
© 2020 Imperas Software Limited www.OVPworld.org Page 1 of 17

OVP Debugging Applications with GDB User Guide

Imperas Software Limited

Imperas Buildings, North Weston,
Thame, Oxfordshire, OX9 2HA, UK

docs@imperas.com

Author: Imperas Software Limited
Version: 1.7
Filename: OVPsim_Debugging_Applications_with_GDB_User_Guide.doc
Project: OVP Debugging Applications with GDB User Guide
Last Saved: Monday, 22 June 2020
Keywords:

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 2 of 17
.

Copyright Notice
Copyright © 2020 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 3 of 17
.

Table of Contents

1 Preface... 4
1.1 Notation... 4
1.2 Related OVP Documents .. 4

2 Introduction... 5
2.1 Prerequisites .. 5

3 Debugging Example.. 6
3.1 Creating a Debuggable Platform... 6

3.1.1 Specify debug using the Command Line Parser ... 8
3.1.1.1 Specifying the debugger connection details .. 8
3.1.1.2 Nominating the processor for debug ... 8

3.1.2 Specify debug using OP API .. 8
3.1.2.1 Specifying the debugger connection details .. 8
3.1.2.2 Nominating the processor for debug ... 8

3.2 Building the Platform.. 9
3.3 Starting Debugging 'gdbconsole' .. 9

3.3.1 Running the Platform.. 9
3.4 Starting Debugging Manual Attachment .. 10

3.4.1 Running the Platform.. 10
3.4.2 Running GDB ... 10

3.4.2.1 Connecting GDB to OVPsim .. 11
3.5 An example debug session.. 11

4 Further GDB Connection Information and Features .. 13
4.1 RSP Interface .. 13
4.2 Environment variables .. 13
4.3 Detaching and Reattaching ... 13

4.3.1 Modifying simulator behavior on detach.. 13
4.3.1.1 Wait for next connection ... 13
4.3.1.2 Finish simulation ... 14

4.4 Enabling a debug port without initial connection ... 14
4.5 Environment Variable Enables Debug Connection .. 14
4.6 Debugging RSP Connections.. 14

5 Creating a Debuggable SystemC/TLM2.0 Platform... 16
5.1.1 Nominating the debugged processor... 16

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 4 of 17
.

1 Preface
This document describes how to debug an application running on the OVP simulator
using the Gnu debugger, GDB.

1.1 Notation
Code Code and command extracts

1.2 Related OVP Documents
• CpuManager and OVPsim User Guide

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 5 of 17
.

2 Introduction
The CpuManager and OVPsim User Guide describes how platforms containing any
number of processor models can be constructed. This document describes how to debug
an application running on one processor in such a platform while it is simulating using
the freely-available OVPsim simulation environment. OVPsim supports single-processor
debugging with the Gnu debugger (GDB) via the Remote Serial Protocol (RSP).
Advanced multi-processor debug facilities are available in Imperas commercial products.

2.1 Prerequisites
This documentation is supported by C code samples in an Examples directory, available
either to download from the www.ovpworld.org website or as part of an Imperas
installation.

GCC Compiler Versions
Linux32 4.5.2 i686-nptl-linux-gnu (Crosstool-ng)
Linux64 4.4.3 x86_64-unknown-linux-gnu (Crosstool-ng)
Windows32 4.4.7 mingw-w32-bin_i686-mingw
Windows64 4.4.7 mingw-w64-bin_i686-mingw

For Windows environments, Imperas recommends using MinGW (www.mingw.org) and
MSYS.

The example given in this document uses the opencores OR1K processor model and tool
chain, also available to download from the www.ovpworld.org website or as part of an
Imperas installation.

http://www.ovpworld.org/
http://www.mingw.org/
http://www.ovpworld.org/

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 6 of 17
.

3 Debugging Example

3.1 Creating a Debuggable Platform
A suitable single-processor platform example is available in the directory:

$IMPERAS_HOME/Examples/SimulationControl/debugWithGDB

This uses the freely-available OR1K processor (see
http://www.opencores.org/projects.cgi/web/or1k/architecture).

