
© 2020 Imperas Software Limited www.OVPworld.org Page 1 of 39

OVP Debugging Applications with
Eclipse User Guide

Author: Imperas Software Limited
Version: 1.3
Filename: OVPsim_Debugging_Applications_with_Eclipse_User_Guide.doc
Project: OVP Debugging Applications with Eclipse User Guide
Last Saved: Monday, 13 January 2020
Keywords:

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 2 of 39
.

Copyright Notice
Copyright © 2020 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 3 of 39
.

Table of Contents

1 Preface... 4
1.1 Notation... 4
1.2 Related OVP Documents .. 4

2 Introduction... 5
2.1 Prerequisites .. 5

3 The Imperas Eclipse Helios Distribution.. 6
4 Imperas Eclipse Provided Debug Demos ... 7

4.1 Example Demonstration OVPsim_single_arm... 7
4.1.1 Launching Eclipse... 7
4.1.2 Starting Debugging ... 8

4.1.2.1 Start the simulated platform .. 8
4.1.2.2 Connect the Eclipse Debugger .. 9

4.1.3 Example Debug Session for Dhrystone Benchmark application................ 10
4.1.4 Re-building the Platform and Application.. 13

5 A New Debugging Example ... 15
5.1 Command Line arguments for debugging a C Platform................................... 15

5.1.1 Specifying the debugger connection details ... 15
5.1.2 Nominating the debugged processor... 15

5.2 Creating a Debuggable C Platform... 15
5.2.1 Specifying the debugger connection details ... 16
5.2.2 Nominating the debugged processor... 17

5.3 Preparing an Eclipse Project ... 17
5.3.1 Creating a New Project ... 17
5.3.2 Configuring Project Build Commands.. 18

5.3.2.1 Using MINGW ‘make’.. 18
5.3.2.2 Adding MinGW tools onto PATH... 19

5.3.3 Deselect ‘Autobuild’ from Eclipse ... 21
5.4 Importing a Demo to the Project... 22
5.5 Creating Launch Configurations... 25

5.5.1 A Debug Configuration... 25
5.5.2 Creating a Shortcut to Launch the OVPsim Platform................................. 28
5.5.3 Testing the Debug Configuration.. 31
5.5.4 Switching Console Output .. 32
5.5.5 Terminating the Debug Session .. 34
5.5.6 Verbose GDB Console Output.. 35

5.6 An Example Debug Session.. 35

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 4 of 39
.

1 Preface
This document describes how to debug an application running on the OVP simulator
using the Eclipse Helios 3.6.2 release Integrated Development Environment.

The example in this document demonstrates debugging of ARM and MIPS32
applications but the same approach is valid for applications running on processor models
for other architectures supported by the OVP simulator.

1.1 Notation
Code Code and command extracts

1.2 Related OVP Documents
• OVPsim Installation and Getting Started Guide
• OVPsim and CpuManager User Guide

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 5 of 39
.

2 Introduction
The OVPsim and CpuManager User Guide describes how platforms containing any
number of processor models can be constructed. This document describes how to debug
an application running on one processor in such a platform, while it is simulating using
the OVPsim simulation environment. OVPsim supports single-processor debugging with
Eclipse and the Gnu debugger (GDB) via the Remote Serial Protocol (RSP). Advanced
multi-processor debug facilities are available in Imperas commercial products.

2.1 Prerequisites
Pre-built demos are provided, that will be described later, to allow the immediate
debugging of an application using OVP and Eclipse Helios 3.6.2

To debug a simulated application with Eclipse you will need Eclipse with the C/C++
Development Tooling (CDT) plugins.

This walkthrough was produced with Eclipse Helios version 3.6.2.

It is recommended that Eclipse Helios version 3.6.2 has been installed using the Imperas
installer, see section 3 The Imperas Eclipse Helios Distribution. Alternatively, Eclipse is
available for free download from www.eclipse.org. The Eclipse IDE for C/C++
developers package should be used which includes the necessary plugins.

To build OVPsim platforms you require the OVP API files and libraries as well as a
native compiler.

To build applications you need a cross-compiler and a version of the Gnu debugger for
the chosen architecture.

