPERVISOR_MODE(orik)) {
orlkTakeException(orlk, OR1K EXCPT_ILL, 0);
return O;

} else {
return orlkGetSR(orlk);
by

}

In other words, we chose to return the value of register SR from the embedded function
and do the final result assignment by means of the vmimtCal IResul t target. We could
instead have structured the code to pass the index of the result register like this:

static void morphMFSPR_ra 0(Uns32 rd, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmimtArgProcessor();
vmimtArguns32(rd) ;
vmimtCall ((vmiCallFn)vmic_MFSPR_SYS_SR);
break;

. lines omitted .

}

And perform the update of the result register in vmic_MFSPR_SYS_SR, like this:

static void vmic_MFSPR_SYS SR(or1kP orlk, Uns32 rd) {
iF(TIN_SUPERVISOR_MODE(orl1k)) {
orlkTakeException(orlk, OR1K_EXCPT_ILL, 0);
return O;
} else if(rd) {
orlk->regs[rd] = orlkGetSR(orilk);
}

© 2022 Imperas Software Limited.www.OVPworld.org Page 136 of 321

OVP Processor Modeling Guide

}

As a general rule, it is much better not to use index-based code like this, for several
reasons:

1. The JIT code generator can create better code if it is aware of the arguments and
results of each embedded call (especially if calls are defined to be pure, i.e. to
have VMCA_PURE call attributes — pure functions return a result dependent only on
their arguments).

2. The code is often simpler. In the above example, the callback function had to take
special action to ensure that ro is never updated (since this register is hard-wired
to zero). This happens automatically in the vmimtCal IResult-based version.

3. When the model is enhanced to support instruction attributes (see a later chapter),
much more information is automatically available.

© 2022 Imperas Software Limited.www.OVPworld.org Page 137 of 321

OVP Processor Modeling Guide

14 Modeling Mode-Dependent Behavior (Part 2)

In chapter 12.4, we saw how to model mode-dependent processor instructions with an
example running at up to 1,000 simulated MIPS. This chapter shows how to get even
faster performance on the same test case.

One significant problem with the implementation of the I.rfe, I .mtspr and I.mfspr
instructions in chapter 12.4 is that they are coded to implement both kernel and user
mode, and they select which behavior to perform at run time. The timing experiments at
the end of the last chapter showed that it is possible to get dramatically faster
performance if work can be moved from run time to morph time. Is it somehow possible
to perform the supervisor-mode check at morph time to improve performance of these
instructions?

Recall that the instruction morpher callback function defined using the VM1_MORPH_FN
macro is passed the current processor as one of its arguments, which is then saved in the
orlkMorphState structure:

VMI_MORPH_FN(orlkMorphilnstruction) {

orlkP orlk
orlkMorphState state

(or1lkP)processor;

{{0}}:

// decode instruction
orlkDecode(orlk, thisPC, &state.info);

// get morpher attributes for the decoded instruction and initialize other
// state fields

state.attrs = &orlkMorphTable[state. info.type];

state.orilk = orilk;

state.inDelaySlot = inDelaySlot;

. lines omitted . . .

}

We know that we can determine whether an orlk is in supervisor mode using the
IN_SUPERVISOR_MODE macro. Therefore, we can tell when morphing code whether user
or supervisor mode code must be generated, which is exactly what we require. We will
now see how this can be used to generate a faster model.

14.1 The Template Fast Modal Model

A template fast model for the OR1K processor implementing modal instructions can be
found in:

$IMPERAS_HOME/Examples/Models/Processor/12.orl1kBehaviorModeDict

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/12.orlkBehaviorModeDict .

© 2022 Imperas Software Limited.www.OVPworld.org Page 138 of 321

OVP Processor Modeling Guide

Compile the model, harness and application using the make command:

cd 12.orlkBehaviorModeDict
make OPT=1

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

14.2 Remove Temporary Flag - orikStructure.h

The temporary flag tempFlag introduced in the previous chapter is no longer required
and has been deleted.

14.3 Mode-Dependent JIT Functions - orlkMorph.c

Function morphRFE has been recoded to optimize for the current processor supervisor
mode as follows:

static OR1K_MORPH_FN(morphRFE) {
i T(IN_SUPERVISOR_MODE(state->orlk)) {

// set sr from esr (must call orlkSetSR to do this)
vmimtArgProcessor();

vmimtArgReg(OR1K_BITS, OR1K _ESR);

vmimtCall ((vmiCallFn)orlkSetSR) ;

// return to exception program counter
vmimtUncondJumpReg(0, OR1K_EPC, VMI_NOREG, vmi_JH_ RETURNINT);

} else {

// take illegal instruction exception

vmimtArgProcessor();

vmimtArguns32(OR1K_EXCPT_ILL);

vmimtArguns32(0);

vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;

}

What this does is as follows:

1. If the processor is currently in supervisor mode, it emits code to update register sr
from register esr and return to the address in register epc, exactly as in the
previous example.