The test hardware definition source is in file module/module.op.tcl:

ihwnew -name debugWithGDB -stoponctrlc

ihwaddbus -instancename bus -addresswidth 32

Add a processor to do some reading and writing

ihwaddprocessor -instancename cpu1 \
 -vendor ovpworld.org -library processor -type or1k -version 1.0
\
 -variant generic \
 -semihostname or1kNewlib
ihwconnect -bus bus -instancename cpu1 -busmasterport INSTRUCTION
ihwconnect -bus bus -instancename cpu1 -busmasterport DATA

Memory on the main bus

ihwaddmemory -instancename ram -type ram
ihwconnect -bus bus -instancename ram -busslaveport sp1 -loaddress 0x00000000 -
hiaddress 0xffffffff

This creates a definition including an OR1K processor connected to a bus which also
contains a memory.
The C OP API code generated by iGen is in the file module.igen.h and looks like

// instantiate module components
static OP_CONSTRUCT_FN(instantiateComponents) {

 // Bus bus
 optBusP bus_b = opBusNew(mi, "bus", 32, 0, 0);

 // Processor cpu1
 const char *cpu1_path = opVLNVString(
 0, // use the default VLNV path
 "ovpworld.org",
 "processor",
 "or1k",
 "1.0",
 OP_PROCESSOR,
 1 // report errors

http://www.opencores.org/projects.cgi/web/or1k/architecture

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 7 of 17
.

);

 optProcessorP cpu1_c = opProcessorNew(
 mi,
 cpu1_path,
 "cpu1",
 OP_CONNECTIONS(
 OP_BUS_CONNECTIONS(
 OP_BUS_CONNECT(bus_b, "INSTRUCTION"),
 OP_BUS_CONNECT(bus_b, "DATA")
)
),
 OP_PARAMS(
 OP_PARAM_STRING_SET("variant", "generic")
)
);

 const char *or1kNewlib_0_expath = opVLNVString(
 0, // use the default VLNV path
 0,
 0,
 "or1kNewlib",
 0,
 OP_EXTENSION,
 1 // report errors
);

 opProcessorExtensionNew(
 cpu1_c,
 or1kNewlib_0_expath,
 "or1kNewlib_0",
 0
);

 // Memory ram

 opMemoryNew(
 mi,
 "ram",
 OP_PRIV_RWX,
 (0xffffffffULL) - (0x0ULL),
 OP_CONNECTIONS(
 OP_BUS_CONNECTIONS(
 OP_BUS_CONNECT(bus_b, "sp1", .slave=1, .addrLo=0x0ULL,
.addrHi=0xffffffffULL)
)
),
 0
);

}

For a full explanation of OVPsim platform construction please see the iGen Platform and
Module Creation User Guide. This section describes only those aspects of platform
construction that relate to debugging.

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 8 of 17
.

3.1.1 Specify debug using the Command Line Parser

The platform in this example includes the standard Command Line Parser (CLP). This
allows the debug control for the platform to be specified on the command line:

3.1.1.1 Specifying the debugger connection details

The debug port is enabled by specifying the argument --port <port number> on the
command line. A specific port number may be specified or by setting port number to 0
the next available port is opened.

Alternatively, the argument --gdbconsole will open a port and connect the default GDB
debugger automatically.

3.1.1.2 Nominating the processor for debug

In an OVPsim simulation only a single processor may be connected to a GDB debugger1.
this requires that the processor is selected using the --debugprocessor <processor name>.
In this case the processor name is the instance name in the platform, for example
platform/OR1K

3.1.2 Specify debug using OP API

3.1.2.1 Specifying the debugger connection details

The OP kernel is initialized by calling opModuleNew:

 optModuleP opRootModuleNew (optModuleAttrP attrs,
 const char *name,
 optParamP params)

The params argument of opRootModuleNew is used to initialize the simulator. One of the
options available, OP_FP_GDBCONSOLE, is to enable the automatic startup and
connection of a GDB to a processor in the simulated platform.

 opRootModuleNew(0, 0, OP_PARAMS(OP_PARAM_BOOL_SET(OP_FP_GDBCONSOLE, 1)));

GDB Remote Serial Protocol (RSP) debugging as supported by OVPsim uses standard
operating system sockets on the host running OVPsim and GDB.

3.1.2.2 Nominating the processor for debug
If the processor has one core, it is passed to opProcessorDebug().

 opProcessorDebug(processor);

1 The Imperas Professional products allow the ability to attach a GDB debugger to any or all the processors
defined in a platform. Imperas also provide alternative debugging solutions.

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 9 of 17
.