The OVPsim Installation and Getting Started Guide provides a step-by-step guide to
obtaining and installing the OVP files, a native compiler and cross compiler tools. It is
strongly recommended that you follow that guide until you are able to build, compile and
simulate a platform using OVPsim.

http://www.eclipse.org/

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 6 of 39
.

3 The Imperas Eclipse Helios Distribution
An installer Imperas_Eclipse_Helios_3_6_2.<version> is available from the OVP
resources pages.

The Imperas Eclipse installation package provides an Eclipse installation that includes the
required plugins for C/C++ application and OVPsim platform development and
debugging.

The package installs, by default, into a directory Imperas_Eclipse.

An environment variable, IMPERAS_ECLIPSE_HOME, is used to point to the root of
the installation. This is setup automatically on Windows and may be setup using the
script, setup.sh, provided within the installation on Linux.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 7 of 39
.

4 Imperas Eclipse Provided Debug Demos

A number of demonstrations are provided that include the required files to setup a
defined project into a new Eclipse workspace.

The demos provided will include a script to start an Eclipse development and debug
session. These scripts are identified with the starting prefix DEBUG_ECLIPSE_

The script expects that the Imperas Eclipse package has been installed and is located by
the environment variable IMPERAS_ECLIPSE_HOME. If it is not available the script
will fail.

The GDB is expected to be found in one of the Cross Compiler libraries. If it is not
available the script will fail.

4.1 Example Demonstration OVPsim_single_arm
4.1.1 Launching Eclipse

The first time we run the script DEBUG_ECLIPSE_dhrystone.bat we will create a new
Eclipse workspace and in it a new project OVPsim_single_arm before invoking Eclipse.

You will see that a project is Imported into a default workspace location for this
demonstration before Eclipse is invoked using this workspace.

All subsequent runs of the script will only invoke Eclipse allowing the same workspace
to remain.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 8 of 39
.

When Eclipse has started a project is available with three files open
1. A README providing the same information provided in this section
2. The OVPsim platform definition
3. The Dhrystone benchmark application that will be used for this debugging

demonstration.

4.1.2 Starting Debugging

There are two stages to being able to debug.
1) Starting the simulated platform.
2) Connecting the Eclipse Debugger

These are provided in the form of Eclipse 'launch's

4.1.2.1 Start the simulated platform
This is invoked as an 'External Tool' from the Menu "run->external tools" or the drop
down menu button identified by the green run arrow with red toolbox icon

The 'launch' may already be visible in the quick launch section or will have to be selected
from the "External Tools Configuration..." menu

The launch to invoke is "run_platform_OVPsim_single_arm_<application name>"

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 9 of 39
.

The platform will now wait for a connection to be made to the specified port

4.1.2.2 Connect the Eclipse Debugger
This is invoked as a 'Debug Configuration' from the Menu "run->Debug" or the drop
down menu button identified by the same green run arrow icon

The 'launch' may already be visible in the quick launch section or will have to be selected
from the "Debug Configuration..." menu

The launch to invoke is "debug_application_OVPsim_single_arm_<application name>

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 10 of 39
.

You should now be in the 'Debug' Perspective with control over application execution
and visibility of all registers, variables etc.

4.1.3 Example Debug Session for Dhrystone Benchmark application

You should be familiar with the general debug control 'buttons' within Eclipse in order to
work through the following

1. Set a breakpoint on the line containing the call to 'Proc_5();' by double clicking
beside this line; this is found on line 608 (the line number may change slightly
with versions of the application)

2. Continue the simulation using the green 'play' symbol

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 11 of 39
.

3. Step the application forward using the 'Step Into' button

4. Open the register view; expand 'main', select registers and set the format to
hexadecimal

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 12 of 39
.

5. Step the application forward using the 'Step Into' button. This will show you the
colored highlighting of the registers that change

6. Open the Variables view; showing the current local variables

7. Select 'Instruction Stepping Mode' using the button.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 13 of 39
.

8. Step the application forward using the 'Step Into' button this will open the
disassembly view and highlight the instructions as they are stepped.