2. Otherwise (the processor is in user mode), it emits code to jump to the illegal
instruction exception vector.

© 2022 Imperas Software Limited.www.OVPworld.org Page 139 of 321

OVP Processor Modeling Guide

Functions morphMTSPR and morphMFSPR have also been changed in an analogous way.
Here is the new implementation of morphMTSPR:

static OR1K_MORPH_FN(morphMTSPR) {

orlkP orlk = state->orlk;

vmiReg ra = getGPR(state->info.rl);
vmiReg rb = getGPR(state->info.r2);
Uns32 k = state->info.c;

iT(VMI_ISNOREG(ra)) {

// faster variant when ra is rO - select either supervisor mode or user
// mode function, based on current mode setting in sr
if(IN_SUPERVISOR_MODE(ori1k)) {

morphMTSPR_ra_0_SM(orilk, rb, k);
} else {

morphMTSPR_ra_0_UM(orlk, rb, k);
}

} else {

// slower variant when ra is not rO
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, ra);
vmimtArgReg(OR1K_BITS, rb);
vmimtArguns32(k);

// select either supervisor mode or user mode callback, based on
// current mode setting in sr
iF(IN_SUPERVISOR_MODE(ori1k)) {

vmimtCall ((vmiCallFn)vmic_MTSPR_SM);

} else {
vmimtCal I ((vmiCallFn)vmic_MTSPR_UM);
}

}

So user and supervisor mode behaviors are implemented separately. Here is the
supervisor-mode function used when the SPR register to which to assign is known at
morph time:

static void morphMTSPR_ra_0O_SM(orlkP orilk, vmiReg rb, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
vmimtArgProcessor();
vmimtArgReg(OR1K_BITS, rb);
vmimtCall ((vmiCallFn)orlkSetSR) ;
break;

case SPR_OFF(SPR_SYS,SYS_EPC):
vmimtMoveRR(OR1K_BITS, OR1K_EPC, rb);
break;

case SPR_OFF(SPR_SYS,SYS EEAR):
vmimtMoveRR(OR1K_BITS, OR1K_EEAR, rb);
break;

© 2022 Imperas Software Limited.www.OVPworld.org Page 140 of 321

OVP Processor Modeling Guide

case SPR_OFF(SPR_SYS,SYS ESR):
vmimtMoveRR(OR1K_BITS, OR1K_ESR, rb);
break;

default:
morphMTSPR_ra_0_Default(sprNum);
break;

}

The morph-time function vmimtMoveRR is used here to specify a direct register-to-register
assignment in three cases (no embedded call is required). The user-mode function simply
calls the exception handler as follows:

static void morphMTSPR_ra 0_UM(orlkP orlk, vmiReg rb, Uns32 sprNum) {
switch(sprNum) {

case SPR_OFF(SPR_SYS,SYS_SR):
case SPR_OFF(SPR_SYS,SYS_EPC):
case SPR_OFF(SPR_SYS,SYS EEAR):
case SPR_OFF(SPR_SYS,SYS_ESR):
vmimtArgProcessor();
vmimtArguns32(OR1K_EXCPT_ILL);
vmimtArguns32(0);
vmimtCal IAttrs((vmiCal IFn)orlkTakeException, VMCA_EXCEPTION) ;
break;

default:
morphMTSPR_ra_0_Default(sprNum);
break;

}

14.4 Testing Optimized lllegal Instruction Exceptions
Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest.OR1K.elf

The output from this should be as follows (execution in the illegal instruction exception
handler is highlighted in bold):

Warning (PC_NRI) No register information callback given for processor “cpul”
Info "cpul®, 0x0000000000010000: I1.ori r30,r0,0x0

Info “cpul®, 0x0000000000010004: 1.ori r31,r0,0x0

Info "cpul®, 0x0000000000010008: I.mtspr r0,r0,32

Info “cpul®, 0x000000000001000c: 1.ori rl,r0,0x2

Info “"cpul®, 0x0000000000010010: I.mfspr r2,r0,32

Info "cpul”, 0x0000000000010014: 1.addi r2,r2,0x1

Info "cpul®, 0x0000000000010018: I.mtspr r0,r2,32

Info "cpul”, 0x000000000001001c: I1.addi rl,rl,OxFFFFrfef
Info “"cpul®, 0x0000000000010020: I.sfeqi r1,0x0

Info "cpul®, 0x0000000000010024: 1.bnf 0x00010010

Info "cpul®, 0x0000000000010028: 1._nop 0x0

Info "cpul”, 0x0000000000010010: I.mfspr r2,r0,32

Info “"cpul®, 0x0000000000010014: 1.addi r2,r2,0x1

Info "cpul”, 0x0000000000010018: I.mtspr r0,r2,32

© 2022 Imperas Software Limited.www.OVPworld.org Page 141 of 321

OVP Processor Modeling Guide

Info "cpul®, 0x000000000001001c:
Info "cpul®, 0x0000000000010020:
Info "cpul®, 0x0000000000010024:
Info "cpul®, 0x0000000000010028:
Info “"cpul®, 0x000000000001002c:
Info "cpul®, 0x0000000000010030:
Info “"cpul®, 0x0000000000010048:
Info "cpul®, 0x000000000001004c:
Info “cpul®, 0x0000000000010050:
Info "cpul®, 0x0000000000010054:
Info “cpul®, 0x0000000000010058:
Info "cpul®, 0x0000000000010034: I.mtspr rO0,r0,17

Info “cpul®, 0x0000000000010038: 1_jal 0x00010048

1.addi rl,rl,OxFFFFFfff
|
|
|
|
|
|
|
|
|
|
|
|
Info "cpul®, 0x000000000001003c: I.nop 0x0
|
|
|
|
|
|
|
|
|
|
|
|
|

.sfeqi ri1,0x0
-bnf 0x00010010
-nop 0x0

-jal 0x00010048
-nop 0x0

-mfspr r2,r0,32
.addi r2,r2,0x1
-mtspr r0,r2,32
gr ro

-nop 0x0

Info “cpul®, 0x0000000000010048: I.mfspr r2,r0,32

Info "cpul®, 0x000000000001004c: 1.addi r2,r2,0x1

Info “cpul®, 0x0000000000010050: I.mtspr rO0,r2,32

Info "cpul®, 0x0000000000010054: 1.jr r9

Info “"cpul®, 0x0000000000010058: 1.nop 0x0

Info "cpul®, 0x0000000000010040: I.rfe

Info "cpul®, 0x0000000000000700: 1.addi r30,r30,0x1

Info “"cpul®, 0x0000000000000704: 1.sw OxFFffFfffc(r3l),rl
Info "cpul”, 0x0000000000000708: I.mfspr rl1,r0,32