If it is a multicore device the appropriate core must be located:

 optProcessorP sub = opObjectByName(root, MODULE_NAME "/CPU0_P0",
OP_PROCESSOR_EN).Processor; // for example
 opProcessorDebug(sub);

Giving an incorrect name causes an error message which lists all the legal names. This is
a useful way to find the core names.

3.2 Building the Platform
The OVPsim examples are written to work with GCC and MAKE which are typically
available on Linux and can be installed on Windows as part of MinGW and MSYS (see
section 2.1.) The example commands below assume you are using a Bash shell on Linux
or MSYS.

Take a copy of the debugging example:

 cp –r $IMPERAS_HOME/Examples/SimulationControl/debugWithGDB .

The test platform can be compiled to produce an executable,
platform.<IMPERAS_ARCH>.exe, by using make in the example directory:

 cd debugWithGDB
 make –C module

Cross-compile a simple test application for the OR1K processor:

 make –C application

3.3 Starting Debugging 'gdbconsole'
3.3.1 Running the Platform
Start the OVP simulator with the example platform by running the native platform
executable built earlier. This simple platform uses the command line parser to specify the
start up of a console in which the correct GDB for the procesor type will be invoked and
connected to the platform.

 harness.exe –modulefile module/model.${IMPERAS_SHRSUF} --gdbconsole \
 --program application/application.OR1K.elf

OVPsim (32-Bit) v20150205.0 Open Virtual Platform simulator from
www.OVPworld.org.
Copyright (C) 2005-2015 Imperas Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.
Visit www.imperas.com for multicore debug, verification and analysis solutions.
OVPsim started: Mon Mar 9 12:28:15 2015

Info (GDBT_PORT) Host: <hostname>, Port: <portnumber>

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 10 of 17
.

Info (GDBT_WAIT) Waiting for remote debugger to connect...
Info (GDBT_CONNECTED) Client connected

Once the platform has made a call to opRootModuleSimulate (or opProcessorSimulate),
OVPsim will wait for the debugger connection. The output above shows the host and
portnumber being provided in the GDBT_PORT message which is used to connect the
automatically invoked GDB.
The GDB displays the current execution location:

0x00000100 in start ()

3.4 Starting Debugging Manual Attachment
3.4.1 Running the Platform
Start the OVP simulator with the example platform by running the native platform
executable built earlier. This simple platform uses the command line parser to specify the
port number to use for the debugger connection.

 harness.exe –modulefile module/model.${IMPERAS_SHRSUF} --port 0 \
 --program application/application.OR1K.elf

A non zero numeric value opens a port on the specified port while the value zero allows
OVPsim to choose any free host port.

OVPsim (32-Bit) v20150205.0 Open Virtual Platform simulator from
www.OVPworld.org.
Copyright (C) 2005-2015 Imperas Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.
Visit www.imperas.com for multicore debug, verification and analysis solutions.
OVPsim started: Mon Mar 9 12:28:15 2015

Info (GDBT_PORT) Host: <hostname>, Port: <portnumber>
Info (GDBT_WAIT) Waiting for remote debugger to connect...

Once the platform has made a call to opRootModuleSimulate (or opProcessorSimulate),
OVPsim will wait for the debugger connection. The output above shows the host and
portnumber being provided in the GDBT_PORT message which will be used to manually
connect GDB remote target to this port.

3.4.2 Running GDB
When the OVPsim platform is waiting for a debugger connection we can start the Gnu
debugger. GDB executables for OR1K and other processor model architectures provided
by OVP are included with the Gnu toolchains available for download from the
www.ovpworld.org website.

Start GDB in another shell/terminal:

 cd debugWithGDB
 "$IMPERAS_HOME/lib/$IMPERAS_ARCH/CrossCompiler/or32-elf/bin/or32-elf-gdb"

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 11 of 17
.

The GDB startup banner and prompt will be displayed:

GNU gdb 5.3
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-cygwin --target=or32-elf".
(gdb)

Now load the simulated application file into GDB to provide symbolic debugging
information:

(gdb) file application/application.OR1K.elf
Reading symbols from application/application.OR1K.elf...done.
(gdb)

3.4.2.1 Connecting GDB to OVPsim

The GDB target command is used to connect GDB to OVPsim:

(gdb) target remote localhost:1438
Remote debugging using localhost:1438
0x00000100 in start ()
(gdb)

The port number must match the port on which OVPsim is waiting for a connection.
Once the connection is made, OVPsim shows a message:

Info (GDBT_CONNECTED) Client connected

and GDB displays the current execution location:

0x00000100 in start ()

3.5 An example debug session

We are now able to inspect and control the platform and processor state while simulating
the application on OVPsim.