9. In the 'Memory' window, select 'Add Memory Monitor' Use the value of the
register 'SP' with bottom two bits as zeros to set the memory monitor base address
so that it will show the program stack.

10. Move the application forward using the 'Step Return' button. The memory
locations that are modified will be highlighted.

11. To finish the simulation you may either:
a. Use 'Resume' to continue to the end of the application
b. Use 'Terminate' After either of these the debug perspective can be cleaned

up with the 'Remove All terminated Launches' button

4.1.4 Re-building the Platform and Application

In order to re-build the platform file and the application source code you will require the
following packages installed:

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 14 of 39
.

1. MSYS and MinGW environments (for use under Windows)
2. Processor Cross Compiler toolchain
3. OVPsim

With these packages installed re-building can be carried out.

This is done from the C/C++ perspective using the build button (a hammer icon) or using
the menu item Project->Build All

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 15 of 39
.

5 A New Debugging Example
The following section provides information for the configuration of Eclipse Helios to
allow the debugging of an application running on an OVP platform.

5.1 Command Line arguments for debugging a C Platform
If the platform has the Imperas Command Line Parser (CLP) included it makes available
command line options to enable and control debugging of an application on the processor
in a platform without the need to make any changes.

5.1.1 Specifying the debugger connection details

The debug port is enabled by specifying the argument --port <port number> on the
command line. A specific port number may be specified or by setting port number to 0
the next available port is opened.

5.1.2 Nominating the debugged processor

In an OVPsim simulation only a single processor may be connected to a GDB debugger1.
this requires that the processor is selected using the --debugprocessor <processor name>.
In this case the processor name is the instance name in the platform, for example
platform/cpu0

5.2 Creating a Debuggable C Platform

The following platform shows the modifications required to open a debug port for
connection:

#define MODULE_DIR "module"
#define MODULE_INSTANCE "u1"
#define CPU_INSTANCE "cpu1"

int main(int argc, char ** argv) {

 int portNum;

 if(argc != 2) {
 opPrintf("usage: %s <port number>\n", argv[0]);
 return -1;
 }

 sscanf(argv[1], "%d", &portNum);

 optModuleP mi;

 opSessionInit(OP_VERSION);

 // enable debugging
 mi = opRootModuleNew(0, 0,
 OP_PARAMS (

1 The Imperas Professional products allow the ability to attach a GDB debugger to any or all the processors
defined in a platform. Imperas also provide alternative debugging solutions.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 16 of 39
.

 OP_PARAM_UNS32_SET(OP_FP_REMOTEDEBUGPORT, portNum)
)
);

 // create the hardware definition by loading the module
 optModuleP u1 = opModuleNew(mi, MODULE_DIR, MODULE_INSTANCE, 0, 0);

 // run simulation
 opRootModuleSimulate(mi);

 // terminate simulation
 opSessionTerminate();

 return 0;
}

For a full explanation of OVPsim platform construction please see the documents iGen
Platform and Module Creation User Guide and Writing Platforms and Modules in C
User Guide . This section describes only those aspects of platform construction that relate
to debugging.

5.2.1 Specifying the debugger connection details

The debugger connection is enabled by applying one of the debug parameters to the
simulation root module.

The parameters that can be set are

Parameter Description
OP_FP_REMOTEDEBUGPORT Open a port and listen for a connection
OP_FP_GDBCONSOLE Open a port and automatically connect a GDB

debugger
OP_FP_GDBEGUI Open a port and automatically connect a GDB

debugger under the Eclipse GUI
OP_FP_MPDCONSOLE Open a port and automatically connect the Imperas

MPD debugger
OP_FP_MPDEGUI Open a port and automatically connect the Imperas

MPD debugger under the Eclipse GUI

Each of these parameters are applied in the same way to the root module creation as
shown below

 mi = opRootModuleNew(0, 0,
 OP_PARAMS (
 OP_PARAM_UNS32_SET(OP_FP_REMOTEDEBUGPORT, dbgPort)
)
);

Eclipse uses the GNU debugger for C/C++ debugging. GDB Remote Serial Protocol
(RSP) debugging as supported by OVPsim uses standard operating system sockets on the
host running OVPsim and GDB.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 17 of 39
.