Info “"cpul®, 0x000000000000070c: 1.addi rl,rl,0x4

Info "cpul”, 0x0000000000000710: Il.mtspr rO0,rl1,32

Info “"cpul®, 0x0000000000000714: 1.1wz r1,0xfFFFFfFffc(r3l)
Info "cpul®, 0x0000000000000718: I1.rfe

Info “"cpul®, 0x0000000000010044: 1._nop 0x0

Processor "cpul® terminated at "exit", address 0x10044

RO : 00000000 R1 : 00000000 R2 : 00000004 R3 : deadbeef
R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef
R8 : deadbeef R9 : 00010040 R10: deadbeef R11: deadbeef
R12: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
R16: deadbeef R17: deadbeef R18: deadbeef R19: deadbeef
R20: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
R24: deadbeef R25: deadbeef R26: deadbeef R27: deadbeef
R28: deadbeef R29: deadbeef R30: 00000001 R31: 00000000
PC : 00010048 SR : 00008000 ESR: 00008000 EPC: 00010044
BF:0 CF:0 OF:0

processor has executed 42 instructions

Comparing with the log output from chapter 12.4, it is obvious that something went
wrong: only 42 instructions have been executed instead of 56, and the exception vector
was executed only once instead of three times. The problem is that the application
function incEPC at address 0x00010048 is called both in supervisor and user mode.
When it is called first, the processor is in supervisor mode: at this point, a fragment of
translated native code is created for the function body and saved in the processor code
dictionary. On the second call (in user mode) the same fragment is re-executed. This is
wrong because the code fragment was specific to supervisor mode.

14.5 Using Multiple Code Dictionaries

One way to solve the problem we have seen in this example is to use two code
dictionaries: one for supervisor mode code fragments and one for user mode code

© 2022 Imperas Software Limited.www.OVPworld.org Page 142 of 321

OVP Processor Modeling Guide

fragments. To specify that we need multiple dictionaries, the list of dictionary names in
orlkAttrs.c has been changed to:

static const char *dictNames[] = {"SUPERVISOR", "USER", O0};

This definition says that we want this processor to have two dictionaries, the first (index
0) called SUPERVISOR and the second (index 1) called USER”.

When a processor starts executing it initially uses the first dictionary in this list (in this
case SUPERVISOR). However, the current dictionary can be switched at any time using the
VMI Run Time API function vmi rtSetMode:

void vmirtSetMode(vmiProcessorP processor, Uns32 mode);

The mode argument in this prototype is the zero-based offset into the dictNames list of
the new dictionary. So to switch to the supervisor mode dictionary, we would use:

vmirtSetMode((vmiProcessorP)orlk, 0);

And to switch to the user mode dictionary, we would use:

vmirtSetMode((vmiProcessorP)orlk, 1);

To use the new supervisor and user mode dictionaries, or1kUtils.c has been updated as
follows:

static void setSRSwitchMode(orlkP orilk, Uns32 value) {

Uns32 oldSM
Uns32 newSM

orlk->SR & SPR_SR_SM;
value & SPR_SR_SM;

// set the SR field
orlk->SR = value;

// switch mode if required
if(MODAL && (oldSM !'= newSM)) {

orlkMode newMode = newSM ? OR1K MODE_SUPERVISOR : OR1K MODE USER;
vmirtSetMode((vmiProcessorP)orlk, newMode);

bs
void orlkSetSR(orlkP orlk, Uns32 value) {

// it is never possible to clear the fixed-one (FO) bit
value |= SPR_SR_FO;

// set the SR
setSRSwitchMode(orlk, value);

// set the current branch flag, carry flag and overflow flag from the SR
orlk->branchFlag = GET_BIT(value, SPR_SR F);

" The processor model can have as many dictionaries as required (as long as there is at least one). The
number of dictionaries is the number of strings in this zero-terminated array.

© 2022 Imperas Software Limited.www.OVPworld.org Page 143 of 321

OVP Processor Modeling Guide

GET_BIT(value, SPR_SR CY);
GET_BIT(value, SPR_SR OV);

orlk->carryFlag
orlk->overflowFlag

}

void orlkEnterSupervisorMode(orlkP orlk) {

const Uns32 clearBits = (

SPR_SR_IEE | // interrupt enable
SPR_SR_TEE | // tick timer enable
SPR_SR_DME | // data MMU enable
SPR_SR_IME | // instruction MMU enable
SPR_SR_OVE // overflow exception enable

);

// save the current status register in esr
orlk->ESR = orilkGetSR(or1lk);

// mask out the "clear® bits and mask in supervisor mode
setSRSwitchMode(orlk, (orlk->ESR & ~clearBits) | SPR_SR_SM);

}

The existing functions orikSetSR and or1kEnterSupervisorMode have been modified
so that they no longer update the SR field directly, but instead call a new function
setSRSwitchMode. This new function determines whether the Sm (supervisor mode) bit in
the sr register has changed,; if it has, it calls vmi rtSetMode to switch code dictionaries.
The index numbers for each mode are specified in orikStructure.h as:

typedef enum orlkModeE {
OR1K_MODE_SUPERVISOR,
OR1K_MODE_USER,
OR1K_MODE_LAST

} orlkMode;

To use the new modal code, we need to recompile the processor model with MODAL
defined:

make clean
make OPT=1 MODAL=1

And then rerun the example:

platform/harness.$IMPERAS_ARCH.exe —trace \
-—program application/asmtest.OR1K.elf

The output from this should now be correct: 56 instructions executed and three calls to
the exception handler.