Display a disassembly of the next instruction each time execution stops:

(gdb) display /i $pc
1: x/i $pc 0x100 <start>: l.addi r2,r0,0x0
(gdb)

Show processor register values:

(gdb) info registers

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 12 of 17
.

 R0 R1 R2 R3 R4 R5 R6 R7
 00000000 00000000 deadbeef deadbeef deadbeef deadbeef deadbeef deadbeef
 ...
(gdb)

Step one instruction:

(gdb) stepi
0x00000104 in start ()
1: x/i $pc 0x104 <start+4>: l.addi r3,r0,0x0
(gdb)

Show register values again:

(gdb) info registers
 R0 R1 R2 R3 R4 R5 R6 R7
 00000000 00000000 00000000 deadbeef deadbeef deadbeef deadbeef deadbeef
 ...
(gdb)

Set a breakpoint on the application’s main function:

(gdb) break main
Breakpoint 1 at 0xf3c: file application/application.c, line 4.
(gdb)

Run until we hit a breakpoint:

(gdb) continue
Continuing.

Breakpoint 1, main () at application/application.c:4
4 printf("Hello\n");
1: x/i $pc 0xf3c <main+16>: l.movhi r3,0x0
(gdb)

Step over the C printf call

(gdb) next
5 }

(The printf output is shown in the OVPsim window.)

Finally, run the test application to completion

(gdb) continue
Continuing.

Program exited normally.
(gdb)

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 13 of 17
.

4 Further GDB Connection Information and Features
This section describes some of the other ways in which the simulation platform execution
may be started and used.

4.1 RSP Interface
RSP is the gdb (Gnu debugger) Remote Serial Protocol. It allows a debugger to
communicate with a simulator on the same host machine or over a network to a simulator
on a different host machine. OVPsim and CpuManager support RSP as used by most
versions of gdb. They automatically switch to an extended version of RSP to
communicate with the Imperas stand-alone multi-core debugger.

4.2 Environment variables
Variable Type Purpose
IMPERAS_NO_WAIT boolean Do not wait for an RSP connection before

starting simulation (but keep listening).
IMPERAS_RSP_PORT integer Listen on this port for a debugger (0 means

choose a port from the pool)
IMPERAS_RSP_PORT_FILE filename If port is chosen from the pool, write the port

number in this file
IMPERAS_RSP_WAIT_DISCONNECT boolean When disconnected, the simulator waits for a

new connection, rather than continuing.
IMPERAS_RSP_FINISH_DISCONNECT boolean When disconnected, the simulator finishes rather

than waiting.

4.3 Detaching and Reattaching
The stand-alone multi-core debugger can be detached from a simulation. When the detach
is performed the simulator may perform one of two operations

1. finish the simulation
2. continue the execution of the software application until the application completes

or makes no further progress. A debugger can then be reattached, causing
simulation to stop immediately so that debugging can continue.

The default operation is dependent upon the simulator runtime, the OVPsim and
CpuManager simulators will free run when the debugger is disconnected.

4.3.1 Modifying simulator behavior on detach

The default behavior of the simulator when a debugger is disconnected can be modified
to wait for a further connection or to finish (continue the execution of) the simulation.

4.3.1.1 Wait for next connection

Wait is the suspension of the simulation when the debugger is detached. No further
execution will take place and the simulator will wait for a further debugger connection.

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 14 of 17
.

Set the environment variable IMPERAS_RSP_WAIT_DISCONNECT before starting the
simulation.

4.3.1.2 Finish simulation

The simulation continues until it finishes or a further debugger connection is made when
the debugger is detached.

Set the environment variable IMPERAS_RSP_FINISH_DISCONNECT before starting
the simulation.

4.4 Enabling a debug port without initial connection
This 'no wait' option allows a simulation platform to be started with a debug port enabled
but without the need to connect the debugger prior to simulation starting.
A debugger can be connected at any time but the simulation will start executing
immediately.

The debug port is enabled in the normal way and the no wait mode is enabled by using
one of the following:

Set the environment variable IMPERAS_NO_WAIT.