The dbgPort argument specifies the socket port on which to accept a debugger connection.
The special value of zero allows OVPsim to choose any free port on the host, otherwise
the specified port number is used. For the example platform the port number is given by
the first command line argument.

5.2.2 Nominating the debugged processor
Any processor instance or a number of instances can be selected to be debugged using the
opProcessorDebug API function:

In the following code we iterate over the processor instanced in a module until one with a
matching name is found.

#define CPU_INSTANCE “cpu1”
…
 optProcessorP proc = NULL;
 while ((proc = opProcessorNext(u1, proc))) {
 opPrintf("found %s\n", opObjectName(proc));
 if (strcmp(CPU_INSTANCE, opObjectName(proc)) == 0) {
 opProcessorDebug(proc);
 }
 }

5.3 Preparing an Eclipse Project
This section shows all the steps needed to create an Eclipse project which allows the
example platform and target application to be built and debugged in the Eclipse
development environment.

5.3.1 Creating a New Project
Create a new C project by selecting “New” from the “File” menu, then selecting “C
Project”. If this option is not present you may not have the C development plugins (CDT)
for Eclipse – see section 2.1.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 18 of 39
.

Select “Makefile project” as we will use an external Makefile within the project. Specify
a project name and optionally a location. Note that the project location path must not
include spaces as Eclipse passes the project directory to an underlying Gnu debugger in a
way that does not handle spaces correctly.

The default workspace and hence project location on Windows includes “Documents and
Settings” so in this case you should uncheck the “Use default location” checkbox and
specify a location which does not include spaces in the name. Click the “Finish” button to
create the project.

The new project contains no Makefile or source files so Eclipse will show an error
message if it attempts to build at this point.

5.3.2 Configuring Project Build Commands
5.3.2.1 Using MINGW ‘make’
Change the project build configuration so that Eclipse can find the MinGW “make” tool
used to build the project. This step may not be necessary if you already have a version of
GNU “make” on your system path. Select “Properties” from the “Project” menu and
select the “C/C++ Build” pane.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 19 of 39
.

Uncheck the “Use default build command” checkbox and specify the full path of the
MinGW/MSYS make executable on your system in the “Build command:” text box. In
the example shown the default MSYS install location of “c:\msys\1.0\bin\make” is used.

5.3.2.2 Adding MinGW tools onto PATH

It is recommended that your MinGW binary path is appended to the system path within
your Windows environment. In the example the MinGW install location of
“c:\msys\1.0\mingw\bin” is used.

However, it may be added into your Eclipse environment by adding a variable “PATH”
which includes the current value of PATH (given by %PATH%) and the MinGW path
separated by a semi-colon.

Add the MinGW native compilation tools to the path by selecting the “Environment” tab
of the same dialog and pressing the “Add…” button.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 20 of 39
.

Close the properties dialog by pressing “OK”.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 21 of 39
.

5.3.3 Deselect ‘Autobuild’ from Eclipse
By default, a new project in Eclipse will have autobuild selected. This can be useful, but
when debugging cross compiled applications on a C platform this may cause the build
process to be re-invoked between the launching of the simulation platform and the
attaching of the debugger to allow application debug.

Select the “Project” menu and click on ‘build automatically’ to de-select it.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 22 of 39
.

5.4 Importing a Demo to the Project
For the purposes of this document we will import the demo provided as part of an
OVPsim installation for the ARM processor, that is, OVPsim_arm. We could equally
choose the OVPsim_mips32 or other processor demo. The only difference is the Cross
Compiler toolchain setting and the GDB debugger selected. These will be notified in the
later sections.

The files are imported to a project by selecting the File->Import menu and selecting ‘File
System’ and followed by ‘Next’

This brings up a further menu from which you may browse to the Imperas installation and
the installed Demos. Select the demo directory that you wish to import. This may be any
demo supplied as part of an OVP installation.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 23 of 39
.

Once the directory containing the demo files has been selected, you will be prompted for
which files you wish to import. In general this is ALL files, if you wish to exclude some
files, please ensure that the source files and the exe and elf files are imported.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 24 of 39
.

Once imported your project will contain all the files

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 25 of 39
.