Now that the model is functionally correct, we should determine what effect the changes
have had on its performance. To do this, redo exactly the steps described in section 13.7.
On a 3.5GHz Intel i7-4770K processor the results are as follows:

1. Using ro for the index register: 1,879,048,234 instructions in 0.57 seconds (3,300
simulated MIPS);

© 2022 Imperas Software Limited.www.OVPworld.org Page 144 of 321

OVP Processor Modeling Guide

2. Using r31 for the index register: 1,879,048,234 instructions in 4.3 seconds (437
simulated MIPS).

The first example (where the SPR is known at morph time) is vastly quicker — over three
billion simulated instructions per second! Performance is similar for the second example -
437 simulated MIPS, as compared to 470 previously.

14.6 Cautionary Notes about Code Dictionaries

Although the use of multiple code dictionaries has significantly improved performance in
these examples, this technique is not a panacea and should be used with discretion. This
section describes the issues related to code dictionaries in more detail.

14.6.1 vmirtSetMode is Slow

Although we vastly accelerated 1 .mtspr and I .mfspr, that acceleration has a cost: we
have added a call to vmi rtSetMode, which slows down any instruction that causes a
mode switch (i.e. which updates register sr). This can be seen using a small OR1K test
case as follows:

.org 0xc00
L1/1/17777777777777777777777777777/777//7/7/7/7/7/777/7/7/7/7/7/7/77/////77777777777
// SYS VECTOR (AT 0xc00)
L1/1/177777777777777777777777777777/777/7/7/77/7/77////7/7/7/7/7/7/7///7/77777777777
1_rfe // return from exception (SWITCHES MODE)

-org 0x10000
L1/1/17777777777777777777777777777/77//7/77/77/7/77/7///7/7//7/77///7/77777777777
// APPLICATION CODE (AT 0x10000)
/1/1/17777777777777777777777777777/777/7/7/7/77/777/7///7/7/7/7/7/7/////77/777777777
-global _start

_start:

1_mtspr ro,r0,0x11 // clear supervisor mode

1 _movhi r1,0x0100 // r1l = 0x01000000 (loop count)
loopl:

1._sys 0 // call sys (SWITCHES MODE)

1.addi ri,rl,-1 // decrement ril

1._sfeqi ri1,0 // r1==07?

1_bnf loopl // go if not

1._nop // (delay slot)

-global exit
exit:
1_nop

This example performs a tight loop of six instructions of which two cause a mode switch.

On a 3.5GHz Intel i7-4770K processor, this executes 100,663,299 simulated instructions
in 1.58 seconds using the current model (a simulated speed of only 64 MIPS). On the
processor model used in chapter 12.4, the run time is 1.22 seconds (a simulated speed of
83 MIPS).

Whether performance is better with multiple dictionaries therefore depends on the
frequency of mode switching instructions compared with the frequency of instructions

© 2022 Imperas Software Limited.www.OVPworld.org Page 145 of 321

OVP Processor Modeling Guide

that can be optimized when there are multiple dictionaries: in some cases, application
code may actually run slower when multiple dictionaries are used.

14.6.2 Model Code is More Complicated

The model needs to be carefully designed to ensure that dictionary code is always
consistent with the simulated processor state. This is generally fairly easy as long as any
code that could affect the mode is channeled through a single routine (setSRSwitchMode
in this case). It is easy to get difficult-to-find bugs in poorly-structured models where
calls to vmirtSetMode are not carefully controlled. As a general rule, there should only
be one call to vmirtSetMode in a model, and this should be right next to code that
updates the processor model register that affects the mode.

© 2022 Imperas Software Limited.www.OVPworld.org Page 146 of 321

OVP Processor Modeling Guide

15 Implementing a Tick Timer

We have already seen in chapter 12 how synchronous exceptions (for example, alignment
exceptions) can be efficiently modeled. We will now see how to model asynchronous
exceptions, or interrupts. The VMI modeling API allows generic external exception
behavior to be specified, as we will see in chapter 16. Additionally, it allows tick timer
exceptions to be modeled very efficiently: the subject of this chapter.

15.1 ORI1K Tick Timer Overview

The OR1K tick timer is controlled by two processor registers, the tick timer mode register
(TTMR) and the tick timer count register (TTCR). These two SPR registers may be read and
written using the I.mfspr and 1.mtspr instructions we have seen previously (TTMR has
SPR index 0x5000, TTCR has SPR index 0x5100).

The TTCR register is a 32-bit register that is incremented on each cycle when enabled by
the TTMR register, as described below.

The TTMR register is subdivided into fields as follows:

Bit 31:30 29 28 27:0
Identifier M IE IP TP
R/W R/W R/W R R/W

The fields have the following meanings:

TP Time Period

0x0000000: shortest comparison time period

OxFFFFFFF. longest comparison time period
IP Interrupt Pending

0: tick timer interrupt is not pending

1: tick timer interrupt is pending

(1P can be cleared by writing 0 with I .mtspr, but may not be set)
IE Interrupt Enable

0: tick timer does not generate interrupt

1: tick timer generates interrupt when TTMR[TP] matches TTCR[27:0]
M Mode

00: timer is disabled

01: timer is restarted when TTMR[TP] matches TTCR[27:0]

10: timer stops when TTMR[TP] matches TTCR[27:0]

11: timer does not stop when TTMR[TP] matches TTCR[27:0]

(if the timer is stopped in mode 10, writing to TTCR restarts it).

In our model, both TTCR and TTMR will be set to zero at reset, so the tick timer will
initially be disabled.

© 2022 Imperas Software Limited.www.OVPworld.org Page 147 of 321

OVP Processor Modeling Guide

15.2 Tick Timer Modeling Considerations

In true hardware, tick timers usually count processor cycles. In architectural models that
are not cycle accurate, a common approximation is instead to count processor
instructions. We will make this approximation in this OR1K model.