Add --nowait into a control file.

Add OP_FP_RSPNOWAIT into the OP Parameters (opParams) of a call to
opRootModuleNew.

4.5 Environment Variable Enables Debug Connection
If you have a platform executable it is not always convenient to re-compile the platform
in order to enable debugging.
The opening of a debug port can also be accomplished using an environment variable

Set the environment variable IMPERAS_ RSP_PORT to either a port number or to 0 and
the next available port will be selected.

4.6 Debugging RSP Connections

When there is an error in the RSP connection additional information can be obtained by
enabling logging of the connection.

This log file should be provided to Imperas when reporting a problem with other
information about the platform used.

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 15 of 17
.

Set the environment variable IMPERAS_RSP_LOG_FILE to a file into which
transactions over the RSP connection will be written.

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 16 of 17
.

5 Creating a Debuggable SystemC/TLM2.0 Platform
When an OVP model is used within a SystemC TLM2.0 platform it may still be
debugged using the RSP connection.

A suitable single-processor platform example is available in the directory:

$IMPERAS_HOME/Examples/SimulationControl/debugSystemC_TLM2.0WithGDB

This uses the freely-available OR1K processor (see
http://www.opencores.org/projects.cgi/web/or1k/architecture).

The test platform source is in file platform/platform.cpp:

class TLM2Platform : public sc_core::sc_module {

 public:
 TLM2Platform (sc_core::sc_module_name name);

 tlmModule Platform;
 tlmDecoder bus1;
 tlmRam ram1;
 tlmRam ram2;
 or1k cpu1;
 extension semihostlib;

 params platformParams() {
 params p;
 p.set("remotedebugport", (Uns32)0);
 return p;
 }

}; /* TLM2Platform */

TLM2Platform::TLM2Platform (sc_core::sc_module_name name)
 : sc_module (name)
 , Platform ("", platformParams())
 , bus1 (Platform, "bus1", 2, 2)
 , ram1 (Platform, "ram1", 0x000FFFFF)
 , ram2 (Platform, "ram2", 0x0000FFFF)
 , cpu1 (Platform, "cpu1")
 , semihostlib (cpu1, opVLNVString (NULL, "ovpworld.org", "semihosting",
"or1kNewlib", "1.0", OP_EXTENSION, 1), "semihostlib")
…

For a full explanation of OVPsim platform construction please see the iGen Platform and
Module Creation User Guide. This section describes only those aspects of platform
construction that relate to debugging.

5.1.1 Nominating the debugged processor

The processor object method debugThisProcessor is called from sc_main:

int sc_main (int argc, char *argv[])
{

http://www.opencores.org/projects.cgi/web/or1k/architecture

OVP Debugging Applications with GDB User Guide

© 2020 Imperas Software Limited www.OVPworld.org Page 17 of 17
.

 session s;

…

 TLM2Platform top("top"); // instantiate example top module
…
 // Specify the debug processor.
 top.cpu1.debug();
…

	1 Preface
	1.1 Notation
	1.2 Related OVP Documents

	2 Introduction
	2.1 Prerequisites

	3 Debugging Example
	3.1 Creating a Debuggable Platform
	3.1.1 Specify debug using the Command Line Parser
	3.1.1.1 Specifying the debugger connection details
	3.1.1.2 Nominating the processor for debug

	3.1.2 Specify debug using OP API
	3.1.2.1 Specifying the debugger connection details
	3.1.2.2 Nominating the processor for debug

	3.2 Building the Platform
	3.3 Starting Debugging 'gdbconsole'
	3.3.1 Running the Platform

	3.4 Starting Debugging Manual Attachment
	3.4.1 Running the Platform
	3.4.2 Running GDB
	3.4.2.1 Connecting GDB to OVPsim

	3.5 An example debug session

	4 Further GDB Connection Information and Features
	4.1 RSP Interface
	4.2 Environment variables
	4.3 Detaching and Reattaching
	4.3.1 Modifying simulator behavior on detach
	4.3.1.1 Wait for next connection
	4.3.1.2 Finish simulation

	4.4 Enabling a debug port without initial connection
	4.5 Environment Variable Enables Debug Connection
	4.6 Debugging RSP Connections

	5 Creating a Debuggable SystemC/TLM2.0 Platform
	5.1.1 Nominating the debugged processor