5.5 Creating Launch Configurations

5.5.1 A Debug Configuration
Create a debug configuration for the simulated application by selecting “Open Debug
Dialog…” from the “Run” menu. Create a new “C/C++ Application” configuration.

Select the application executable as the C application file using the “search project”
button

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 26 of 39
.

We now need to select the use of the standard debug launcher, not the DSF launcher. This
is done by selecting the ‘select other’ option.

Select the ‘Use configuration specific settings’ and select the use of the ‘standard Create
Process Launcher’

On the “Debugger” tab of this dialog select “gdbserver” as the debugger type and browse
for the GDB executable for the simulated processor type.

It is recommended that the auto build feature is also disabled in this launcher.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 27 of 39
.

Assuming you installed OVPsim and the toolchains to the default location “C:\Imperas”,
the Gnu tools for simulated processors, including cross-compilers and the Gnu debugger
can be found in “lib\Windows\CrossCompiler”.

The ARM GDB in this case is found at
“C:\Imperas\lib\Windows\CrossCompiler\CrossCompiler\imp-arm-elf\bin\arm-elf-
gdb.exe”.

Instead of using the full path to the fixed location C:\Imperas it may instead be replaced
with the environment variable IMPERAS_HOME.

In Eclipse the environment variable is accessed using the ${env_var:IMPERAS_HOME}
construct, as shown.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 28 of 39
.

Finally, specify the target connection settings:

Select “TCP” as the connection.
Choose a port number, here we have initially chosen 9999. You may need to change this
if there is a conflict on your host. The port number selected here must match the port
number we select on the platform launch we will define next.

Press “Apply” then “Close” to save the debug configuration without starting it.

5.5.2 Creating a Shortcut to Launch the OVPsim Platform
Before each debug session the OVPsim platform must be launched on the host machine.
The Eclipse “External Tools” facility is a convenient way to do this. Select “Open
External Tools Dialog…” from the “External Tools” menu within the “Run” menu.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 29 of 39
.

Create a new tool configuration and give it a meaningful name. Specify the location for
the platform executable by pressing the “Browse Workspace…” button and selecting the
“platform.<IMPERAS_ARCH>.exe” file built earlier. Press the “Browse Workspace…”
button for the working directory, and select the top-level project directory.

The arguments added into the arguments section must match the arguments that the
executable platform expects.

In this example the platform takes two arguments; the first argument is the application elf
file and the second argument is the port number on which it waits for a debugger
connection.

Specify the port 9999 initially, matching the port we chose in the debug configuration in
section 5.5.1.

Press “Apply”, then “Close” to save the external tool configuration without starting it.

NOTE: Depending upon the Demo you have selected, you may need to modify the
platform C source file so that it is a “debuggable platform” as described in section 5.2,
Creating a Debuggable C Platform,

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 30 of 39
.

Ensure the ‘Build before launch’ checkbox is not selected. We want to ensure we have
control over when the project is built, as we are using multiple launches.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 31 of 39
.

5.5.3 Testing the Debug Configuration
Earlier sections showed how to create a debug configuration for a simulated application
and an external tool shortcut to launch an OVPsim platform. To test that we are ready to
debug, first launch the OVPsim platform by running the external tool shortcut. The
easiest way to do this is to press the external tool icon on the Eclipse toolbar.

The first time you press this icon you will need to select the OVPsim platform shortcut
from the list in the external tool dialog, then press the “Run” button. Subsequently it will
automatically re-run the external tool you ran last.

The Eclipse Console view will show the output from the OVPsim platform executable:

If port 9999 is already in use on your system the console will show an error message and
you will need to modify both the debug configuration and the external tool configuration
to select a new port number.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 32 of 39
.

Once the OVPsim platform is running and waiting for a debugger to connect, launch the
debug configuration we created earlier. Again, the easiest way to do this is to press the
debug icon on the Eclipse toolbar.

If debugging is configured and started correctly, Eclipse will switch (or prompt to switch)
to the debug perspective, with the simulated application stopped at the entry to its main
function.

5.5.4 Switching Console Output

The output from the console terminal window depends upon the selection made in the
Debug window.