The tick timer could be modeled directly using the VMI API. At the start of every
instruction, we could, for example, emit a call to a function that does the following:
1. Determine whether the counter is enabled by TTMR[M].
2. If so, increment TTCR and compare TTCR[27:0] against TTMR[TP].
3. If TTCR[27:0] and TTMR[TP] match, update state to stop the counter (if TTMR[M]
is 10) and set TTMRL1P] (if TTMRLIE] is set).
4. If TTMRLIP]Jand SRLTEE] are set, make a call to the exception vector at 0x500.

This would work perfectly well, but would be very slow. A much more efficient model
can be made by using a combination of three routines from the VMI Run Time Function
API:

Uns64 vmirtGetlCount(vmiProcessorP processor);

vmirtGetlCount returns a 64-bit count giving the total number of instructions that the
processor has executed since simulation started.

void vmirtSetlCountlnterrupt(vmiProcessorP processor, Uns64 iDelta);

vmirtSetlCountinterrupt causes a model callback function to be executed after
iDelta more processor instructions have been simulated. The callback function is used to
indicate whether the counter expiry alters the processor’s behavior (whether an exception
handler should be called, for example).

void vmirtClearlICountinterrupt(vmiProcessorP processor);

vmirtClearlICountinterrupt disables any instruction count interrupt previously
enables using vmirtSetlCountinterrupt.

A much more efficient model can be built using these functions as follows:

1. When TTCR or TTMR are written, determine the implied timer expiry count —in
other words, after what count would the timer expire given the current SPR
settings?

2. Use vmirtSetlCountinterrupt to schedule a model callback after that count, or
vmirtClearICountInterrupt to deschedule the callback if required.

3. When the callback is activated, schedule a call to the tick timer exception vector if
the exception is enabled.

4. Do not model the TTCR register directly by incrementing it each instruction.
Instead, derive the value if TTCR when requested using the processor instruction
count returned by vmirtGetlCount (in a similar manner as previously used for
the status register SR).

© 2022 Imperas Software Limited.www.OVPworld.org Page 148 of 321

OVP Processor Modeling Guide

Following sections describe the OR1K tick timer modeled using this approach.

15.3 The Template Tick Timer Model

A template model for the OR1K processor implementing a tick timer can be found in:

$IMPERAS_HOME/Examples/Models/Processor/13.orlkBehaviorTickTimer

Take a copy of the template model:

cp —r $IMPERAS_HOME/Examples/Models/Processor/13.orlkBehaviorTickTimer .

Compile the model, harness and application using the make command:

cd 13.orlkBehaviorTickTimer
make OPT=1

Note that the harness and application can be compiled individually if required using these
commands:

make —C platform
make —C application

The processor model is based on the previous model, with the changes listed in following
sections.

15.4 Adding Timer Registers - orikStructure.h
The OR1K processor structure has been updated as follows:

typedef struct orilkS {

Bool carryFlag; // carry flag
Bool overflowFlag; // overflow flag
Bool branchFlag; // branch flag
Uns32 regs[OR1K_REGS]; // basic registers
Uns32 SR; // status register
Uns32 ESR; // exception status register
Uns32 EPC; // exception program counter
Uns32 EEAR; // exception effective address register
Uns32 TTCR; // tick timer count register
Uns32 TTCRSetCount; // cycle count when TTCR set
Bool timerRunning; // whether the timer is running
union { // tick timer mode register
Uns32 TTMR;
struct {
Uns32 TTMR_TP: 28; // timeout count
Uns32 TTMR_IP: 1; // interrupt pending
Uns32 TTMR_1E: 1; // interrupt enable
Uns32 TTMR_M : 2; // timer mode

};
}:

© 2022 Imperas Software Limited.www.OVPworld.org Page 149 of 321

OVP Processor Modeling Guide

vmiBusPortP busPorts; // bus port descriptions

} orilk, *orilkP;

We have added fields TTCR and TTMR that will be used to model the tick timer SPR
registers. There are also two fields TTCRSetCount and timerRunning which do not
correspond to processor registers but which are modeling artifacts: TTCRSetCount
records the processor instruction count when TTCR is written (required to derive the value
of TTCR in later instructions); timerRunning is a boolean that indicates whether or not
TTCR should be incremented each instruction.

15.5 Timer Register Read and Write - orikMorph.c

This file has been modified to enhance I..mtspr and 1.mfspr to allow reading and
writing of TTCR and TTMR registers. TTCR is accessed by calling two new functions,
orlkGetTTCR and or1kSetTTCR, implemented in orlkExceptions.c as described
below. TTMR is written by orikSetTTMR, also implemented in orlkExceptions.c.

15.6 Adding Timer Exceptions - orlkExceptions.c
This file implements most of the new functionality to implement tick timer exceptions.
The changes are as below.

typedef enum TTMRmodeE {
TTMR_DISABLED 0, // TTCR does not run

TTMR_RESTART = 1, // TITCR counts up until TTMR_TP, then restarts at O
TTMR_ONCE =2, // TICR counts up until TTMR_TP, then stops
TTMR_FREE =3 // TICR counts up, overflowing at max

} TTMRmode;

This enumeration gives names for the four timer modes.

inline static Uns32 getThislCount(orlkP orlk) {
return (Uns32)vmirtGetlCount((vmiProcessorP)orilk);
}

inline static Uns32 getTTCR(orl1lkP orlk) {
if(orlk->timerRunning) {
return orlk->TTCR - orlk->TTCRSetCount + getThislCount(orilk);

} else {
return orlk->TTCR;
}

}

getTTCR is an internal routine that returns the current effective value of the TTCR register.
If the timer is running, TTCR is derived as follows:

1. Get the TTCR value recorded with the model.

2. Subtract the processor instruction count when TTCR was written.

3. Add the current processor instruction count.
If the timer is not running, the current TTCR value stored in the model is used.

static void setTTCR(orlkP orlk, Uns32 TTCR) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 150 of 321

OVP Processor Modeling Guide

// update fields dependent on TTCR
orlk->TTCR = TTCR;
orlk->TTCRSetCount = getThislCount(orlk);

// if the timer is running, calculate the cycle delay to any interrupt
// (28 bits maximum) and schedule timer interrupt
if(orlk->timerRunning) {
Uns32 iCount = (orlk->TTMR_TP-TTCR-1) & OxXFFFffff;
vmirtSetlCountinterrupt((vmiProcessorP)orlk, iCount);

} else {

vmirtClearlCountinterrupt((vmiProcessorP)orlk);
}
}

setTTCR is an internal routine that is called when the TTCR register value is updated. It
first saves the new TTCR value in the processor model and saves the current processor
instruction count in TTCRSetCount (this is required so that the correct implied value of
TTCR can be derived later). Next, if the timer is running, it calculates the implied timeout
to counter expiry: the delta to the expiry instruction is the difference between TTMR_TP
and TTCR[27:0] (masked to 28 bits), so it calls vmirtSetlICountlinterrupt to schedule
a model callback after this number of instructions. If the timer is not running, it calls
vmirtClearlCountInterrupt to deschedule the callback.

Uns32 orlkGetTTCR(orlkP orilk) {
return getTTCR(or1k);
}

void orlkSetTTCR(orlkP orilk, Uns32 TTCR) {

// restart the timer if mode is TTMR_ONCE

if(orlk->TTMR_M==TTMR_ONCE) {
orlk->timerRunning = True;

ks

setTTCR(orlk, TTCR);
}

These two routines implement the public interface to read and write the TTCR register.
Note that writing TTCR when the timer mode is TTMR_ONCE causes the timer to be
restarted if it is stopped.

void orlkSetTTMR(orlkP orlk, Uns32 TTMR) {
Uns32 TTCR = getTTCR(or1k);

// update TTMR, recording old and new values of TTMR_IP
Bool oldIP orlk->TTMR_IP;

orlk->TTMR TTMR;

Bool newlP orlk->TTMR_IP;

// TTMR_IP must not be set by I._mtspr!
if(loldIP && newlP) {

orlk->TTMR_IP = O;
}

// start the timer if mode is TTMR_RESTART or TTMR_FREE
// (for TTMR_ONCE, timer is restarted by write to TTCR)

© 2022 Imperas Software Limited.www.OVPworld.org Page 151 of 321

OVP Processor Modeling Guide

if((orlk->TTMR_M==TTMR_RESTART) || (orlk->TTMR_M==TTMR_FREE)) {
orlk->timerRunning = True;
}

setTTCR(orlk, TTCR);
}

orlkSetTTMR implements the public interface to write TTMR. It first gets the current
derived value of TTCR. It then sets the TTMR field in the processor structure, ensuring that
the TTMR_IP bit does not change from 0 to 1 (I.mtspr cannot be used to set the interrupt
pending bit, only to clear it). If the new mode is either TTMR_RESTART or TTMR_FREE, the
timer is then restarted by setting timerRunning. Finally, setTTCR is called to reset the
implied TTCR to the original value.

TTCR must be read using getTTCR and restored using setTTCR around the body of this
routine for two reasons:

1. The way in which the derived value of TTCR is generated depends on the current
setting of timerRunning. If setTTCR is not called, the next call to getTTCR will
return a bogus value.

2. setTTCR is responsible for scheduling the instruction count callback, using
vmirtSetlCountinterrupt. If setTTCR isn’t called, the instruction count
callback will occur at the wrong time because changes to TTMR that affect the
timeout (for example, and update of TTMR[TP]) won’t be taken into account.

VMI_ICOUNT_FN(orlklICountPendingCB) {
orlkP orlk = (orlkP)processor;
switch(orlk->TTMR_M) {

case TTMR_RESTART:
// restart the timer from 0 on the NEXT instruction
setTTCR(orlk, -1);
break;

case TTMR_FREE:
// schedule the next interrupt event
setTTCR(orlk, getTTCR(or1lk));
break;

case TTMR_ONCE:
// stop the timer on the NEXT instruction count

orlk->TTCR = (getTTCR(orlk)+1) & OXFFFffff;
orlk->timerRunning = False;
break;

case TTMR_DISABLED:
// how did we get here?
VMI_ABORT("timer interrupt, but timer was disabled™);
break;

}

// if interrupt generation is enabled, set TTMR_IP
if(orlk->TTMR_IE) {

orlk->TTMR_IP = 1;
}

© 2022 Imperas Software Limited.www.OVPworld.org Page 152 of 321

OVP Processor Modeling Guide

// handle exception if required
if(takeTEE(ori1k)) {

vmirtDoSynchronousinterrupt(processor);
}

}

Function orikliCountPendingCB is the callback that is called when the instruction count
timeout specified by vmirtSetiCountinterrupt has elapsed. The function prototype is
specified in the VMI header file vmiTypes.h as follows:

#define VMI_ICOUNT_FN(_NAME) void _NAME(C \
vmiProcessorP processor,
vmiModelTimerP timer,
Uns64 iCount,
void *userData

e

)

The arguments to this function are as follows:

1. The processor on which the timer has expired,;

2. Anargument timer of type vmiMode I TimerP. This is an opaque type representing
the implicit processor timer which is managed by the functions
vmirtSetlCountinterrupt and vmirtClearlCountinterrupt;

3. Anargument iCount, giving the current processor instruction count when the
callback is activated,

4. A userData argument, which is always NULL for the implicit processor timer.

The function should update the processor state to reflect any changes caused by the timer
expiry (for example, setting a pending-timer-interrupt bit). If necessary, it should signal
that the processor needs to stop what it is doing and handle an exception by calling

vmi rtbDoSynchronousInterrupt, as described below.