Here we have the output from the OVPsim platform executing after selecting the platform
executable.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 33 of 39
.

In the next picture we see the GDB output, showing the commands passed between
Eclipse and GDB with verbose selected, in the console after selecting the GDB debugger.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 34 of 39
.

5.5.5 Terminating the Debug Session

Press the stop icon to stop debugging, then the “C/C++” perspective icon to return to the
normal C project editing perspective.

There will be a number of terminated processes shown in the debug session window that
can be cleaned up using the icon shown.

If the debugger is unable to connect to the OVPsim platform you will see an error dialog.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 35 of 39
.

Check that the OVPsim platform is running, and that the port number it is waiting for
(section 5.2.1) matches the port number in the debug configuration settings (section
5.5.1).

5.5.6 Verbose GDB Console Output

To enable further information from the interface between Eclipse and the GDB you may
turn on a verbose output from the debugger tab of the GDB launcher.

5.6 An Example Debug Session
Section 5.3 showed how to prepare an Eclipse project to debug an application running on
a processor in an OVPsim virtual platform. This section provides a quick overview of
some common debugging tasks in Eclipse. For a full explanation of Eclipse C/C++
debugging please see the C/C++ Development User Guide available in the Eclipse help
system or online at www.eclipse.org.

The application we will look at is the Dhrystone benchmark code.

http://www.eclipse.org/

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 36 of 39
.

With a single processor platform setup to receive a port number for opening the debug
connection.

We also need to ensure that the external Makefile that is being used, is setup to build an
application elf file containing debug information.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 37 of 39
.

After any editing in the project of the application or platform, rebuild by pressing the
build icon on the Eclipse toolbar. Any syntax errors will be reported in the console view
and highlighted in the editor window.

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 38 of 39
.

Start debugging by clicking the external tool toolbar button (1), then the debug toolbar
button (2).

Eclipse will switch to the debug perspective automatically.

Set a breakpoint on the call to Ireport(2) by double-clicking in the margin next to the call.

Run to the breakpoint by pressing the resume toolbar button.

2 1

OVP Debugging Applications with Eclipse User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 39 of 39
.

Show the processor registers by switching to the registers pane. Bring up the disassembly
view by clicking the instruction stepping mode toolbar button. The debug view shows the
call stack for the debugged application.

As you step, you will see the registers that are modified being highlighted.

Finally, run to completion by double clicking on the breakpoint to remove it, then
pressing the resume button again. Program output is shown in the Eclipse platform
console view.

	1 Preface
	1.1 Notation
	1.2 Related OVP Documents

	2 Introduction
	2.1 Prerequisites

	3 The Imperas Eclipse Helios Distribution
	4 Imperas Eclipse Provided Debug Demos
	4.1 Example Demonstration OVPsim_single_arm
	4.1.1 Launching Eclipse
	4.1.2 Starting Debugging
	4.1.2.1 Start the simulated platform
	4.1.2.2 Connect the Eclipse Debugger

	4.1.3 Example Debug Session for Dhrystone Benchmark application
	4.1.4 Re-building the Platform and Application

	5 A New Debugging Example
	5.1 Command Line arguments for debugging a C Platform
	5.1.1 Specifying the debugger connection details
	5.1.2 Nominating the debugged processor

	5.2 Creating a Debuggable C Platform
	5.2.1 Specifying the debugger connection details
	5.2.2 Nominating the debugged processor

	5.3 Preparing an Eclipse Project
	5.3.1 Creating a New Project
	5.3.2 Configuring Project Build Commands
	5.3.2.1 Using MINGW ‘make’
	5.3.2.2 Adding MinGW tools onto PATH

	5.3.3 Deselect ‘Autobuild’ from Eclipse

	5.4 Importing a Demo to the Project
	5.5 Creating Launch Configurations
	5.5.1 A Debug Configuration
	5.5.2 Creating a Shortcut to Launch the OVPsim Platform
	5.5.3 Testing the Debug Configuration
	5.5.4 Switching Console Output
	5.5.5 Terminating the Debug Session
	5.5.6 Verbose GDB Console Output

	5.6 An Example Debug Session