Based on the current timer mode setting when the timer expires, the processor state is
updated in one of several ways:

case TTMR_RESTART:
// restart the timer from O on the NEXT instruction
setTTCR(orlk, -1);
break;

If the mode is TTMR_RESTART, the timer needs to restart from 0 at the next instruction. To
do this, the callback sets TTCR to -1 now; when the timer is incremented before the next
instruction is executed, it will have the value 0.

case TTMR_FREE:
// schedule the next interrupt event
setTTCR(orlk, getTTCR(or1lk));
break;

With the timer free-running (mode is TTMR_FREE), TTCR is reset to its current value. This
idiom ensures that another timeout is scheduled after 0x10000000 instructions.

case TTMR_ONCE:

© 2022 Imperas Software Limited.www.OVPworld.org Page 153 of 321

OVP Processor Modeling Guide

// stop the timer on the NEXT instruction count
orlk->TTCR (getTTCR(orl1lk)+1) & OxXFFFffff;
orlk->timerRunning False;

break;

With the timer in mode TTMR_ONCE, TTCR should be set to the value that it should hold
from the next instruction onwards. Because the callback is invoked before execution of
the faulting instruction, we need to increment the current value of TTCR.

Whether the timer expiry should cause a processor state change is determined by calling
takeTEE, which is defined earlier in orlkExceptions.c as follows:

inline static Uns32 isTEEPending(orlkP orilk) {
return (orlk->TTMR_IP && orlk->TTMR_IE);
}

inline static Bool isTEEEnabled(orlkP orlk) {
return (orlk->SR & SPR_SR TEE);
}

inline static Uns32 takeTEE(orlkP orlk) {
return iISTEEPending(orilk) && isTEEEnabled(orik);
}

In other words, state change is required if TTMR[1P] and SR[TEE] are both set (the timer
interrupt is both pending and enabled.

The instruction count timeout callback function oriklICountPendingCB must not itself
try to handle the interrupt (for example, by calling orikTakeException, which we
first saw in chapter 12). Instead, it must call vmirtDoSynchronousInterrupt to indicate
that a timer exception is pending. The timer interrupt must be handled by the instruction
fetch exception handler function, specified by the vMI_IFETCH_FN macro in vmiAttrs.h:

#define VMI_IFETCH_FN(_NAME) vmiFetchAction _NAME(\

vmiProcessorP processor, \
memDomainP domain, \
Addr address, \
Bool complete, \
Bool annulled \

)

Argument domain specifies the memory domain in which the fetch is being performed.
The value of the domain can be used to control mode-specific fetch features (for example,
how TLB mappings are performed). Argument annul 1ed specifies whether the fetch is
being made for an annulled delay slot instruction. Annulled instructions are sometimes
treated differently (for example, they sometimes do not cause TLB misses). These two
arguments are required to model some advanced features, but are not discussed further
here.

Type vmiFetchAction is defined in vmiTypes.h as follows:

typedef enum vmiFetchActionE {
VMI1_FETCH_NONE =0,

© 2022 Imperas Software Limited.www.OVPworld.org Page 154 of 321

OVP Processor Modeling Guide

VMI_FETCH_EXCEPTION_COMPLETE
VMI_FETCH_EXCEPTION_PENDING
} vmiFetchAction;

iy
2

The instruction fetch exception handler is called in two phases. In the first phase
(indicated by complete argument False), the function should determine whether there is
a pending exception on the processor that should prevent execution at the passed address
and instead cause control to be transferred to an exception handler. If there is such an
exception pending, the function should return vM1_FETCH_EXCEPTION_PENDING; otherwise,
it should return vmi_rFETCH_NONE. In this phase, the instruction fetch handler should not
update the processor state.

If the instruction fetch exception handler returns vmi1_FETCH_EXCEPTION_PENDING, then it
will subsequently be called again in a second phase (indicated by complete argument
True). At this point, it should make any changes to the processor state required to handle
the pending exception and return vMI_FETCH_EXCEPTION_COMPLETE to indicate that
exception state has been updated.

Typically, the instruction fetch handler is required to handle a variety of exceptions: tick
timer exceptions (as in this example), other external interrupts or synchronous exceptions
such as invalid execute permission or alignment. In other words, the instruction count
timeout callback is specific to timer exceptions, whereas the instruction fetch handler
covers all possible fetch exceptions.

The initial implementation of the instruction fetch handler is as follows:

VMI_IFETCH_FN(orlklFetchExceptionCB) {
orlkP orkl = (orlkP)processor;
if(takeTEE(ori1k)) {

// tick timer interrupt must be taken
if(complete) {
orlkTakeException(orlk, OR1K _EXCPT_TTI, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;
} else {
return VMI_FETCH_EXCEPTION_PENDING;
¥

} else if(address & 3) {

// handle misaligned fetch exception
if(complete) {
orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K_EXCPT_BUS, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;

} else {
return VMI_FETCH_EXCEPTION_PENDING;
}

} else if(lvmirtlsExecutable(processor, address)) {

// handle execute privilege exception
if(complete) {

© 2022 Imperas Software Limited.www.OVPworld.org Page 155 of 321

OVP Processor Modeling Guide

orlk->EEAR = (Uns32)address;
orlkTakeException(orlk, OR1K _EXCPT_IPF, 0);
return VMI_FETCH_EXCEPTION_COMPLETE;

} else {
return VMI_FETCH_EXCEPTION_PENDING;

} else {

// no fetch exception
return VMI_FETCH_NONE;

}

For a tick timer exception, the fetch exception handler causes control to be transferred
immediately to the exception vector at TT1_ADDRESS without further execution of the
instruction at the current address.

We have also implemented the instruction fetch alignment exception, which transfers
control immediately to the exception vector at BUS_ADDRESS unless the fetch address is
aligned to a 4-byte boundary, and the execute privilege exception, which transfers control
immediately to the exception vector at 1PF_ADDRESS if the fetch address does not have
execute privileges®.

There is often also a requirement to transfer control to an exception handler vector after
the completion of the current instruction. For example, the tick timer interrupt in the
ORI1K is enabled by a mask bit in the status register, SR[TEE]. What happens if
TTMR[1P] is set and SRLTEE] is changed from O to 1 by execution of an I.mtspr
instruction? In this case, the 1.mtspr instruction should complete and the tick timer
exception should occur before the next instruction is executed. To allow this behavior,
there is one other useful public function defined in orikExceptions.c:

void orlklInterruptNext(orlkP orilk) {
if(takeTEE(ori1k)) {
vmirtDoSynchronousinterrupt((vmiProcessorP)orik);
by

}

vmirtDoSynchronousInterrupt causes the fetch exception handler to be invoked just
before the next processor instruction is executed.

15.7 Status Register Update - orikUtils.c

Function orikSetSR has been modified as follows to handle the case described in the
previous section where TTMR[1P] is set and SR[TEE] is changed from 0 to 1:

void orlkSetSR(orlkP orlk, Uns32 value) {

// i1t is never possible to clear the fixed-one (FO) bit
value |= SPR_SR_FO;

// set the SR

¥ See section 18 for an example that exercises the execute privilege exception handler

© 2022 Imperas Software Limited.www.OVPworld.org Page 156 of 321

OVP Processor Modeling Guide

setSRSwitchMode(orlk, value);

// set the current branch flag, carry flag and overflow flag from the SR
orlk->branchFlag GET_BIT(value, SPR_SR F);

orlk->carryFlag GET_BIT(value, SPR_SR_CY);

orlk->overflowFlag GET_BIT(value, SPR_SR 0V);

// ensure any pending interrupt is taken before the next instruction
if(value & SPR_SR_TEE) {

orlkinterruptNext(orlk);
}

}

Function ori1kDumpRegisters has also been updated to write the TTCR and TTMR register
values.

15.8 Fetch/Timer Callback Registration - orlkAttrs.c

The vmi 1ASAttr structure for the processor model has been modified to add both the
instruction count timeout callback and the instruction fetch handler, as follows:

const vmilASAttr modelAttrs = {
. etc .

L11177777777777777777777777777777/7777///7777////7777///7/7/7////7//77//7//
// EXCEPTION ROUTINES
L111777777777777777777777777777777/7777/7777777///7777///77/7////7//7//7/7/

-rdPrivExceptCB
-wrPrivExceptCB
-rdAlignExceptCB
-wrAlignExceptCB

orlkRdPrivExceptionCB,
orlkWrPrivExceptionCB,
orlkRdAlignExceptionCB,
orlkWrAlignExceptionCB,

. ifetchExceptCB orlklFetchExceptionCB,
-arithExceptCB orlkArithExceptionCB,
. icountExceptCB orlklCountPendingCB,

. etc .

};

15.9 Testing Tick Timer Exceptions

Run the platform using the assembler executable file:

platform/harness.$IMPERAS_ARCH.exe —-trace -—traceregs —traceshowicount \
-—program application/asmtest_OR1K.elf

The new —traceshowicount argument enables printing of an instruction count at the
start of reach trace line. The output from this should be as follows (much irrelevant
output has been cut for conciseness):

Warning (PC_NRI) No register information callback given for processor “cpul”
Info 1: "cpul®, 0x0000000000010000: I.ori r30,r0,0x0

Info "cpul®™ REGISTERS

RO : 00000000 R1 : 00000000 R2 : deadbeef R3 : deadbeef

R4 : deadbeef R5 : deadbeef R6 : deadbeef R7 : deadbeef

R8 : deadbeef R9 : deadbeef R10: deadbeef R11: deadbeef

© 2022 Imperas Software Limited.www.OVPworld.org Page 157 of 321

OVP Processor Modeling Guide

: deadbeef R13: deadbeef R14: deadbeef R15: deadbeef
: deadbeefF R17: deadbeef R18: deadbeef R19: deadbeef
: deadbeef R21: deadbeef R22: deadbeef R23: deadbeef
: deadbeefF R25: deadbeef R26: deadbeef R27: deadbeef
: deadbeef R29: deadbeef R30: 00000000 R31: deadbeef
: 00010004 SR : 00008001 ESR: deadbeef EPC: deadbeef
- 00000000 TMR: 00000000 BF:0 CF:0 OF:0

8: "cpul®, 0x0000000000000c00: I.mtspr r0,r1,20480
- 00000000 TMR: a0000008 BF:0 CF:0 OF:0

9: "cpul®, 0x0000000000000c04: I.rfe
- 00000000 TMR: a0000008 BF:0 CF:0 OF:0

10: “cpul®, 0x000000000001001c: I.mtspr rO0,r0,20736
- 00000000 TMR: a0000008 BF:0 CF:0 OF:0

11: "cpul®, 0x0000000000010020: I.ori rl,r0,0x8
- 00000001 TMR: a0000008 BF:0 CF:0 OF:0

12: "cpul®, 0x0000000000010024: 1.addi rl,rl,OxFFFFffff
- 00000002 TMR: a0000008 BF:0 CF:1 OF:0

13: "cpul®, 0x0000000000010028: I.sfeqi ri1,0x0
- 00000003 TMR: a0000008 BF:0 CF:1 OF:0

14: “cpul®, 0x000000000001002c: I.bnf 0x00010024
- 00000004 TMR: a0000008 BF:0 CF:1 OF:0

15: "cpul®, 0x0000000000010030: I._nop 0x0
- 00000005 TMR: a0000008 BF:0 CF:1 OF:0

16: "cpul®, 0x0000000000010024: 1.addi rl,rl,OxfFFErfrfff
- 00000006 TMR: